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Abstract
A weighted link stream is a pair (V,E) comprising V , the set of nodes, and E, the list of temporal
edges (u, v, t, λ), where u, v are two nodes in V , t is the starting time of the temporal edge, and λ is
its travel time. By making use of this model, different notions of diameter can be defined, which
refer to the following distances: earliest arrival time, latest departure time, fastest time, and shortest
time. After proving that any of these diameters cannot be computed in time sub-quadratic with
respect to the number of temporal edges, we propose different algorithms (inspired by the approach
used for computing the diameter of graphs) which allow us to compute, in practice very efficiently,
the diameter of quite large real-world weighted link stream for several definitions of the diameter.
Indeed, all the proposed algorithms require very often a very low number of single source (or target)
best path computations. We verify the effectiveness of our approach by means of an extensive set of
experiments on real-world link streams. We also experimentally prove that the temporal version of
the well-known 2-sweep technique, for computing a lower bound on the diameter of a graph, is quite
effective in the case of weighted link stream, by returning very often tight bounds.
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1 Introduction

Link stream, distance, eccentricity, and diameter. A time-dependent network is a graph
G = (V, E) in which each edge e ∈ E has associated an arrival function specifying, for
each starting time, the corresponding arrival time (see [4] for a classification of different
types of time-dependent networks). A weighted link stream [14] (also called temporal graph
in [22, 23] and point-availability time-dependent network in [4]) is a time-dependent network
in which the domain of the arrival functions is a finite set T of time instants (in this paper,
we will assume that T is a set of integer numbers). A weighted link stream is commonly
represented as a list E of temporal edges (u, v, t, λ), where u and v are two nodes in V , t ∈ T

is the starting time of the edge, and λ denotes the travel time of the edge: according to this
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11:2 On Computing the Diameter of (Weighted) Link Streams

representation, the arrival time of the edge (u, v) at time t is equal to t + λ. In this paper,
we refer to this representation by assuming that the list is sorted either in non-decreasing
or in non-increasing order with respect to the edge starting times: in the former case we
will denote the list as −→E , while in the latter case we will denote the list as ←−E . We will also
assume that the travel time of any temporal edge is an integer positive value. Moreover,
we will assume that if the link stream is undirected, then a temporal edge (u, v, t, λ) ∈ E
implicitly implies that the temporal edge (v, u, t, λ) is also in the link stream. Finally, we will
say that the link stream is unweighted if the travel time of all temporal edges is equal to 1.

When dealing with weighted link streams, the definition of path asks to satisfy, besides
the typical constraints of a path in a graph, some natural time constraints. In particular, a
path from a node u to a node v is a sequence of temporal edges

(u = w1, w2, t1, λ1), (w2, w3, t2, λ2), . . . , (wk−1, wk, tk−1, λk−1), (wk, wk+1 = v, tk, λk)

such that, for each i with 1 < i ≤ k, ti ≥ ti−1 + λi−1. The departure time of the path is t1,
its arrival time is tk + λk, its duration is tk + λk − t1, and its travel time is

∑k
i=1 λi. In the

following, for any time interval [tα, tω], we will say that the path is [tα, tω]-compatible, if its
departure time is no earlier than tα and its arrival time is no later than tω.

By making use of the above four path cost functions, we can then define the following four
corresponding distances between two nodes u and v, in a specific time interval [tα, tω] (for all
distances, we assume that their value is∞, if there is no [tα, tω]-compatible path) [24, 22, 23].

Earliest arrival time d
[tα,tω]
eat (u, v) is the minimum arrival time of any [tα, tω]-compatible path

from u to v minus tα.
Latest departure time d

[tα,tω]
ldt (u, v) is tω minus the maximum departure time of any [tα, tω]-

compatible path from u to v.
Fastest time d

[tα,tω]
ft (u, v) is the minimum duration time of any [tα, tω]-compatible path

from u to v.
Shortest time d

[tα,tω]
st (u, v) is the minimum travel time of any [tα, tω]-compatible path from

u to v.
In the following, for the sake of simplicity, we will almost always avoid to specify the time
interval in the superscript, and assume that it is the interval in which tα is the minimum
departure time of all temporal edges, and tω is the maximum arrival time.

Once a notion of distance is adopted, the corresponding notions of eccentricity and of
diameter can be introduced, analogously to the case of standard graphs. That is, for any
d ∈ {eat, ldt, ft, st}, the (forward) eccentricity eccfd(u) of a node u is its maximum finite
distance to any other node, and the diameter �d of a weighted link stream is the maximum
(defined) eccentricity of all its nodes.1 The goal of this paper is to analyse the problem of
computing the diameter of a weighted link stream, in the case of the four previously defined
distances. To this aim, let us first note that several algorithms have been proposed in the
literature in order to compute the distance of a source node s to all other nodes, for each of
the distance definitions considered in this paper. For any d ∈ {eat, ldt, ft, st}, let ssbpd
be an algorithm that, given in input −→E and a source node u, returns an array containing, for
each node v, the value dd(u, v), and let s-timed (respectively, s-spaced) be the worst-case
time (respectively, space) complexity of this algorithm, as a function of the number n of
nodes and of the number m of temporal edges in the weighted link stream. In this paper, we

1 In this paper, we use the symbol � since it is obtained by the command diameter in LATEX, and since
graphically it reminds the notion of a diameter.
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Table 1 The time and space complexity of the single source best path and the single target
best path algorithms with input −→E and ←−E , respectively (without considering the time and space
necessary for sorting the link stream).

d s-timed s-spaced Ref. t-timed t-spaced Ref.
eat O(m) O(n) [22, 23] O(m) O(m) [9, 10]
ldt O(m) O(m) [9, 10] O(m) O(n) [22, 23]
ft O(m) O(m) [9, 22, 23] O(m) O(m) [9, 22, 23] & Lemma 1
st O(m log m) O(m) [22, 23] O(m log m) O(m) [22, 23] & Lemma 1

mostly refer to the algorithms proposed in [9, 10, 22, 23]: as far as we know, they have the
best time and space complexity (see the second and third column of Table 1). Nevertheless,
our results can be easily adapted to other algorithms proposed in the literature, that usually
have the same time and space complexity. In the following, we will assume that both −→E
and ←−E are available: otherwise, all time complexities of Table 1 become O(m log m), and all
space complexities become O(m).

Computing the diameter. For any d ∈ {eat, ldt, ft, st}, in order to compute the corre-
sponding diameter of a weighted link stream, we can execute the algorithm ssbpd, for each
source node u (we will refer to such “text-book” approach as the algorithm tbd). However,
the time complexity of this approach is O(n · s-timed(n, m)): by looking at Table 1, we have
that this time complexity is not affordable whenever we have thousands or millions of nodes,
and millions or billions of temporal edges in the link stream. Unfortunately, our first result
consists in showing that it is very unlikely that there exists an algorithm computing any of the
four diameters in time sub-quadratic in the number of temporal edges. In other words, it is
reasonable to conjecture that the known algorithms for computing any of the four diameters
are, indeed, optimal.

In order to deal with this complexity conjecture, in this paper we propose to follow the
approach that has been adopted while computing the diameter in real-world large graphs
[7, 18, 8, 6, 19, 3] (and other distance-based measures like hyperbolicity [1]). This approach
consists in sorting the nodes of the graph in a “clever” way, in computing, for each node in the
given order, the eccentricity of the node, and in updating a lower bound on the value of the
diameter and an upper bound on the value of the eccentricities of the remaining nodes, until
the upper bound becomes less than or equal to the lower bound. The first main difficulty
of this approach is, hence, to determine which order should be used in order to stop the
process as soon as possible. For example, in the case of unweighted undirected connected
graphs, the iFUB algorithm [6] first performs a breadth-first search starting from a random
node x, and subsequently visits the nodes in the breadth-first search tree in a bottom-up
fashion (this approach can be generalised to strongly connected directed graphs by executing
both a forward and a backward breadth-first search starting from x, and by then combining
paths entering x with paths exiting x [8]). The second main difficulty of this approach is
finding a lower and an upper bound, which are easy to compute and to update, and that
also allows the algorithm to stop as soon as possible. In the case of the iFUB algorithm, for
instance, the lower bound is simply the maximum eccentricity computed so far, while the
upper bound is a simple value connected to the level of the breadth-first search tree at which
the algorithm is arrived.

