
Practical Implementation of Encoding Range
Top-2 Queries
Seungbum Jo !

Chungbuk National University, Cheongju, South Korea

Wooyoung Park !

Seoul National University, South Korea

Srinivasa Rao Satti !

Norwegian University of Science and Technology, Trondheim, Norway

Abstract
We design a practical variant of an encoding for range Top-2 queries (RT2Q), and evaluate its
performance. Given an array A[1, n] of n elements from a total order, the range Top-2 encoding
problem is to construct a data structure that can answer RT2Q queries, which return the positions of
the first and the second largest elements within a given query range of A, without accessing the array
A at query time. Davoodi et al. [Phil. Trans. Royal Soc. A, 2016] proposed a (3.272n + o(n))-bit
encoding, which answers RT2Q queries in O(1) time, while Gawrychowski and Nicholson [ICALP,
2015] gave an optimal (2.755n + (n))-bit encoding which doesn’t support efficient queries. In this
paper, we propose the first practical implementation of the encoding data structure for answering
RT2Q. Our implementation is based on an alternative representation of Davoodi et al.’s data
structure. The experimental results show that our implementation is efficient in practice, and gives
improved time-space trade-offs compared to the indexing data structures (which keep the original
array A as part of the data structure) for range maximum queries.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Range top-2 query, Range minimum query, Cartesian tree, Succinct encoding

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.10

Supplementary Material Software (Source Code): https://github.com/wyptcs/R2MQ
archived at swh:1:dir:684698b8ae0bcc6ada509f22f8ff743411de26d9

Funding Seungbum Jo was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2020R1G1A1101477).

1 Introduction

Given an array A[1, n] of n elements from a total order, the range maximum query on A[i, j]
(denoted by RMQ(i, j)) returns the position of the largest element in A[i, j]. We assume that
all elements in A are distinct (if there are equal elements, we can break the ties according to
their positions, i.e., the leftmost one is considered as the largest value among them). The
problem of constructing space and/or time-efficient data structures for answering RMQ is
one of the fundamental problems in data structures, and has been extensively studied both
theoretically and practically [2, 8, 9].

In general, the data structures for answering specific queries can be categorized into
two types: (i) indexing data structures, and (ii) encoding data structures. In indexing data
structures, one can access the input array A at query time, while it is not allowed in encoding
data structures. For many problems including RMQ problem, the minimum size for an
encoding data structure (referred to as effective entropy [17]) is much less than the input
size – for example, the effective entropy for answering RMQ on A is 2n − o(n) bits [9],
whereas storing A requires at least n log n bits1, if all the elements in A are distinct. Thus,

1 throughout the paper, we use log to denote the logarithm to the base 2

© Seungbum Jo, Wooyoung Park, and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/429962048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sbjo@chungbuk.ac.kr
mailto:wypark2510@gmail.com
mailto:srinivasa.r.satti@ntnu.no
https://doi.org/10.4230/LIPIcs.SEA.2021.10
https://github.com/wyptcs/R2MQ
https://archive.softwareheritage.org/swh:1:dir:684698b8ae0bcc6ada509f22f8ff743411de26d9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Practical Implementation of Encoding Range Top-2 Queries

encoding data structures can be highly space-efficient in some cases compared to their
indexing counterparts. Recent results [2, 8] show that encoding data structures for RMQ
perform well both in theory and in practice.

In this paper, we consider the problem of answering range Top-2 queries, which extends
the RMQ problem. The range Top-2 query on A[i, j] (denoted by RT2Q) returns the positions
of the largest and the second largest elements in A[i, j]. If k = RMQ(i, j), one can easily
observe that the position of the second largest element in A[i, j] is one of k1 = RMQ(i, k− 1)
or k2 = RMQ(k+1, j). Thus, any indexing data structure for answering RMQ also can answer
RT2Q by comparing A[k1] and A[k2]. Davoodi et al. [4] proposed the first encoding data
structure for answering RT2Q in O(1) time using 3.272n + o(n) bits, which is close to the
effective entropy of 2.755n−Θ(polylog(n)) bits [11] for RT2Q. However, their encoding is not
very practical since it represents the Cartesian tree [20] of A succinctly using the tree-covering
approach of Farzan and Munro [7], which is hard to implement (compared to other succinct
tree representations [1]). In this paper, we give the first practical implementation of an
encoding for RT2Q. Our implementation is based on the data structure of Davoodi et al. [4],
but instead of using the tree-covering approach, we use the DFUDS representation [3] of
2d-max heap [9] which is easier to implement, and works well in practice. Our implementation
supports RT2Q in log n · g(n) time, for any increasing function g(n) = ω(1), using at most
3.5n + o(n) bits. The experimental results show that our data structure gives a better
space-time trade-off, compared to the indexing data structures for RT2Q (that have access to
the input array A, along with an auxiliary data structure for answering the RMQ queries).2

