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Abstract
In the Steiner tree problem, the input consists of an edge-weighted graph G together with a set
S of terminal vertices. The goal is to find a minimum weight tree in G that spans all terminals.
This fundamental NP-hard problem has direct applications in many subfields of combinatorial
optimization, such as planning, scheduling, etc. In this work we introduce a new heuristic for the
Steiner tree problem, based on a simple routine for improving the cost of sub-optimal Steiner trees:
first, the sub-optimal tree is split into three connected components, and then these components are
reconnected by using an algorithm that computes an optimal Steiner tree with 3-terminals (the
roots of the three components). We have implemented our heuristic into a solver and compared it
with several state-of-the-art solvers on well-known data sets. Our solver performs very well across all
the data sets, and outperforms most of the other benchmarked solvers on very large graphs, which
have been either obtained from real-world applications or from randomly generated data sets.
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1 Introduction

In the Steiner tree problem, we are given an undirected graph G whose edges are weighted
with non-negative values, and a subset of vertices S, whose elements are called terminals.
The goal is to find a minimum-weight tree in G whose nodes span all terminal in S. This is a
fundamental NP hard problem [14], which has been studied since the seventies [11] and which
has found applications in several fields of research such as planning [16], social networks
[17], sensor networks [18], community detection [7], VLSI circuit design [13], as well as in
numerous applications in industry [6].

Since Steiner tree is an NP-hard problem, most research surrounding this problem
has been devoted both to the task of developing heuristics that work reasonably well in
practice, and to the task of developing approximation algorithms that provide approximation
guarantees within polynomial time. In particular, a short list of heuristic paradigms that
have been used to attack the Steiner-tree problem include simulated annealing [19], genetic
algorithms [5], logic programming [20] and constraint solving [8]. On the other hand, when
it comes to approximation algorithms, the approximation ratio guarantee achievable by
algorithms running in polynomial time was gradually improved from 2 [27] to 1.39 [4] in a
span of two and a half decades[27, 29, 1, 30, 21, 15, 12, 24, 25, 4]. It is worth noting that
unless P = NP , the Steiner tree problem in general graphs cannot be approximated within
a factor of 1 + ϵ for sufficiently small ϵ > 0 [2].
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5:2 Three Is Enough for Steiner Trees

In this work, we introduce a new heuristic for the Steiner tree problem and show that on
large graphs, it outperforms several state of the art algorithms. Our heuristic has two main
components. First, we devise a method that can be used to quickly compute a good initial
Steiner tree. The second component is based on an improvement procedure that takes a
Steiner tree as input and tries to output a lighter Steiner tree. Essentially, this procedure is
executed until a specific time limit is up. It is worth noting that our improvement strategy is
similar in spirit to an improvement procedure used in a celebrated approximation algorithm
due to Robins and Zelikovsky [25].

This improvement procedure can be explained in two high-level steps. First, given a
(potentially suboptimal) Steiner tree T0, one appropriately split it into three subtrees T1, T2
and T3 such that, all terminals are contained in T1 ∪ T2 ∪ T3. Then those three subtrees are
reconnected together by solving an instance of the Steiner tree problem with three terminals.
This gives a new Steiner tree T ′

0. As the Steiner tree problem with three terminals can be
solve exactly and efficiently, the weight of T ′

0 is at most the weigh t of T0.
We observe that there are two crucial differences between the optimization procedure used

in our heuristic and the one used in the algorithm of [25]. The first is that their algorithm is
run in a complete graph where for each two vertices v and u, the weight of the edge {v, u} is
the weight of the shortest path between v and u in the original graph, while our algorithm is
run without the need to compute shortest paths between all possible pairs of vertices. The
second difference is that in Robins and Zelikovsky’s algorithm, the split is chosen to be the
optimal one, while in our algorithm we replace optimality by a greedy selection strategy.
Building the complete graph and looking for the optimum splitting is costly and cannot
be done on large graphs. Therefore, the algorithm of [25] cannot handle large real world
instances. By doing something that does not need such large structures our approach can
handle large instances. As a consequence, our optimization procedure performs especially
well on large graphs. We also note that this optimization procedure can also be used to
improve the weight of sub-optimal Steiner trees output by other solvers.