In this paper, we show that this approach can also be applied to the computation of
the diameter of a weighted link stream, for any of the four previously defined distances. To
this aim, as in the case of directed graphs [8], we will make use of a “backward” variation

SEA 2021



11:4 On Computing the Diameter of (Weighted) Link Streams

of the single source best path algorithms. For any d ∈ {eat, ldt, ft, st}, let stbpd be an
algorithm that, given in input ←−E and a target node v, returns an array containing, for each
node u, the value dd(u, v), and let t-timed (respectively, t-spaced) be the worst-case time
(respectively, space) complexity of this algorithm, as a function of the number n of nodes
and of the number m of temporal edges in the weighted link stream. Once again, in this
paper we mostly refer to the algorithms proposed in [9, 10, 22, 23]: as far as we know, they
have the best time and space complexity (see the fifth and sixth column of Table 1). In the
following, we will denote with eccbd(u) the backward eccentricity of a node u, that is its
maximum finite distance from any other node: note that the diameter �d of a weighted link
stream can also be defined as the maximum (defined) backward eccentricity of all its nodes.

1.1 Our results
Computing �eat and �ldt. In the case of the earliest arrival time (respectively, latest
departure time) distance, we propose to sort the nodes according to the maximum arrival
(respectively, minimum departure) time of the edges entering (respectively, exiting) a node,
in a non-increasing (respectively, non-decreasing) order. This choice is mostly inspired by the
fact that, in the case of collaboration or citation link streams (such as the IMDB [11] and
the DBLP-Citation [16, 20] networks), the earliest arrival time (respectively, latest departure
time) diameter of the link stream coincides with the collaboration or citation of one of the last
(respectively, first) nodes which entered the time-dependent network. Surprisingly, we will
show that this intuition leads us, in practice, to a very efficient algorithm for computing the
earliest arrival time (respectively, latest departure time) diameter of weighted link streams of
different types (such as, public transport networks). For each analysed node, the algorithm
executes a single target (respectively, source) best path computation, and update, in an
appropriate way, both the lower and the upper bound: in particular, the lower bound is
always the maximum distance seen so far, while the upper bound becomes the maximum
arrival (respectively, minimum departure) time of the edges entering (respectively, exiting)
the next node. As a result, our algorithm is able to compute the eat and the ldt diameter
of large public transport networks using much lower visits with respect to the text book
algorithm. This performance improvement is particularly significant for the three biggest
public transport networks in our dataset, as the number of performed visits becomes smaller
than 0.5% of the number of nodes.

Computing �ft and �st. In the case of the fastest and the shortest time distance, the
situation is more complicated. Indeed, aiming at adopting the approach used for weighted
directed graphs by the iFUB-like algorithm, we need to guarantee that the paths leading
to a node x, whose forward and backward distances to and from all other nodes have
been computed, are temporally compatible with the paths exiting from x and, that they
can, hence, be “temporally” combined. Unfortunately, this is not always the case. This
situation is similar to the one that arises when the iFUB approach is applied to weakly
connected graphs: indeed, in this case either the diameter of the largest strongly connected
component only is computed, or the component graph is computed in order to choose a
pivot node for each strongly connected component, to bound the eccentricities of pivot nodes,
and to propagate these bounds within each strongly connected component. The definition
of (strongly) connected component in the case of link streams is somehow more involved
(see [14]) and, as far as we know, no efficient algorithm capable of computing the analogue
of the component graph has been proposed so far. For this reason, in this paper we have
chosen to adopt the first solution, that is, restricting ourselves to the computation of what
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we have called the pivot-diameter. In our case, a pivot is a node at a given time instant,
that is, a pair (u, t), where u ∈ V and t ∈ T . Given a set P of pivots, the pivot-diameter
of a weighted link stream with respect to P is the diameter restricted to the set R(P ) of
pair of nodes in V such that, for any pair (u, v) ∈ R(P ), there is a path from u to v which
passes through one the pivots in P (our notion of pivot-diameter is connected to the notion
of “pivotability” introduced in [5]). Note that, in some real-world weighted link streams, it
should be possible to find a small pivot set such that almost all pairs of nodes are included
in R(P ). For example, in the case of public transport networks, such a pivot set could be
formed by the central station taken at different times of the day. In any case, once the set
of pivots are given, we propose an algorithm that is able to compute the pivot-diameter of
large link streams, improving very often the text-book algorithm of at least one order of
magnitude. The worst case running time can be quadratic, but this seems to be unavoidable,
as witnessed by the conditional lower bound we prove for this problem. It is also worth
noting that, in the case of public transport networks, the pivot-diameter is, in many cases,
very close to the diameter of the link stream, when the pivots are the top out-degree nodes,
taken at few time instants.

Computing lower bounds on the diameter. Thanks to the backward and the forward visits
discussed in Section 1.2 and whose complexities are summarized in Table 1, we are able to
extend a well-known method for computing lower bounds for the diameter of static graphs
to the case of temporal graphs. This method is called double-sweep and can be applied
both to directed and undirected graphs: it selects a random node r (sometimes chosen as a
high degree node [8]), it performs a forward visit from r obtaining the node a1 which is the
farthest from r, and set lb1 = maxb∈V d(b, a1). Then it performs a backward visit from r

obtaining the node a2 which is the farthest from r, and set lb2 = maxb∈V d(a2, b). Finally,
it returns the maximum between lb1 and lb2. This method naturally extends to the case
of weighted link streams, for all the distances eat, ldt, ft, st, by using for each distance
d the corresponding forward and backward best path search, i.e. using ssbpd and stbpd.
We analyse the performance of this revised temporal double sweep in our experiments for
all these distances, and we show that the computed lower bound is very often tight, when
performing O(log2 n) double sweeps. In the case of st, the lower bounds are often tight when
dealing with public transport networks, while they seem to be rarely tight in the case of
social networks. In any case, also in this latter case, double sweep significantly outperforms
random sampling approaches.

1.2 Two useful link stream transformations
In [9], the authors introduce a simple transformation from a weighted linked stream (V,E) to
an unweighted link stream (V ∪ I,F), where I is a set of at most |E| “intermediate” nodes.
Intuitively, this transformation changes the travel time of a temporal edge into a waiting
time in the intermediate nodes. More precisely, for each temporal edge e = (u, v, t, 1) ∈ E, e

is also included in F. For each temporal edge e = (u, v, t, λ) ∈ E with λ > 1, a new node ie

is inserted in I, and the two temporal edges (u, ie, t, 1) and (ie, v, t + λ− 1, 1) are included in
F. It is easy to verify that, for any two nodes u, v ∈ V , dd(u, v) in (V,E) is equal to dd(u, v)
in (V ∪ I,F), where d ∈ {eat, ldt, ft}. This implies that the diameter of (V,E) is equal to
the maximum (defined) eccentricity of the nodes in V computed in (V ∪ I,F).

The following lemma (whose proof is given in Appendix), instead, introduces another
transformation which will allow us to easily design a backward version of a best path search
and to relate the eat distance and the ldt distance.
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11:6 On Computing the Diameter of (Weighted) Link Streams

▶ Lemma 1. Given a weighted link stream (V,E), let (V,F) be the weighted link stream
obtained by substituting each temporal edge e = (u, v, t, λ) ∈ E with the temporal edge
ρ(e) = (v, u,−t− λ, λ). Then, for any two nodes u, v ∈ V , d

[tα,tω]
d (u, v) in (V,E) is equal to

d
[−tω,−tα]
d (v, u) in (V,F), where d ∈ {ft, st}. Moreover, d

[tα,tω]
eat (u, v) in (V,E) is equal to

d
[−tω,−tα]
ldt (v, u) in (V,F), and d

[tα,tω]
ldt (u, v) in (V,E) is equal to d

[−tω,−tα]
eat (v, u) in (V,F).

In the rest of the paper, we are going to use the above two transformations for the
following three purposes. First, we can ignore the ldt distance, since computing �ldt is
equivalent to computing �eat. Second, we can obtain an algorithm stbpft by applying
the transformation ρ of the lemma, by then applying the transformation in [9] to reduce
to unitary weights, and by finally applying the algorithm in [22]. Third, we can obtain an
algorithm stbpst by applying the transformation ρ of the lemma and by then using the
algorithm ssbpst described in [22].

