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A NOTE ON THE STRONG MAXIMUM PRINCIPLE FOR FULLY NONLINEAR
EQUATIONS ON RIEMANNIAN MANIFOLDS

ALESSANDRO GOFFI AND FRANCESCO PEDICONI

Abstract. We investigate strong maximum (and minimum) principles for fully nonlinear second order
equations on Riemannian manifolds that are non-totally degenerate and satisfy appropriate scaling condi-
tions. Our results apply to a large class of nonlinear operators, among which Pucci’s extremal operators,
some singular operators like those modeled on the p- and ∞-Laplacian, and mean curvature type problems.
As a byproduct, we establish new strong comparison principles for some second order uniformly elliptic
problems when the manifold has nonnegative sectional curvature.

1. Introduction

This paper is devoted to analyze strong maximum and comparison principles for viscosity solutions to
fully nonlinear second order equations on (finite dimensional) Riemannian manifolds (Mn, g) of the general
form

F (x,u,Du,D2u) = 0 in Ω ⊂M , (1.1)
being Ω a connected open subset and F : J2M → R proper, namely non-decreasing in the second entry
and non-increasing in the last entry. Here, J2M denotes the 2-jet bundle over M (see Section 3.1). More
precisely, we are concerned with proving the following main results:
(SMP) Any upper semicontinuous viscosity subsolution to (1.1) attaining a nonnegative interior maximum

is constant (see Theorem 4.2);
(SmP) Any lower semicontinuous viscosity supersolution to (1.1) attaining a nonpositive interior minimum

is constant (see Theorem 4.7);
and one of their consequences, namely the following tangency principle:
(SCP) Let u, v be respectively a viscosity sub- and supersolution to (1.1) such that u ≤ v in Ω and

u(x0) = v(x0) at some x0 ∈ Ω, then u ≡ v in the whole Ω (see Proposition 5.4).
The first aim of this note is to complete and extend well-known results valid in the classical Euclidean case

to the more general realm of Riemannian manifolds. Our second motivation is then to lay the groundwork
for investigating (one-side) Liouville-type results for fully nonlinear elliptic problems as (1.1) on general
Riemannian structures. This would be mainly inspired by the recent nonlinear studies in [5], which make
use of (SMP) and (SmP), and the linear Liouville properties given in [28], which are intimately connected
with the stochastic completeness of the manifold (cf [28, Sect 13.2]), see also [40, 50]. These latter properties
will be matter of a future research by the authors and we believe this note would be a starting point to
address these issues. Before stating our main results, we begin with a glimpse on the literature on maximum
principles, starting with (SMP)-(SmP) and concluding with (SCP).

The (SMP) and (SmP) for linear equations

Lu = −Tr(A(x)D2u) + b(x) · ∇u+ c(x)u = 0 in Ω ⊂ Rn

with A uniformly elliptic, b bounded and continuous and c nonnegative and bounded, dates back to E. Hopf
and it is a consequence of his Boundary Point Lemma (see e.g. [27, 46, 49]). A refinement of this procedure
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was implemented by E. Calabi for semicontinuous viscosity solutions to linear equations [22]. Instead, the
literature on quasi-linear problems in Rn, mostly modeled on p-Laplacian operators, is huge and we refer
the interested reader to [49] for a comprehensive exposition and [48, Thm 8.1] for maximum principles under
mild assumptions on the quasi-linear operator.

Let us now mention related results for fully nonlinear problems close to our model PDEs. The (SMP) and
(SmP) were found by Caffarelli and Cabré [21, Prop 4.9] as a consequence of the weak Harnack inequality.
Under lower ellipticity conditions on the nonlinear operator F , they were derived in [35] and [6], the latter
covering even many examples of quasi-linear equations. Descriptions via control theoretic and probabilistic
arguments of the propagation sets of maxima (and minima) for Hamilton-Jacobi-Bellman equations were
provided in [7, 8]. Later results for fully nonlinear uniformly elliptic equations with linear gradient growth
can be found in [32, Thm 5.1], see also [20] for other maximum principles for nonlinear elliptic operators.
Finally, recent contributions for fully nonlinear PDEs over Hörmander vector fields are given in [9]. More
recent progresses have been made on Hessian operators (mostly for truncated Laplacians), and they can be
found in [15, 16].

The literature of the corresponding equations on Riemannian manifolds is poor, although (SMP) and
(SmP) are of local nature and one does not usually expect their failure depending on the properties of the
considered manifold. For linear elliptic problems, the first result appeared in [22], see also [12, Prop 6.84] and
[44, Appx A] for weak solutions to the manifold Laplace equation. The case of nonlinear equations modeled
on the p-Laplacian perturbed by zeroth order terms has been addressed in [49, Sect 8.5]. A more general
treatment of quasi-linear equations, involving even mean-curvature operators, can be found in [13, Sect 4.2]
under the name of finite maximum principle and in [1, Thm 3.10] for PDEs perturbed by first order terms,
see also [45] and the references therein. In the context of fully nonlinear operators, the only available results
we are aware of in the context of Riemannian manifolds are those established by Harvey and Lawson [31],
that however cover the case of Hessian-type equations only.

Our approach is inspired by the landmark papers [6, 7, 8] and borrows several (viscosity) techniques from
these works. In particular, we stress that the procedure implemented here is structured in the spirit of that
used by Calabi [22] and the nonlinear one by Bardi and Da Lio [6], where solutions are meant in the weak
viscosity sense, unlike the distributional framework developed in [2, 49]. Our main result (SMP) that we
prove in Theorem 4.2 for (1.1) is based on a classical barrier-type argument for viscosity solutions and works
for those operators F that are elliptic according to the following notion

sup
α>0

F (x, 0, q,Q− α q⊗q) > 0 for any x ∈ Ω , q ∈ T ∗xM , q 6= 0 , Q ∈ Sym2(TxM)

and fulfilling a scaling condition like

F
(
x, cs, cq, cQ) ≥ η(c)F

(
x, s, q,Q) for any s ∈ [−1, 0] and c ∈ (0, 1] ,

for some function η > 0 (see Section 3.1 for detailed assumptions). In particular, we highlight that the ellip-
ticity condition reduces to the non-degeneracy property identified by Bardi and Da Lio [6] in the Euclidean
setting whenever the manifold has nonnegative sectional curvature (see Remark 4.3). In Section 3.2 and
Section 4 we list several examples to which our main Theorem 4.2 applies, among which equations driven
by Pucci’s, p-Laplace Beltrami, ∞-Laplacian and mean curvature operators, together with various singular
nonlinear operators modeled on the p- and ∞-Laplacian for which the viscosity theory on Riemannian man-
ifolds has been developed, see e.g. [37]. We will also provide a weak version of the Hopf boundary Lemma
for viscosity solutions in Theorem 4.5. Furthermore, symmetric ellipticity and scaling conditions lead to a
version of the (SmP), that is stated in Theorem 4.7 for reader’s convenience.

