Università degli Studi di Padova

Padua Research Archive - Institutional Repository

On the Problem of Maximal Lq -regularity for Viscous Hamilton-Jacobi Equations

Original Citation.

Availability:
This version is available at: 11577/3391446 since: 2021-06-05T12:04:00Z

Publisher:
Springer Science and Business Media Deutschland GmbH

Published version:
DOI: 10.1007/s00205-021-01641-8

Terms of use:
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

On the problem of maximal L^{q}-regularity for viscous Hamilton-Jacobi equations

Marco Cirant and Alessandro Goffi

March 5, 2021

Abstract

In this paper we prove a conjecture by P.-L. Lions on maximal regularity of L^{q}-type for periodic solutions to $-\Delta u+|D u|^{\gamma}=f$ in \mathbb{R}^{d}, under the (sharp) assumption $q>d \frac{\gamma-1}{\gamma}$.

AMS-Subject Classification. 35J61, 35F21, 35B65
Keywords. Maximal regularity, Khardar-Parisi-Zhang equation, Riccati equation, Bernstein method

1 Introduction

We address here the so-called problem of maximal L^{q}-regularity for equations of the form

$$
\begin{equation*}
-\Delta u(x)+|D u(x)|^{\gamma}=f(x) \quad \text { in } \mathbb{R}^{d}, \tag{1}
\end{equation*}
$$

where $\gamma>1, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is 1-periodic (i.e. $f(x+z)=f(x)$ for all $x \in \mathbb{R}^{d}, z \in \mathbb{Z}^{d}$), $d \geq 1$; that is,
for all $M>0$, there exists $K>0$ (possibly depending on M, γ, q, d) such that

$$
\begin{equation*}
-\Delta u+|D u|^{\gamma}=f \quad \text { in } \mathbb{R}^{d}, \quad\|f\|_{L^{q}(Q)} \leq M \quad \Longrightarrow \quad\|\Delta u\|_{L^{q}(Q)}+\left\||D u|^{\gamma}\right\|_{L^{q}(Q)} \leq K, \tag{M}
\end{equation*}
$$

Q being the d-dimensional unit cube $(-1 / 2,1 / 2)^{d}$. This regularity problem has been proposed by P.-L. Lions in a series of seminars and lectures (e.g. [31,32]), where he conjectured its general validity under the assumption

$$
\begin{equation*}
q>d \frac{\gamma-1}{\gamma} \quad(\text { and } q>1) \tag{A}
\end{equation*}
$$

Some special cases have been addressed in these seminars, but the general problem has remained so far unsolved, to the best of our knowledge. We present here a proof of $(\bar{M})+(A)$, under the sole restriction $q>2$ (which is always realized when $\gamma>d /(d-2)$).

Equations of the form (1) are prototypes of semilinear uniformly elliptic equations with superlinear growth in the gradient, and arise for example in ergodic stochastic control [4] and in the theory of growth of surfaces [25]. The study of regularity of their solutions has received recently a renewed interest in the theory of Mean Field Games [11, 28]. There is a vast literature on such equations and more general quasilinear problems. While the existence of classical (or strong) solutions has been firstly investigated (see for example [3, 26, 29, 38]), the attention has been later on largely focused on the existence (and uniqueness) of solutions $u \in W^{1, \gamma}(Q)$ satisfying (1) in the weak or generalized sense (typically with Dirichlet boundary conditions). See, for example, [1, 6, 8, 9, 10, 14, 18, 22, 35] and more recent works
[2, 7, 16, 17]. It has been observed that due to the superlinear nature of the problem, its (weak) solvability requires $f \in L^{q}$, where

$$
q \geq d \frac{\gamma-1}{\gamma}
$$

Such condition has been improved in the finer scale of Lorentz-Morrey spaces, and end-point situations typically require additional smallness assumptions [19, 23]. It is worth observing that many results in the literature cover the case $1<\gamma \leq 2$, that is when the gradient term has at most natural growth. General results in the full range $\gamma>1$, based on methods from nonlinear potential theory, appeared quite recently in [34, 36, 37].

Roughly speaking, properties $(\bar{M})+(A)$ say that if f belongs to a sufficiently small Lebesgue space, then solutions should enjoy much better regularity than $W^{1, \gamma}$, namely be in $W^{1, q \gamma}(Q)$ (and even in $W^{2, q}(Q)$, by standard Calderón-Zygmund theory). Still, additional gradient regularity is typically achieved via methods that require much stronger hypotheses on the summability of f, being based on the classical or weak maximum principle: viscosity theory indeed requires f to be bounded [24], while the Aleksandrov-Bakel'man-Pucci estimate needs $f \in L^{d}$, as in [33]. The situation is even worse when $\gamma>2$, as one observes that general weak solutions are just Hölder continuous [15], so one has to select u in a suitable class.

Here, we look at solutions to (1) that can be approximated by classical ones. Therefore, we will prove (\bar{M}) in the form of an a priori estimate. It is known that in such a form, (M) cannot be expected in general if

$$
1<q \leq d \frac{\gamma-1}{\gamma}
$$

as described in Remark 3.1 On the other hand, P.-L. Lions indicated that $(\bar{M}+\sqrt{A})$ can be obtained in some particular cases. First, when $\gamma=2$, the so-called Hopf-Cole transformation $v=e^{-u}$ reduces (1) to a linear elliptic equation, and one has the result employing (maximal) elliptic regularity and the Harnack inequality. Special cases $d=1$ and $\gamma<d /(d-1)$ can be also treated. As a final suggestion, an integral version of the Bernstein method [30] could be implemented to prove (M) when q is close enough to d (see also [27], and [5] for further refinements of this technique), but the full regime (A] seems to be out of range using these sole arguments.