2 Negative results

The Strong Exponential Time Hypothesis (in short, SETH ) states that there is no algorithm
for solving the k-Sat problem in time O((2− ϵ)n), where ϵ > 0 does not depend on k [12].
This hypothesis has been repeatedly used in the last few years in order to prove the hardness
of polynomial-time solvable problem (see, for example, [21], which is one of the first papers
along this line of research, where the authors address the hardness of many problems, like
computing all pairs shortest paths and finding triangles in a graph). We will here use it
in order to prove that the diameter of an unweighted undirected link stream cannot be
computed in time sub-quadratic with respect to the number of temporal edges.

To this aim, we will refer to the k-Big Two Disjoint Set (in short, k-BTDS) problem,
which is defined as follows. Given a set X and a collection C of subsets of X such that
|X| ≤ logk(|C|), the solution is 1 if there are two disjoint sets c, c′ ∈ C, 0 otherwise. Clearly,
this problem can be solved in quadratic time. It is also known that, for any k, the k-BTDS
problem is not solvable in time Õ(|C|2−ϵ), unless the SETH is false [2] (where the Õ notation
ignores poly-logarithmic factors).

▶ Theorem 2. For any d ∈ {eat, ft, st}, computing the diameter �d of a linked stream
(V,E) cannot be done in time Õ(|E|2−ϵ) for any ϵ > 0, unless the SETH is false, even if the
link stream is unweighted and undirected.

Proof. We show that the k-BTDS problem is reducible (in quasi-linear time) to the link
stream diameter computation problem, even in the case in which the diameter is equal
either to 2 or to 3. Given an input (X = {x1, . . . , x|X|}, C = {c1, . . . , c|C|}) of k-BTDS with
|X| ≤ logk(|C|), we construct an unweighted undirected link stream (X ∪ C,E), where the
set E of temporal edges is defined as follows (see also Figure 3 in Appendix).

For each xi, xj ∈ X, E contains the two temporal edges (xi, xj , 1, 1) and (xi, xj , 2, 1).
For each cj and for each xi ∈ cj , E contains the three temporal edges (xi, cj , 1, 1),
(xi, cj , 2, 1), and (xi, cj , 3, 1).

For any d ∈ {eat, ft, st}, let us now compute the eccentricities of all nodes, by distin-
guishing between nodes in X and nodes in C.
Nodes in X For each xi, xj ∈ X, dd(xi, xj) = 1 (since we can use the temporal edge with

starting time equal to 1). For each xi ∈ X and cj ∈ C, dd(xi, cj) = 1 if xi ∈ cj (since we
can use the temporal edge with starting time equal to 1). Otherwise, dd(xi, cj) = 2 (since
we can first use the temporal edge from xi to xk with starting time equal to 1, for some
xk ∈ cj , and then use the temporal edge from xk to cj with starting time equal to 2).
Hence, for each xi ∈ X, we have that eccfd(xi) = 2.
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Nodes in C For each ci ∈ C and xj ∈ X, we have already shown that dd(ci, xj) ≤ 2. For each
other cj ∈ C, dd(ci, cj) = 2 if ci ∩ cj ̸= ∅ (since we can first use the temporal edge from ci

to xk with starting time equal to 1, for some xk ∈ ci ∩ cj , and then use the temporal edge
from xk to cj with starting time equal to 2). Otherwise (that is, if ci ∩ cj = ∅), we have
that dd(ci, cj) ≤ 3 (since we can first use the temporal edge from ci to xk with starting
time equal to 1, for some xk ∈ ci, then use the temporal edge from xk to xl with starting
time equal to 2, for some xl ∈ cj , and finally use the temporal edge from xl to cj with
starting time equal to 3). Note that, in this case, dd(ci, cj) = 3 since there is no way of
arriving in cj starting from ci before time 3, since no neighbor of ci is also a neighbor of
cj , and, hence, we are forced to pass through two nodes in X. Hence, for each ci ∈ C,
eccfd(ci) = 3 if there exists cj ∈ C such that ci ∩ cj = ∅, otherwise eccfd(ci) = 2.

We can the conclude that the diameter �d of the link stream is either 2 or 3: it is 3 if and
only if there exist two ci, cj ∈ C which are disjoint.

Since |X| ≤ logk(|C|), the reduction can be executed in Õ(|C|) time, and |E| = Õ(|C|).
Hence, if we can compute the diameter of the link stream in Õ(|E|2−ϵ) for some ϵ > 0, then
we could solve the k-BTDS in Õ(|C|2−ϵ) for some ϵ > 0. From the result of [2], it follows
that the SETH would be falsified, and the theorem is proved. ◀

Note that, from the above theorem and from Lemma 1, it follows that the same result
holds for the ldt distance. Moreover, the proof of the above theorem gives strong evidence
that a sub-quadratic (3/2− ϵ)-approximation algorithm for the diameter may be very hard
to find, even for undirected unweighted link streams.

3 Computing the EAT diameter

In this section we focus on the eat distance, and we propose a quite simple algorithm for
computing the diameter of a weighted link stream. As we already said in the introduction,
the algorithm follows the approach used in the case of graphs, which consists in sorting the
nodes of the link stream, in computing, for each node in the given order, the eccentricity of
the node, and in updating a lower bound on the value of the diameter and an upper bound
on the backward eccentricities of the remaining nodes, until the upper bound becomes less
than or equal to the lower bound. In the case of the eat distance, nodes are sorted with
respect to their last “entering” time, i.e. δ(v) = maxt,λ:∃(u,v,t,λ)∈E{t + λ} − tα, the lower
bound is the maximum backward eccentricity computed so far, and the upper bound is the
difference between the entering time of the next node that has been examined and tα. This
strategy is formalised in Algorithm 1.

▶ Lemma 3. Let v1, . . . , vn be the ordering of the nodes in V with respect to δ(·). For each
i ≥ 1, maxi

j=1 eccbeat(vj) ≤ �eat and maxn
j=i eccbeat(vj) ≤ δ(vi).

Proof. The first inequality is obvious, since �eat = maxn
i=1 eccbeat(vi). The second in-

equality follows from the fact that, for each vj ∈ V , we have eccbeat(vj) ≤ δ(vj), and
that, because of the ordering, for each j ≥ i, we have δ(vj) ≤ δ(vi), which implies
maxn

j=i eccbeat(vj) ≤ maxn
j=i δ(vj) ≤ δ(vi). ◀

▶ Theorem 4. Algorithm 1 correctly computes the eat diameter.

Proof. Because of the previous lemma, we have that, at the end of each iteration of the
while loop, the value of lb is a lower bound on �eat, while the value of ub is an upper
bound on the backward eccentricity of all the remaining nodes to be visited. Since �eat =
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11:8 On Computing the Diameter of (Weighted) Link Streams

maxn
i=1 eccbeat(vi), sooner or later the value of lb has to become equal to �eat, and the

value of ub has to become less than or equal to �eat. When this happens, the loop stops,
and the algorithm correctly returns the value of lb. ◀

Algorithm 1 eat diameter.

Input : Weighted link stream (V,
−→
E )

with n nodes
Output : Diameter �eat

1 foreach v ∈ V do
2 δ(v)←

maxt,λ:∃(u,v,t,λ)∈E{t + λ} − tα

3 sort nodes v1, . . . , vn in non-increasing
ordering with respect to δ(·)

4 lb← 0
5 i← 1
6 ub← δ(vi)
7 while ub > lb do
8 lb← max{lb, eccbeat(vi)}
9 i← i + 1 if i ≤ n then ub← δ(vi)

10 return lb

Algorithm 2 Pivot-diameter.
Input : Weighted link stream (V,E), set

P ⊆ V × T , distance
d ∈ {eat, ft, st}

Output : Pivot-diameter �P
d

1 lb← 0, ub←∞, ÂP ← ∅, B̂P ← ∅
2 while ub > lb do
3 m← arg maxp∈P ubd(p)
4 ub← ubd(m)
5 if ub = −∞ then return lb
6 (v, w)←

arg maxz∈AP \ÂP ,y∈BP \B̂P
ubd(m, z, y)

7 lb← max{lb, getLowerBound(v, w, ub)}
8 return lb

9 Function getLowerBound(v, w, ub)
10 y ← eccbP

d (w), Add w to B̂P

11 if y ≥ ub ∨ d = eat then return y

12 z ← eccfP
d (v), Add v to ÂP

13 return max{z, y}

Note that, by applying Lemma 1, Algorithm 1 can also be used to compute the ldt
diameter. It should be clear, that, in the worst case, Algorithm 1 has to execute a backward
best path search starting from each node of the link stream. That is, the worst-case time
complexity of the algorithm is O(n · t-timed(n, m)). However, we will experimentally show
that, in the case of real-world link streams, the number of searches that have to be performed
is much lower than the number of nodes, thus making the algorithm extremely efficient.

