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Stochastic resetting, a diffusive process whose amplitude is "reset" to the origin at random times,
is a vividly studied strategy to optimize encounter dynamics, e.g., in chemical reactions. We here
generalize the resetting step by introducing a random resetting amplitude, such that the diffusing
particle may be only partially reset towards the trajectory origin, or even overshoot the origin in a
resetting step. We introduce different scenarios for the random-amplitude stochastic resetting pro-
cess and discuss the resulting dynamics. Direct applications are geophysical layering (stratigraphy)
as well as population dynamics or financial markets, as well as generic search processes.

I. INTRODUCTION

Albert Einstein [1] established the probabilistic ap-
proach to Brownian motion based on the assumption that
individual displacements of the tracer particle are inde-
pendent (uncorrelated) beyond a microscopic correlation
time, identically distributed, and characterized by a fi-
nite variance. This "schematisation . . . represents well
the properties of real Brownian motion" [2]. The theo-
retical description of stochastic processes, based on the
formulation of fluctuating forces by Paul Langevin [3], is
by now one of the cornerstones of non-eqiulibrium physics
[4–6], with a wide field of applications across the sciences,
engineering, and beyond.

An important application of diffusive dynamics is in
the theory of search processes [7]. Random search strate-
gies are efficient processes when prior information about
the target is lacking [8, 9] or when the searcher itself can
only move diffusively, such as molecular reactants [10].
A number of specific strategies have been studied as gen-
eralization of the classical Brownian search [11], such as
Lévy flights [12, 13], intermittent search [14, 15], or facil-
itated diffusion [16, 17]. Applications of these strategies
are found in biochemistry [10, 18], biology [19], computer
science [20], or economy [21].

Effects of "resetting" events, when a stochastic process
is returned to its original state, were studied in a neuron
model [22] and in the context of multiplicative processes
[23]. In the seminal work by Evans and Majumdar [24]
"stochastic resetting" (SR) was defined as the stochastic
interruption of a random motion, resetting the particle
to its initial position and starting the process anew. A
particular feature is that the mean first passage time in
diffusive search becomes finite and can be minimized [25].
SR is thus widely applied to search processes.

SR has two random input variables. One is the par-
ticle’s random motion between resets, for which numer-
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ous processes were considered [26–34]. The other vari-
able describes the stochastic time span between succes-
sive resets, with a variety of studied distributions [35–41].
Concrete SR mechanisms include resetting to an initial
distribution [25] to the previous maximum [42], reset-
ting with a memory [43], resetting after a delay [27, 44–
47], space-time coupled resets [32, 33, 48–51], and non-
instantaneous resetting. SR in confinement was consid-
ered for different dimensions [52], with different boundary
conditions [28, 53, 54], or in a potential [55–58]. Finally
interacting particle effects were studied [59–62]. Appli-
cations of SR were discussed in the context of web search
in computer science [63, 64], enzymatic velocity [44, 65],
reaction-diffusion processes with stochastic decay [66],
backtrack recovery by RNA polymerase [67], and polli-
nation strategies [68]. The first experimental realization
of SR was achieved by tracing diffusing colloidal particles
reset by switching holographic optical tweezers [69].

Here we consider a random-amplitude SR (RASR),
motivated by geophysical stratigraphic records [70, 71],
made up of the layers of sedimentary material that accu-
mulated in depositional environments but were not sub-
jected to subsequent erosion. These layers ("beds") are
separated by erosional surfaces where previously exist-
ing material was removed by chemical reaction or phys-
ical forces. The periods of time missing from the geo-
logic record due to erosion are known as "stratigraphic
hiatuses" [72]. It was in fact Hans Einstein, Albert
Einstein’s son, who applied probabilistic approaches to
stratigraphic records [70]. Geologists use the strati-
graphic record to infer earth’s history, and sediment
bed type is used to interpret the depositional setting
(river, delta, lake, dune, etc.). If sediment at multiple
points within the stratigraphic column can be dated us-
ing geochronological techniques such as C14 dating [73],
average linear rates of accumulation can be calculated.
These rates may be serve as proxies for external forcing
such as climate regime.