Let us now pass to discuss property (SCP), for which the literature is less wide. For classical solutions
to linear equations it is a straightforward byproduct of the (SMP). In the case of nonlinear problems, even
degenerate, some additional conditions on the operator are needed. Property (SCP) for smooth solutions to
quasi-linear equations can be found in [49, Thm 2.2.2] under the name of tangency principle. In the fully
nonlinear case, strong comparison principles have been addressed in [6, Rem 3] (when one of the functions
is C2 via the arguments in [35]), by Ishii-Yoshimura in [32, Thm 5.3] for second order uniformly elliptic
equations with Lipschitz growth in (u,Du), N.S. Trudinger [52] for Lipschitz continuous viscosity solutions,
Y. Giga and M. Onhuma [26] for semicontinuous solutions, see also [42, Thm 3.1] for other results on
uniformly elliptic operators and [41] for the case of mean-curvature equations, all of them in the Euclidean



MAXIMUM PRINCIPLES ON RIEMANNIAN MANIFOLDS 3

setting. More recently, strong comparison principles have been proved in [9] for degenerate Hamilton-Jacobi-
Bellman equations, covering also problems structured over Hörmander vector fields, see also [38] for tangency
principles results for fully nonlinear problems arising in conformal geometry.

In Section 5, we first set up a simple proof for Pucci’s extremal operators when one of the involved
functions is smooth (see Lemma 5.1) and then we prove (SCP) following a strategy implemented in [32]
based on a combination of the (SMP) with the weak comparison principle in [3] that yields the result in the
uniformly elliptic case. In particular, we assume F intrinsically uniformly continuous, uniformly elliptic in
the sense that

λTr(P ) ≤ F (x, s, q,Q)− F (x, s, q,Q+ P ) ≤ Λ Tr(P )

for any x ∈ M , (s, q,Q) ∈ J̃2
xM , P ∈ Sym2(TxM) with P ≥ 0 and ellipticity constants 0 < λ ≤ Λ, and

satisfying
|F (x, s1, q1,Q)− F (x, s2, q2,Q)| ≤ C

(
|s1 − s2|+ |q1 − q2|

)
for any x ∈ M and (s1, q1,Q), (s2, q2,Q) ∈ J2

xM , and prove (SCP) whenever the manifold has nonnegative
sectional curvature, see Remark 5.7 for further comments on this restriction. This latter result is contained
in Proposition 5.4 and essentially relies on proving that the difference w = u − v is a subsolution to a sort
of linearized equation, following the path of [32].

As far as the weak comparison principle is concerned, the literature is huge when F is strictly proper since
the results encompass even first order problems [4, 24]. In the more general case of Riemannian manifold,
the only available contributions we are aware of in the second order case have been obtained in [3]. In
particular, when the manifold has nonnegative sectional curvature, weak comparison principles are obtained
via the Riemannian counterpart of the Euclidean theorem on sums [24], see [3]. However, when (M , g) has
negative curvature, the weak comparison continues to hold under a further uniform continuity assumption
(see [3, cond (2b) on Cor 4.10] and Remark 5.7 below). We refer also to [39, Appx A] for further comparison
principles on Riemannian manifolds for quasi-linear problems.

Under the mere properness of the operator one needs some form of ellipticity and the minimal conditions
seem to be an open problem, see [11, 33, 35, 36] and the more recent [9, 10].

We finally mention that other kind of maximum principles (at infinity) on Riemannian manifolds can
be found in the monographs [29, 45], while Alexandroff-Bakelman-Pucci estimates together with maximum
principles for subsolutions of linear problems were obtained in [19].
Plan of the paper. Section 2 is devoted to some preliminaries on Differential Geometry. Section 3 introduces
fully nonlinear second order equations on Riemannian manifolds together with the ellipticity definitions used
throughout the paper. Section 4 comprehends the proof of the (SMP) and (SmP) with a list of prototype
examples, while Section 5 applies the results to deduce (SCP).
Acknowledgement. We thank Prof. Hitoshi Ishii for providing us with a copy of [32].

2. Preliminaries of Riemannian Geometry

Let (M , g) be a C3-Riemannian n-manifold, i.e. a connected smooth manifold M of dimension n endowed
with a symmetric (0, 2)-tensor field g ∈ C3(M , Sym2(T ∗M)) which induces at each point x ∈ M a positive
definite inner product gx on the tangent space TxM . We denote by d the exterior derivative on M and by
D the Levi-Civita covariant derivative on (M , g). We call domain any connected open subset Ω ⊂M . If the
closure Ω ⊂M is compact, we say that Ω has compact closure.

From now on, all the manifolds are assumed to be connected, all the Riemannian metrics are assumed to
be of class C3 and they are not necessarily complete.

Let Ω ⊂ M be a domain. Given a function ϕ ∈ C2(Ω,R), it holds Dϕ = dϕ. Moreover, we denote by
∇ϕ ∈ C1(Ω,TM |Ω) the gradient of ϕ, which is defined by g(∇ϕ,X) := dϕ(X) for any X ∈ C∞(Ω,TM |Ω),
and by D2ϕ ∈ C0(Ω, Sym2(T ∗M)|Ω) the Hessian of ϕ, i.e. D2ϕ := D(dϕ). From the very definition, it
follows that

D2ϕ(X,Y ) = g(DX(∇ϕ),Y ) = X(dϕ(Y ))− dϕ(DXY )

for any pair of smooth vector fields X,Y ∈ C∞(Ω,TM |Ω).
The Riemannian manifold (M , g) is in particular a separable, locally compact length space by means of

the induced Riemannian distance d : M ×M → R (see e.g. [43, Sect 2]). We will denote by B(x, r) the
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open metric ball centered at x ∈ M of radius r > 0 in M , by S(x, r) := ∂B(x, r) its boundary and by
B(x, r) := B(x, r) its closure. Notice that, by the classical Hopf-Rinow Theorem, if (M , g) is complete, then
a domain has compact closure if and only if it is bounded (see e.g. [18, Thm 2.5.28]). Moreover, for any
x ∈ M , we denote by Expx the Riemannian exponential map at x and by inj(x) the injectivity radius of
(M , g) at x.

Let xo ∈ M be a point. We denote by | · | the norm induced by g on the tangent bundle TM and by
B(0xo

, inj(xo)) ⊂ Txo
M the ball centered at the origin of the tangent space Txo

M with radius inj(xo). Then,
it is known that the restricted map

Expxo
: B(0xo , inj(xo)) ⊂ TxoM → B(xo, inj(xo)) ⊂M

is a diffeomorphism of class C2 and the function

fxo : B(xo, inj(xo))→ R , fxo(x) := 1
2d(x,xo)2 (2.2)

is of class C2 and regular, that is (∇fxo
)(x) 6= 0x for any x ∈ B(xo, inj(xo)). This follows from the Gauss

Lemma, which implies that d(x,xo) =
∣∣(Expxo

)−1(x)
∣∣ for any x ∈ B(xo, inj(xo)).

We recall that the injectivity radius x 7→ inj(x) is continuous whenever g is complete (see e.g. [51]).
Moreover, for any 0 < r < inj(xo), the ball B(xo, r) has compact closure, the sphere S(xo, r) = (fxo)−1( r

2

2 )

is an embedded (n−1)-submanifold of class C2 and, for any x ∈ S(xo, r), the gradient (∇fxo
)(x) is outward-

pointing perpendicular to the tangent space TxS(xo, r). For the sake of notation, given x, y ∈ M such that
d(x, y) < min{inj(x), inj(y)}, we denote by Lxy : TxM → TyM the parallel transport along the unique
minimizing geodesic from x to y.