4 Pivot-diameter

Let (V,E) be a weighted link stream, and let T be the set of the starting times of all temporal
edges in E. Given a subset P of V × T , let R(P ) ⊆ V × V be the set of pairs defined as
follows: R(P ) = {(u, v) | ∃(x, t) ∈ P : d

[tα,t]
eat (u, x) <∞∧ d

[t,tω]
eat (x, v) <∞}. In other words,

P is a set of pivots, and R(P ) contains only pairs of nodes (u, v) such that u can reach v

passing through the node x at time t, for some pivot (x, t) ∈ P . By restricting our attention
to the set R(P ), we are sure that the pairs we are considering are connected by at least one
path (in particular, a path passing through a pivot). However, while analyzing the diameter
restricted to these pairs (u, v), we will consider all the possible paths and not only the ones
passing through the pivots. Formally, for any node u, let AP (u) = {v : (v, u) ∈ R(P )} and
BP (u) = {v : (u, v) ∈ R(P )}. Moreover, let AP = {u : BP (u) ̸= ∅} and BP = {u : AP (u) ̸=
∅}. For any d ∈ {eat, ldt, ft, st},

the forward pivot-eccentricity of a node u ∈ AP is eccfP
d (u) = maxv∈BP (u) dd(u, v), and

the backward pivot-eccentricity of a node u ∈ BP is eccbP
d (u) = maxv∈AP (u) dd(v, u).

The pivot-diameter is then defined as �P
d = max(u,v)∈R(P ) dd(u, v) = maxu∈AP

eccfP
d (u) =

maxu∈BP
eccbP

d (u). In this section, we focus on the pivot-diameter computation problem,
that is, given a weighted link stream and a set P ⊆ V × T , compute the pivot-diameter with
respect to any d ∈ {eat, ldt, ft, st} (note that thanks to Lemma 1, we will neglect the ldt
distance, as this case can be reduced to the eat distance case after a suitable transformation
of the graph). Let us observe that the pivot-diameter computation problem is also hard
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to compute in time sub-quadratic to the number of temporal edges: indeed, the very same
reduction described in the proof of Theorem 2 can be used, by choosing P = X×{1, 2, 3}. In
the following, we will assume that T ⊆ N+, that is, all time instants are positive integers (in
order to deal with the negative time instants introduced by the transformation in Lemma 1,
it is sufficient to perform a “temporal shift” of the link stream).

A simple algorithm for computing the pivot-diameter (denoted as pivot-tbP
d ) first

computes the sets AP and BP , by simply performing, for each pivot p = (x, t) ∈ P , a
backward best path search in the interval [tα, t] and a forward best path search in the interval
[t, tω], both starting from x. Once computed AP and BP , if |AP | ≤ |BP |, then the algorithm
computes, for each node u in AP , the value eccfP

d (u), and returns the maximum among all
such values. Otherwise (that is, |BP | < |AP |) the algorithm computes, for each node u in
BP , the value eccbP

d (u), and return the maximum among all such values.
We now propose another algorithm (called pivot-ifubd) which is, once again, inspired by

the approach used for computing the diameter of graphs (see Algorithm 2). This algorithm,
once computed the sets AP and BP , sorts the nodes of the link stream, computes, for
each node in the given order, the (forward or backward) pivot-eccentricity of the node,
and updates a lower bound on the value of the pivot-diameter and an upper bound on the
pivot-eccentricities of the remaining nodes, until the upper bound becomes less than or equal
to the lower bound. Once again, a key ingredient of the algorithm is the order of the nodes,
which must be able to guarantee an effective non-trivial upper bound. Moreover, this upper
bound should be easily obtainable in order to do not burden the computation. In the case of
pivot-ifubd, all these aspects are guided by the pivots. In particular, each pivot ensures
an upper bound on the distance between pairs of nodes it connects, and, for all pairs of
nodes (v, w) in R(P ), we have at least one upper bound on their distance, which is given
by the temporal paths passing through a pivot. Hence, we first select the pivot m giving
the worst upper bound (this upper bound becomes the new upper bound of the algorithm),
and we then select the corresponding pair of nodes (v, w). We then compute the forward
pivot-eccentricity of v and the backward pivot-eccentricity w, eventually improving the lower
bound of the algorithm. It is worth noting that selecting the pivot m and the pair (v, w) can
be done in a fast way, as we can, during a preprocessing phase of the algorithm, compute the
distances from and to all the pivots in P and, for each pivot p ∈ P , we can sort the nodes
in A{p} and in B{p} in non-increasing order with respect to their distance from and to p,
respectively.

The above description clearly depends on the distance d. In the following, we first precisely
instantiate, for each distance, the above bounds, we then prove properties on the lower
bound and on the upper bound, in order to asses the correctness of the algorithm. Given a
pivot p = (x, t) ∈ P and two nodes u and v such that d

[tα,t]
eat (u, x) <∞ and d

[t,tω]
eat (x, v) <∞,

we define ubeat(p, u, v) = d
[t,tω]
eat (x, v), ubft(p, u, v) = d

[tα,t]
ldt (u, x) − tω + d

[t,tω]
eat (x, u), and

ubst(p, u, v) = d
[tα,t]
st (u, x) + d

[t,tω]
st (x, u). For any d ∈ {eat, ft, st}, dd(u, v) ≤ ubd(p, u, v).

Indeed, ubd(p, u, v) is the “cost” of a path going from u to x and then from x to v, where
the cost is computed accordingly to the distance d. This concatenation of paths is a valid
temporal path as the path arrives in x at most at time t and leaves from x at least at time t.
For completeness, if d

[tα,t]
eat (u, x) =∞ or d

[t,tω]
eat (x, v) =∞, we define ubd(p, u, v) = −∞ (this

maybe non-intuitive definition allows us to deal with the search of the maximum values in a
more compact way). In Algorithm 2, ÂP ⊆ AP and B̂P ⊆ BP are the set of nodes for which
a ssbpd and a stbpd, respectively, has been executed. Moreover, in the algorithm ubd(p)
denotes the value maxz∈AP \ÂP ,y∈BP \B̂P

ub(p, z, y).

▶ Lemma 5. At any iteration of the while loop of Algorithm 2, if d ∈ {ft, st}, then lb =
max{maxv∈B̂P

{eccbP
d (v)}, maxv∈ÂP

{eccfP
d (v)}}, otherwise lb = maxv∈B̂P

{eccbP
eat(v)}.
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Proof. It immediately follows from the definition of the getLowerBound function. ◀

▶ Lemma 6. Let d ∈ {ft, st, eat}. At any iteration of the while loop of Algorithm 2, for
any node u ∈ AP \ ÂP and v ∈ BP \ B̂P , dd(u, v) ≤ ub.

Proof. We have already observed that, for any pivot p ∈ P , dd(u, v) ≤ ubd(p, u, v). Hence,
dd(u, v) ≤ maxp∈P ub(p, u, v). Since u ∈ AP and v ∈ BP , then there is at least one pivot p =
(x, t) such that d

[tα,t]
eat (u, x) <∞ and d

[t,tω]
eat (x, v) <∞. This implies that maxp∈P ub(p, u, v) ̸=

−∞. Moreover, we have that

max
p∈P

ub(p, u, v) ≤ max
p∈P

max
z∈AP \ÂP ,y∈BP \B̂P

ub(p, z, y) = max
p∈P

ub(p) = ub,

where the inequality holds since u ∈ AP \ ÂP and v ∈ BP \ B̂P , while the remaining two
equalities follow from the definition of ub(p) and from the assignment at Line 4 of Algorithm 2.
The lemma thus follows. ◀

▶ Lemma 7. At any iteration of the while loop of Algorithm 2, if d ∈ {ft, st}, then, for any
node u ∈ BP \ B̂P (resp. AP \ ÂP ), eccbP

d (u) (resp. eccfP
d (u)) is bounded by max{lb, ub}.