The generation of the stratigraphic record is typically
modeled as a random process. Thus, random surface el-
evation at a given point on the earth moves upward (by
deposition), stays constant (no erosion or deposition), or
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TWO DIFFERNT TYPES OF RANDOM AMPLITUDES

INDEPENDENT RESETTING AMPLITUDES
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INDEPENDENT AMPLITUDES
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Figure 1: Flowchart of the two main concepts, indepen-
dent and dependent random amplitude stochastic resetting
(RASR) with specific choices of the resetting and propaga-
tion statistics.

decreases (erosion). Deposition and erosion are continu-
ous and were described by different stochastic processes,
starting with the work of Kolmogorov [74]. Since then
a variety of stochastic models (i.a., random walks [75]
or fractional Brownian motion [76]) were used to probe
the fidelity of the stratigraphic record with respect to
earth history. The observation that measured linear rates
of accumulation decrease as a power-law with measure-
ment interval in a variety of geologic settings [77], was
attributed to power-law hiatus lengths, which in turn
arise because they are created by return times of random
surface fluctuations [78]. Here we explore an additional
mechanism for erosion, typical for regular (e.g., seasonal)
or irregular massive erosion events, such as extreme rain-
fall, storms, or floods. In these cases the surface is eroded
away by a sizeable amount during a short period in time.
The exact erosion height will be different each time. We
model such extreme events by RASR: resetting occurs at
random intervals with random amplitude (Fig. 2). The
guiding example we consider in the following is that of
ballistic propagation of the process, interrupted by RASR
events. Such ballistic motion may reflect ongoing accre-
tion, for instance due to deposits in a riverbed or a river
delta. Occasional extreme rainfalls or snowmelts cause
significant erosion of these layers, corresponding to the
resetting events.

We here develop the RASR model and discuss a range
of applications going beyond the geophysical erosion pic-
ture drawn here. Examples include the dynamics of fi-
nancial markets hit by occasional crises [79, 80], pop-
ulation dynamics affected by partial extinction [81], or
germs affected by antibiotic treatment [82]. We note
that we call RASR a resetting process despite the fact
that the "reset" leads to a random position. However,
the RASR process keeps the idea of classical resetting
in that the propagation of the test particle is occasion-

ally interrupted by a significant shift. In the search con-
text mentioned above the RASR process thus represents
a new class of intermittent search processes in which the
searcher does not intermittently return to its "nest" but
restarts its search at a range of key points (points of pre-
vious search success, etc.).

The layout of the paper is as follows (compare also
the scheme in figure 1). We first develop the general
resetting picutre of our RASR model in Section II. Sec-
tion III introduces the concept of indepentent resetting,
in which the coordinate of the process does not depent
on the position before resetting. The opposite case, de-
pendent resetting is developed in Section IV. In both
cases we consider specific cases for the timing of the re-
sets and the resetting amplitude statistic. We draw our
Conclusions in Section V, some additional derivations are
deferred to the Appendices.

II. GENERAL RESETTING PICTURE

In the RASR model ψ(t) denotes the probability den-
sity function (PDF) of time spans between resetting
events, and the PDF for the time t at which the nth
resetting event occurs is

ψn(t) =

∫ t

0

ψn−1 (t− t′)ψ(t′)dt′ (1)

with ψ0(t) = δ(t). In Laplace space, therefore, ψ̃n(s) =

ψ̃n(s). The probability

Ψ(t) = 1−

∫ t

0

ψ(t′)dt′ (2)

of no reset up to t becomes Ψ̃(s) = (1− ψ̃(s))/s. Finally,
the probability to have exactly n resets up to t is

Φn(t) =

∫ t

0

ψn(t
′)Ψ(t− t′)dt′. (3)

In what follows we consider independent, identically dis-
tributed (iid) resetting time intervals by using the exam-
ples of constant interval lengths ("constant pace") and
Poisson-distributed intervals. The RASR process can
have independent resetting amplitudes zn at the nth step
that do not have a lower bound (Fig. 2a, b). For depen-
dent (bounded) resetting amplitudes the process never
crosses to negative heights x(tn) (Fig. 2c, d).