The Bernstein method is the starting point of our work. It consists in shifting the attention from the equation (1) for u to the equation for a suitable function of $|D u|^{2}$, i.e. $w=g\left(|D u|^{2}\right)$; if g is properly chosen, the equation for w enjoys a strong degree of coercivity with respect to w itself, which stems from uniform ellipticity and the coercivity of the gradient term in (1). By a delicate combination of these two regularising effects, it is possible to produce a crucial estimate on superlevel sets of $|D u|$, i.e.

$$
\begin{equation*}
\left[\int_{\{|D u| \geq k\}}(|D u|-k)^{\gamma q}\right]^{\frac{d-2}{d}} \leq \omega(|\{|D u| \geq k\}|)+\int_{\{|D u| \geq k\}}(|D u|-k)^{\gamma q} \tag{2}
\end{equation*}
$$

for any $k \geq 0$, where $\omega(t) \rightarrow 0$ as $t \rightarrow 0$. This inequality again reflects the superlinear nature of the problem, being the exponents in the two sides unbalanced. Nevertheless, it is possible to control on $\left\||D u|^{\gamma}\right\|_{L^{q}}$ as follows: (2] guarantees that $\int_{\{|D u| \geq k\}}(|D u|-k)^{\gamma q}$ is either belonging to a neighborhood of zero, or to an unbounded interval (for k large enough, but independent of $\left\||D u|^{\gamma}\right\|_{L^{q}}$). By the fact that $k \mapsto \int_{\{|D u| \geq k\}}(|D u|-k)^{\gamma q}$ is continuous and vanishes as $k \rightarrow \infty$, the second case can be ruled out, and boundedness of $\int_{\{|D u| \geq k\}}(|D u|-k)^{\gamma q}$ can be then recovered up to $k=0$. This second key step has been inspired by an interesting argument that appeared in [20] (see also [21]), where $W^{1,2}$ estimates of (powers of) u are obtained arguing similarly on superlevel sets of $|u|$.

Our result reads as follows.

Theorem 1.1. Let $f \in C^{1}(Q), d \geq 3, \gamma>1$ and

$$
q>d \frac{\gamma-1}{\gamma}, \quad q>2
$$

For all $M>0$, there exists $K=K(M, \gamma, q, d)>0$ such that if $u \in C^{3}(Q)$ is a classical solution to (1) and

$$
\|f\|_{L^{q}(Q)}+\|D u\|_{L^{1}(Q)} \leq M,
$$

then

$$
\|\Delta u\|_{L^{q}(Q)}+\left\||D u|^{\gamma}\right\|_{L^{q}(Q)} \leq K .
$$

We stress that our approach is not perturbative, in the sense that the gradient term is not treated as a perturbation of a uniformly elliptic operator (which would be natural under the growth condition $\gamma<2$), nor vice-versa. It applies also to equations that have the gradient term with reversed sign (since there are no sign constraints on f, just reverse $u \mapsto-u$), and to solutions in a strong sense (Remark 3.3). As far as periodicity is concerned, it is common in applications to ergodic control and Mean Field Games. The study of (\bar{M}) in cases where u satisfies boundary conditions, or a local version of the estimate, will be matter of future work. We also conjecture that $(\overline{\mathrm{M}})$ holds in the limiting case $q=d \frac{\gamma-1}{\gamma}$ under an additional smallness assumption on M, which controls the norm of $\|f\|_{q}$. This would be coherent with known results on the existence of weak solutions. Nevertheless, it does not seem evident how to adapt our proof to cover this end-point case.

Finally, our technique does not apply to the parabolic counterpart of (M). In this direction, some results based on rather different duality methods developed in [12] to get Lipschitz regularity, has been obtained in [13].

Acknowledgements. The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This work has been partially supported by the Fondazione CaRiPaRo Project "Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field Games".

2 Proof of the main theorem

∂_{i}, D, D^{2} will denote the partial derivative in the i-th direction, the gradient, and the Hessian operator respectively. For the sake of brevity, we will often drop the x-dependance of $u, D u, \ldots$, and the d dimensional Lebsesgue measure $\mathrm{d} x$ under the integral sign. $(x)^{+}=\max \{x, 0\}$ will denote the positive part of x, and for any $p>1, p^{\prime}=p /(p-1)$. For any measurable and 1-periodic set $\Omega \subseteq \mathbb{R}^{d},|\Omega|$ will be the Lebesgue measure of its representative set, i.e. $|\Omega|=\int_{\Omega \cap Q} \mathrm{~d} x$.

This section is devoted to the proof of Theorem 1.1, which will be based on the following lemma.
Lemma 2.1. There exists $\delta \in(0,1)$ (depending on $\gamma, q, d)$ and $\omega:[0,+\infty) \rightarrow[0,+\infty)$ (depending on $M, \gamma, q, d)$ such that

$$
\lim _{t \rightarrow 0} \omega(t)=0,
$$

and for all $k \geq 1$,

$$
\begin{equation*}
\left(\int_{Q}\left(\left(\left(1+|D u|^{2}\right)^{\frac{1+\delta}{2}}-k\right)^{+}\right)^{\frac{q \gamma}{1+\delta}}\right)^{\frac{d-2}{d}} \leq \omega\left(\left|\left\{1+|D u|^{2}>k^{\frac{2}{1+\delta}}\right\}\right|\right)+\int_{Q}\left(\left(\left(1+|D u|^{2}\right)^{\frac{1+\delta}{2}}-k\right)^{+}\right)^{\frac{q \gamma}{1+\delta}} . \tag{3}
\end{equation*}
$$

We postpone the proof of the lemma, and show first how (3) yields the conclusion of Theorem 1.1 Setting $Y_{k}:=\int_{Q}\left(\left(\left(1+|D u|^{2}\right)^{\frac{1+\delta}{2}}-k\right)^{+}\right)^{\frac{q \gamma}{1+\delta}}$, then (3) reads

$$
\begin{equation*}
Y_{k}^{\frac{d-2}{d}} \leq Y_{k}+\omega\left(\left\lvert\,\left\{1+|D u|^{2}>k^{\left.\frac{2}{1+\delta}\right\} \mid}\right) \quad\right. \text { for all } k \geq 1 .\right. \tag{4}
\end{equation*}
$$

Note that the function $F: Z \longmapsto Z^{\frac{d-2}{d}}-Z$ has a unique maximizer $Z^{*}=\left(\frac{d-2}{d}\right)^{\frac{d}{2}}$ whose corresponding value is $F\left(Z^{*}\right)=F^{*}>0$ (which depends on d only). For any $0 \leq \omega<F^{*}$ the equation

$$
F(Z)=\omega
$$

has two roots $0<Z^{-}(\omega)<Z^{*}<Z^{+}(\omega)$. Since $\lim _{t \rightarrow 0} \omega(t)=0$, pick $t^{*}=t^{*}(M, \gamma, p, d)$ such that $\omega(t)<F^{*}$ for all $t<t^{*}$. By Chebyshev's inequality,

$$
\sqrt{\frac{2}{1+\delta}-1}>\frac{\|D u\|_{L^{1}(Q)}}{t^{*}} \Longrightarrow \quad\left|\left\{1+|D u|^{2}>k^{\frac{2}{1+\delta}}\right\}\right|<t^{*},
$$

hence (4) yields the alternative

$$
\forall k>\left(\frac{\|D u\|_{L^{1}(Q)}}{t^{*}}+1\right)^{\frac{1+\delta}{2}}=: k^{*}, \quad Y_{k}<Z^{*} \text { or } Y_{k}>Z^{*} .
$$