Otherwise, for any node u ∈ BP \ B̂P , eccbP
eat(u) is bounded by max{lb, ub}.

Proof. Let us suppose there is a node v ∈ BP \ B̂P such that eccbP
d (v) > ub, with

d ∈ {eat, ft, st}. Let u be the node in AP such that dd(u, v) = eccbP
d (v). Note that u

must exist and it is such that eccfP
d (u) ≥ eccbP

d (v). If u ∈ AP \ ÂP (this is the only
possible case when d = eat, since ÂP = ∅), then from Lemma 6 it follows that dd(u, v) ≤ ub,
which is a contradiction. Otherwise (that is, u ∈ ÂP ), from Lemma 5 it follows that
lb ≥ eccfP

d (u) ≥ eccbP
d (v). For d ∈ {ft, st}, the proof for nodes in AP \ ÂP is similar.

The lemma is thus proved. ◀

▶ Theorem 8. Algorithm 2 correctly computes the pivot-diameter.

Proof. It immediately follows from Lemma 6 and Lemma 7. ◀

The proof of the next theorem is given in Appendix.

▶ Theorem 9. Algorithm 2 computes the pivot-diameter in O(|AP | · s-timed(n, m) + |BP | ·
t-timed(n, m) + |P | · (s-timed(n, m) + t-timed(n, m) + n log n)) time, using space O(|P | ·
n + s-spaced(n, m) + t-spaced(n, m)).

As we will see in the next section, an effective choice of the cardinality of P is logarithmic
in the number of nodes: hence, in the worst case, the time complexity of our algorithm is
the same as the one of the tbd algorithm (if poly-logarithmic factors are ignored). This time
is clearly bounded by O(n · (s-timed(n, m) + t-timed(n, m)) + n log2 n), and, looking at the
costs in Table 1, it does not contradict the computational lower bound.

5 Experimental Results

This section is devoted to show our experimental results for the different notions of distance
we have considered. After introducing our experimental testbed, we organize the results as
follows. We show the performance of the temporal double sweep described in the introduction.
We then show the performance of our algorithm for computing �eat and �ldt, which is
described in Section 3. We finally focus on the pivot-diameter, whose algorithm has been
described in Section 4.
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Table 2 Our dataset. The meaning of the columns is described in Section 5.

Network name n m tω-tα R �eat �ldt �ft �st Ref.
public transport networks

kuopio 549 30 574 73 920 216 630 60 120 73 260 53 940 36 240 [13]
rennes 1 407 107 713 73 320 1 641 208 63 660 70 980 42 540 8 760 [13]
grenoble 1 547 113 437 78 780 1 265 735 75 540 75 180 42 180 12 300 [13]
venice 1 874 113 933 89 160 2 354 707 79 080 85 020 67 020 8 040 [13]
belfast 1 917 121 195 67 920 3 040 354 66 360 66 900 61 560 9 360 [13]
canberra 2 764 122 690 65 760 5 754 287 62 280 65 700 43 320 8 700 [13]
turku 1 850 131 684 75 625 2 966 925 65 615 75 545 53 225 10 795 [13]
luxembourg 1 367 178 052 72 780 1 818 761 62 160 72 720 50 820 4 920 [13]
nantes 2 353 194 572 76 680 4 320 287 74 040 72 360 61 680 18 780 [13]
detroit 5 683 214 853 90 660 29 990 674 76 260 87 660 54 352 17 174 [13]
toulouse 3 329 222 749 73 920 9 525 234 72 300 73 200 53 940 12 900 [13]
palermo 2 176 224 260 76 200 4 734 976 27 505 35 659 9 669 7 139 [13]
bordeaux 3 435 236 489 78 365 9 933 813 76 025 76 020 56 520 9 620 [13]
winnipeg 5 079 332 522 77 808 25 519 193 67 488 75 977 56 545 6 594 [13]
brisbane 9 645 386 175 76 860 70 598 864 74 220 75 060 64 320 17 700 [13]
dublin 4 571 399 875 75 471 15 801 421 72 591 72 892 60 929 9 141 [13]
adelaide 7 548 402 933 76 200 50 007 666 73 745 76 200 54 498 14 810 [13]
lisbon 7 073 525 114 87 424 14 065 989 82 088 84 578 68 582 12 434 [13]
prague 5 147 621 545 90 660 19 181 301 90 660 90 660 84 900 17 280 [13]
helsinki 6 986 664 507 87 960 41 724 039 86 520 85 320 72 720 27 720 [13]
berlin 4 601 1 019 012 91 200 20 931 583 83 880 90 300 79 920 7 260 [13]
rome 7 869 1 049 202 90 382 56 395 585 80 648 89 677 72 017 11 470 [13]
melbourne 19 493 1 089 555 86 400 294 973 451 79 260 82 500 61 260 34 595 [13]
sydney 24 063 1 234 097 91 440 416 037 155 90 780 91 260 81 840 50 936 [13]
paris 11 950 1 807 200 81 660 90 427 303 80 340 79 620 71 460 19 560 [13]

social networks
topology 34 759 99 019 2 016 004 146 028 435 2 016 004 2 016 004 2 016 004 20 [17]
elec 7 119 103 675 119 088 241 5 736 331 119 084 221 119 088 241 119 038 621 10 [17]
facebook-wosn-wall 46 953 876 020 137 462 861 617 698 414 137 461 023 132 709 413 132 527 766 39 [17]
college 1 900 59 835 16 736 182 1 794 245 16 736 043 16 621 304 16 113 324 17 [15]
Sx-mathoverflow-a2q 88 577 107 581 203 068 634 47 765 186 203 068 634 203 068 634 202 876 639 18 [15]
Sx-mathoverflow-c2a 88 577 195 330 203 055 529 33 076 882 203 055 529 203 055 529 202 094 959 20 [15]
Sx-mathoverflow-c2q 88 581 203 639 202 990 935 24 548 566 202 983 123 202 778 885 201 772 254 17 [15]
Email-Eu-core 1 005 332 334 69 459 255 770 833 69 430 695 69 439 852 44 641 379 15 [15]
Sx-askubuntu-a2q 515 274 280 102 225 833 890 ⋆210 462 953 225 833 890 225 833 890 ≥208 943 421 ≥19 [15]
Sx-askubuntu-c2q 515 281 327 513 176 894 703 ⋆56 918 856 176 894 645 176 893 633 ≥176 893 575 ≥18 [15]
Sx-askubuntu-c2a 515 255 356 822 208 942 104 ⋆410 760 018 208 939 593 208 940 523 ≥208 401 245 ≥18 [15]
Sx-superuser-a2q 567 309 430 033 239 613 340 ⋆305 607 123 239 613 340 239 613 340 ≥237 851 331 ≥25 [15]
Sx-mathoverflow 88 581 506 550 203 069 368 ⋆191 433 809 203 068 737 202 999 190 ≥202 991 055 ≥20 [15]
Sx-superuser-c2q 567 316 479 067 239 293 899 ⋆83 514 878 239 293 899 239 293 899 ≥225 626 623 ≥22 [15]
Sx-superuser-c2a 567 301 534 239 236 358 777 ⋆967 867 967 236 354 503 236 358 777 ≥235 553 110 ≥20 [15]
Sx-askubuntu 515 281 964 437 225 834 463 ⋆4 098 469 692 225 834 443 223 600 507 ≥223 599 719 ≥23 [15]
Sx-superuser 567 316 1 443 339 239 614 929 ⋆7 720 583 649 239 614 929 239 614 929 ≥239 425 973 ≥25 [15]
Wiki-talk-temporal 1 140 149 7 833 140 200 483 883 ⋆80 939 303 499 200 483 883 196 754 851 ≥186 398 389 ≥24 [15]

Computing Platform and Source Code. Our computing platform is a machine with
Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, 24 virtual cores, 128 GB RAM, and running
Ubuntu Linux version 4.4.0-22-generic (machine available at Dipartimento di Informatica,
Università di Pisa, Italy). The code has been written in Python 3 and it is available at
github.com/marcocalamai/Link-stream-diameter.