Let now xo ∈ M and 0 < r < inj(xo). We recall that the ball B(xo, r) is said to be strongly geodesically
convex if, for any ball B(y, r′) ⊂ B(xo, r), any two points in B(y, r′) are joined by a unique minimizing
geodesic which is entirely contained in B(y, r′). In this case, it holds that (D2fxo

)(x) > 0 for any x ∈ B(xo, r).
The value

R(xo) := sup
{

0 < r < inj(xo) : B(xo, r) is strongly geodesically convex
}

(2.3)
is called convexity radius of (M , g) at xo. We recall that the function x 7→ R(x) is positive and, from the
very definition, it is also 1-Lipschitz (see e.g. [53]). More precisely:
· if there exists x̃ ∈M such that R(x̃) = +∞, then R(x) = +∞ for any x ∈M ;
· if there exists x̃ ∈M such that R(x̃) < +∞, then R(x) <∞ for any x ∈M and

|R(x)−R(y)| ≤ d(x, y) for any x, y ∈M .

Notice that in the Euclidean case, i.e. when (M , g) = (Rn, gflat), for any xo ∈ Rn it holds that

R(xo) = inj(xo) = +∞ , fxo(x) = 1
2 |x− xo|2 , (∇fxo)(x) = x− xo , (D2fxo)(x) = IdRn

and any parallel transport Lxy : Rn ' TxRn → TyRn ' Rn coincides with the identity map.

3. Fully nonlinear PDEs on Riemannian manifolds

3.1. Notation.
Let (M , g) be a Riemannian manifold and Ω ⊂ M a domain. We denote by J2M → M the 2-jet bundle

on M , which splits as
J2M = (M × R)⊕M T ∗M ⊕M Sym2(T ∗M)

by means of the Riemannian metric g. For any function ϕ ∈ C2(Ω,R), its 2-jet at x is given by(
j2ϕ
)
(x) :=

(
ϕ(x),Dϕ(x),D2ϕ(x)

)
∈ J2

xM , J2
xM = R⊕ T ∗xM ⊕ Sym2(T ∗xM) .

We define the subbundle J̃2M ⊂ J2M by setting

J̃2M :=
⊔
x∈M

J̃2
xM , J̃2

xM :=
{

(s, q,Q) ∈ J2
x(M) : q 6= 0

}
.

Let us consider a function F : J̃2(M)→ R, which is assumed to satisfy the following fundamental condition:
(p.) F is proper, i.e. F (x, r, q,P ) ≤ F (x, s, q,Q) whenever r ≤ s and Q ≤ P .
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For the sake of shortness, for any function ϕ ∈ C2(Ω,R) we define

F [ϕ](x) := F
(
x,
(
j2ϕ
)
(x)
)

= F (x,ϕ(x),Dϕ(x),D2ϕ(x)) for any x ∈ Ω such that Dϕ(x) 6= 0 .

Moreover, we set
USC(Ω) := { upper semicontinuous functions u : Ω→ [−∞, +∞) } ,

LSC(Ω) := { lower semicontinuous functions v : Ω→ (−∞, +∞] }

and we define USC(Ω), LSC(Ω) similarly. Then, we recall the definitions of viscosity sub- and supersolution
of the equation

F [u](x) = F (x,u(x),Du(x),D2u(x)) = 0 on Ω . (3.4)

Definition 3.1. A function u ∈ USC(Ω) (resp. v ∈ LSC(Ω)) is a viscosity subsolution (resp. viscosity super-
solution) to (3.4) if, for any function ϕ ∈ C2(Ω,R) and x ∈ Ω local maximum of u−ϕ (resp. local minimum
of v − ϕ) with Dϕ(x) 6= 0, it holds F (x,u(x),Dϕ(x),D2ϕ(x)) ≤ 0 (resp. F (x, v(x),Dϕ(x),D2ϕ(x)) ≥ 0).
A continuous function u : Ω → R is a viscosity solution to (3.4) if it is both a viscosity subsolution and a
viscosity supersolution.

Remark 3.2. Notice that, since we allow F to be singular at q = 0, this definition is slightly weaker than
the one in [24, Sect 2]. Other refined notions of viscosity inequalities via the envelopes has appeared when
dealing with singular equations (we refer e.g. to [25, Def 2.3.1], [37] and references therein). However, we
stress that if F is continuous and u : Ω→ R is of class C2 with Du 6= 0, then u is a viscosity subsolution (resp.
viscosity supersolution) to F [u] = 0 if and only if it is a classical subsolution (resp. classical supersolution)
to F [u] = 0.

We introduce now two notions of ellipticity which will be of central importance in this work (see also [6,
Sec 1]). These are:
(l.p.e.) F is lower partially elliptic if for any xo ∈M there exists a function αxo

: B(xo,R(xo))→ [0, +∞)
such that

F
(
x, 0, (Dfxo)(x), (D2fxo)(x)−α (Dfxo)(x)⊗(Dfxo)(x)

)
> 0

for any x ∈ B(xo,R(xo)) and α > αxo
(x);

(u.p.e.) F is upper partially elliptic if for any xo ∈M there exists a function αxo
: B(xo,R(xo))→ [0, +∞)

such that
F
(
x, 0, (Dfxo)(x),α (Dfxo)(x)⊗(Dfxo)(x)−(D2fxo)(x)

)
< 0

for any x ∈ B(xo,R(xo)) and α > αxo
(x);

Here, notice that R(xo) and fxo
have been defined in (2.3) and (2.2), respectively. For the sake of shortness,

we say that F is partially elliptic if it is both lower and upper partially elliptic. Furthermore, we recall that
F is uniformly elliptic if there exist two constants 0 < λ ≤ Λ such that

λTr(P ) ≤ F (x, s, q,Q)− F (x, s, q,Q+ P ) ≤ Λ Tr(P )

for any x ∈M , (s, q,Q) ∈ J̃2
xM , P ∈ Sym2(TxM) with P ≥ 0. Notice that uniform ellipticity implies partial

ellipticity (see Lemma 3.4), but the converse assertions do not hold true.
We also introduce two scaling properties which will play a role (see again [6, Sec 1]). These are:

(l.s.p.) F has the lower scaling property if for any xo ∈M there exist two functions ηxo : (0, 1]→ (0, +∞)
and αxo

: B(xo,R(xo))→ [0, +∞) such that

F
(
x, cs, c(Dfxo

)(x),c
(
(D2fxo

)(x)−α (Dfxo
)(x)⊗(Dfxo

)(x)
))
≥

ηxo(c)F
(
x, s, (Dfxo)(x), (D2fxo)(x)−α (Dfxo)(x)⊗(Dfxo)(x)

)
for any c ∈ (0, 1], s ∈ [−1, 0], x ∈ B(xo,R(xo)) and α > αxo

(x);
(u.s.p.) F has the upper scaling property if for any xo ∈M there exist two functions ηxo

: (0, 1]→ (0, +∞)
and αxo

: B(xo,R(xo))→ [0, +∞) such that

F
(
x, cs, c(Dfxo

)(x),c
(
α (Dfxo

)(x)⊗(Dfxo
)(x)−(D2fxo

)(x)
))
≤

ηxo
(c)F

(
x, s, (Dfxo

)(x),α (Dfxo
)(x)⊗(Dfxo

)(x)−(D2fxo
)(x)

)
for any c ∈ (0, 1], s ∈ [0, 1], x ∈ B(xo,R(xo)) and α > αxo

(x).
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Finally, we recall that F is said to be positively h-homogeneous, with h ∈ R, if

F (x, cs, cq, cQ) = chF (x, s, q,Q)

for any c > 0, x ∈ M , (s, q,Q) ∈ J̃2
xM . Clearly, positive h-homogeneity implies both the lower and the

upper scaling properties, but the converse assertions do not hold true.