Since $u \in C^{3}(Q)$, the function $k \longmapsto Y_{k}$ is continuous and tends to zero as $k \rightarrow \infty$ (it eventually vanishes for k large). Hence we deduce that

$$
\forall k>k^{*}, \quad Y_{k}<Z^{*},
$$

and finally

$$
\left\||D u|^{\gamma}\right\|_{L^{q}(Q)}^{\frac{1+\delta}{\gamma}}=\left\||D u|^{1+\delta}\right\|_{L^{\frac{\gamma q}{1+\delta}}(Q)} \leq\left\|\left(\left(1+|D u|^{2}\right)^{\frac{1+\delta}{2}}-k^{*}\right)^{+}+k^{*}\right\|_{L^{\frac{\gamma q}{1+\delta}(Q)}} \leq\left(Z^{*}\right)^{\frac{1+\delta}{\gamma q}}+k^{*} .
$$

The estimate on $\|\Delta u\|_{L^{p}(Q)}$ is then straightforward.
Having proven Theorem 1.1. we now come back to the main estimate (3).
Proof of Lemma 2.1. Let $w(x):=g\left(|D u(x)|^{2}\right)$, where $g(s)=g_{\delta}(s)=\frac{2}{1+\delta}(1+s)^{\frac{1+\delta}{2}}, \delta \in(0,1)$ to be chosen later. Note that, for any $\delta \in(0,1), g$ enjoys the following properties: for all $s \geq 0$,

$$
\begin{gather*}
g^{\prime}(s) s^{\frac{1}{2}} \leq(1+s)^{\frac{\delta}{2}} \tag{5}\\
g^{\prime}(s)+2 s g^{\prime \prime}(s) \geq \delta g^{\prime}(s) \tag{6}
\end{gather*}
$$

Note also that

$$
g^{\prime}\left(|D u(x)|^{2}\right)=\left(1+|D u(x)|^{2}\right)^{\frac{\delta-1}{2}}=\left(\frac{\delta+1}{2} w\right)^{\frac{\delta-1}{1+\delta}}
$$

($g, g^{\prime}, g^{\prime \prime}$ below will be always evaluated at $|D u(x)|^{2}$).
Define $w_{k}=(w-k)^{+} \in W^{1, \infty}(Q)$ and set $\Omega_{k}:=\{w>k\}$. We now use $\varphi=\varphi^{(j)}=-2 \partial_{j}\left(g^{\prime} \partial_{j} u w_{k}^{\beta}\right)$, $j=1, \ldots, d$ and $\beta>1$ to be chosen later as test functions in the Hamilton-Jacobi equation. First, integrating by parts and substituting $\partial_{i} w=2 g^{\prime} D u \cdot D \partial_{i} u$,

$$
\begin{aligned}
\sum_{j} \int_{Q} D u \cdot D \varphi=-2 \sum_{i, j} & \int_{Q} \partial_{i} u \cdot \partial_{j}\left(\partial_{i}\left(g^{\prime} \partial_{j} u w_{k}^{\beta}\right)\right)=2 \sum_{i, j} \int_{Q} \partial_{i j} u \partial_{i}\left(g^{\prime} \partial_{j} u w_{k}^{\beta}\right)= \\
& 4 \int_{Q} g^{\prime \prime} \sum_{j}\left(D u \cdot D \partial_{j} u\right)^{2} w_{k}^{\beta}+2 \int_{Q}\left|D^{2} u\right|^{2} g^{\prime} w_{k}^{\beta}+\beta \int_{Q} w_{k}^{\beta-1} D w_{k} \cdot D w .
\end{aligned}
$$

Moreover, again integrating by parts,

$$
-2 \sum_{j} \int_{Q}|D u|^{\gamma} \partial_{j}\left(g^{\prime} \partial_{j} u w_{k}^{\beta}\right)=\gamma \sum_{j} \int_{Q} w_{k}^{\beta}|D u|^{\gamma-2} D u \cdot D \partial_{j} u 2 g^{\prime} \partial_{j} u w_{k}^{\beta}=\gamma \int_{Q}|D u|^{\gamma-2} D u \cdot D w w_{k}^{\beta} .
$$

Noting that $w_{k}^{\beta-1} D w=w_{k}^{\beta-1} D w_{k}$ on Q, we end up with

$$
\begin{array}{r}
\beta \int_{Q} w_{k}^{\beta-1}\left|D w_{k}\right|^{2}+\int_{Q}\left(4 g^{\prime \prime} \sum_{j}\left(D u \cdot D \partial_{j} u\right)^{2}+2 g^{\prime}\left|D^{2} u\right|^{2}\right) w_{k}^{\beta}+\gamma \int_{Q}|D u|^{\gamma-2} D u \cdot D w_{k} w_{k}^{\beta} \\
=-2 \int_{Q} f \operatorname{div}\left(g^{\prime} D u w_{k}^{\beta}\right) \tag{7}
\end{array}
$$

Note also that in (7) integrating on Q and on Ω_{k} is the same, by the fact that w_{k} vanishes on $Q \backslash \Omega_{k}$. We use first Cauchy-Schwarz inequality, the equation (1) and the inequality $(a-b)^{2} \geq \frac{a^{2}}{2}-2 b^{2}$ for every $a, b \in \mathbb{R}$ to get

$$
\left|D^{2} u\right|^{2} \geq \frac{1}{d}(\Delta u)^{2} \geq \frac{1}{2 d}|D u|^{2 \gamma}-\frac{2}{d} f^{2}
$$

Moreover, again by Cauchy-Schwarz inequality (be careful about $g^{\prime \prime}<0$) and (6),

$$
g^{\prime}\left|D^{2} u\right|^{2}+2 g^{\prime \prime} \sum_{j}\left(D u \cdot D \partial_{j} u\right)^{2} \geq\left(g^{\prime}+2|D u|^{2} g^{\prime \prime}\right)\left|D^{2} u\right|^{2} \geq \delta g^{\prime}\left|D^{2} u\right|^{2}
$$