To validate our new heuristic, we implement a solver in C++ and benchmark it against
several state of the art solvers for the Steiner tree problem on well known data sets. These
solvers implement several paradigms, such as genetic algorithms, linear programming al-
gorithms, local search algorithms as well as algorithms with approximation guarantees. The
data sets were obtained from a variety of sources, such as established real-world benchmarks
for the Steiner tree problem, data sets of common use in the field of road networks, and a
synthetic data set where instances are generated at random. Our solver obtained very good
results in most data sets. In particular our solver was able to obtain solutions that are on par
with those obtained by solvers that employed large scale mixed-linear programming suites
such as SCIP [10]. Our solver was also able to handle very large instances, with millions of
vertices and edges, while most of the solvers failed in these instances. A detailed exposition
of these results can be found in Section 4.

2 Preliminaries

In this section, we set notation for basic graph-theoretic concepts used in the description
of our algorithm. We let N denote the set of natural numbers. For a finite set V , we let
P(V, 2) = {{u, v} : u, v ∈ V, u ̸= v} be the set of unordered pairs of elements from V .

An undirected graph is a pair G = (V, E) where V is a set of vertices and E ⊆ P(V, 2) is
a set of undirected edges. We may write V (G) to denote the vertex-set of G and E(G) to
denote the edge-set of G. An edge-weighted graph is a graph G = (V, E) together with a cost
function cost : E → N. We let cost(G) be the sum of the costs of all edges in G.
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We say that a graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
For each subset X ⊆ V (G), the subgraph of G induced by X is the graph G[X] with vertex
set X and edge set E(G) ∩ P(X, 2).

A walk in a graph G is a sequence of vertices v1, . . . , vk such that for each i in {1, . . . , k−1},
{vi, vi+1} ∈ E(G). A path in G is a walk in which all vertices are distinct. We let dist(v, v′)
be the minimum number of edges in a path between v and v′. We say that G is connected if
for each two vertices v1 and v2 there is a path between v1 and v2. A cycle is a walk v1, . . . , vk

such that v1 = vk and vi ̸= vj for i, j ≤ k and i ̸= j. A graph is acyclic if it contains no
cycle.

A tree is a connected acyclic graph T . A rooted tree is a tree T together with a distinguished
vertex r. If T is a rooted tree with root r, and v ∈ V (T ) is such that r ̸= v, then the parent
of v is the unique neighbour v′ of v such that dist(r, v′) < dist(r, v). Note that the root r

does not have a parent. Each neighbour v′ of v with dist(r, v′) > dist(r, v) is called a child
of v. A leaf of T is a vertex with no child. A descendant of a vertex v is a vertex v′ such
that any path between r and v′ contains v. We consider v to be a descendant of itself. The
subtree of T rooted at v is the subgraph of T induced by the set of descendants of v.

Given a graph G, a spanning tree for G is a tree T such that T is a subgraph of G

and V (T ) = V (G). Given a connected edge-weighted graph G, and a vertex v ∈ v(G), a
shortest-path tree for G rooted at v is an edge-weighted spanning tree T of G rooted at v such
that for each vertex u ∈ V (G), the distance between v and u in G is equal to the distance
between v and u in T .

Let G be an undirected edge-weighted graph and let S ⊆ V (G) be a subset of vertices of
G whose elements are called terminals. A Steiner tree in G is a subgraph T of G such that
T is a tree and S ⊆ V (T ). We note that T may contain non-terminal vertices. We call the
vertices in V (T )\S, Steiner points. The cost of a tree, cost(T ), is the sum of the costs of its
edges.

Let G be a graph and H be a connected subgraph of G. The contraction of H in G,
written G/H, is the graph obtained from G by first deleting all vertices of H, then by adding
a new vertex vH , and finally by connecting vH to a vertex u ∈ V (G)\V (H) in G/H if and
only if there is an edge between u and some vertex from V (H) in G. The weight of an edge
between vH and u is the minimum weight of an edge connecting a vertex of H to u. We
note that in practice, since our graphs are weighted, contraction of a subgraph H will be
simulated by simply setting the weights of the edges of H to 0, and therefore, the topology
of the original graph remains unchanged.

3 Our Heuristics

In this section, we describe the main components of the heuristic used in our Steiner tree
solver. There are three main components. A pre-processing component, which simplifies
the input graph, a greedy procedure that constructs an initial Steiner tree, an optimization
function that takes a given Steiner tree as input and outputs another Steiner tree that is
at least as light as the original one. This optimization procedure is then repeated until it
stabilizes, or until the time is up. Once the solution can not be improved, our solver starts
again with a new starting Steiner tree. It repeats this procedure until it receives a timeout
signal. These three components are described in more details below.