2 Preliminaries

2.1 Range Maximum Queries and Cartesian Trees
Given an array A[1, n] of size n, the Cartesian tree [20] of A, denoted by C(A), is a binary
tree where (i) the root node of C(A) corresponds to A[i] where i = RMQ(1, n), and (ii) the
left and right subtrees of C(A) are the Cartesian trees of A[1, i−1] and A[i+1, n] respectively.
From the definition, the i-th node in the inorder traversal of C(A) corresponds to the i-th
position of A (see Figure 1 (a) for an example). In the rest of this paper, we refer to the
nodes in the Cartesian tree by their inorder numbers (i.e., their corresponding positions in
the array A). Also, one can convert the RMQ problem on A into the LCA (lowest common
ancestor) problem on C(A) [10]. More precisely, for any i, j ∈ [1, n], RMQ(i, j) is the same as
LCA(i, j), which is the LCA of the node i and j in C(A). This implies that one can support
RMQ on A by storing C(A) instead if A (thus this gives an encoding for answering RMQ on
A). All the existing encoding data structures for answering RMQ use a Cartesian tree or its
variants.

2.2 Davoodi et al.’s encoding data structure for RT2Q
We introduce the (3.272n + o(n))-bit data structure of Davoodi et al. [4], which answers
RT2Q in O(1) time on an array A[1, n] of size n. Their data structure answers the RT2Q(i, j)
query by performing the following three steps:
1. Compute and return the position k = RMQ(i, j).
2. Compute k1 = RMQ(i, k − 1) and k2 = RMQ(k + 1, j).
3. Compare A[k1] and A[k2], and return k1 if A[k1] > A[k2], or k2 otherwise.

2 our implementation is available at https://github.com/wyptcs/R2MQ.

https://github.com/wyptcs/R2MQ

S. Jo, W. Park, and S. R. Satti 10:3

A[1,12] = 2 10 3 0 11 1 8 6 7 9 4 5

A[5] = 11

A[1] = 2
A[3] = 3

A[2] = 10
A[10] = 9

A[9] = 7

A[7] = 8

A[6] = 1

A[8] = 6

A[4] = 0

A[11] = 4

A[12] = 5
A[1] = 2

A[2] = 10

A[5] = 11

A[3] = 3

A[10] = 9

A[9] = 7

A[7] = 8A[6] = 1

A[8] = 6
A[4] = 0

A[11] = 4 A[12] = 5

A[0] = ∞

S1, S3, S4, S6, S8, S9, S11, S12 = ϵS2 = 1 S5 = 0 1 1 0 1 S7 = 1 1 S10 = 0 0 1

S = 1 0 1 1 0 1 1 1 0 0 1

(a) C(A) (b) 2dmax(A)

D(2dmax(A)) = (((()) () ()) ((()) (())) (()))

Figure 1 Example of (a) C(A) and (b) 2dmax(A) of the array A[1, 12]. Red and blue colored
nodes are the nodes in linspine(5) and rinspine(5) of C(A) respectively.

For answering k = RMQ(i, j), they maintain the tree-covering [7] representation of C(A)
to support LCA queries in O(1) time, using 2n + o(n) bits. Next, to compare A[k1] and
A[k2] without storing A, they store the spine sequence S of A defined as follows. For
any node i which has left child il and right child ir, let left spine (resp., right spine)
of i, denoted by lspine(i) (resp., rspine(i)), be the path from the node i to the leftmost
(resp., rightmost) descendant of i. Also, let left inner spine (resp., right inner spine) of
i, denoted by linspine(i) (resp., rinspine(i)), be the rspine(il) (resp., lspine(ir)), and define
Li, Ri, li, and ri to be a number of nodes in lspine(i), rspine(i), linspine(i), and rinspine(i)
respectively. Then by the property of C(A), the nodes k1 and k2 in C(A) are always on
linspine(k) and rinspine(k), respectively. Now we define the array Sk[1, mk] to be a bit array
of size mk = max (lk + rk − 1, 0) where Sk[i] = 0 if the i-th largest element of A among
the positions corresponding to linspine(k) ∪ rinspine(k) is in linspine(k), and 1 otherwise.
Let depth(k) be the depth of the node k, and for any given pattern b and sequence S, let
rankb(S, i) be the number of occurrences of b in the first i positions of S, and selectb(S, i) be
the position of i-th occurrence of b in S. Then one can compare A[k1] and A[k2] by comparing
select0(Sk, depth(k1)− (depth(k) + 1) + 1) and select1(Sk, depth(k2)− (depth(k) + 1) + 1) (i.e.,
by checking which of the two bits corresponding to the nodes k1 and k2 come first in Sk).
The sequence S is simply defined by concatenating all Sk’s for all nodes k ∈ C(A) in the
increasing order of their inorder numbers. Finally, to locate the starting position of Sk in S

efficiently, they introduce the following lemma.

▶ Lemma 1 ([4]). For any u ∈ C(A),∑
j<u

mj = 2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1− (u− Lleaves(u))

In the above lemma, τ denotes the root of C(A). Also, for any node u ∈ C(A), Ldepth(u)
(resp., Rdepth(u)) denotes the number of nodes which have their left (resp., right) child, in
the path from τ to u. Finally, Lleaves(u) denotes the number of leaf nodes v ∈ C(A) which
satisfies v < u.