Dataset. Table 2 reports the set of link streams we have used for our experiments. The
upper part refers to public transport networks, while the lower part refers to social networks.
The former link streams are weighted while the latter are unweighted. We report the number
of nodes n, the number of temporal edges m, the spectrum tω − tα of times where edges
appear, and the diameter �d for d ∈ {eat, ldt, ft, st}. We also report R, which is the
number of pairs (u, v) such that dd(u, v) <∞, as this quantity, together with the diameter
values will be compared to our results concerning the pivot-diameter. The values of �d have
been computed by making use of tbd: whenever, in the table, we write �d ≥ y, it means
that we are reporting as y the best lower bound computed so far during our experiments.

For computing R, we have used tbeat, when possible. In the cases marked with ⋆, the
value of R has been estimated using the method in [9].
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Table 3 Number of times the lower bound returned by 2swd(k) and rsd(k) is tight.

d
networks Number of times the returned lower bound is tight

(Number of Nets k = 4 k = 4 log2 n k = 8 log2 n k = 16 log2 n

whose �d is known) 2swd(k) rsd(k) 2swd(k) rsd(k) 2swd(k) rsd(k) 2swd(k) rsd(k)
eat public transport (25) 10 3 15 6 19 9 22 10
ldt public transport (25) 10 0 19 1 23 1 23 2

ft public transport (25) 4 0 18 0 19 1 21 2
social (8) 1 0 6 0 7 0 7 0

st public transport (25) 13 0 22 1 23 2 24 3
social (8) 0 0 1 1 1 1 1 1

As it can be seen and as already pointed out in the introduction, in the case of social
networks, �eat and �ldt are both very close to tω − tα. This is expected because of the
meaning of the link streams in the case of this kind of networks, whose behaviour is induced
by new users being added. This fact makes the computation of �eat and �ldt very easy: for
this reason, we decided to exclude social networks when reporting our experimental results
concerning �eat and �ldt.

Methods. In the following, we summarize our methods and competitors used in the
remainder of the section. The subscript d refers to distances in {eat, ldt ft, st}.
Lower bounds for the diameter The following methods compute lower bounds for �d.

2swd(k): select a set of k/4 nodes randomly chosen and return the best lower bound
found by a double sweep, which have been described in the introduction. As each
double sweep requires 4 visits, 2swd(k) performs exactly k visits in total.
rsd(k): select a set of k nodes randomly chosen v1, . . . , vk, and return maxi eccfd(vi).
Also this methods requires exactly k visits in total.

Computing exactly the diameter The following methods compute �eat and �ldt exactly.
eat-alg: apply Algorithm 1, described in Section 3.
ldt-alg: apply the transformation in Lemma 1 and then Algorithm 1.
tbd: for each node v ∈ V , compute eccfd(v) and return the maximum value found.

Computing exactly the pivot-diameter The following methods, given a set of pivots P ⊆
V × T , compute the pivot-diameter introduced in Section 4.

pivot-ifubd: apply Algorithm 2.
pivot-tbd: this algorithm has been described in Section 4.

In order to evaluate the considered methods independently from the used platform, their
performance have been expressed in terms of number of visits. For the sake of completeness,
however, a rough estimation of the running time in seconds (on our computing platform) can
be easily obtained using the running times of the visits reported in Table 8.

Computing lower bounds

This section is devoted to show the performance of 2swd(k) compared to the one of
rsd(k), for different values of k. We evaluate the performance of both methods for
k ∈ {4, 4 log2 n, 8 log2 n, 16 log2 n} and we summarize our results in Table 3 and in Ta-
ble 6 in Appendix. Table 3 reports the number of times the lower bound returned by each
method is tight, i.e. it is equal to �d. We were able to do this only for the link streams whose
diameter is known, i.e. the 25 public transport networks and 8 social networks. Looking
at Table 3, we can see that, as expected, the performance of both algorithms improves by
increasing k, i.e. the number of performed visits.

For eat and ldt we report the results only for the 25 public transport networks in our
dataset as we have seen that in the case of social networks the diameter is easy to find. For
the public transport networks, 2sweat(k) (resp. 2swldt(k)) is able to get very often tight
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lower bounds, especially with k = 16 log2 n. For this value of k, in only 3 cases (resp. 2 cases)
2sweat(k) (resp. 2swldt(k)) was not able to find a tight lower bound for �eat (resp. �ldt),
namely for kuopio, melbourne, and paris (resp. toulouse and sydney). Also in the
case of ft, we can clearly see a very good performance of 2swft(k). In the case k = 16 log2 n,
it is able to find 21 tight lower bounds over the 25 public transport networks, and 7 tight
lower bounds over the 8 social networks. The exceptional social network is Email-Eu-core,
in which 2swft(k) returns a lower bound 4% lower than the real value of the diameter.

In the case of 2swst(k) we confirm the good performance of the double sweep in the case
of public transport networks. However, we observe that its behaviour is worse in the case of
social networks, as in only one case over 8, it returns a tight lower bound. In any case, we
have verified that in the great majority of the cases, 2swst(k) returns a lower bound greater
than or equal to the one obtained by rsst(k). This can be seen in Table 6 in Appendix, where
we report such number of cases for each distance d. In this case, we were able to include
all our 18 social networks, as we do not need to known the exact value of the diameter to
perform the comparison. All in all, we can see that, fixing the number of visits, it is always
more convenient to run 2swst(k) instead of rsst(k).

Computing �eat and �ldt

In this section, we discuss the performance of eat-alg and ldt-alg, i.e. the algorithms
discussed in Section 3. These methods respectively compute �eat and �ldt, and have been
compared respectively to tbeat and tbldt. The comparison is done in terms of number of
visits performed: in particular, we report the ratio between the number of visits performed
by our methods and n, which is indeed the number of visits required by tbd. We report the
results only for public transport networks.

Our results are summarized in Figure 1a, and further detailed in Table 7 in Appendix.
In the case of eat-alg we can see that in 14 cases over 25 it performs less than 10% of the
visits performed by tbeat, while in 20 cases over 25 it performs less than 50% of the visits.
The cases where eat-alg had worst performance were kuopio, turku, luxembourg,
winnipeg, and palermo. On the other hand, the cases where eat-alg performs better
correspond to the three biggest link streams, namely melbourne, sydney, and paris, where
it performs less than 1% visits. These results are even better if we look at the performance of
ldt-alg in Figure 1b. In this case we perform less than 15% of the visits required by tbldt
for all the link streams except for palermo. In 16 cases over 25, we perform less than 3% of
the visits. The reason behind these performances are deeply related to how the eat-alg
and ldt-alg work. Starting from the nodes with biggest δ(v), they perform one visit after
the other, stopping when processing a node such that δ(w) = �eat (resp. δ(w) = �ldt). For
this reason, both the methods need to compute the eccentricity of all the nodes v having
δ(v) > �d. These nodes are relatively few in general, as shown in the case of rome in
Figures 4a and 4b in Appendix, respectively for eat and ldt. In particular, Figure 4a and
Figure 4b show for each δ the number of nodes in the link stream rome having such δ. The
values of δ are different for the plots, as the ones of Figure 4b refer to the values in the
graph transformed applying Lemma 1. In both the cases, starting from the right of each
plot, we need to perform the visit from all the nodes whose δ is at the right of the arrow
marked as “diameter”, whose number can be visually observed by the black mass at the right
of the arrow. In the case of palermo, we have verified that the diameter is very low and
all the nodes are at the right of the arrow both for eat and ldt (see Figures 4c and 4d in
Appendix).
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(a) Visits performed by eat-alg wrt to n.
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(b) Visits performed by ldt-alg wrt to n.

Figure 1 Ratio between the number of visits performed by eat-alg (resp. ldt-alg) and n,
where n is the number of visits required by tbeat (resp. tbldt), as a function of the number of nodes.

Computing the pivot-diameter

In the following, we focus on the computation of the pivot-diameter, using our algorithm
pivot-ifubd and the text-book algorithm pivot-tbd. For the sake of brevity, in the following
we discuss only the case where d ∈ {ft, st}. For public transport networks, we have also
computed the pivot-diameter for d ∈ {ldt, eat}: we just report the results in Table 4.