SEA 2021
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c
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t1 t2

Figure 1 A Steiner tree with three terminals t0, t1 and t2 is a union of shortest paths between a
center vertex c and t0, t1 and t2 respectively.

3.1 Preprocessing

During the preprocessing step, we modify the input graph by applying two standard rules [28,
22] with the goal of eliminating redundancies. Once a solution is obtained in the modified
graph, this solution can be easily converted into a solution to the original graph. The two
preprocessing rules we apply are the following.

1. The first rule removes non-terminal vertices of degree 1 from the graph. These vertices
are redundant because if a Steiner tree contains such a vertex, then one can safely delete
it from the tree and still obtain a valid Steiner tree.

2. The second rule eliminates non-terminal vertices of degree 2. More precisely, let u be a
non-terminal vertex of degree 2 connected to vertices v1 and v2 by edges e1 = {u, v1} and
e2 = {u, v2} respectively. Then we delete the vertex u and the edges e1 and e2 from the
graph. If the graph has an edge of cost c connecting v1 and v2, then we update the cost of
this edge to min(c, cost(e1) + cost(e2)). Otherwise, we just add a new edge e = {v1, v2}
of cost cost(e1) + cost(e2) to the graph. This rule is repeated until no vertex of degree 2
is left.

This preprocessing step can be done in time O(n) where n is the number of vertices. Note
that if a solution to the modified graph contains an edge e = {u, v} that is not present in
the original graph, then one can obtain a solution to the original graph by replacing each
such edge e by a path between u and v in which all internal vertices have degree 2.

3.2 Minimum Steiner trees with 2 or 3 terminals

A fact that we will use often both in the construction of an initial Steiner tree and in our
optimization procedure is the fact that Steiner trees with two or three terminals can be
computed very quickly by using elementary algorithms. Indeed, a Steiner tree with two
terminal vertices t0 and t1 is simply a shortest path between these two vertices. On the other
hand, it can be shown that if T is a Steiner tree with 3 terminals {t0, t1, t2} then there is a
center vertex c such that T is obtained by taking the union of the shortest paths p0, p1 and p2
between c and the terminals t0, t1 and t2 respectively. We call c the center of T (Figure 1).
We observe that c can be one of the terminals. Therefore, to construct such a Steiner tree, we
can iterate through the vertices of G and set as the center the vertex that minimizes the sum
of the lengths of the shortest paths p0, p1 and p2. In this paper, we will call this procedure
3Steiner(G, t0, t1, t2). We note that 3Steiner(G, t0, t1, t2) is a deterministic procedure that
produces an optimal Steiner tree with three terminals, and runs in time O(n + m log(m))
where n the number of vertices and m the number of edges.
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3.3 Constructing an Initial Solution
Once the preprocessing procedure has been applied, our algorithm proceeds to construct
suitable initial solutions. We actually implement two initialization functions. Both functions
take as input a triple (G, S, r) consisting of a graph G, a set of terminals S and a root vertex
r as input, and return a Steiner tree with terminals S rooted at r. We note that the root
can be an arbitrary vertex in the graph, but in our implementation we always choose this
root to be a terminal.

The first function, DetInitialST(G, S, r), is used to construct a reasonable first-solution
when our algorithm is executed for the first time. This function is completely deterministic.
At each step, the function DetInitialST(G, S, r) maintains the following data:
1. a partial Steiner tree T spanning some of the terminals;
2. a graph G/T obtained from G by contracting T to its root r; and
3. a shortest-path tree D for G/T rooted at r.

In the beginning, T contains only the root r, G/T = G, and D is simply the shortest-path
tree for G rooted at r. After this initialization has taken place, the algorithm enters in a
loop, where at each iteration, two new terminals t1 and t2 are incorporated to the tree. Each
iteration consists of three steps.
1. First, one applies a function SelectTerminals that selects terminals t1, t2 that will be

added to the tree. This function proceeds as follows. First, it sets t1 as the terminal with
greatest distance to the root vertex r in the graph G/T . Note that that the contraction
of T is simulated by setting the costs of its edges to 0 in the graph G. Subsequently,
a shortest path from r to t1 is contracted, and t2 is selected as the terminal with the
greatest distance to r.