The above inequalities then yield

$$
2 g^{\prime}\left|D^{2} u\right|^{2}+4 g^{\prime \prime} \sum_{j}\left(D u \cdot D \partial_{j} u\right)^{2} \geq \delta g^{\prime}\left|D^{2} u\right|^{2}+\frac{\delta}{2 d}|D u|^{2 \gamma} g^{\prime}-\frac{2 \delta}{d} f^{2} g^{\prime}
$$

Note that for $\gamma>1$ it holds

$$
\left(1+|D u|^{2}\right)^{\gamma} \leq 2^{\gamma-1}\left(1+|D u|^{2 \gamma}\right), \quad \text { so } \quad|D u|^{2 \gamma} \geq \frac{\left(1+|D u|^{2}\right)^{\gamma}}{2^{\gamma-1}}-1
$$

and hence, we are allowed to conclude

$$
\frac{\delta}{2 d}|D u|^{2 \gamma} g^{\prime} \geq \frac{\delta}{2^{\gamma} d}\left(1+|D u|^{2}\right)^{\gamma} g^{\prime}-\frac{\delta}{2 d} g^{\prime}=\frac{\delta}{2^{\gamma} d}\left(1+|D u|^{2}\right)^{\gamma+\frac{\delta-1}{2}}-\frac{\delta}{2 d} g^{\prime}
$$

This gives, going back to (7) and substituting $\left(1+|D u|^{2}\right)^{\frac{1}{2}}=\left(\frac{\delta+1}{2} w\right)^{\frac{1}{1+\delta}}$,

$$
\begin{align*}
& \beta \int_{\Omega_{k}} w_{k}^{\beta-1}\left|D w_{k}\right|^{2}+\delta \int_{\Omega_{k}} g^{\prime} w_{k}^{\beta}\left|D^{2} u\right|^{2}+c_{1} \int_{\Omega_{k}} w^{\frac{2 \gamma+\delta-1}{1+\delta}} w_{k}^{\beta} \leq \\
& \frac{\delta}{2 d} \int_{\Omega_{k}}\left(1+4 f^{2}\right) g^{\prime} w_{k}^{\beta}-2 \int_{\Omega_{k}} f \Delta u g^{\prime} w_{k}^{\beta}-4 \int_{\Omega_{k}} f g^{\prime \prime} D u \cdot\left(D^{2} u D u\right) w_{k}^{\beta} \\
& -2 \beta \int_{\Omega_{k}} f g^{\prime} D u \cdot D w_{k} w_{k}^{\beta-1}-\gamma \int_{\Omega_{k}}|D u|^{\gamma-2} D u \cdot D w_{k} w_{k}^{\beta}, \tag{8}
\end{align*}
$$

where $c_{1}=c_{1}(\delta, d, \gamma)>0$.

We now estimate the five terms on the right hand side of the previous inequality. The first three terms are somehow similar: using Cauchy-Schwarz inequality and that $2 s g^{\prime \prime} \leq g^{\prime}$, we have for some $c_{2}=c_{2}(\delta, d)>0$ that

$$
\begin{array}{r}
\frac{\delta}{2 d} \int_{\Omega_{k}}\left(1+4 f^{2}\right) g^{\prime} w_{k}^{\beta}-2 \int_{\Omega_{k}} f \Delta u g^{\prime} w_{k}^{\beta}-4 \int_{\Omega_{k}} f g^{\prime \prime} D u \cdot\left(D^{2} u D u\right) w_{k}^{\beta} \leq \\
\frac{\delta}{2 d} \int_{\Omega_{k}}\left(1+4 f^{2}\right) g^{\prime} w_{k}^{\beta}+(2 d+2) \int_{\Omega_{k}}|f|\left|D^{2} u\right| g^{\prime} w_{k}^{\beta} \leq \\
\delta \int_{\Omega_{k}}\left|D^{2} u\right|^{2} g^{\prime} w_{k}^{\beta}+c_{2} \int_{\Omega_{k}}\left(1+f^{2}\right) w^{\frac{\delta-1}{1+\delta}} w_{k}^{\beta} \tag{9}
\end{array}
$$

At this stage, we make some choices for the coefficients. Recalling that $\frac{d}{\gamma^{\prime}}<q$, we take

$$
\begin{equation*}
p=\frac{2}{d} \frac{d}{\gamma^{\prime}}+\frac{d-2}{d} q, \quad \text { and } \quad \beta=\frac{1}{1+\delta}[\gamma(p-2)+1-\delta] . \tag{10}
\end{equation*}
$$

Note that $\frac{d}{\gamma^{\prime}}<p<q$. Assuming that $p>2$ (which is always true when $\gamma>\frac{d}{d-2}$, otherwise see the remark at the end of the proof), we have $\beta>1$ whenever δ is close enough to zero. Moreover,

$$
\begin{gather*}
\frac{2 \gamma+\delta-1}{1+\delta}=\frac{\delta-1}{1+\delta} \frac{p}{p-2}+\beta \frac{2}{p-2} \tag{11}\\
\quad(\beta+1) \frac{d}{d-2}=\frac{\gamma q}{1+\delta} \tag{12}
\end{gather*}
$$

Therefore, we apply Hölder's inequality (with conjugate exponents $p / 2$ and $p /(p-2)$) and Young's inequality, and then $w_{k} \leq w$ together with (11) to obtain

$$
\begin{aligned}
& c_{2} \int_{\Omega_{k}}\left(1+f^{2}\right) w^{\frac{\delta-1}{1+\delta}} w_{k}^{\beta} \leq c_{2}\left(\int_{\Omega_{k}}\left(1+f^{2}\right)^{\frac{p}{2}}\right)^{\frac{2}{p}}\left(\int_{\Omega_{k}} w^{\frac{\delta-1}{1+\delta} \frac{p}{p-2}} w_{k}^{\beta \frac{p}{p-2}}\right)^{1-\frac{2}{p}} \\
& \leq c_{3} \int_{\Omega_{k}}(1+|f|)^{p}+\frac{c_{1}}{3} \int_{\Omega_{k}} w^{\frac{\delta-1}{1+\delta} \frac{p}{p-2}} w_{k}^{\beta \frac{2}{p-2}} w_{k}^{\beta} \\
& \leq c_{3} \int_{\Omega_{k}}(1+|f|)^{p}+\frac{c_{1}}{3} \int_{\Omega_{k}} w^{\frac{\delta-1}{1+\delta} \frac{p}{p-2}+\beta \frac{2}{p-2}} w_{k}^{\beta} \\
& \leq c_{3} \int_{\Omega_{k}}(1+|f|)^{p}+\frac{c_{1}}{3} \int_{\Omega_{k}} w^{\frac{2 \gamma+\delta-1}{1+\delta}} w_{k}^{\beta},
\end{aligned}
$$