3.2. Universal Riemannian operators.
We recall here the construction of a distinguished kind of PDE’s on Riemannian manifolds. More specifi-

cally, these have constant coefficients and are obtained from some Euclidean operators via the action of the
orthogonal group O(n) (see [30, Sect 5]).

Let (M , g) be a Riemannian manifold. Consider a function

F : R×
(
Rn\{0}

)
×Sym(n)→ R

and assume that it is invariant under the standard left action of the orthogonal group O(n), i.e.

F(s, v,A) = F(s, a.v, a.A.aT ) for any a ∈ O(n) .

Then, one can construct an associated operator F : J̃2M → R in the following way. Firstly, for any x ∈ M
and for any orthonormal frame e = (e1, . . ., en) for TxM , we consider the linear isomorphism

Φ(x,e) : J2
xM → R⊕ Rn ⊕ Sym(n) , Φ(x,e)(s, q,Q) := (s, Φ1

(x,e)(q), Φ2
(x,e)(Q))

defined by
Φ1

(x,e)(q) :=
(
q(e1), . . ., q(en)

)T
, Φ2

(x,e)(Q) :=
(
Q(ej , e`)δ

`i
)1≤i≤n

1≤j≤n .

Then, we define
F : J̃2M → R , F(x, s, q,Q) := F

(
(Φ(x,e))(s, q,Q)

)
,

where e = (e1, . . ., en) is any orthonormal frame for the tangent space TxM . Then, by means of the O(n)-
invariance of F, one can easily prove that F is well defined. The function F is called universal Riemannian
operator associated to F. It is straightforward to check that the following statements hold true:
i) F is proper / continuous / uniformly elliptic / positively h-homogeneous if and only if F is too;
ii) F is lower partially elliptic if

sup
α>0

F(0, v,A− α v⊗vT ) > 0 for any v ∈ Rn\{0}, A ∈ Sym(n) ;

ii’) F is upper partially elliptic if

inf
α>0

F(0, v,α v⊗vT −A) < 0 for any v ∈ Rn\{0}, A ∈ Sym(n) ;

iii) F has the lower scaling property if there exists a function η : (0, 1]→ (0, +∞) such that

F(cs, cv, cA) ≥ η(c)F(s, v,A) for any c ∈ (0, 1], s ∈ [−1, 0], v ∈ Rn \ {0}, A ∈ Sym(n) ;

iii’) F has the upper scaling property if there exists a function η : (0, 1]→ (0, +∞) such that

F(cs, cv, cA) ≤ η(c)F(s, v,A) for any c ∈ (0, 1], s ∈ [0, 1], v ∈ Rn \ {0}, A ∈ Sym(n) ;

The most famous example of universal Riemannian operator is the Laplace-Beltrami operator, which is
associated to the Euclidean operator

F
LB

: Sym(n)→ R , F
LB

(A) := − Tr(A) .

It is proper, positively 1-homogeneous, Lipschitz continuous and uniformly elliptic with ellipticity constants
λ = Λ = 1.

Remark 3.3. Another well known example is the Monge-Ampère operator, which is associated to

FMA : Sym(n)→ R , FMA(A) = det(A) .

However, being the determinant not partially elliptic, it does not fall into the treatment of our analysis.

We are going to list below some other examples of universal Riemannian operators. From now on, for any
A ∈ Sym(n), we will denote by µ1(A) ≤ . . . ≤ µn(A) its ordered eigenvalues.
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Extremal Pucci operators.
Fix two constants 0 < λ ≤ Λ and consider the set Bλ,Λ :=

{
B ∈ Sym(n) : λI ≤ B ≤ ΛI

}
. Then, we

define the functions

M+
λ,Λ : Sym(n)→ R , M+

λ,Λ(A) := sup
B∈Bλ,Λ

(
−Tr(B.A)

)
= −λ

∑
µi(A)>0

µi(A)− Λ
∑

µi(A)<0

µi(A) ,

M−λ,Λ : Sym(n)→ R , M−λ,Λ(A) := inf
B∈Bλ,Λ

(
−Tr(B.A)

)
= −Λ

∑
µi(A)>0

µi(A)− λ
∑

µi(A)<0

µi(A) .

The associated universal Riemannian operators M±λ,Λ are the so called extremal Pucci’s operators, which are
the prototype Hamilton-Jacobi-Bellman operators and, perhaps, the simplest example of Isaacs operators.
They are proper, positively 1-homogeneous, Lipschitz continuous and uniformly elliptic with ellipticity con-
stants 0 < λ ≤ Λ. Moreover, it is well known that the uniform ellipticity can be characterized by means of
the extremal operators M±λ,Λ via

M−λ,Λ(x,Q) ≤ F (x, s, q,Q)− F (x, s, q, 0) ≤M+
λ,Λ(x,Q) . (3.5)

(see e.g. [21, Lemma 2.2]). Furthermore, by [21, Lemma 2.10]

M−λ,Λ(A− α v⊗vT ) ≥M−λ,Λ(A) + αλ|v|2 , (3.6)

we get the following

Lemma 3.4. Let F : J̃2M → R be a proper operator. If F is uniformly elliptic, then it is partially elliptic.

Proof. Assume that F is uniformly elliptic with ellipticity constants 0 < λ ≤ Λ and fix xo ∈ M . Then, for
any x ∈ B(xo,R(xo)), since (∇fxo

)(x) 6= 0x, by (3.5) and (3.6) we get

F
(
x, 0, (Dfxo)(x), (D2fxo)(x)−α (Dfxo)(x)⊗(Dfxo)(x)

)
≥ F

(
x, 0, (Dfxo

)(x), 0
)

+ M−λ,Λ

(
x, (D2fxo

)(x)−α (Dfxo
)(x)⊗(Dfxo

)(x)
)

≥ F
(
x, 0, (Dfxo

)(x), 0
)

+ M−λ,Λ

(
x, (D2fxo

)(x)
)

+ αλ
∣∣(∇fxo

)(x)
∣∣2

and therefore F is lower partially elliptic by taking α large enough. On the other hand, the operator

F− : J̃2M → R , F−(x, s, q,Q) := − F (x,−s,−q,−Q)

is uniformly elliptic as well. Hence, by means of our previous computation, we obtain that F− is lower
partially elliptic, which is equivalent to say that F is upper partially elliptic. �

Pucci’s operators from [47].
Fix a constant 0 < α ≤ 1

n and consider the set B̃α :=
{
B ∈ Sym(n) : B ≥ αIn , Tr(B) = 1

}
. Then, we

define the functions

P+
α : Sym(n)→ R , P+

α (A) := sup
B∈B̃α

(
−Tr(B.A)

)
= −αTr(A)− (1− nα)µ1(A) ,

P−α : Sym(n)→ R , P−α (A) := inf
B∈B̃α

(
−Tr(B.A)

)
= −αTr(A)− (1− nα)µn(A) .