2. Once the terminals t1 and t2 have been determined, one calls the function 3Steiner to
compute the minimum Steiner tree T ′ in G/T with respect to the terminal set {r, t1, t2}.

3. Finally, the two trees T and T ′ are merged. This merging process consists in taking the
spanning tree of the union T ∪ T ′.

The three steps above are repeated until a Steiner tree spanning at least |S| − 1 terminals
in S has been obtained. Suppose that some last terminal t ∈ S is not spanned by T ,
and that v is a vertex in T of minimum distance1 to t. Then the tree T is updated by
incorporating to it the shortest path between v and t. The algorithm described above
is specified more formally in Algorithm 1. The procedure DetInitialST(G, S, r) has time
complexity O(|S| · (n + m log(m))), where n the number of vertices, m the number of edges
of G.

Once we have a starting Steiner tree, we will improve it by applying the optimization
procedure described in Subsection 3.4. Since this optimization procedure may converge to a
local minimum, we will repeat the optimization process with respect to several initial Steiner
trees. Nevertheless, from this point on, each initial Steiner tree will be selected using a much
cheaper procedure, which we call RandomInitialST(G, S, r). This procedure simply selects
random path between some terminal t1 in S and the root vertex r. Subsequently, it selects a
random path between some terminal t2 and some vertex in the first path, then a random
path between some terminal t3 and some vertex in the previous paths and so on, until all
terminals have been selected. Each random path is selected by performing a random walk in
the graph starting at the terminal to be added.

1 More precisely dist(v, t) = minu∈T dist(u, t), where the distance function is computed with respect to G.

SEA 2021



5:6 Three Is Enough for Steiner Trees

Algorithm 1 DetInitialST(G, S, r).

Input: An edge weighted graph G, a set of terminals S, a vertex r

Output: A Steiner tree in G connecting all terminals in S

T ← r

while there are two terminals in S not spanned by T do
G′ ← G/T

D ← ShortestPathTree(G′, r)
t1, t2 ← SelectTerminals(G′, D)
T ′ ← 3Steiner(G′, r, t1, t2)
T ← SpanningTree(T ∪ T ′)

end
if some terminal t ∈ S is not spanned by T then

Let v be the vertex of T with smallest distance to t

Set T ← T ∪ p where p is a shortest path between v and t in G

end
return T

3.4 Optimization Procedure

Once the preprocessing stage has been completed, and an initial Steiner tree has been
computed using the procedure described in the previous subsection, our algorithm applies an
optimization procedure that takes a Steiner tree T rooted at a terminal vertex r as input,
and outputs a Steiner tree T ′, also rooted at r, with equal or smaller weight than T . This
optimization procedure is repeated until the time is up or until it has stabilized. Alternatively,
the procedure can be halted by an external algorithm even if it has not stabilized. In this
case the best Steiner tree computed so far is given as the result.

Intuitively, this optimization procedure works in two stages. In the first stage, we split
the Steiner tree T into three subtrees T1, T2 and Tr, where T1 and T2 are rooted at vertices
v1 and v2 respectively, and Tr is rooted at r. Subsequently, we select a vertex vr among the
leaves of Tr and reconnect the three subtrees by finding a suitable Steiner tree with respect
to terminals {v1, v2, vr}.

Figure 2 (a) A Steiner tree T , a pair {v1, v2} of vertices in SelectCut(T ), and Steiner paths
p1 and p2. (b) The internal vertices of p1 and p2 are removed. This results into three trees Tr,
T1 and T2. (c) {r, v1, v2} are connected using an optimal 3-terminal Steiner tree obtained using
3Steiner(G, r, v1, v2) function.
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Before describing the details of the procedure, we need to define the concept of a relevant
vertex. Let T be Steiner tree of G a rooted at a vertex r. We say that a vertex v ∈ V (T )
is relevant for T if v is a terminal or if v has at least 2 children in T . A path p in T is a
Steiner path if the two endpoints of p are relevant for T and if the remaining vertices of p are
Steiner points of degree 2 in T . Note that each middle vertex of a Steiner path has a unique
child. Let v and v′ be relevant vertices. We say that v′ is a relevant child of v if these two
vertices are the endpoints of a relevant path in T and if dist(r, v) < dist(r, v′).