where $c_{3}=c_{3}(\delta, d, \gamma, p)>0$. Plugging the previous inequality into (9) yields

$$
\begin{align*}
& \frac{\delta}{2 d} \int_{\Omega_{k}}\left(1+f^{2}\right) g^{\prime} w_{k}^{\beta}-2 \int_{\Omega_{k}} f \Delta u g^{\prime} w_{k}^{\beta}-4 \int_{\Omega_{k}} f g^{\prime \prime} D u \cdot\left(D^{2} u D u\right) w_{k}^{\beta} \leq \\
& \delta \int_{\Omega_{k}}\left|D^{2} u\right|^{2} g^{\prime} w_{k}^{\beta}+c_{3} \int_{\Omega_{k}}(1+|f|)^{p}+\frac{c_{1}}{3} \int_{\Omega_{k}} w^{\frac{2 \gamma+\delta-1}{1+\delta}} w_{k}^{\beta} \tag{13}
\end{align*}
$$

The fourth term in (8) is a bit more delicate, we proceed as follows. Use first that $s^{\frac{1}{2}} g^{\prime}(s) \leq(1+s)^{\frac{\delta}{2}}$,

Hölder's and Young's inequality to get

$$
\begin{aligned}
& 2 \beta \int_{\Omega_{k}} f g^{\prime} D u \cdot D w_{k} w_{k}^{\beta-1} \leq 2 \beta \int_{\Omega_{k}}|f|\left(1+|D u|^{2}\right)^{\frac{\delta}{2}}\left|D w_{k}\right| w_{k}^{\beta-1} \leq \\
& 2 \beta\left(\int_{\Omega_{k}} w_{k}^{\beta-1}\left|D w_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\int_{\Omega_{k}}|f|^{q}\right)^{\frac{1}{q}}\left(\int_{\Omega_{k}}\left(1+|D u|^{2}\right)^{\frac{\delta}{2} \frac{p q}{q-p}}\right)^{\frac{q-p}{p q}}\left(\int_{\Omega_{k}} w_{k}^{(\beta-1) \frac{p}{p-2}}\right)^{\frac{p-2}{2 p}} \leq \\
& \quad \frac{\beta}{3} \int_{\Omega_{k}} w_{k}^{\beta-1}\left|D w_{k}\right|^{2}+\frac{c_{1}}{3} \int_{\Omega_{k}} w_{k}^{(\beta-1) \frac{p}{p-2}}+c_{4}\left(\int_{\Omega_{k}}|f|^{q}\right)^{\frac{p}{q}}\left(\int_{\Omega_{k}}\left(1+|D u|^{2}\right)^{\frac{\delta}{2} \frac{p q}{q-p}}\right)^{\frac{q-p}{q}},
\end{aligned}
$$

where $c_{4}=c_{4}(\delta, d, \gamma, \beta)>0$. Since $k \geq 1$, we have $w \geq 1$ on Ω_{k}. Hence, recalling also (11),

$$
\int_{\Omega_{k}} w_{k}^{(\beta-1) \frac{p}{p-2}}=\int_{\Omega_{k}} w_{k}^{\beta \frac{2}{p-2}-\frac{p}{p-2}} w_{k}^{\beta} \leq \int_{\Omega_{k}} w^{\beta \frac{2}{p-2}-\frac{p}{p-2}} w_{k}^{\beta} \leq \int_{\Omega_{k}} w^{\beta \frac{2}{p-2}-\frac{1-\delta}{1+\delta} \frac{p}{p-2}} w_{k}^{\beta}=\int_{\Omega_{k}} w^{\frac{2 \gamma+\delta-1}{1+\delta}} w_{k}^{\beta},
$$

so

$$
\begin{align*}
& 2 \beta \int_{\Omega_{k}} f g^{\prime} D u \cdot D w_{k} w_{k}^{\beta-1} \leq \\
& \quad \frac{\beta}{3} \int_{\Omega_{k}} w_{k}^{\beta-1}\left|D w_{k}\right|^{2}+\frac{c_{1}}{3} \int_{\Omega_{k}} w^{\frac{2 \gamma+\delta-1}{1+\delta}} w_{k}^{\beta}+c_{4}\|f\|_{L^{q}(Q)}^{p}\left(\int_{\Omega_{k}}\left(1+|D u|^{2}\right)^{\frac{\delta}{2} \frac{p q}{q-p}}\right)^{\frac{q-p}{q}} \tag{14}
\end{align*}
$$

We now focus on the fifth term in (8). By Young's inequality,

$$
\begin{equation*}
-\gamma \int_{\Omega_{k}}|D u|^{\gamma-2} D u \cdot D w_{k} w_{k}^{\beta} \leq \frac{3 \gamma^{2}}{4 \beta} \int_{\Omega_{k}}|D u|^{2 \gamma-2} w_{k}^{\beta+1}+\frac{\beta}{3} \int_{\Omega_{k}}\left|D w_{k}\right|^{2} w_{k}^{\beta-1} \tag{15}
\end{equation*}
$$

Furthermore, letting

$$
\eta=\frac{2 \gamma+\delta-1}{1+\delta}, \quad\left(\text { so that } \beta+\eta=\frac{p \gamma}{1+\delta}\right)
$$

we get (it holds $s^{\frac{1}{2}} \leq g^{\frac{1}{1+\delta}}$)

$$
\int_{\Omega_{k}}|D u|^{2 \gamma-2} w_{k}^{\beta+1} \leq \int_{\Omega_{k}} w^{\frac{2 \gamma-2}{1+\delta}} w_{k}^{\beta+1}=\int_{\Omega_{k}} w^{\eta-1} w_{k}^{\beta / \eta^{\prime}} w_{k}^{\beta / \eta+1} \leq\left(\int_{\Omega_{k}} w^{\eta} w_{k}^{\beta}\right)^{\frac{1}{\eta^{\prime}}}\left(\int_{\Omega_{k}} w_{k}^{\beta+\eta}\right)^{\frac{1}{\eta}}
$$