Let the term x(t)|x(t0) denote the position x at a cer-
tain time t provided that at time t0 the position was
x0 = x(t0). For the derivations of the "first resetting
picture" we will use the general relation [88]

x(t)|x(t0) =



























y(t)|x(t0) with probability Ψ(t− t0)
for t0 ≤ t,

x(t)|x(t1) with probability
t
∫

t0

dt1ψ(t1 − t0)

(4)
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Eq. (4) shows two possibilities. The upper line describes
the possibility of no reset in [t0, t] with the corresponding
probability Ψ(t− t0). In this scenario the process, start-
ing at position x0 = x(t0) at time t0, fulfils a specific dis-
placement process y(t). Thus, with probability Ψ(t− t0)
the process x(t) = y(t), which is stochastically described
by G(y, t;x0, t0). The lower line of Eq. (4) describes the
first resetting point x(t1) at the random resetting event
t1 as a new initial condition of x(t). The new initial
condition x1 at t1 will be described by the distribution
φ(x1, t1;x0, t0), which is, without loss of generality, de-
pendent on the previous initial condition x0 at t0. The

corresponding probability for this event is
∫ t

t0
dt1ψ(t1−t0)

for t1 ∈ [t0, t].

With Eq. (4) we can find the expression for the corre-
sponding PDF P (x, t;x0, t0),

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0)

+

∫ t

t0

dt1ψ(t1 − t0)

∫ ∞

−∞

dx1φ1(x1, t1;x0, t0)

×P (x, t;x1, t1). (5)

In Eq. (5), φ1(x1, t1;x0, t0) is the distribution of the first
resetting point x1 = x(t1) at time t1 under the condition
that the process started at position x0 at time t0. The
computation of φ1(x1, t1;x0, t0) depends on which kind
of resetting mechanism we will use.

III. INDEPENDENT RESETTING PICTURE

For independent resetting the height after the n+ 1st
resetting event is

x(tn+1) = y(tn+1)|x(tn) + zn+1 (6)

with the initial condition x(t0) = x0. Here y(tn+1)|x(tn)
defines the unperturbed motion during the time interval
tn+1− tn starting from point x(tn). Moreover, zn+1 is an
iid resetting amplitude of negative value, zi ∈ (−∞, 0).
This setup corresponds to our picture of sudden massive
erosion, population decimation, or financial market loss,
in which the resetting amplitude is viewed independent
of the process. Conceptually, this type of RASR cor-
responds to jump diffusion with one-sided jump lengths
[83, 84].

For n = 0, Eq. (6) yields

x(t1) = y(t1)|x0 + z1. (7)

The sum of two random variables implies the convolu-
tion of the corresponding PDFs. Thus, with Eq. (7),
φ1(x1, t1;x0, t0) is

φ1(x1, t1;x0, t0) =

∫ ∞

−∞

dyG(y, t1;x0, t0)q(x1 − y). (8)
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Figure 2: RASR sample paths with ballistic displacement
(v = 0.5) and independent (Poissonian with mean ζ = 1.6,
panels (a) and (b)) as well as dependent (uniformly dis-
tributed, panels (c) and (d)) resetting amplitudes. In (a) and
(c) resetting events (×) occur at constant pace, in (b) and (d)
with Poissonian waiting times, both with mean rate r = 1/4.