Davoodi et al. [4] showed that all the operations used in the lemma can be computed in
O(1) time using the tree covering representation of C(A) along with some auxiliary data
structures. Furthermore, they showed that the size of S is at most 1.5n, which implies that

SEA 2021

10:4 Practical Implementation of Encoding Range Top-2 Queries

there exists the data structure for answering RT2Q in O(1) time using at most 3.5n + o(n)
bits. With further optimization, they improved the space usage to 3.272n + o(n) bits while
still supporting RT2Q in O(1) time.

▶ Example 2. We show how to answer the RT2Q(3, 9) on the array A[1, 12] in Figure 1 using
C(A) with the spine sequence S of A. First, we compute and return RMQ(3, 9) = LCA(3, 9) =
5. Next, to compare A[3] and A[7] (note that RMQ(3, 4) = 3 and RMQ(6, 9) = 7), we first
locate the starting position of S5 in S by

∑
j<5 mj = 2 · 5− 3− 3 + 0− 0 + 1− (5− 2) = 2.

Since depth(5) = 0, depth(3) = depth(7) = 2 and select0(S5, 2) > select1(S5, 2), we return 7
as the position of the second largest element in A[3, 9].

3 A Practical Implementation

Davoodi et al.’s data structure [4] in the previous section uses the tree-covering method for
encoding C(A), which is not practical compared to other succinct tree representations such
as BP (balanced parenthesis) [13] and DFUDS (depth-first unary degree sequence) [3]. In
this section, we describe a practical implementation of Davoodi et al.’s data structure for
answering RT2Q on A[1, n], which uses the DFUDS representation of the 2d-max heap of
A [9]. We first describe the general definition of DFUDS and 2d-max heap, and show how to
convert Davoodi et al.’s data structure using these tools.

3.1 DFUDS and 2d-max heap
Given an ordinal tree T with n nodes, DFUDS of T (denoted by D(T)) is a balanced
parenthesis sequence of size 2n defined as follows. (i) if n = 1, D(T) is (). (ii) Otherwise,
if T has k subtrees T1, T2, . . . , Tk, D(T) is (k+1) followed by d(T1), d(T2), . . . , d(Tk), where
d(Ti) is D(Ti) with the first open parenthesis removed (see Figure 1 for an example). Since
D(T)[1, 2n] is a balanced parenthesis sequence, one can define two operations findopen(i) /
findclose(i) which find the matching open / closed parenthesis of the closed / open parenthesis
in D(T)[i]. It is known that by storing a o(n)-bit auxiliary structure along with D(T), one
can support rank, select, findopen and findclose operations in O(1) time. This in turn enables
us to represent T to support a comprehensive list of navigation queries on T in O(1) time
using 2n + o(n) bits [16] (see Table 2 in [1] for the list of operations).

One of the main reasons for using the tree-covering based approach for representing C(A)
in Davoodi’s et al.’s structure, is to find the i-th node in the inorder traversal of C(A) (let
this operation be inorder(i)). To our best knowledge, one cannot support this operation on
the BP or DFUDS of C(A) (note that LCA can be supported in O(1) time on both BP and
DFUDS [1]). Sadakane [19] showed that (i) if the difference between any two consecutive
values in A is ±1, then one can answer RMQ on A (we refer the such query as ±1RMQ) in
O(1) time using 2n + o(n) bits, and (ii) for general A, one can support both inorder and LCA
operations on D(C(A)) (thus, RMQ on A) in O(1) time using 4n + o(n) bits, by converting
C(A) into a ternary tree by adding a dummy leaf to each node in C(A).

Fischer and Heun [9] proposed the 2d-max heap to support RMQ without the need for
the inorder operation. The 2d-max heap on A (denoted by 2dmax(A)) is an alternative
representation of C(A), defined as follows. 2dmax(A) is an ordered tree with n + 1 nodes,
where for 1 ≤ i ≤ n,
1. The i-th node in the preorder traversal of 2dmax(A) corresponds to A[i− 1] (we assume

that A[0] =∞). In the rest of this paper, we refer to this node as node (i−1) ∈ 2dmax(A).
Therefore, the root of 2dmax(A) is 0.

2. For any non-root node i ∈ 2dmax(A), the parent of i is the node j where j is the rightmost
position in A[0, i− 1] such that A[i] < A[j].

S. Jo, W. Park, and S. R. Satti 10:5

The above definition implies that for 1 ≤ i ≤ n, the node i ∈ C(A) and the node i ∈ 2dmax(A)
both correspond to the position i in A. The example of Figure 1 (a) and (b) shows the C(A)
and 2dmax(A) of input array A respectively. Fischer and Heun also showed that RMQ(i, j)
operation can be supported in O(1) time by using D(2dmax(A)) along with o(n)-bit auxiliary
structures for supporting rank, select, findopen, and ±1RMQ queries on D(2dmax(A)) – using
2n + o(n) bits in total.