Plugging the previous inequality into (15) and using again Young's inequality leads to

$$
\begin{equation*}
-\gamma \int_{\Omega_{k}}|D u|^{\gamma-2} D u \cdot D w_{k} w_{k}^{\beta} \leq \frac{c_{1}}{3} \int_{\Omega_{k}} w^{\frac{2 \gamma+\delta-1}{1+\delta}} w_{k}^{\beta}+c_{5} \int_{\Omega_{k}} w_{k}^{\frac{p \gamma}{1+\delta}}+\frac{\beta}{3} \int_{\Omega_{k}}\left|D w_{k}\right|^{2} w_{k}^{\beta-1} . \tag{16}
\end{equation*}
$$

for some $c_{5}=c_{5}(\delta, d, \gamma, p)>0$.
Plug now (13), (14) and (16) into (8) to obtain

$$
\begin{equation*}
\frac{\beta}{3} \int_{\Omega_{k}} w_{k}^{\beta-1}\left|D w_{k}\right|^{2} \leq c_{3} \int_{\Omega_{k}}(1+|f|)^{p}+c_{4}\|f\|_{L^{q}(Q)}^{p}\left(\int_{\Omega_{k}}\left(1+|D u|^{2}\right)^{\frac{\delta}{2} \frac{p q}{q-p}}\right)^{\frac{q-p}{q}}+c_{5} \int_{\Omega_{k}} w_{k}^{\frac{p \gamma}{1+\delta}} \tag{17}
\end{equation*}
$$

Sobolev's inequality related to the continuous embedding of $W^{1,2}(Q)$ into $L^{\frac{2 d}{d-2}}(Q)$ reads (for $c_{6}=$ $\left.c_{6}(d, \delta, \gamma, p)\right)$

$$
\frac{\beta}{3} \int_{Q} w_{k}^{\beta-1}\left|D w_{k}\right|^{2} \geq c_{6}\left(\int_{Q} w_{k}^{(\beta+1) \frac{d}{d-2}}\right)^{\frac{d-2}{d}}-\frac{\beta}{3} \int_{Q} w_{k}^{\beta+1}
$$

hence

$$
\begin{aligned}
& c_{6}\left(\int_{\Omega_{k}} w_{k}^{(\beta+1) \frac{d}{d-2}}\right)^{\frac{d-2}{d}} \leq \\
& \quad c_{3} \int_{\Omega_{k}}(1+|f|)^{p}+c_{4}\|f\|_{L^{q}(Q)}^{p}\left(\int_{\Omega_{k}}\left(1+|D u|^{2}\right)^{\frac{\delta}{2} \frac{p q}{q-p}}\right)^{\frac{q-p}{q}}+c_{5} \int_{\Omega_{k}} w_{k}^{\frac{p \gamma}{1+\delta}}+\frac{\beta}{3} \int_{\Omega_{k}} w_{k}^{\beta+1} .
\end{aligned}
$$

We finally choose $\delta>0$ small enough so that $\delta \frac{p q}{q-p}<1$. Recall that $p<q$, so using repeatedly Hölder's and Young's inequalities we obtain

$$
\begin{aligned}
c_{3} \int_{\Omega_{k}}(1+|f|)^{p} & \leq c_{3}\|1+|f|\|_{L^{q}(Q)}^{p}\left|\Omega_{k}\right|^{\frac{q-p}{q}}, \\
c_{4}\|f\|_{L^{q}(Q)}^{p}\left(\int_{\Omega_{k}}\left(1+|D u|^{2}\right)^{\frac{\delta}{2} \frac{p q}{q-p}}\right)^{\frac{q-p}{q}} & \leq c_{4}\|f\|_{L^{q}(Q)}^{p}\left\|\sqrt{1+|D u|^{2}}\right\|_{L^{1}(Q)}^{\delta p}\left|\Omega_{k}\right|^{\left(1-\delta \frac{p q}{q-p}\right) \frac{q-p}{q}}, \\
c_{5} \int_{\Omega_{k}} w_{k}^{\frac{p \gamma}{1+\delta}} & \leq \frac{c_{6}}{2} \int_{\Omega_{k}} w_{k}^{\frac{q \gamma}{1+\delta}}+c_{7}\left|\Omega_{k}\right|, \\
\frac{\beta}{3} \int_{\Omega_{k}} w_{k}^{\beta+1} & \leq \frac{c_{6}}{2} \int_{\Omega_{k}} w_{k}^{(\beta+1) \frac{d}{d-2}}+c_{8}\left|\Omega_{k}\right| .
\end{aligned}
$$

Recalling that $(\beta+1) \frac{d}{d-2}=\frac{q \gamma}{1+\delta}$ and $\|f\|_{L^{q}(Q)}+\|D u\|_{L^{1}(Q)} \leq M$, we obtain

$$
\begin{aligned}
& \left(\int_{Q} w_{k}^{\frac{q \gamma}{1+\delta}}\right)^{\frac{d-2}{d}} \leq \int_{Q} w_{k}^{\frac{q \gamma}{1+\delta}}+ \\
& \frac{c_{3}}{c_{6}}\|1+|f|\|_{L^{q}(Q)}^{p}\left|\Omega_{k}\right|^{\frac{q-p}{q}}+\frac{c_{4}}{c_{6}}\|f\|_{L^{q}(Q)}^{p} \| \sqrt{1+|D u|^{2} \|_{L^{1}(Q)}^{\delta p}\left|\Omega_{k}\right|^{\left(1-\delta \frac{p q}{q-p}\right) \frac{q-p}{p}}+\frac{c_{7}+c_{8}}{c_{6}}\left|\Omega_{k}\right| \leq} \\
& \quad \int_{Q} w_{k}^{\frac{q \gamma}{1+\bar{\delta}}}+\underbrace{\frac{c_{3}}{c_{6}}(1+M)^{p}\left|\Omega_{k}\right|^{\frac{q-p}{q}}+\frac{c_{4}}{c_{6}} M^{p}(1+M)^{\delta p}\left|\Omega_{k}\right|^{\left(1-\delta \frac{p q}{q-p}\right) \frac{q-p}{p}}+\frac{c_{7}+c_{8}}{c_{6}}\left|\Omega_{k}\right|}_{=: \omega\left(\left|\Omega_{k}\right|\right)}
\end{aligned}
$$

Replacing w_{k} by its definition provides the assertion (up to an additional constant in front of ω).
If the choice of p in (10) does not satisfy $p>2$, just pick \tilde{p} so that $p<\tilde{p}<q$ and $\tilde{p}>2$, and proceed in the same way. Then, (12) becomes

$$
\begin{equation*}
(\beta+1) \frac{d}{d-2}>\frac{\gamma q}{1+\delta}, \tag{18}
\end{equation*}
$$

so it suffices to apply once again Hölder's and Young's inequalities to get the same assertion (with an additional term in ω).