We call the associated universal Riemannian operators P±α original Pucci’s operators, as they were firstly
introduced in the Euclidean case by Pucci in [47]. They are proper, positively 1-homogeneous, Lipschitz
continuous and uniformly elliptic with ellipticity constants 0 < α ≤ 1 − (n − 1)α, but do not allow to
characterize uniform ellipticity of fully nonlinear operators as their extremal counterpart M±λ,Λ. Then, by
means of (3.5), they are related with M±λ,Λ via

M−α,1−(n−1)α(x,Q) ≤ P−α (x,Q) ≤ P+
α (x,Q) ≤M+

α,1−(n−1)α(x,Q) .
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p-Laplacian operator.
Let 1 < p <∞ and consider the function

Fp :
(
Rn\{0}

)
× Sym(n)→ R , Fp(v,A) := − |v|p−2

(
Tr(A) + (p− 2)|v|−2vT .A.v

)
.

The associated universal Riemannian operator Fp is the so called p-Laplacian, which normally appears in
divergence form as

Fp[u] = −div
(
|∇u|p−2∇u

)
.

It is proper, continuous and positively (p−1)-homogeneous. Moreover, for any v 6= 0 we have

Fp(v, cA) = cFp(v,A) for any c ∈ R ,

Fp(v,A− α v⊗vT ) = Fp(v,A) + α(p− 1)|v|p

and so Fp is partially elliptic, even though it is not uniformly elliptic.
We conclude by saying that the 1-homogeneous version of the p-Laplacian Fp, called game-theoretic p-

Laplacian, that is the operator FGp associated to

FGp (v,A) := |v|2−p Fp(v,A) = −Tr(A)− (p− 2)|v|−2vT .A.v .

is proper, continuous and positively 1-homogeneous. Moreover, it is easy to check that it is partially elliptic
via condition (ii) in Section 3.1.

∞-Laplacian operator.
Consider the function

F∞ : Rn⊕Sym(n)→ R , F∞(v,A) := − vT .A.v .

The associated universal Riemannian operators F∞ is the so called∞-Laplacian, which is proper, continuous
and positively 3-homogeneous. Since

F∞(v, cA) = cF∞(v,A) for any c ∈ R ,

F∞(v,A− α v⊗vT ) = F∞(v,A) + α|v|4 ,

we conclude that F∞ is partially elliptic. Similarly, the positively h-homogeneous version Fh∞ of the ∞-
Laplacian, which is the operator associated to

Fh∞(v,A) := |v|h−3F∞(v,A) = −|v|h−3vT .A.v ,

is proper, continuous and it is easy to check that it is partially elliptic.

Mean curvature operator.
Consider the function

Fmc : Rn⊕Sym(n)→ R , Fmc(v,A) := (1 + |v|2)−
3
2

(
− (1 + |v|2) Tr(A) + vT .A.v

)
.

The associated universal Riemannian operator Fmc is the so called mean curvature operator, which can be
written in divergence form as

Fmc[u] = −div

(
∇u√

1 + |∇u|2

)
.

It is proper and continuous. Moreover, since

Fmc(v, cA) = cFmc(v,A) for any c ∈ R ,

Fmc(v,A− α v⊗vT ) = Fmc(v,A) + α|v|2(1 + |v|2)−
3
2 ,

it follows that Fmc is partially elliptic.
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4. The Strong Maximum Principle

Let (M , g) be a Riemannian manifold. Firstly, we are going to prove a technical result which asserts the
propagation of maxima on small balls for subsolutions to lower partially elliptic operators on (M , g). Namely

Proposition 4.1. Let F : J̃2M → R be a proper, lower semicontinuous operator which is lower partially
elliptic (l.p.e.) and has the lower scaling property (l.s.p.). Let Ω ⊂ M be a domain and u ∈ USC(Ω) a
viscosity subsolution to F [u] = 0 on Ω which attains a nonnegative maximum at some point xo ∈ Ω. Then,
for any radius 0 < r < 1

2 min
{
R(xo), d(xo, ∂Ω)

}
and for any point y ∈ S(xo, r), the ball B(y, r) contains a

point x̃ = x̃(y, r) with u(x̃) = u(xo).

Proof. Assume by contradiction that there exist a (finite) radius 0 < ro < 1
2 min

{
R(xo), d(xo, ∂Ω)

}
and

a point yo ∈ S(xo, ro) such that u(x) < u(xo) for any x ∈ B(yo, ro). Let α > 0 to be determined,
fyo(x) = 1

2d(x, yo)2 as in (2.2) and consider the function

h : B(yo,R(yo))→ R , h(x) := − exp
(
−αfyo(x)

)
+ exp

(
−α r

2
o

2

)
.

Notice that, since x 7→ R(x) is 1-Lipschitz, it follows that ro < R(yo). Indeed (see Section 2):
· if R(xo) = +∞, then R(yo) = +∞ as well,
· if R(xo) < +∞, then R(yo) < +∞ and R(yo) ≥ R(xo)− ro >

1
2R(xo) > ro.

Moreover, from the very definition, it comes that h(x) = 0 for any x ∈ S(yo, ro) and −1 < h(x) < 0 for any
x ∈ B(yo, ro). Letting c := α exp

(
−α r

2
o

2

)
> 0, we get

h(xo) = 0 , (Dh)(xo) = c (Dfyo
)(xo) , (D2h)(xo) = c

(
(D2fyo

)(xo)− α(Dfyo
)(xo)⊗(Dfyo

)(xo)
)

.

Hence, by the lower partial ellipticity and the lower scaling property, if we choose α > 0 big enough, we get
0 < c < 1 and

F
(
xo,h(xo), (Dh)(xo), (D2h)(xo)

)
≥

≥ ηyo(c)F
(
xo, 0, (Dfyo)(xo), (D2fyo)(xo)− α(Dfyo)(xo)⊗(Dfyo)(xo)

)
> 0 . (4.7)

By the lower semicontinuity of F , there exist two constants 0 < r < min{ro,R(yo)−ro

}
and C > 0 such that

F [h](x) ≥ C for any x ∈ U := B(xo, r)∩B(yo, ro). By the lower scaling property, the function εh is a strict
supersolution of F [u] = 0 on U for any 0 < ε < 1. Assume also that u(x)− u(xo) ≤ 0 for any x ∈ B(xo, r)
and recall that u(x)− u(xo) < 0 for any x ∈ B(yo, ro). Then, since h(x) < 0 for any x ∈ ∂U ∩B(yo, ro) and
h(x) = 0 for any x ∈ ∂U ∩ S(yo, ro), we can choose 0 < εo < 1 in such a way that u(x)− u(xo) ≤ εoh(x) for
any x ∈ ∂U . Let us define then

ψ : B(xo, r)→ R , ψ(x) := u(x)−
(
u(xo) + εoh(x)

)
.

We claim that ψ(x) ≤ 0 for any x ∈ U ⊂ B(xo, r). In fact, assuming by contradiction that maxx∈U ψ(x) > 0,
then there exists x′ ∈ U such that ψ(x′) = maxx∈U ψ(x) > 0. But then, since u(xo) + εoh is of class C2,
Dh(x′) 6= 0 and u(xo) ≥ 0, owing also to the fact that F is proper, we get

F (x′, εh(x′), εDh(x′), εD2h(x′)) ≤ F (x′,u(x′), εDh(x′), εD2h(x′)) ≤ 0,

which contradicts our previous claim. By construction, this implies that ψ ≤ 0 in B(xo, r). Since ψ(xo) = 0,
again this implies that

F (xo, εh(xo), εDh(xo), εD2h(xo)) ≤ F (xo,u(xo), εDh(xo), εD2h(xo)) ≤ 0 ,

a contradiction with (4.7). �

As a direct corollary, we obtain the following version of the Strong Maximum Principle (SMP for short).