Choice of the pivots. We report our experiments in the case in which pivots are chosen as
follows (we have analysed the performance of pivot-ifubd with several choices of the pivots,
with similar performance results: the choice we show here is a choice leading a sufficiently
large coverage of the number of pairs analysed, corresponding to the case in which the
pivot-diameter is more likely to be harder to compute). The set P is defined as V ′ × T ′,
where V ′ are the top-log2 n vertices with respect to the out-degree, i.e. number of temporal
edges exiting from the vertex, and T ′ are 4 times equally spaced in the interval [tα, tω], i.e.
T ′ = {t : t = tα + i/5 · (tω− tα), i ∈ {1, 2, 3, 4}}. For each graph in our dataset, we report the
ratio |P (H)|/|R| in the second column of Table 4 and 5 (respectively, for public transport
networks and social networks), that is the ratio between the number of pairs considered by
the pivot-diameter and the number of pairs considered by diameter. As it can be seen, in
the case of public transport networks, this choice of the pivots lead to a coverage of the pairs
almost always very high, namely, for almost all the link streams, we cover more than 93% of
the pairs. The exceptions are toulouse, lisbon, and melbourne, which are for this reason
highlighted with a grey row. We have verified that this poor coverage is due to the fact that
in these networks the nodes with the highest number of exiting temporal edges have a small
out-degree in the underlying directed graph (see the concluding remarks). We also report the
values of |AP | and |BP |, which correspond to the number of vertices reaching (and reached
by) the pivots (see Section 4). These values are crucial as min{|AP |, |BP |} is the number of
visits needed by pivot-tbd (we report the ratio min{|AP |, |BP |}/n in Table 4 and 5). In the
cases in which min{|AP |, |BP |} is constant or relatively small in practice, when compared
to the number of nodes (like in the case of toulouse and melbourne), both pivot-tbd
and pivot-ifubd are effective, as they both spend linear time to find the pivot-diameter
(see Theorem 9). In the case of social networks, the ratio |R(B)|/|R| seems to be in general
smaller as also min{|AP |, |BP |}/n is very often below 10%. Even if one could be tempted to
run pivot-tbd, we will see that this choice is not convenient in any case, as pivot-ifubd
will perform much less visits to discover the pivot-diameter.

Pivot-diameter vs diameter. In the case in which pivots are chosen as above, the pivot-
diameter is often very close to the diameter of the link stream (when we could verify it).
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Table 4 Results for the pivot-diameter in the case of public transport networks (the choice of P

is explained in the text). Rows in shadow gray correspond to graphs where the selected pivots lead
to a small ratio |R(P )|/|R| (see also the concluding remarks).

public transport |R(P )|
|R| |AP | |BP | min{|AP |,|BP |}

n
�P

eat
�eat

Feat
�P

ldt
�ldt

Fldt
�P

ft
�ft

Fft
�P

st
�st

Fstnetworks
kuopio 98.12% 452 472 82.33% 1 1 0.93 0.16 1 0.23 0.093 0.9
rennes 98.51% 1298 1308 92.25% 1 0.23 0.94 0.07 0.91 0.12 0.97 0.09
grenoble 93.56% 1 194 1 232 77.18% 0.72 0.3 0.94 0.11 1 0.17 1 0.1
venice 95.30% 1 531 1 512 80.68% 1 0.1 0.97 0.06 1 0.07 0.84 0.13
belfast 98.27% 1 707 1 780 89.04% 0.99 0.05 0.96 0.08 1 0.06 0.89 0.4
canberra 98.59% 2 307 2 469 83.46% 0.99 0.05 0.98 0.04 1 0.3 1 0.3
turku 97.93% 1 722 1 690 91.35% 1 0.26 0.97 0.05 1 0.09 0.42 0.26
luxembourg 99.74% 1 336 1 358 97.73% 1 0.36 0.94 0.06 1 0.08 1 0.15
nantes 97.14% 2 170 2 201 92.22% 0.91 0.05 0.98 0.04 1 0.04 1 0.04
detroit 99.04% 5 527 5 434 95.62% 0.98 0.38 0.95 0.1 1 0.05 1 0.08
toulouse 0.00% 20 20 0.60% 0.41 1 0.07 1 0.03 1 0.13 1
palermo 100.00% 2 176 2 176 100% 1 1 1 1 1 1 1 0.05
bordeaux 98.50% 3 166 3 119 90.80% 0.9 0.44 0.89 0.86 1 0.07 0.97 0.45
winnipeg 97.81% 5 054 4 946 97.38% 1 0.4 1 0.02 1 0.07 1 0.11
brisbane 98.51% 8 228 8 657 85.31% 0.99 0.01 0.94 0.02 1 0.01 0.99 0.05
dublin 99.15% 4 007 3 918 85.71% 0.97 0.03 0.97 0.03 1 0.03 1 0.08
adelaide 98.82% 7 148 6 956 92.16% 0.9 0.47 0.93 0.06 1 0.06 0.90 0.05
lisbon 28.61% 2 052 2 059 29.01% 0.97 0.06 0.96 0.05 1 0.07 0.27 0.89
prague 98.27% 4 366 4 412 84.83% 0.99 0.02 0.99 0.02 1 0.04 0.96 0.08
helsinki 99.32% 6 375 6 552 91.25% 0.91 0.23 1 0.02 1 0.03 0.34 0.18
berlin 99.58% 4 573 4 561 99.13% 1 0.02 0.98 0.02 1 0.02 1 0.12
rome 99.86% 7 511 7 499 95.30% 1 0.03 0.95 0.01 1 0.03 1 0.09
melbourne 8.19% 17 545 1 459 7.48% 0.97 0.17 0.96 0.2 0.96 0.7 1 0.51
sydney 93.94% 19 933 21 269 82.84% 0.97 0 0.99 0 1 0.01 0.53 0.1
paris 99.60% 9 878 9 858 82.49% 0.95 0.03 0.97 0.02 1 0.01 1 0.03

This is particularly evident for ft, while there are more exceptions for st. To see this, for
the cases in which we have the diameter of the link stream, in Table 4 and 5 we report, for
each distance, the ratio between �P

d and �d, where the former is computed by using our
pivot-ifubd. In the case of public transport networks (Table 4), this can be easily explained
by the fact that, very often, there is a large ratio |R(P )|/|R|. In the case of social networks
(Table 5), even though the ratio |R(P )|/|R| is lower, the ratio between �P

d and �d is not
low, for ft and sometimes for st.
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(a) Fft as a function of the number of nodes.
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(b) Fst as a function of the number of nodes.

Figure 2 For each link stream of n nodes, where the percentage of performed visits of pivot-ifubd

is Fd, we draw a cross (black for public transport networks and red for social networks) in position
(n, Fd).
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Table 5 Results for the pivot-diameter in the case of public transport networks (the choice of P

is explained in the text). eat and ldt distances are here neglected.

social |R(P )|
|R| |AP | |BP | min{|AP |,|BP |}

n
�P

ft
�ft

Fft
�P

st
�st

Fstnetworks
topology 39.75% 14 402 4 316 12.42% 1 0.03 0.95 0.16
elec 63.86% 3 576 2 169 30.47% 1 0.05 0.9 0.11
facebook-wosn-wall 64.87% 13 720 32 591 29.22% 0.99 0.01 0.79 0.14
college 80.52% 1 268 1 354 66.74% 1 0.07 0.71 0.5
Sx-mathoverflow-a2q 85.42% 4 866 11 753 5.49% 1 0.03 0.89 0.21
Sx-mathoverflow-c2a 82.79% 7 993 5 082 5.74% 1 0.03 0.8 0.09
Sx-mathoverflow-c2q 86.40% 2 355 12 927 2.66% 1 0.06 0.88 0.24
Email-Eu-core 95.31% 818 924 81.39% 1 0.31 0.6 0.33
Sx-askubuntu-a2q 73.86% 6 572 52 406 1.27% 0.03 0.05
Sx-askubuntu-c2q 80.12% 1 671 52 590 0.32% 0.09 0.16
Sx-askubuntu-c2a 72.49% 27 345 20 994 4.07% 0.01 0.02
Sx-superuser-a2q 76.27% 8 669 54 668 1.53% 0.02 0.02
Sx-mathoverflow 87.79% 11 941 19 441 13.48% 0.01 0.03
Sx-superuser-c2q 89.36% 2 543 61 294 0.45% 0.06 0.07
Sx-superuser-c2a 78.00% 39 088 31 982 5.64% 0.004 0.04
Sx-askubuntu 75.10% 44 245 114 766 8.59% 0.003 0
Sx-superuser 80.35% 67 470 136 455 11.89% 0.002 0.01
Wiki-talk-temporal 54.93% 53 408 1 037 170 4.68% 0.003 0.04