The algorithm starts by applying a simple routine that prunes the input Steiner tree.
More precisely, this routine processes the input tree by removing every Steiner point that
does not have a terminal as descendant. Such Steiner points do not connect the root to any
terminal, and therefore can be safely removed. The resulting tree is still a Steiner tree and
every leaf is a terminal.

Subsequently, the algorithm executes a procedure Improve(G, S, T ) that takes a graph G,
a set of terminals S and a tree T as input, and tries to modify T with the goal of reducing
its cost by proceeding as follows.

1. First, we construct a set SelectCut(T ) containing all pairs of the form {v1, v2} where both
v1 and v2 are relevant vertices, and the unique path connecting v1 to v2 in T has no
relevant vertex, other than possibly the root (which is always relevant).

2. Now, for each pair of vertices (v1, v2) in the list SelectCut(T ) built in the previous step,
we call a function Cut(T, v1, v2) that cuts the tree above each of the vertices v1 and v2.
More precisely, for each i ∈ {1, 2}, one deletes from T the internal vertices of the unique
Steiner path pi that starts at vi that is contained in the unique path between vi and vr

in T . Such Steiner paths p1 and p2 are always guaranteed to exist because the root is a
relevant vertex. This process splits the original tree into three disjoint subtrees Tr, T1,
T2 (Figure 2.(b)).

3. Subsequently, the algorithm contracts each of the three subtrees into a single vertex.
More precisely, Tr is contracted to r, T1 is contracted to v1, and T2 is contracted to v2.
We let G′ be the contracted graph. We note that in practice, the contraction of a subtree
is simulated by setting the cost of each edge of the subtree to 0.

4. Finally we apply the subroutine 3Steiner(G′, r, v1, v2) to computes an optimal 3-terminal
Steiner tree with terminal set {r, v1, v2}. This tree, together with the three subtrees Tr,
T1 and T2 give rise to a graph Tr ∪T1 ∪T2 ∪ 3Steiner(G′, r, v1, v2) whose weight is at most
the weight of the input tree T . The algorithm then returns a spanning-tree of this graph.

A summary of the algorithm is provided below (Algorithm 2). Let t be the number of
terminals in the graph, and ∆ be the maximum degree of the graph G. We note that relevant
vertices are either terminals or have degree at least 2, therefore, there are at most O(t) relevant
vertices. And for each relevant vertices, the algorithm generates at most ∆2 pair of vertices.
Therefore, the time complexity of the function Improve(G, S, r) is O(t ·∆2 · (n + m log(m))),
where n is the number of vertices and m is the number of edges in G.

4 Experimental results

We have implemented our heuristic algorithm in C++ and compared it with six state-of-the
art solvers for the Steiner tree problem, including solvers that competed at the PACE
challenge 2018 [3]. We refer to our solver as 3TST, an acronym for 3-Terminal Steiner Tree.
The remaining solvers in our benchmark are named according to the surnames, or initials of
their respective authors. These solvers are listed below.

SEA 2021
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Algorithm 2 Improve(G, S, T ).

Input: An edge weighted graph G, a set of terminals S and a Steiner tree T in G

spanning S

Output: A Steiner tree T ′ of cost at most cost(T ) spanning S.
for {v1, v2} ∈ SelectCut(T ) do

G′ ← G

if v1 ∈ T and v2 ∈ T then
(Tr, T1, T2)← Cut(T, v1, v2)
G′ ← G′/Tr/T1/T2 (G′ is obtained by contracting Tr, T1 and T2)
T ← SpanningTree(Tr ∪ T1 ∪ T2 ∪ 3Steiner(G′, r, v1, v2))

end
end
return T

1. Grandcola’s Solver2 implements a local search algorithm.
2. HTKME Solver3 combines a star contraction algorithm from [9] with several auxiliary

heuristics.
3. HGSSB Solver4 performs a shortest path heuristic followed by a local optimization step.
4. RCLG Solver5 implements an evolutionary algorithm.
5. KR Solver6 reduces the Steiner tree problem to a linear programming problem.
6. AO solver7 is based on a local optimization heuristic.

We used the original implementation of each of these solvers in our benchmark, without
any modification in the code. We benchmarked all the solvers on different data sets, some
of which are well established datasets for the Steiner tree problem (PACE2018 dataset [3],
Vienna dataset), and some of which are well known datasets in the field of networks (Urban
Road Networks set [23], Network repository [26]). Finally, we also compared the solvers on
synthetic data sets obtained by generating random d-regular graphs for distinct values of d.