3 Further remarks

Remark 3.1. General failure of (\bar{M}) when $q \leq d \frac{\gamma-1}{\gamma}$. In the critical case $q=d \frac{\gamma-1}{\gamma}$ one may consider the family of functions v_{ε} defined as follows, for $\varepsilon \in(0,1]$: let $\chi \in C_{0}^{\infty}((1,+\infty))$ be a non-negative cutoff function, $\chi \equiv 1$ on $[2,+\infty)$, and $v_{\varepsilon}(x)=v_{\varepsilon}(|x|)$, where

$$
v_{\varepsilon}(r)=c \int_{r}^{1 / 2} s^{-\frac{1}{\gamma-1}} \chi\left(\frac{s}{\varepsilon}\right) d s, \quad|c|^{\gamma}=-\left(d-1-\frac{1}{\gamma-1}\right) c .
$$

Then, on $B_{1 / 2}:=\{|x|<1 / 2\}$,

$$
-\Delta v_{\varepsilon}+\left|D v_{\varepsilon}\right|^{\gamma}=\frac{c}{\varepsilon}|x|^{-\frac{1}{\gamma-1}} \chi^{\prime}\left(\varepsilon^{-1}|x|\right)+|c|^{\gamma}\left(\chi^{\gamma}\left(\varepsilon^{-1}|x|\right)-\chi\left(\varepsilon^{-1}|x|\right)\right)|x|^{-\frac{\gamma}{\gamma-1}} \quad=: f_{\varepsilon}(x),
$$

and $v_{\varepsilon}=0$ on $\partial B_{1 / 2}$. Therefore, there exists $\bar{M}>0$, depending on c, d, γ, χ only, such that

$$
\left\|f_{\varepsilon}\right\|_{L^{d} \frac{\gamma-1}{\gamma}\left(B_{1 / 2}\right)}=\bar{M} \text { for all } \varepsilon \in(0,1 / 4], \quad \text { but }\left\||D u|^{\gamma}\right\|_{L^{d \frac{\gamma-1}{\gamma}}\left(B_{1 / 2}\right)} \rightarrow \infty \quad \text { as } \varepsilon \rightarrow 0 .
$$

Note that the example is meaningful only if $\gamma>\frac{d}{d-1}$, that is when $d \frac{\gamma-1}{\gamma}>1$. Note also that though v_{ε} is not periodic, being smooth on $B_{1 / 2}$ and vanishing on $\partial B_{1 / 2}$, it is straightforward to produce similar examples in the periodic setting. Finally, different choices of the truncation $\chi(|x|)=\chi_{\varepsilon}(|x|)$ lead to counterexamples in the regime $q<d \frac{\gamma-1}{\gamma}$.

Note however that existence of weak solutions to the viscous Hamilton-Jacobi equation (1) can be obtained when $f \in L^{q}(Q)$ and $q=d \frac{\gamma-1}{\gamma}$ (at least for the Dirichlet problem), provided that $\|f\|_{L^{q}}$ is small, see e.g. [18, 20]. Therefore, we do not exclude that (\bar{M}) holds even when $q=d \frac{\gamma-1}{\gamma}$, under extra smallness assumptions on $\|f\|_{L^{q}}$.
Remark 3.2. $d=1,2$. Theorem 1.1 is stated in dimension $d \geq 3$, but the proof for $d=1,2$ follows identical lines. As it usually happens, the point is that in the latter case $W^{1,2}(Q)$ is continuously embedded into $L^{p}(Q)$ for all finite $p \geq 1$, and not only into $L^{\frac{2 d}{d-2}}(Q)$.
Remark 3.3. Less regularity of u. Theorem 1.1 holds more in general for (strong) solutions $u \in$ $W^{2, q} \cap W^{1, \gamma q}(Q)$ of the equation. Indeed, consider a sequence ψ_{ε} of standard compactly supported regularizing kernels, and observe that $u_{\varepsilon}=u \star \psi_{\varepsilon}$ satisfies

$$
-\Delta u_{\varepsilon}+\left|D u_{\varepsilon}\right|^{\gamma}=f \star \psi_{\varepsilon}+\left|D u_{\varepsilon}\right|^{\gamma}-|D u|^{\gamma} \star \psi_{\varepsilon}
$$

For $0<\varepsilon \leq \varepsilon_{0}$

$$
\left\|f \star \psi_{\varepsilon}+\left|D u_{\varepsilon}\right|^{\gamma}-|D u|^{\gamma} \star \psi_{\varepsilon}\right\|_{L^{q}(Q)}+\left\|D u_{\varepsilon}\right\|_{L^{1}(Q)} \leq M+1
$$

so applying Theorem 1.1 to u_{ε} and passing to the limit $\varepsilon \rightarrow 0$ yields

$$
\|\Delta u\|_{L^{q}(Q)}+\left\||D u|^{\gamma}\right\|_{L^{q}(Q)} \leq K(M+1, \gamma, q, d) .
$$

More generally, Theorem 1.1 continues to hold for solutions that can be obtained as limits of smooth approximations.
Remark 3.4. More general Hamiltonians. Theorem 1.1 can be easily generalized to more general equations of the form

$$
\begin{equation*}
-\Delta u+H(D u)=f \tag{19}
\end{equation*}
$$

where $H: \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfies, e.g.

$$
\left.\left|H(r)-c_{1}\right| r\right|^{\gamma} \mid \leq c_{2} \quad \text { for all } r \in \mathbb{R}^{d}
$$

for some $c_{1}, c_{2} \in \mathbb{R}$ and $\gamma>1$. Indeed, any u solving (19) also solves

$$
-\Delta u+c_{1}|D u|^{\gamma}=f+f_{H}, \quad f_{H}=c_{1}|D u|^{\gamma}-H(D u) .
$$

Since $\left\|f+f_{H}\right\|_{L^{q}(Q)} \leq\|f\|_{L^{q}(Q)}+c_{2}$, and c_{2} does not depend on u, it suffices to apply Theorem 1.1 (which is easily proven to hold for any $c_{1} \in \mathbb{R}$) with $f+f_{H}$.