Theorem 4.2 (Strong Maximum Principle). Let F : J̃2M → R be a proper, lower semicontinuous operator
which is lower partially elliptic and has the lower scaling property. Let Ω ⊂M be a domain and u ∈ USC(Ω)
a viscosity subsolution to F [u] = 0 on Ω. If u achieves a nonnegative maximum in Ω, then u is constant.
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Proof. Let x̃ ∈ Ω be a maximum point for u in Ω and set L := u(x̃) > 0, K := {x ∈ Ω : u(x) = L}. Assume
by contradiction that K ( Ω. Since u is upper semicontinuous and x̃ is a maximum point, it follows that
K = {x ∈ Ω : u(x) ≥ L} and so it is closed in Ω. Then, by classical arguments (see e.g. [27]) we can find a
point yo ∈ Ω \K such that d(yo, ∂Ω) > d(yo, ∂K) = r. This means that there exists xo ∈ S(yo, r) such that
u(xo) = L, while u(x) < L for any x ∈ B(yo, r). However, this is in contradiction with Proposition 4.1. �

Remark 4.3. If the Riemannian manifold (M , g) has nonnegative sectional curvature, then one can replace
the condition (l.p.e.) in Theorem 4.2 with
(l.p.e.’) there exists a function αo : M → [0, +∞) such that

F (x, 0, q, gx − α q⊗q) > 0 for any x ∈M , q ∈ T ∗xM \ {0}, α > αo(x) .

Indeed, under the hypothesis of nonnegative sectional curvature, by the Rauch Comparison Theorem it
follows that (D2fxo

)(x) ≤ gx for any xo ∈M and x ∈ B(xo, inj(xo)) (see e.g. [19, Lemma 3.1]). This is the
same non-totally degeneracy condition in Bardi-Da Lio [6] found in the Euclidean case.

Counterexample 4.4. (From [9, Example 3.17] and [35]) Assume that (M , g) has nonnegative sectional
curvature and fix a point xo ∈M . Let us consider the nonlinear PDE

− ∆u

1 + |∆u|
+ f(x) = 0 ,

where f : M → R is defined by setting f(xo) := −1 and f(x) := 0 for any x ∈M \{xo}. It is straightforward
to check that this operator is proper, but the scaling condition and (l.p.e.’) fail at xo. In fact, the SMP is
violated by the viscosity subsolution

u : M → R , u(x) =

{
0 if x 6= xo

1 if x = xo

.

We stress now that part of the proof of Proposition 4.1 can be adapted to prove a viscosity version of
the Hopf boundary Lemma (see [23, Appx E] and [27, Lemma 3.4] for the corresponding statements in the
linear case). Before doing that, we recall that:
(i.b.c.) a domain Ω ⊂ M satisfies the interior ball condition at a boundary point xo ∈ ∂Ω if there exist

y ∈ Ω and 0 < r < R(y) such that B(y, r) ⊂ Ω and S(y, r) ∩ ∂Ω = {xo}.
Under such hypothesis, for any point x ∈ B(y, r) there exists a unique unit speed minimizing geodesic
γx : [−δx, 0)→ B(y, r) such that γx(−δx) = x and γx(0) := limt→0− γx(t) = xo.

Theorem 4.5 (Hopf boundary Lemma). Let F : J̃2M → R be a proper, lower semicontinuous operator
which is lower partially elliptic and has the lower scaling property. Let Ω ⊂M be a domain and u ∈ USC(Ω)
a subsolution to F [u] = 0 on Ω. Assume that Ω satisfies the interior ball condition at some boundary point
xo ∈ ∂Ω and set u(xo) := limr→0+ sup{u(x) : x ∈ Ω ∩ B(xo, r)}. If 0 ≤ u(xo) < +∞ and u < u(xo) in Ω,
then for any interior ball B(y, r) ⊂ Ω as in (i.b.c.) it holds

lim inf
t→0+

(u ◦ γx)(0)− (u ◦ γx)(−t)
t

> 0 for any x ∈ B(yo, ro) , (4.8)

where γx is the unique geodesic as above.

Proof. Let B(y, r) ⊂ Ω be as in (i.b.c.). Let also α > 0, fy(x) = 1
2d(x, y)2 as in (2.2) and consider the

function
h : B(y,R(y))→ R , h(x) := − exp

(
−αfy(x)

)
+ exp

(
−α r

2

2

)
.

By repeating the same argument as in the proof of Proposition 4.1, one can choose α > 0 big enough,
0 < r̃ < R(y)− r small enough and 0 < ε < 1 small enough such that u(x) ≤ u(xo) + εh(x) for any x ∈ U ,
with U := B(xo, r̃) ∩B(y, r). Then, setting c := α exp

(
−α r

2

2

)
we get

lim inf
t→0+

(u ◦ γx)(0)− (u ◦ γx)(−t)
t

≥ ε dh(xo)(γ̇x(0)) = ε c gxo

(
(∇fy)(xo), γ̇x(0)

)
> 0

which concludes the proof. �
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Remark 4.6. In the hypotheses of Theorem 4.5, if u ∈ C1(Ω̄), then (4.8) reads as

du(xo)(v) > 0 for any v ∈ Txo
M such that gxo

(
(∇fy)(xo), v

)
> 0 ,

which is the classical statement of the Hopf Boundary Lemma (see [27, Lemma 3.4] and [23, Appx E]).

Finally, we remark that Theorem 4.2 can be used to derive a version of the Strong Minimum Principle
(SmP for short). Indeed

Theorem 4.7 (Strong Minimum Principle). Let F : J̃2M → R be a proper, upper semicontinuous operator
which is upper partially elliptic (u.p.e.) and has the upper scaling property (u.s.p.). Let Ω ⊂M be a domain
and v ∈ LSC(Ω) a viscosity supersolution to F [u] = 0 on Ω. If v achieves a nonpositive minimum in Ω, then
v is constant.

Proof. Given such a F : J̃2M → R, it is straightforward to realize that the operator

F− : J̃2M → R , F−(x, s, q,Q) := − F (x,−s,−q,−Q)

verifies all the hypothesis of Theorem 4.2. Hence, we get the thesis. �

Remark 4.8. The proof of Proposition 4.1, Theorem 4.2 and Theorem 4.7 remain untouched if we replace
the conditions (l.s.p.) and (u.s.p.), respectively, with the following:

(l.s.p.’) there exists F̂ satisfying (l.s.p.) and, for any xo ∈ M , a third function η̂xo : (0, 1) → R such that
limc→0+ η̂xo(c) = 0 and

F
(
x, cs,c(Dfxo

)(x), c
(
(D2fxo

)(x)−α (Dfxo
)(x)⊗(Dfxo

)(x)
))
≥

F̂
(
x, cs, c(Dfxo)(x), c

(
(D2fxo)(x)−α (Dfxo)(x)⊗(Dfxo)(x)

))
+ ηxo(c)η̂xo(c)

for any c ∈ (0, 1], s ∈ [−1, 0] and x ∈ B(xo,R(xo));

(u.s.p.’) there exists F̂ satisfying (u.s.p.) and, for any xo ∈ M , a third function η̂xo
: (0, 1) → R such that

limc→0+ η̂xo
(c) = 0 and

F
(
x, cs,c(Dfxo)(x), c

(
(D2fxo)(x)−α (Dfxo)(x)⊗(Dfxo)(x)

))
≤

F̂
(
x, cs, c(Dfxo

)(x), c
(
(D2fxo

)(x)−α (Dfxo
)(x)⊗(Dfxo

)(x)
))

+ ηxo
(c)η̂xo

(c)

for any c ∈ (0, 1], s ∈ [0, 1] and x ∈ B(xo,R(xo)).