3.2 Practical implementation of encoding RT2Q
In this section, we propose an alternative implementation of the data structure of [4] on
A using D(2dmax(A)). Since one can support RMQ using D(2dmax(A)) [9], it is enough
to show how to find the position of the second largest element in A[i, j]. One can observe
that, for any node k in C(A), the nodes on the linspine(k) in C(A) are the same as the
nodes on the right spine of the previous sibling of k ∈ 2dmax(A). (The left/right spine
of a node i ∈ 2dmax(A) is defined as the path from node i to the leftmost/rightmost
descendant of i.) Also the nodes on rinspine(k) in C(A) are the same as the children of
k ∈ 2dmax(A). We define the spine sequence S of A, analogous to the same sequence in [4]
(that is, concatenating all the Sk’s for each non-root node k ∈ 2dmax(A) according to their
preorder value in 2dmax(A)). Then we can answer RT2Q(i, j) using the following procedure:
1. Compute and return the position k = RMQ(i, j).
2. Compute k1 = RMQ(i, k − 1) and k2 = RMQ(k + 1, j).
3. Compute two nodes kl = presibling(k) and kr = childrank(k2) in 2dmax(A) where

presibling(k) denotes the previous sibling of k, and childrank(k2) denotes the number
of left siblings of k2.

4. Locate the starting position of Sk in S, and return k1 if select0(Sk, depth(k1)−depth(kl)+
1) < select1(Sk, kr), or k2 otherwise.

Note that the operations used in the above procedure (RMQ, presibling, childrank, and depth)
can be supported in O(1) time using D(2dmax(A)) with o(n)-bit auxiliary structures [14].
Also, to locate the position of Sk in S, we need to compute

∑
1≤j<k mj (recall that mj = |Sj |).

The following lemma shows that we can compute each of the terms in Lemma 1 (therefore,∑
1≤j<k mj) using 2dmax(A).

▶ Lemma 3. Given an array A[1, n] of size n where all elements in A are distinct, the
following properties hold for any node k in the Cartesian tree, C(A), of A.
1. lk (number of nodes in linspine(k)) is equal to the number of nodes in rspine(kl) in

2dmax(A), where kl = presibling(k).
2. Ldepth(k) is equal to the number of right siblings of all the nodes on the path from node

k to the root in 2dmax(A).
3. Rdepth(k) = dk − 1, where dk is the depth of k ∈ 2dmax(A).
4. Lleaves(k) is equal the number of leftmost children u < k which are also leaves in

2dmax(A).

Proof.
1. Let i0 < k be the rightmost position of A which satisfies RMQ(i0, k) ̸= k. Then by the

definition of C(A), linspine(k) is composed of the nodes {i1, i2, . . . , ilk
} of C(A) where

ij = RMQ(ij−1+1, k−1). Thus, if lk > 0, the node k in 2dmax(A) always has the previous
sibling kl (otherwise, k has no left child in C(A), which implies lk = 0). Furthermore,
since k − 1 is the rightmost leaf of the subtree of 2dmax(A) rooted at kl, all the nodes
i1, i2, . . . , ilk

are on the rspine(kl) in 2dmax(A).

SEA 2021

10:6 Practical Implementation of Encoding Range Top-2 Queries

2. Let Lpath(k) be the set of nodes in C(A) which have their left child in the path from k to
the root (hence, |Lpath(k)|= Ldepth(k)). Now suppose Lpath(k) = {i1, i2, . . . , iLdepth(k)}
where i1 < i2 < · · · < iLdepth(k). Then for any j ∈ {1, 2, . . . , Ldepth(k)}, (i) ij > k, and
(ii) RMQ(k, ij) = ij . Therefore, for the node k ∈ 2dmax(A), Lpath(k) is the same as the
set of nodes in 2dmax(A) which are the right siblings of the nodes on the path from the
node k to the root.

3. Similar to the case of Ldepth(k), let Rpath(k) be the set of nodes in C(A) which have their
right child in the path from k to the root (hence, |Rpath(k)|= Rdepth(k)). Then Rpath(k)
consists all the nodes ij in C(A) which satisfy: (i) ij < k, and (ii) RMQ(ij , k) = ij . Thus
by the definition of 2dmax(A), Rpath(k) is the same as the set of proper ancestors of k

in 2dmax(A).
4. Note that a node in C(A) is a leaf if and only if its corresponding node in 2dmax(A) is a

leftmost child which is also a leaf. Thus, set of all leaf nodes in C(A) are the same as the
set of all leftmost children u < k which are also leaves in 2dmax(A). ◀

Now we describe how to compute each value in Lemma 1 using D(2dmax(A)) with
Lemma 3.
1. Lτ : The node τ = RMQ(1, n) is the rightmost child of the node 0 (the root of 2dmax(A)).

Also all the nodes of lspine(τ) in C(A) are on the left siblings of τ in 2dmax(A). Thus
this value can be computed in O(1) time by degree(0) (note that degree can be computed
in O(1) time using D(2dmax(A)) with o(n)-bit auxiliary structures [1]).

2. lk: By Lemma 3, linspine(k) of C(A) are the same as the rspine(kl) of 2dmax(A). Since
the rightmost leaf of kl is k − 1, This can be computed in O(1) time by depth(k − 1)−
depth(kl) + 1.