References

[1] N. E. Alaa and M. Pierre. Weak solutions of some quasilinear elliptic equations with data measures. SIAM J. Math. Anal., 24(1):23-35, 1993.
[2] A. Alvino, V. Ferone, and A. Mercaldo. Sharp a priori estimates for a class of nonlinear elliptic equations with lower order terms. Ann. Mat. Pura Appl. (4), 194(4):1169-1201, 2015.
[3] H. Amann and M. G. Crandall. On some existence theorems for semi-linear elliptic equations. Indiana Univ. Math. J., 27(5):779-790, 1978.
[4] M. Arisawa and P.-L. Lions. On ergodic stochastic control. Comm. Partial Differential Equations, 23(11-12):2187-2217, 1998.
[5] M. Bardi and B. Perthame. Uniform estimates for some degenerating quasilinear elliptic equations and a bound on the Harnack constant for linear equations. Asymptotic Anal., 4(1):1-16, 1991.
[6] G. Barles and A. Porretta. Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5(1):107-136, 2006.
[7] M. F. Betta, R. Di Nardo, A. Mercaldo, and A. Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Commun. Pure Appl. Anal., 14(3):897-922, 2015.
[8] L. Boccardo, F. Murat, and J.-P. Puel. Résultats d'existence pour certains problèmes elliptiques quasilinéaires. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11(2):213-235, 1984.
[9] L. Boccardo, F. Murat, and J.-P. Puel. L^{∞} estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal., 23(2):326-333, 1992.
[10] K. Cho and H. J. Choe. Nonlinear degenerate elliptic partial differential equations with critical growth conditions on the gradient. Proc. Amer. Math. Soc., 123(12):3789-3796, 1995.
[11] M. Cirant. Stationary focusing mean-field games. Comm. Partial Differential Equations, 41(8):1324-1346, 2016.
[12] M. Cirant and A. Goffi. Lipschitz regularity for viscous Hamilton-Jacobi equations with L^{p} terms. Ann. Inst. H. Poincaré Anal. Non Linéaire, 37(4):757-784, 2020.
[13] M. Cirant and A. Goffi. Maximal L^{q}-regularity for parabolic Hamilton-Jacobi equations and applications to Mean Field Games. arXiv:2007.14873, 2020.
[14] A. Dall'Aglio, D. Giachetti, and J.-P. Puel. Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. Pura Appl. (4), 181(4):407-426, 2002.
[15] A. Dall'Aglio and A. Porretta. Local and global regularity of weak solutions of elliptic equations with superquadratic Hamiltonian. Trans. Amer. Math. Soc., 367(5):3017-3039, 2015.
[16] F. Della Pietra. Existence results for non-uniformly elliptic equations with general growth in the gradient. Differential Integral Equations, 21(9-10):821-836, 2008.
[17] F. Della Pietra and N. Gavitone. Sharp estimates and existence for anisotropic elliptic problems with general growth in the gradient. Z. Anal. Anwend., 35(1):61-80, 2016.
[18] V. Ferone and F. Murat. Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal., 42(7, Ser. A: Theory Methods):1309-1326, 2000.
[19] V. Ferone and F. Murat. Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces. J. Differential Equations, 256(2):577-608, 2014.
[20] N. Grenon, F. Murat, and A. Porretta. Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms. C. R. Math. Acad. Sci. Paris, 342(1):23-28, 2006.
[21] N. Grenon, F. Murat, and A. Porretta. A priori estimates and existence for elliptic equations with gradient dependent terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13(1):137-205, 2014.
[22] N. Grenon and C. Trombetti. Existence results for a class of nonlinear elliptic problems with p-growth in the gradient. Nonlinear Anal., 52(3):931-942, 2003.
[23] K. Hansson, V. G. Maz'ya, and I. E. Verbitsky. Criteria of solvability for multidimensional Riccati equations. Ark. Mat., 37(1):87-120, 1999.
[24] H. Ishii and P.-L. Lions. Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations, 83(1):26-78, 1990.
[25] J. Krug and H. Spohn. Universality classes for deterministic surface growth. Phys. Rev. A, 38:4271-4283, Oct 1988.
[26] O. A. Ladyzhenskaya and N. N. Ural'tseva. Linear and quasilinear elliptic equations. Academic Press, New York-London, 1968.
[27] J.-M. Lasry and P.-L. Lions. Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann., 283(4):583-630, 1989.
[28] J.-M. Lasry and P.-L. Lions. Mean field games. Jpn. J. Math., 2(1):229-260, 2007.
[29] P.-L. Lions. Résolution de problèmes elliptiques quasilinéaires. Arch. Rational Mech. Anal., 74(4):335-353, 1980.
[30] P.-L. Lions. Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J. Analyse Math., 45:234-254, 1985.
[31] P.-L. Lions. Recorded video of Séminaire de Mathématiques appliquées at Collége de France, available at https://www.college-de-france.fr/site/pierre-louis-lions/ seminar-2014-11-14-11h15.htm, November 14, 2014.
[32] P.-L. Lions. On Mean Field Games. Seminar at the conference "Topics in Elliptic and Parabolic PDEs", Napoli, September 11-12, 2014.
[33] A. Maugeri, D. K. Palagachev, and L. G. Softova. Elliptic and parabolic equations with discontinuous coefficients, volume 109 of Mathematical Research. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.
[34] T. Mengesha and N. C. Phuc. Quasilinear Riccati type equations with distributional data in Morrey space framework. J. Differential Equations, 260(6):5421-5449, 2016.
[35] B. Messano. Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient. Nonlinear Anal., 64(12):2688-2703, 2006.
[36] N. C. Phuc. Morrey global bounds and quasilinear Riccati type equations below the natural exponent. J. Math. Pures Appl. (9), 102(1):99-123, 2014.
[37] N. C. Phuc. Nonlinear Muckenhoupt-Wheeden type bounds on reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math., 250:387-419, 2014.
[38] J. Serrin. The problem of dirichlet for quasilinear elliptic differential equations with many independent variables. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1153):413-496, 1969.
cirant@math.unipd.it
Dipartimento di Matematica "Tullio Levi-Civita"
Università di Padova
Via Trieste 63, 35121 Padova (Italy)
alessandro.goffi@math.unipd.it
Dipartimento di Matematica "Tullio Levi-Civita"
Università di Padova
via Trieste 63, 35121 Padova (Italy)