For each graph considered in our benchmark, we run each solver with a time limit of 30
minutes. When the time limit was reached, each solver received a Unix signal SIGTERM,
and had 30 seconds to output a solution before being killed. This is the same experimental
setting used in the PACE challenge 2018, whose theme was the Steiner tree problem. Each
solution is associated with a score, which is defined as the relative distance of the solution to
the best solution found during the whole experiments. If the value of the solution is v and
the best solution is b then the score is the ratio v−b

b . The score of a solver on a data set is
the sum of the scores over all graphs in the data set. With this measure, the lower the score
the better is the performance of the solver. In particular, a solver that gets a score of 0 in a
given instance is the best solver on that instance.

For some instances of some data sets, some solvers did not output a feasible solution. In
these cases, we assigned a default value for the instance. To avoid penalizing excessively a
solver on such instances, we have defined the default value as the weight of a Steiner tree
obtained by computing a minimum spanning tree of the input graph and subsequently by
pruning this tree in such a way that each leaf is a terminal.

2 http://www.dil.univ-mrs.fr/~gcolas/sgls.c
3 https://github.com/goderik01/PACE2018
4 https://github.com/maxhort/Pacechallenge-TrackC/
5 https://github.com/HeathcliffAC/SteinerTreeProblem
6 https://github.com/dRehfeldt/scipjack/
7 https://github.com/SteinerGardeners/TrackC-Version1

http://www.dil.univ-mrs.fr/~gcolas/sgls.c
https://github.com/goderik01/PACE2018
https://github.com/maxhort/Pacechallenge-TrackC/
https://github.com/HeathcliffAC/SteinerTreeProblem
https://github.com/dRehfeldt/scipjack/
https://github.com/SteinerGardeners/TrackC-Version1
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Table 1 Summary: ratios for all algorithms and all data sets. The smallest the value the better
is the solver on a given data set. A value of 0 means that the solver was the best in all instances
of the data set. Values in bold are the smallest values on the dataset among all the solvers. The
superscript number in the column of our solver give the rank of our solver on that data set. For
example 0.03972 means that our solver is the second best solver on the data set. (*) means that for
some instances, the solver did not output a feasible solution. NC means that the solver could not
find a solution for any of the instances of the data set.

Set/Solvers AO Grandcolas HGSSB HTKME KR RCLG 3TST

PACE 2018 1.3756 1.6682 3.6119 0.6589 0.1994 0.1755 0.71303

Geo Original 0.2579 0.4889 1.0904 0.1032 2.2048e-05 0.0707 0.03972

Geo Prepro. 0.0661 0.0639 0.9802 0.0723 0.0009 0.0543 0.04722

I Simple 0.0081 0.0354 0.2454 0.0054 0. 0.0102 0.00563

I Advanced 0.0294 0.0393 0.4100 0.0146 0. 0.0128 0.01994

3-regular 0.3081 0.1656 1.1526 0.2324 0. 0.0610 0.12523

4-regular 0.3027 0.2385 1.1380 0.3453 5.0182* 0.0616 0.14142

5-regular 0.4151 0.2642 1.0573 0.4176 9.8697* 0.0123 0.13252

6-regular 0.3472 0.1668 1.1315 0.4133 8.2781* 0.0304 0.17293

7-regular 0.4414 0.2909 1.0943 3.2680* 8.7525* 0.0332 0.21792

8-regular 0.4854 0.2840 1.1815 1.1467* 3.1947* 0.0997 0.31233

9-regular 0.3554 0.2205 1.0640 2.9180* 2.4698* 0.1008 0.27623

10-regular 0.6159 0.2950 1.2266 4.5041* 4.0639* 0.0942 0.35853

20-regular 0.5437 0.2385 8.4318* 13.2870* 6.4683* 0.0671 0.45913

City Road 4.5950* 3.2082* 10.8455* 0.5466 0. 5.3683* 0.92243

Big Road 4.9210* NC NC 4.1762* 3.4190* NC 0.4513*1

Each solver that uses a random procedure has an option to choose a particular seed with
the goal of making a computation deterministic, and therefore reproducible. We used the
same seed for all experiments (seed = 10). This seed was chosen before experiments were
run. All our experiments were executed on CoreTM i7-4770S computers with 16 Gb of RAM
running UbuntuTM 16.04.