3. Ldepth(k): For k ∈ 2dmax(A), let L(k) be the number right siblings of the nodes on the
path from the node k to the root in 2dmax(A). Now we describe how to compute L(k)
using D(2dmax(A)). Let d be a depth of 2dmax(A), and suppose f(n) = log n · g(n)
where g(n) is any increasing function which satisfies g(n) = ω(1). Then we fix the value
0 ≤ i < f(n), and define the array E which stores all the values of L(k) for every node
k ∈ 2dmax(A) whose depth is i + j · f(n), for all 0 ≤ j ≤ ⌊(d− i)/f(n)⌋. The values
in E are stored according to the preorder number of corresponding nodes in 2dmax(A).
By a simple counting argument, we can choose i to satisfy |E|≤ n/f(n). Thus, at most
n/f(n) · log n = o(n) bits of space are necessary to store E. In addition to that, we
maintain the bit array B[1, n] of size n where for 1 ≤ i ≤ n, B[i] = 1 if and only if the
L(i) is stored in E. Using the data structure of Raman et al. [18], we can store B using
log

(
n

f(n)
)

+ o(n) = o(n) bits while supporting rank queries in O(1) time (we can also
access any position of B in O(1) time by two rank queries). To answer L(k), we initialize
the counter c = 0, and start the scanning nodes on Lpath(k) starting from the node k.
During this scan, when we are at node j, we first check B[j]. If B[j] = 0, we increase c to
be c + r where r = degree(parent(j))− childrank(j) (note that parent can be computed in
O(1) time using D(2dmax(A)) [1]), and move to the parent of j. If B[j] = 1, we return
L(k) = c + rank1(B, j). Thus, using D(2dmax(A)) with o(n)-bit auxiliary structures, we
can answer L(k) in O(f(n)) time.

4. Rdepth(k): By Lemma 3, this is the same as the number of proper ancestors of k in
2dmax(A), which can be computed O(1) time by depth(k)− 1.

5. Lleaves(k): By Lemma 3, this is the same as the number of leftmost children u < k which
are also leaves in 2dmax(A). This value can be computed by counting the number of
occurrences of the pattern ’())’ before the closing parenthesis corresponding to node k in
O(1) time using D(2dmax(A)) with o(n)-bit auxiliary data structures [15].

S. Jo, W. Park, and S. R. Satti 10:7

A[5] = 11

A[1] = 2
A[3] = 3

A[2] = 10
A[10] = 9

A[9] = 7

A[7] = 8

A[6] = 1

A[8] = 6

A[4] = 0
A[11] = 4

A[12] = 5

(a) C(A)
(b) r2dmax(A)

A[1] = 2

A[2] = 10

A[5] = 11

A[3] = 3

A[10] = 9

A[9] = 7A[7] = 8

A[6] = 1 A[8] = 6

A[4] = 0 A[11] = 4

A[12] = 5

A[0] = ∞

Figure 2 r2dmax(A) of the array in Figure 1. Red and Blue colored nodes correspond to the
nodes in C(A) in Figure 1 with the same colors.

▶ Example 4. We show how to locate the starting position of S5 in S using the 2dmax(A) in
Figure 1 (b). From node 5 ∈ 2dmax(A) in the figure, one can observe that 5l = 2, L(5) = 0,
and select)(D(2dmax(A)), 5) + 1 = 12. Also degree(0) = 3, depth(4) − depth(2) + 1 = 3,
depth(5)− 1 = 0, and rank())(D(2dmax(A)), 12) = 2. Thus, the starting position of S5 in S

is
∑

j<5 mj = 2 · 5− 3− 3 + 0− 0 + 1− (5− 2) = 2.

We summarize the result in the following theorem.

▶ Theorem 5. Given an array A[1, n] of size n, RT2Q on A can be computed in O(log n·g(n))
time, for any increasing function g(n) = ω(1). The data structure uses at most 1.5n + o(n)
additional bits, along with the DFUDS sequence of the 2d-max heap of A, D(2dmax(A)).

Alternative representation of 2dmax(A). In practice, the performance of the data
structure of Theorem 5 highly depends on the depth of 2dmax(A). To reduce the depth
of 2dmax(A), Ferrada and Navarro [8] considered rightmost-path 2dmax(A) (denoted as
r2dmax(A)), which can be obtained from C(A) by applying τ1 (first-child, next-sibling)
transformation [5]. Note that the original 2dmax(A) can be obtained from C(A) by applying
τ4 (previous-sibling, last-child) transformation [5]. One can observe that i-th position of A

corresponds to the node in r2dmax(A) whose postorder number is i. (See Figure 2 for an
example.) For example, if A is strictly decreasing array from 1 to n, the depths of 2dmax(A)
and r2dmax(A) are n and 1, respectively. Ferrada and Navarro [8] showed that one can
answer RMQ queries on A as using r2dmax(A) with o(n)-bit auxiliary structures, which are
different from the structures used for answering the same query using 2dmax(A). Baumstark
et al. [2] showed that r2dmax(A) is isomorphic to 2dmax(←−A), where ←−A is an array of size n

constructed by reversing the all elements of A. Thus, one can simulate the RMQ(i, j) on A

using r2dmax(A) by answering RMQ(n + 1− j, n + 1− i) on ←−A using 2dmax(←−A) (note that
in this case, one breaks the ties with rightmost policy when constructing 2dmax(←−A), i.e.,
among all the equal elements in a range, the rightmost element is considered as the largest).