The PDF P (x, t;x0, t0) to propagate from x0 at t0 to x(t)
is obtained by plugging relation (8) into Eq. (5), yielding

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0)

+

∫ t

t0

dt1ψ(t1 − t0)

∫ ∞

−∞

dyG(y, t1;x0, t0)

×

∫ ∞

−∞

dx1q(x1 − y)P (x, t;x1, t1). (9)

The first term on the right involves the PDF
G(x, t;x0, t0) for undisturbed motion without resetting,
where the probability Ψ(t) denotes no resetting during
the time from t0 to t. The second term describes free
propagation from (x0, t0) to the first resetting point at
(x1, t1), at which a reset to x1 occurs with the ampli-
tude PDF q(x1 − y). Then the process is propagated
by P (x, t;x1, t1). Eq. (9) can be iterated to include all
resetting steps. From that derivation one can see that
the PDF P (x, t;x0, t0) is homogeneous, P (x, t;x0, t0) =
P (x − x0, t − t0; 0, 0), exactly when G is homogeneous.
In the setting of Eq. (9) we can describe a general reset-
ting process with arbitrary propagation and independent
resetting events. The first resetting picture described
here can be shown to be identical to the "last resetting
picture", as demonstrated for independent resetting in
Apps. A and B. We now consider special cases for the
propagation, resetting times, and amplitudes.

A. Ballistic propagation

An illustrative example is given by ballistic propa-
gation (and in fact a special case of the jump process
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considered in [84]) with speed v, G(x, t) = δ(x − vt),
where we set x0 = 0 and t0 = 0. To compute the char-
acteristic function P̂ (k, t) =

∫∞

−∞ dx exp(ikx)P (x, t) of

P (x, t) = P (x, t;x0 = 0, t0 = 0) for the first resetting
picture (5) respectively the last resetting picture (B2) in
presence of a ballistic propagation, we use Eq. (5) with
G(x, t; y, τ) = δ (x− y − v (t− τ)). The Laplace trans-

form
˜̂
P (k, s) =

∫∞

0 dt exp(−st)P̂ (k, t) of the characteris-

tic function P̂ (k, t) then reads

P (x, t) = Ψ(t)δ(x− vt) +

t
∫

0

dt1ψ(t1)

∞
∫

−∞

dyδ(y − vt1)

×

∞
∫

−∞

dx1q(x1 − y)P (x− x1, t− t1),

from which we obtain the Fourier transform

P̂ (k, t) = Ψ(t) exp(ikvt)

+

t
∫

0

dt1ψ(t1) exp(ikvt1)q̂(k)P̂ (k, t− t1). (10)

Finally, after an additional Laplace transform,

˜̂
P (k, s) = Ψ̃(s− ikv) + ψ̃(s− ikv)q̂(k)

˜̂
P (k, s), (11)

we obtain the algebraic relation

˜̂
P (k, s) =

Ψ̃(s− ikv)

1− ψ̃(s− ikv)q̂(k)
. (12)

Eq. (12) is similar to the Montroll-Weiss equation [85]
for continuous time random walk processes. Rewriting

Eq. (12) in terms of a geometric series,
˜̂
P (k, s) becomes

˜̂
P (k, s) = Ψ̃(s− ikv)

∞
∑

n=0

(

ψ̃(s− ikv)q̂(k)
)n

. (13)

With definition (3) we end up with the compact expres-
sion

˜̂
P (k, s) =

∞
∑

n=0

Φ̃n(s− ikv)q̂n(k). (14)

Note that by definition Φn(t) is the probability
of exactly n resetting events in [0, t], and with
∫ t

0
ψn−1 (t− t′)ψ(t′)dt′ (ψ0(t) = δ(t), i.e., Φ0(t) =

Ψ(t)), the Laplace transform of Φn(t) becomes Φ̃n(s) =

Ψ̃(s)ψ̃n(s). With these relations we can perform the in-

verse Laplace transform of
˜̂
P (k, s) yielding the charac-

teristic function P̂ (k, t)

P̂ (k, t) =

∞
∑

n=0

Φn(t) exp(ikvt)q̂
n(k). (15)