In all figures and tables, our implementation is called 3TST. Table 1 summarises all
experiments. This table gathers the sum of ratios obtained by each algorithm on each data
set. The symbol (*) following an entry in the table is used to indicate that for some graphs
in the data set, the solver did not output a feasible solution. NC means that the solver did
not output a feasible solution for any of the graph in the data set. We can see that our
implementation (3TST) obtains good results in most data sets. Additionally, it is worth
noting that our implementation is the one that could find feasible solutions more often in
the Big Road Networks data set, which contains graphs with millions of nodes.

PACE-Challenge

Graphs of the PACE Challenge 2018 dataset were selected by the organizers of the competition
from the hard instances of the well known Steinlib and Vienna data sets. The average number
of vertices is 27K, the average number of edges is 48K, and the average number of terminals
is 1114, with a median at 360.5. Finally, most of these instances have treewidth above 40.
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Figure 3 shows the score of each solver on each instance. Instances are sorted by increasing
number of vertices. On the first half of the instances, our implementation provide decent
solution but not as good as RCLG, KR or HTKME which are among the four first in the
PACE Challenge 2018. And Figure 4 show a focus on the second half without the HGSSB
solver for clarity because it has quite large ratio compare to the other solvers. On those larger
instances with smaller average degree, our implementation is very good and almost on par
with KR which is the best solver on this part of the data. We note that the implementation
of KR is based on the SCIP Optimization Suite, a state-of-the-art tool for mixed integer
programming [10]. We also note that the maximum ratio of our solver on these instances
was 0.008, while in most instances this ratio was much smaller.

Vienna set

Graphs in the Vienna set were generated from real-world telecommunication networks at the
University of Vienna. This dataset is split into several types of instances. We realized our
benchmark in the so called I-Instances sub-dataset, which contains 85 instances representing
deployment areas from various Austrian cities, but they also include rural areas with smaller
population density and very sparse infrastructure. The underlying graphs contain between
7K and 178K nodes, 9K and 239K edges, and between 38 and 4991 terminals. I-instances
are available after simple preprocessing that eliminates non-terminal nodes of degrees 1 and
that contracts non-terminal nodes of degree 2.

Figure 5 shows the score of each solver on each instance of the I simple preprocessed
instances data set without the HGSSB solver for clarity because it has quite large ratio
compare to the other solvers. Instances are sorted by increasing number of vertices. We
can see a similar behaviour as for the PACE Challenge instances. On small instances, our
implementation gives decent solutions and show its strength on larger instance where it give
very good solutions. The instances of this data set are small enough so that the KR Solver,
which is base on an exact solver, manage to give the best solution in all case. On such data
set solutions given by KR Solver can be seen as the ground truth.

d-regular graphs

We generated random d-regular graphs using the random generator from the python pack-
age Networkx. The number of vertices were chosen uniformly at random from the range
[10000; 200000]. The weights on the edge follow a normal distribution with mean uniformly
chosen from the range [2000; 10000] and standard deviation uniformly chosen from the
range [200; 2000]. Negative weights were set to 0. The number of terminals was chosen
uniformly at random between 2% and 10% of the number of vertices. Terminals were
chosen uniformly at random from the vertices. We generated 10 graphs for each d in the set
{3, 4, 5, 6, 7, 8, 9, 10, 20}.

Figure 6 and Table 1 show the evolution of the ratio for each solver with respect to
the degree d of the vertices of the graphs. The best solver in these datasets was the solver
RCLG, which implements a genetic algorithm. The ratios obtained by our solver (3TST)
alternated between the second best and third best. This ratio varied from 0.1252 for 3-regular
graphs, to 0.4591 for 20-regular graphs. We note that starting from k = 4, the solver KR,
which reduces the Steiner tree problem to mixed integer-programming, started failing to give
feasible solutions for some instances.
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Table 2 Big road networks: ratios for all algorithms on the big road networks data set. The
smallest the value the better is the solver on a given data set. A value of 0 means that the solver
was the best the instance. The superscript number in the column of our solver give the rank of our
solver on that instance. For example 0.08912 means that our solver is the second best solver on the
instance. NC means that the solver could not find a solution for the instance.