To implement the data structure of Theorem 5, we first check the depth of 2dmax(A)
and 2dmax(←−A) at pre-processing step, and maintain the one with smaller depth (along with
the auxiliary structures).

SEA 2021

10:8 Practical Implementation of Encoding Range Top-2 Queries

0 10 20 30 40
Depth

0.0

0.2

0.4

0.6

0.8

1.0
Nu

m
be

r o
f n

od
es

(x
10

7)

(a)

0 10 20 30 40
Depth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f n
od

es
(x

10
7)

10
100
10000

(b)

Figure 3 (a) The distribution of the depth of nodes in 2dmax(A). (b) The distribution of the
depth of the nodes in 2dmax(A) which correspond to the RMQ of A.

4 Experimental results

Our data structure is implemented in C++ (compiled by g++ 9.3.0 with O3 optimization),
and all the experiments were done on the Desktop PC (Intel i7-9900KS CPU with 128GB of
RAM). We use the input array A[1, n] which stores 32-bit unsigned integers. We consider
three different types of input arrays: (a) random, (b) pseudo-increasing, and (c) pseudo-
decreasing, where each A[i] is randomly generated from the range (a) [1, n], (b) [i− δ, i + δ],
and (c) [n − i − δ, n − i + δ], respectively for given parameter δ > 0. We compare the
space usage (bits per element) and query time (µs) of our encoding structure (referred to as
R2MQ-ENCODING) with the following four indexing data structures for answering RT2Q: (i)
A + RMQ encoding of Fisher and Heun [9] (FH-DFUDS), (ii) A + RMQ encoding of Ferrada
and Navarro [8] (FN-BP), (iii) A + RMQ encoding of BaumStark et al. [8] (BGHL-BP), and
(iv) A + Fischer and Huen’s indexing data structure for RMQ queries [9] (FH-INDEXING).
Note that the encoding of (i) uses D(2dmax(A)), and both the encoding of (ii) and (iii) use
the BP of 2dmax(A). For (i) and (ii), we use the implementation of Ferrada and Navarro [8]3,
and for (iii), we use the implementation of BaumStark et al. [8]4. Finally for (iv), we use our
own implementation.

To support RMQ on A, and navigation queries on 2dmax(A) except depth, we use sdsl-
lite [12] to support rank, select, findopen, findclose (for presibling operation), and ±1RMQ
on D(2dmax(A)). Note that for findopen, findclose and ±1RMQ, we use a simplified RMM-
tree [16] which maintains only the min field for these queries. For computing depth(k) queries,
we use the same data structure for computing L(k). More precisely, if L(k) is stored in E,
we also store depth(k) in a separate array E′ at the same position (thus, the same bit array
B can be used for L(k) and depth(k)). For computing depth(k), we perform the parent query
iteratively until we find the node whose depth is stored in E′. Note that we do not keep any
additional data structures for both depth and L(K) queries if the depth of the tree is less
than ⌈log n⌉.

3 the codes are available https://github.com/hferrada/rmqFischerDFUDS and https://github.com/
hferrada/rmq.

4 the code is available at https://github.com/kittobi1992/rmq-experiments

https://github.com/hferrada/rmqFischerDFUDS
https://github.com/hferrada/rmq
https://github.com/hferrada/rmq
https://github.com/kittobi1992/rmq-experiments

S. Jo, W. Park, and S. R. Satti 10:9

0 0.2n 0.4n 0.6n 0.8n n
Maximum allowed size for E and E' (bits)

4

6

8

10

12

Qu
er

y
tim

e
(m

s)

GA 1, query range : 10
GA 1, query range : 102

GA 1, query range : 104

GA 1, query range : 106

GA 2, query range : 10
GA 2, query range : 102

GA 2, query range : 104

GA 2, query range : 106

Figure 4 Query time based on the allotted space for E and E′.

Since the overhead for depth and L(k) is the main drawback of our implementation, we
do an empirical evaluation to decide the sizes of E and E′. When A is a randomly generated
array of size 108, the depth of 2dmax(A) is less than 50 in most cases (in theory, the expected
depth of C(A) for a random array A is about Θ(log n), and the depth of 2dmax(A) is at
most the depth of C(A) [6]), and the depth of nodes has close to the normal distribution
(see Figure 3(a)). Next, we evaluate the distribution of the depth of the nodes 2dmax(A)
which correspond to the RMQ of A (note that we only need the value of depth(k) and L(k)
when k = RMQ(i, j) for some 1 ≤ i ≤ j ≤ n). As shown in Figure 3(b), when the query
range is 104, the depth of all the nodes corresponding to RMQ is less than half of the depth
of 2dmax(A). Furthermore, even for the small query ranges (10), still, the depth of 95.5% of
the nodes is less than half of the depth of 2dmax(A). From the distribution of the nodes
corresponding to RMQ of A, we consider two greedy algorithms for selecting the nodes to be
stored in E and E′. Suppose at most N nodes can be stored in E and E′, and let DN be the
smallest depth where the number of the nodes with depth DN is more than N (if there is
no such depth, DN is the depth of 2dmax(A)); and let d be the value min (⌊D/2⌋ , DN − 1),
where D is the depth of 2dmax(A). Then the greedy algorithm 1 (GA1) repeats the following
procedure from i = 0 to d:
1. Choose all the nodes with depth i, if the total number of chosen nodes is at most N .
2. Increase i by 1.