An alternative approach to derive the characteristic
function is to use its representation as a jump diffusion
process [83],

x(t) = vt+

n(t)
∑

j=1

zj , (16)

where the stochastic variable n(t) is the number of resets
in the interval [0, t]. The characteristic function can be
computed as

P̂ (k, t) = 〈exp(ikx(t))〉

= exp(ikvt)

〈

n(t)
∏

j=1

exp(ikzj)

〉

=

∞
∑

n=0

Φn(t) exp(ikvt)

n
∏

j=1

〈exp(ikzj)〉. (17)

As n(t) in this expression is a stochastic variable we need
to sum up the probabilities Φn(t) of every possible value
of n ∈ N. Furthermore, we use the property of the zj to
be iid random variables, along with the identity Φ0(t) =
Ψ(t). This leads us directly to Eq. (15).

Define now qn(z) as the distribution of the total jump
size z after n iid jumps with distribution q(z). The rela-
tion between qn(z) and q(z) is then

qn(z) =







∞
∫

−∞

dz′qn−1(z − z′)q(z′) n ≥ 1

δ(z) n = 0
, (18)

and thus

q̂n(k) = q̂n(k). (19)

With qn(z) from Eq. (19) we take the inverse Fourier

transform of the characteristic function P̂ (k, t), Eq. (15).
Thus, P (x, t) takes on the form

P (x, t) =

∞
∑

n=0

Φn(t)qn(x − vt),

= Ψ(t)δ(x − vt) +

∞
∑

n=1

Φn(t)qn(x− vt) (20)

Calculation of moments

For the average 〈x(t)〉 and the variance Var{x(t)} of
the variable x(t) we compute the first and second deriva-

tives of P̂ (k, t), Eq. (15),

P̂ ′(k, t) =

∞
∑

n=0

Φn(t) exp(ikvt)q̂
n(k)

(

ivt+
nq̂′(k)

q̂(k)

)

,

P̂ ′′(k, t) =

∞
∑

n=0

Φn(t) exp(ikvt)q̂
n(k)

×

(

(

ivt+
nq̂′(k)

q̂(k)

)2

+ n
q̂′′(k)q̂(k)− (q̂′(k))

2

(q̂(k))
2

)

. (21)
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Let 〈z〉 = −iq̂′(0) be the average of the random inde-
pendent amplitude z with the corresponding distribution
q(z). Then with Eq. (21) the average 〈x(t)〉 of x(t) is

〈x(t)〉 = −iP̂ ′(0, t) =

∞
∑

n=0

Φn(t)
(

vt+ n〈z〉
)

. (22)

Now let Var{z} = (q̂′(0))
2
− q̂′′(0) be the variance of

the random independent amplitude z with distribution
q(z). Thus, the variance Var{x(t)} of the position x(t)
becomes

Var{x(t)} =
(

P̂ ′(0, t)
)2

− P̂ ′′(0, t),

=

∞
∑

n=0

Φn(t)
(

(vt+ n〈z〉)2 + nVar{z}
)

− 〈x(t)〉2. (23)

B. Ballistic propagation with exponential resetting
amplitudes

For the concrete choice of exponential resetting ampli-
tudes, defined by

q(z) = Θ(−z)ζ−1 exp

(

z

/ζ

)

, (24)

the distribution qn(z) becomes

qn(z) =
1

2π

∫ ∞

−∞

dk exp(−ikz)

(

1

1 + ikζ

)n

,

=
(−z)n−1

ζn(n− 1)!
exp

(

z

ζ

)

Θ(−z).

The density P (x, t) (Eq. (20)) then yielsd in the form

P (x, t) = Ψ(t)δ(x− vt) +

∞
∑

n=1

Φn(t)
(vt − x)n−1

ζn(n− 1)!