We are going to list below some examples that fulfill the hypotheses of our SMP and SmP.

Example 4.9. All the universal Riemannian operators listed in Section 3.2, with the only one exception of
the mean curvature operator, satisfy all the hypotheses of Theorem 4.2 and Theorem 4.7. Hence, both the
SMP and the SmP are satisfied.

Actually, we can cover more general universal Riemannian operators, e.g. we can consider

F : Rn ⊕ Sym(n)→ R , F(v,A) := |v|βM±λ,Λ(A) with β > 1 .

Then, the operator F associated to F, which has been studied in [14], is proper and positively (β + 1)-
homogeneous. Moreover, by [21, Lemma 2.10] we get

F(v,A− α v⊗vT ) ≥ |v|βM−λ,Λ(A) + αλ|v|2+β ,

F(v,α v⊗vT −A) ≤ −|v|βM−λ,Λ(A)− αλ|v|2+β

and thus it is partially elliptic. Hence, both the SMP and the SmP hold true. This would extend [14,
Proposition 2.15] to Riemannian manifolds.

Remark 4.10. To the best of our knowledge, this is the first SMP for viscosity solutions of the p-Laplace
equation on Riemannian manifolds. Recently, some results have been established in [13] for C1 distributional
solutions of equations driven by the p-Laplacian on Riemannian manifolds. However, while in the Euclidean
case weak (distributional) and viscosity solutions agree (see [34]), we are not aware of a similar result in the
more general setting of Riemannian manifolds.
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Example 4.11. We stress that neither (l.s.p.) nor (u.s.p.) hold true for the mean curvature operator Fmc,
but still it fulfills both (l.s.p.’), (u.s.p.’) and so one can obtain the SMP and the SmP in virtue of Remark
4.8 (see also [6, Sec 3]). The same is true for the capillary surface equation

nH u(1 + |∇u|2)
3
2 − (1 + |∇u|2)∆u+D2u(∇u,∇u) = 0 , with H ∈ R . (4.9)

Let us notice that the SMP for the mean curvature equation on Riemannian manifolds have been established
recently in [13], while that for the capillary equation appears to be new.

Example 4.12. Let F be one a positively h-homogeneous universal Riemannian operator, with h ∈ R. Let
a, c : M → R be two continuous functions such that c(x) ≥ 0, a(x) > 0 for any x ∈M . Pick a number k > 0
and assume that either c ≡ 0, or k ≥ h. Then, the operator

F (x, s, q,Q) := a(x)F(x, q,Q) + c(x)|s|k−1s

verifies both the SMP and the SmP. We stress that the capillarity equation (4.9) is of this form with F = Fmc,
k = 1, a ≡ 1 and c ≡ nH.

Example 4.13. Let F be a Hessian operator, that is a universal Riemannian operator associated to an
Euclidean operator F : Sym(n) → R. Assume that F is continuous, uniformly elliptic and positively 1-
homogeneous. Let also b ∈ C0(M ,TM) a continuous and bounded vector field on M . Then, the operators
analyzed in [37] of the general form

F [u] := |∇u|p−2
(
F[u] + g(∇u, b)

)
verify both the SMP and the SmP.

5. An application: the Strong Comparison Principle

Let (M , g) be a Riemannian manifold. In this section, we are going to establish some consequences of the
Strong Maximum Principle.

In the case of linear equations, being the difference of two solutions a solution as well, it turns out that
the (SCP) is equivalent to the (SMP). In the nonlinear case, it is worth observing that the (SCP) implies
the (SMP) whenever a constant solves the equation. However, the converse may not hold. In order to have
a guideline for the general case, we begin with the following

Lemma 5.1. Let Ω ⊂ M be a domain, xo ∈ Ω a point and 0 < λ ≤ Λ two constants. Consider a viscosity
subsolution u ∈ USC(Ω) and a classical supersolution v ∈ C2(Ω,R) of M−λ,Λ[u] = 0 on Ω satisfying u ≤ v.
Then, either u(x) < v(x) for any x ∈ Ω or u ≡ v.

Proof. It is sufficient to prove that w := u− v is a subsolution of M−λ,Λ[u] = 0 on Ω and then the conclusion
follows by Theorem 4.2. Indeed, since w ≤ 0 by assumptions, if there exists xo ∈ Ω such that w(xo) = 0,
then the SMP would imply w = 0 on the whole Ω.

Let us prove now that w is a subsolution to M−λ,Λ[u] = 0 following [21, Lemma 2.12]. Let ψ ∈ C2(Ω,R)

be such that w−ψ ≤ 0 around xo and w(xo) = ψ(xo). Since u is a viscosity subsolution, we get

M−λ,Λ[ψ + v](xo) ≤ 0 .

Moreover, being M−λ,Λ sub-additive (see e.g. [21, Lemma 2.10]), it holds that

M−λ,Λ[ψ](xo) + M−λ,Λ[v](xo) ≤ 0 .

Since M−λ,Λ[v](xo) ≥ 0 in classical sense by hypothesis, we conclude that M−λ,Λ[ψ](xo) ≤ 0 as desired. �

Remark 5.2. Let us point out that the proof of Lemma 5.1 still holds true for any continuous, uniformly
elliptic operator F : J2M → R which is sub-additive, i.e. satisfying F [ϕ1−ϕ2] ≤ F [ϕ1]−F [ϕ2] for any pair
of C2 functions ϕ1,ϕ2. Examples of such operators are the Pucci’s extremal operators and, more in general,
the Hamilton-Jacobi-Bellman operators (see [5]).
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Let us stress now that handling viscosity solutions requires more care and the use of the strong and weak
maximum principles, as in [32, 9]. Indeed, the fact that w = u − v is a viscosity subsolution to the initial
equation is not straightforward in general (see e.g. [21, Thm 5.3] for the uniformly elliptic case). Below, we
prove the (SCP) by combining the SMP in Theorem 4.2 and the weak comparison principle in [3, Cor 4.8]
following the same lines of [32, Thm 5.3 and Prop 5.5].

Before doing that, given a proper and continuous operator F : J2M → R, we recall the following two
properties:
(i.u.c.) F is intrinsically uniformly continuous with respect to x if there exists a modulus of continuity ω

such that ∣∣F (y, s, q,Q)− F (x, s,L∗xyq,L
∗
xyQ)

∣∣ ≤ ω(d(x, y)
)

(5.10)
for any x, y ∈M with d(x, y) < min{inj(x), inj(y)} and (s, q,Q) ∈ J2

yM ;
(u.l.p.) F satisfies the uniform Lipschitz condition if there exists C > 0 such that

|F (x, s1, q1,Q)− F (x, s2, q2,Q)| ≤ C
(
|s1 − s2|+ |q1 − q2|

)
for any x ∈M and (s1, q1,Q), (s2, q2,Q) ∈ J2

xM .