Similarly, the greedy algorithm 2 (GA2) repeats the first step of the above procedure by
decreasing the value i from d to 0.

We evaluate the time for answering RT2Q with different amounts of space allotted for E

and E′. As shown in Figure 4, increasing the allotted space does not significantly improve
the query time when the size of the query range is 106 since most of the nodes corresponding
to the answer of RMQ are close to the root node. The same tendency is shown for other sizes
of query ranges (10, 102, and 104) when allotting more than 0.4n bits for E and E′, since
both GA1 and GA2 cannot significantly increase the number of nodes to be stored (note
that the number of nodes increases roughly exponentially with the depth, from 1 to d). In
our implementation, we choose GA2 which shows better query time for small query ranges.
Also, the space allotted for storing E and E′ is determined based on the maximum values

SEA 2021

10:10 Practical Implementation of Encoding Range Top-2 Queries

6 7 8 9
Array size (10n)

2

4

6

8

10

12

14
Sp

ac
e

(b
pe

)
R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
Query range (10n)

0

5

10

15

20

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 5 (a) The space (without the input array) on random array, and (b) Query time on the
random array of size 109.

(either 8, 16 or 32-bit values) stored in those arrays, as follows. We allot n/⌊log log n⌋ bits
if the maximum values of E and E′ are both at most 28 (in this case, we use 8-bit integer
arrays for storing these). In general, if the maximum values of E and E′ are at most 28c and
28c′ , respectively, for some c, c′ ∈ {1, 2, 4}, then we allot (c+c′

2)n bits for storing these arrays.
For example, if 32 and 8-bit integer arrays are necessary to store E and E′ respectively for
an array A of size 108, we use (4+1

2) · n/
⌊
log log 108⌋

= 0.625n bits for storing E and E′.
Next, we evaluate the space usage on randomly generated arrays of size n = 107 to n = 109

(see Figure 5 (a)). Our structure uses up to 4.6 and 4.8 bpe (bits per element) for n = 107

and n = 109 respectively. This shows that our data structure’s average space is not much
changed by increasing the array size, like other indexing structures except FH-INDEXING.
For FH-INDEXING, each pre-computed value needs 32 bits even for an array of size 106

(note that
⌈
log 106⌉

is 19), which is wasteful in terms of space. Since the input array is
necessary to answer RT2Q queries using indexing data structures, our data structure takes
at least 7.1 times less space than the existing indexing data structures. Next, we fix the
size of the (randomly-generated) input array to be 109, and evaluate query time for various
query ranges (see Figure 5 (b)). Our data structure and FH-DFUDS are highly dependent
on the query range, compared to BP-based indexing structures. This is because, in the
implementation, the running time of findopen operation is an increasing function of the range
(note that findopen operation is used for computing RMQ, depth, and L(k) when 2d-max
heap is represented by DFUDS). Interestingly, when the query range is changed from 106 to
108, the query time of FH-DFUDS increases much rapidly than our data structures. This
shows that the overhead for answering RMQ on FH-DFUDS is more than computing L(k)
and depth(k) for the nodes with small depths. The query time on FH-INDEXING is also
rapidly increased by increasing the query range because the structure needs to access more
sub-structures when the query range increases. Compared to the fastest indexing solution
(BGHL-BP and FH-INDEXING), our data structure shows up to 10 and 4.1 times slower
query times when the query range is 10 and 108 respectively and shows better time-space
trade-off for most cases except the small query ranges up to 100.

Next, we evaluate the space and query time for pseudo-increasing and pseudo-decreasing
arrays of size n = 109 with various δ values (see Figure 6 and 7. the size of the query range
is fixed to

√
n.). Note that when A is pseudo-increasing (resp. pseudo-decreasing), ←−A is

pseudo-decreasing (resp. pseudo-increasing). Thus, our data structure and BGHL-BP show

S. Jo, W. Park, and S. R. Satti 10:11

1 2 4 6 8
 (10n)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ac

e
(b

pe
)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
 (10n)

2

3

4

5

6

7

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 6 The (a) space usage (without the input array) and (b) query time on the pseudo-
increasing array of size n = 109. The size of the query range is fixed to

⌈√
n
⌉

= 31623.