Set/Solvers AO Grandcolas HGSSB HTKME KR RCLG 3TST

Instance 1 NC NC NC NC NC NC 0.1

Instance 2 NC NC NC 0. NC NC 0.08912

Instance 3 NC NC NC NC NC NC 0.1

Instance 4 NC NC NC NC 0. NC 0.12192

Instance 5 NC NC NC NC 0. NC NC

City Road Networks

This well known data set contains graphs associated with road networks for 80 of the most
populated urban areas in the world. As the original graphs were not connected we filtered
each instance by taking only the largest connected component of each graph. Since these
graphs do not come originally with information about terminal nodes, we selected these
terminals at random. First, we selected a number r uniformly at random in the range
between 2% and 10% of the number of vertices. Subsequently, we selected r distinct vertices
uniformly at random among the vertices of the graph. The graphs contain between 2K and
685K nodes, 3K and 924K edges and between 246 and 53275 terminals

Figure 7 shows the score of each solver on each instance of the City Road Networks set.
Instances are sorted by increasing number of vertices. We can see that on the first half of the
instances, almost all solvers manage to give really good solution. As the size of the instances
grow, the solver KR, which reduces Steiner tree to mixed-integer programming, starts to be
the dominant best solver. Nevertheless, our solver still outputs solutions with a very good
ration (of at most 0.2).

Big Road Networks

In this data set was used to push the solvers to their limits. We selected 9 unweighted
road networks with more than 1 million nodes. As in the previous data set, the number of
terminals was chosen uniformly at random between 2% and 10% of the number of vertices.
Since no solver could output a feasible solution for the 4 largest graphs we only show results
for the remaining five. These graphs contain between 1087K and 6686K nodes, 1541K and
7013K edges, and between 52K and 661K terminals

Table 2 shows the ratio of each solver on each of these five instances. On this data set
only KR, RCLG and our algorithm (3TST) managed to output some solution for some
of the instances. On the 9 graphs, KR output 2 solutions, HTKME 1 solution, and our
implementation 4 solutions. This dataset highlights one of the strengths of our solver, which
is the ability to handle very large instances and still give good solutions, when compared
with other solvers.

5 Conclusion

In this work, we introduced a simple combinatorial heuristic algorithm for the Steiner tree
problem. Our heuristic is similar in spirit to the classic approximation algorithm of Robin and
Zelikovsky [25], that works by replacing sub-trees of a prospective solution with Steiner trees
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on a small set of terminals. In our case, we use a routine that splits a prospective solution
Steiner tree into three disjoint subtrees, and that reconnects these subtrees by taking the
union with a 3-terminal Steiner tree, where the terminals are the roots of the subtrees. We
note that one distinguishing feature of our algorithm is that it is well suited for large graphs,
since it does not require the book-keeping of the distances between all pairs of vertices in the
graph. Indeed we almost only need to keep track of of the edges of a slightly pre-processed
version of the input graph, where non-terminal vertices of degree 1 are removed, and edges
containing non-terminal vertices of degree 2 are contracted.

Our experimental results have shown that our algorithm fits well the category of a general
purpose Steiner tree heuristic, since it was able to obtain good solutions in all benchmarked
datasets when compared with other solvers. We note that the best solver in some datasets
was built upon a state-of-the art mixed-integer programming package. In some other datasets,
the best solver was based on genetic algorithms. On the other hand, our algorithm essentially
consists in the application of a single simple replacement routine that is applied multiple
times until the time limit is reached. Still the solutions obtained by our solvers were very
competitive, often being the second best in the benchmarks and with a very small ratio
(v − b)/b where v is the weight of our solution and b the weight of the best solver. It is also
worth noting that our algorithm was able to handle graphs with millions of vertices, while
most of the other solvers failed in all these big instances. Finally, it is worth noting that one
possible application of our Steiner-tree improvement sub-routine is as a black-box that can
be used to improve the solution output by other solvers.
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Figure 3 PACE Challenge: Show the ratio obtained by each solver on each instance of the PACE
Challenge data set. Instances are sorted by increasing number of vertices.

Figure 4 PACE Challenge: Show the ratio obtained by each solver on the 50 largest instances of
the PACE Challenge data set. Instances are sorted by increasing number of vertices.

Figure 5 I simple: Show the ratio obtained by each solver on each instance of the I simple
preprocessed instances data set. Instances are sorted by increasing number of vertices.
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Figure 6 d-regular: Show the ratio obtained by each solver on d-regular random graph. Show
the evolution of the ratio with respect to increasing values of d.

Figure 7 City road networks: Show the ratio obtained by each solver on each instance of the
City road networks data set. Instances are sorted by increasing number of vertices.
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