Performance of the algorithms. In Figure 2, we report the ratio between the number of
visits performed by pivot-ifubd and min{|AP |, |BP |}, which are the visits required by tbd
(in the following, we denote this ratio as Fd). For each link stream of n nodes, we draw a cross
in position (n, Fd) (black for public transport networks and red for social networks). The plot
on the left refers to ft, while the plot on the right refers to st. For the sake of completeness,
the values of Fd are also reported in Table 4 and 5. As it can be seen, Fft and Fst indicates
that pivot-ifubd performs a number of visits which is very often much less than the ones
performed by tbd. In particular, for ft (Figure 2a), for public transport networks, Fft is
almost always less than 0.2 and for social networks it is less than 0.1. Exceptions correspond
to toulouse, melbourne and email-eu-core, and this is not surprising as we can observe
a relatively small min{|AP |, |BP |}, which means that both pivot-ifubd and tbd require
linear time. In the case of st (Figure 2b), the performance seems to be worse with respect
to ft, but there is not doubt that running pivot-ifubd is far more convenient than running
tbd. In the case of public transport networks Fst is always smaller than 0.52, except for
kuopio (the smallest graph), toulouse, and lisbon, where both pivot-ifubd and tbd
are effective because of the few pairs in R(P ). In the case of social networks, Fst seems to
behave better, and, apart from college, Fst is always bounded by 0.34. In any case, the
advantage of pivot-ifubd, for both ft and st, is more evident when the number of nodes
increases. Indeed, with social networks with more than 500 thousands nodes, the ratio Fd is
always less than 0.07, apart from Sx-askubuntu-c2q (where Fd is bounded by 0.17).

6 Concluding remarks

In this paper, we have introduced the concept of pivot-diameter, we have given algorithms to
compute it efficiently in practice, and we have seen that our choice of the pivots, i.e. choosing
vertices with the maximum number of exiting temporal edges, leads very often to a large
coverage of pairs. For the networks in our dataset with low coverage, we have additionally
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verified that by simply choosing as pivots the top-degree vertices in the underlying directed
static graph the coverage becomes higher than 98%. Even if a discussion about the many
possible choices of pivots in order to maximize the coverage is outside the scope of this paper,
we think that this problem deserves further (both theoretical and experimental) investigations
to be addressed in a future work.
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A Proofs

A.1 Proof of Lemma 1

In order to prove the first assertion, it suffices to show that there exists a [tα, tω]-compatible
path from u to v in (V,E) whose duration (respectively, travel time) is τ if and only if there
exists a [−tω,−tα]-compatible path from v to u in (V,F) whose duration (respectively, travel
time) is τ . Let P = e1e2 . . . ek be a [tα, tω]-compatible path from u to v in (V,E), where
ei = (ui, vi, ti, λi) for any i with 1 ≤ i ≤ k, u1 = u, vk = v, t1 ≥ tα, tk + λk ≤ tω, and,
for each i with 1 < i ≤ k, ui = vi−1 and ti ≥ ti−1 + λi−1. Since −tk − λk ≥ −tω and
−t1 − λ1 + λ1 ≤ −tα, and since ti ≥ ti−1 + λi−1 if and only if −ti−1 − λi−1 ≥ −ti − λi + λi,
we have that ρ(P ) = ρ(ek)ρ(ek−1) . . . ρ(e1) is a [−tω,−tα]-compatible path from v to u in
(V,F). Since the travel times of the temporal edges have not been changed, we have that the
travel time of P is equal to the travel time of ρ(P ). Moreover, the duration of P is equal to
tk + λk − t1: since tk + λk − t1 = −t1 − λ1 + λ1 − (−tk − λk), we have that P and ρ(P ) have
also the same duration. The opposite direction can be proved similarly.

In order to prove the second assertion, it suffices to show that there exists a [tα, tω]-
compatible path from u to v in (V,E) whose arrival (respectively, latest departure) time is τ

if and only if there exists a [−tω,−tα]-compatible path from v to u in (V,F) whose departure
(respectively, arrival) time is −τ . As before, let P = e1e2 . . . ek be a [tα, tω]-compatible
path from u to v in (V,E), and let ρ(P ) = ρ(ek)ρ(ek−1) . . . ρ(e1) be the corresponding
[−tω,−tα]-compatible path from v to u in (V,F). The arrival (respectively, departure) time
of P is tk + λk (respectively, t1), while the departure (respectively, arrival) time of P is
−tk − λk = −(tk + λk) (respectively, −t1 − λ1 + λ1 = −t1). The opposite direction can be
proved similarly, and this concludes the proof of the lemma.

A.2 Proof of Theorem 9

In the worst case, the number of iterations of the while loop is O(n). The computation of
the lower bound requires O(s-timed(n, m) + t-timed(n, m)) and it is the dominant part of
the while loop, if we can speed up the computation of m at Line 3. To this aim we can
perform the following precomputation. Let us define eat = ft = ldt, eat = ft = eat,
st = st = st. For d ∈ {eat, ft, st} and for each p = (x, t) ∈ P , we define πp as the sequence
of nodes v ∈ A{p} sorted in non-increasing order with respect to d

[tα,t]
d (v, x), and γP as the

sequence of nodes v ∈ B{p} sorted in non-decreasing order with respect to d
[ti,tω]
d (x, v). This

precomputation can be performed in O(|P | · (max{s-timed(n, m), t-timed(n, m)}+n log n)).
When Line 3 is performed, it is sufficient to consider, for each pivot p, the pair of nodes
(u, v), where u is the leftmost element of πp not in ÂP and v is the leftmost element of γp

not in B̂P . Hence, this line costs O(|P |) time. Once m has been selected, the other lines, i.e.
Line 4 and Line 6, cost O(1) time. As a result, we obtain the time and space bounds of the
theorem, where the space overhead O(|P | · n) is due to the space required for maintaining
the result of the preprocessing.
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B Tables and figures
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Figure 3 The reduction from disjoint sets to diameter computation. In this case, c1 = {x1, x3},
c2 = {x2, x4}, and c3 = {x3, x4}. All temporal edges have travel time equal to 1. For any distance,
the diameter is 3, and, indeed, c1 and c2 are disjoint.

Table 6 Number of times the lower bound returned by 2swd(k) is at least the one of rsd(k).

d
Number of times the lower bound returned

networks by 2swd(k) is ≥ than the one of rsd(k)
(Number of nets) k = 4 k = 4 log2 n k = 8 log2 n k = 16 log2 n

eat public transport (25) 23 25 25 25
ldt public transport (25) 23 25 25 25

ft public transport (25) 25 25 25 25
social (18) 15 16 18 18

st public transport (25) 22 25 25 25
social (18) 16 16 18 18
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(a) Distribution of δ values for eat in rome. (b) Distribution of δ values for ldt in rome.

(c) Distribution of δ values for eat in palermo. (d) Distribution of δ values for ldt in palermo.

Figure 4 Distribution of δ values for eat and ldt, for rome and palermo. For each x the
amount of vertices v having δ(v) = x.

Table 7 Number of visits performed by eat-alg and ldt-alg wrt to n, where n is the number
of visits required by tbeat and tbldt. These values are plot in Figure 1a and Figure 1b as a function
of n.

network visits/n

eat ldt
kuopio 74.50% 1.64%
rennes 36.67% 14.57%
grenoble 6.92% 8.66%
venice 15.80% 9.07%
belfast 9.02% 1.41%
canberra 2.17% 0.14%
turku 60.32% 0.22%
luxembourg 80.69% 0.15%
nantes 17.98% 12.11%
detroit 37.83% 13.67%
toulouse 1.14% 0.21%
palermo 100.00% 100.00%
bordeaux 4.10% 1.80%

network visits/n

eat ldt
winnipeg 62.20% 13.51%
brisbane 1.17% 0.36%
dublin 3.37% 0.88%
adelaide 0.62% 0.01%
lisbon 8.99% 3.62%
prague 0.02% 0.02%
helsinki 1.06% 1.55%
berlin 38.80% 11.56%
rome 26.93% 2.97%
melbourne 0.47% 0.10%
sydney 0.02% 0.02%
paris 0.27% 0.46%
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Table 8 Running time of our implementations of the visits reported in Table 1 for each of the
networks in our dataset (mean in seconds and variance, over a random sample of 100 visits).
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