1 2 4 6 8
 (10n)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ac

e
(b

pe
)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
 (10n)

1

2

3

4

5

6

7

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 7 The (a) space usage (without the input array) and (b) query time on the pseudo-
decreasing array of size n = 109. The size of the query range is fixed to

⌈√
n
⌉

= 31623.

similar space usage and query time on both pseudo-increasing and pseudo-decreasing arrays
(note that for FH-DFUDS, the query time on pseudo-increasing arrays is up to 3 times
slower than the query time on pseudo-decreasing arrays because of the depth of 2dmax(A).
Note that the average distance between two matching parenthesis in DFUDS decreases
proportional to the depth of 2dmax(A)). The space usage of our data structure is not much
affected by δ (up to 4.03 bpe to 4.39 bpe) since we do not maintain the arrays E and E′ for
all the cases (the depth of 2dmax(A) is still less than log 109 ∼ 30 even for large δ = 108).
Also, the query time for our data structure increases with δ because the average depth of the
nodes corresponding to RMQ is increases with δ. Overall, our data structure shows better
time-space trade-off (takes up to 7.5 times less space while spending up to 4.2 times slower
the query time) than all other indexing data structures in the evaluation.

Finally, for δ = 103 and 106, we evaluate the query time for pseudo-increasing and
pseudo-decreasing arrays of size n = 109 for various query ranges (see Figure 8 and 9). Again,
DFUDS-based implementations (R2MQ-ENCODING and FH-DFUDS) highly depend on the
depth of 2dmax(A) and query ranges because of findopen operation, whereas the BP-based
implementations (FN-BP and BGHL-BP) have similar results compared to the random array

SEA 2021

10:12 Practical Implementation of Encoding Range Top-2 Queries

1 2 4 6 8
Query range (10n), = 103

0

2

4

6

8

10

12

14

16
tim

e
(

s)
R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
Query range (10n), = 106

0

2

4

6

8

10

12

14

16

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 8 Query time on the pseudo-increasing array with (a) δ = 103, and (b) delta = 106.

1 2 4 6 8
Query range (10n), = 103

0

2

4

6

8

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
Query range (10n), = 106

0

2

4

6

8

10

12

14

16

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 9 (Query time on the pseudo-decreasing array with (a) δ = 103, and (b) delta = 106.

case. Especially compared to the random array case, our data structure supports much faster
(up to 2.2 times) queries on pseudo-increasing and decreasing arrays for most query ranges
since the extra overhead for accessing E and E′ does not occur for both cases.

5 Conclusion

In this paper, we propose a practical implementation of an encoding for answering RT2Q
queries. Our data structure takes much less space than the current indexing data structure
implementations, while still giving better time-space trade-off for most cases in practice. An
interesting open problem is to implement the data structure based on the BP of 2dmax(A) –
here, an efficient and practical implementation of degree and childrank queries would be a
challenging problem.

S. Jo, W. Park, and S. R. Satti 10:13

References
1 Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko Sadakane. Succinct trees

in practice. In Proceedings of ALENEX 2010, pages 84–97, 2010.
2 Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. Practical range minimum

queries revisited. In SEA 2017, pages 12:1–12:16, 2017.
3 David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and

S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.
4 Pooya Davoodi, Gonzalo Navarro, Rajeev Raman, and S. Srinivasa Rao. Encoding range minima

and range top-2 queries. Philosophical Transactions of the Royal Society A, 372(2016):20130131,
2014.

5 Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct representations of binary
trees. Math. Comput. Sci., 11(2):177–189, 2017.

6 Luc Devroye. On random cartesian trees. Random Struct. Algorithms, 5(2):305–328, 1994.
7 A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of trees.

Algorithmica, 68(1):16–40, January 2014.
8 Héctor Ferrada and Gonzalo Navarro. Improved range minimum queries. J. Discrete Algorithms,

43:72–80, 2017.
9 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum

queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.
10 Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques

for geometry problems. In Proceedings of STOC 1984, pages 135–143, 1984.
11 Pawel Gawrychowski and Patrick K. Nicholson. Optimal encodings for range top-k, selection,

and min-max. In ICALP 2015, Proceedings, Part I, pages 593–604, 2015.
12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug

and play with succinct data structures. In 13th International Symposium on Experimental
Algorithms, (SEA 2014), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

13 Guy Jacobson. Space-efficient static trees and graphs. In FOCS 1989, pages 549–554, 1989.
14 Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct representation of

ordered trees with applications. J. Comput. Syst. Sci., 78(2):619–631, 2012.
15 J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient suffix trees. J.

Algorithms, 39(2):205–222, 2001.
16 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.

ACM Trans. Algorithms, 10(3):16:1–16:39, 2014.
17 Rajeev Raman. Encoding data structures. In WALCOM 2015, pages 1–7, 2015.
18 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries

with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007.

19 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007.

20 Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.

SEA 2021

https://doi.org/10.1007/978-3-319-07959-2_28

	1 Introduction
	2 Preliminaries
	2.1 Range Maximum Queries and Cartesian Trees
	2.2 Davoodi et al.'s encoding data structure for {RT2Q} {}

	3 A Practical Implementation
	3.1 DFUDS and 2d-max heap
	3.2 Practical implementation of encoding {RT2Q} {}

	4 Experimental results
	5 Conclusion