Remark 5.3. Any universal Riemannian operator F verifies (5.10) with ω = 0. Indeed, the O(n)-invariance
implies that the corresponding Euclidean operator is of the form F(s, v,A) = f(s, |v|, eigenvalues of A).
Then, since |L∗xyq| = |q| and Q,L∗xyQ have the same eigenvalues, condition (i.u.c.) is fulfilled.

Then, the result reads as follows.

Proposition 5.4. Assume that (M , g) has non-negative sectional curvature and let Ω ⊂ M be a domain.
Let F : J2M → R be a continuous operator which is uniformly elliptic and satisfying both (i.u.c.), (u.l.p.).
Consider a viscosity subsolution u ∈ USC(Ω) and a viscosity supersolution v ∈ LSC(Ω) of F [u] = 0 on Ω
satisfying u ≤ v. Then, either u(x) < v(x) for any x ∈ Ω or u ≡ v.

Before going ahead with the proof of Proposition 5.4, we introduce the linearized operator

∆F : J2M → R , ∆F (x, s, q,Q) := inf
{
F (x, s+ s̃, q + q̃,Q+ Q̃)− F (x, s, q,Q) : (s̃, q̃, Q̃) ∈ J2

xM
}

and its lower semicontinuous envelope (∆F )∗, which is defined by

(∆F )∗(x, s, q,Q) := lim
r→0+

(
inf
{

∆F (y, s′, q′,Q′) : d(x, y) + |s− s′|+ |q − L∗xyq′|+ |Q− L∗xyQ′| < r
})

.

Then, we will need the following

Lemma 5.5. Assume the same hypothesis of Proposition 5.4 and set w := u − v. Then, w is a viscosity
subsolution of (∆F )∗[u] = 0.

Notice that Lemma 5.5 can be obtained by following the proof of [32, Prop 5.5], which is stated in the
Euclidean case (M , g) = (Rn, gflat). However, for convenience of the reader, we provide a proof of this result
by following the authors’ original approach.

Proof of Lemma 5.5. Arguing by contradiction, we assume that there exist a function ϕ ∈ C2(Ω,R) and a
point xo ∈ Ω such that w−ϕ < 0 in Ω\{xo}, w(xo) = ϕ(xo), and (∆F )∗[ϕ](xo) > 0. By lower semicontinuity,
we can fix c > 0 and find a δ = δ(c) > 0 such that δ < inj(xo), B(xo, δ) ⊂ Ω and

(∆F )∗[ϕ](x) > 2c for any x ∈ B(xo, δ) .

Set vϕ := v + ϕ ∈ LSC(Ω) and observe that vϕ is a viscosity supersolution to F [u] − 2c = 0 on the ball
B(xo, δ). Indeed, given x ∈ B(xo, δ) and a function ψ ∈ C2(B(xo, δ),R) such that vϕ−ψ ≤ 0 around x and
vϕ(x) = ψ(x), from the very definition of vϕ we get v−(ψ−ϕ) ≤ 0 around x and v(x) = ψ(x)−ϕ(x). Hence,
being v a viscosity supersolution of F [u] = 0 on Ω, from the very definition of ∆F we get

F [ψ](x) ≥ F (x,ψ(x)− ϕ(x),Dψ(x)−Dϕ(x),D2ψ(x)−D2ϕ(x)) + (∆F )∗(x,ϕ(x),Dϕ(x),D2ϕ(x)) ≥ 2c .

Let us define now

FC : J2M → R , FC(x, s, q,Q) := F (x, s, q,Q) + (C + 1)s .

Then, by hypothesis, it follows that:
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· vϕ is a viscosity supersolution of FC [u]− (C + 1)u− 2c = 0 on Ω;
· u is a viscosity subsolution of FC [u]− (C + 1)u = 0 on Ω.

Since u ≤ vϕ and u ∈ USC(Ω), vϕ ∈ LSC(Ω), by using the Hahn-Katetov-Dowker Theorem (see [17,
Thm 3.4.9]), combined with an approximation argument, it follows that there exists a Lipschitz continuous
function h : B(xo, δ)→ R such that

(C + 1)u(x) ≤ h(x) ≤ (C + 1)vϕ(x) + c for any x ∈ B(xo, δ) .

Therefore:
· vϕ is a viscosity supersolution of FC [u]− h(x)− c = 0 on B(xo, δ);
· u is a viscosity subsolution of FC [u]− h(x) = 0 on B(xo, δ).

Since by hypothesis u− vϕ has a strict maximum at xo and u(xo) = vϕ(xo), we can take k > 0 such that

u− vϕ ≤ −k on S(xo, δ) and (2C + 1)k ≤ c .

Then, we take vϕ,k := vϕ − k so that vϕ,k ≥ u on S(xo, δ) and vϕ,k(xo) = u(xo) − k < u(xo). Note that,
since F is Lipschitz with constant C, the operator FC verifies

FC(x, r − k, q,Q) ≥ FC(x, r, q,Q)− (2C + 1)k .

Therefore, using then the fact that vϕ is a viscosity supersolution of FC [u] − h(x) − c = 0 on B(xo, δ) and
the inequality −(2C + 1)k ≥ −c, we conclude that the perturbation vϕ,k is a viscosity supersolution to
FC [u]− h(x) = 0 on B(xo, δ). It is now immediate to observe that the operator FC verifies the hypotheses
of the weak Comparison Principle [3, Cor 4.8]. In particular, it satisfies condition (1) in [3, Cor 4.8] (with
γ = 1), since (u.l.p.) implies that r 7→ FC(x, r, q,Q)− r is non-decreasing on R. Then, by applying [3, Cor
4.8], we can conclude that vϕ,k ≥ u in B(xo, δ), which leads to the contradiction k ≤ 0. �

Finally, we are ready to prove Proposition 5.4.

Proof of Proposition 5.4. By Lemma 5.5, we know that w is a viscosity subsolution of (∆F )∗[u] = 0. Then,
we consider G : J2M → R given by G(x, s, q,Q) := M+

λ,Λ(x,Q) + C(|s|+ |q|) and we observe that

−(∆F )∗(x,−s,−q,−Q) ≤ G(x, s, q,Q) for any (x, s, q,Q) ∈ J2M .

Hence, it follows that −w is a supersolution of G[u] = 0. Since G is continuous, uniformly elliptic and
positively 1-homogeneous, the result is a consequence of Theorem 4.7. �

Remark 5.6. The result holds true for equations driven by the normalized p-Laplacian on Riemannian
manifold under the assumptions of Proposition 5.4.

Remark 5.7. The assumption on the sectional curvature of (M , g) can be dropped at the expenses of
assuming a further uniform continuity assumption in the variable x and D2u (see [3, Cor 4.10]). More
precisely, Proposition 5.4 holds true in a general Riemannian manifold, without curvature conditions, if we
replace the intrinsic uniform continuity (i.u.c.) by:
(i.u.c.’) for any ε > 0 there exists δ > 0 such that for any x, y ∈ M with d(x, y) < min{inj(x), inj(y)} it

holds

d(x, y) ≤ δ , −δI ≤ P − L∗xyQ ≤ δI =⇒
∣∣F (y, s, q,Q)− F (x, s,L∗xyq,P )

∣∣ ≤ ε (5.11)

for any (s, q,P ) ∈ J2
yM , Q ∈ Sym2(T ∗xM).
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