× exp

(

x− vt

ζ

)

Θ(vt− x). (25)

The Fourier transform of q(z) is q̂(k) = 1/(1+ikζ). With
the first and second derivative of q̂(k),

q̂′(k) =
−iζ

(1 + ikζ)2
, q̂′′(k) =

−2ζ2

(1 + ikζ)3
(26)

we get the average and the variance of z,

〈z〉 = −iq̂′(0) = −ζ

Var{z} = (q̂′(0))
2
− q̂′′(0) = −ζ2 + 2ζ2 = ζ2. (27)

The mean 〈x(t)〉 (Eq. (22)) now becomes

〈x(t)〉 =

∞
∑

n=0

Φn(t)× (vt− nζ), (28)

and the variance Var{x(t)} (Eq. (23)) reads

Var{x(t)} =

∞
∑

n=0

Φn(t)×
(

(vt− nζ)2 + nζ2
)

−

(

∞
∑

n=0

Φn(t)× (vt− nζ)

)2

. (29)

Ballistic propagation with exponential resetting amplitude
and Poissonian resetting times

As a specific example we consider the combination of
an exponential resetting amplitude PDF (24) of width ζ
and Poissonian resetting times with distribution

ψ(t) = r exp(−rt). (30)

This implies the distributions

ψ̃(s) =
r

r + s
, Ψ̃(s) =

1− ψ̃(s)

s
=

1

r + s
, (31)

and from this expression we find the Laplace transform

Φ̃n(s) = Ψ̃(s)ψ̃n(s) =
1

r

(

r

r + s

)n+1

. (32)

After Laplace inversion,

Φn(t) =
(rt)n

n!
exp(−rt). (33)

This yields the density P (x, t) (Eq. (25)) for this case,

P (x, t) = exp(−rt)δ(x − vt) +
∞
∑

n=1

(rt)n(vt− x)n−1

ζnn!(n− 1)!

× exp

(

x− vt− rtζ

ζ

)

Θ(vt− x). (34)

With the representation

I1(ξ) =
ξ

2

∞
∑

n=0

(

ξ2/4
)n

n!(n+ 1)!
(35)

of the modified Bessel function of the first kind we then
obtain our result,

P (x, t) = e−rtδ(x − vt) + exp([x − vt− rtζ]/ζ)

×

√

rt/ζ

vt− x
I1

(

2

√

rt

ζ
(vt− x)

)

Θ(vt− x). (36)

The mean 〈x(t)〉 of x(t) (Eq. (28)) is

〈x(t)〉 =
∞
∑

n=0

(rt)n

n!
exp(−rt) × (vt− nζ),

= (v − rζ)t. (37)
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Figure 3: Height profile PDF P (x, t) as function of x for six
different t for ballistic motion with Poissonian resetting times
and exponential resetting amplitudes. The probability of no
reset until t is represented by the vertical line at x = vt, it is
shown on log-lin scale for different t in the inset. Simulations
results are shown by points, the analytical results are shown
by solid lines. Parameters: v = 0.5, r = 0.125, and ζ = 2.

The mean position thus depends linearly on t and in-
creases or decreases, depending on the sign of (v − rζ).
The variance Var{x(t)} (Eq. (29)) has the form

Var{x(t)} =
∞
∑

n=0

(rt)n

n!
exp(−rt)×

(

(vt− nζ)2 + nζ2
)

−(vt− rtζ)2,

= 2rtζ2. (38)

The variance is thus also proportional to t, but it is v-
independent.

Fig. 3 shows P (x, t) at different times: the maximum
value decreases and the PDF gradually shifts away from
negative values. The possibility of no reset up to time t
is encoded in the finite value at x = vt, the inset shows
a discontinuity of P (x, t) at x = vt and the exponential
relation between the probability of no reset and time t.

In App. C we derive the Fourier transform of the PDF
P (x, t) from the master equation formulation for the case
of ballistic propagation, Poissonian resetting times and
arbitrary independent resetting amplitudes. The result
(C4) then corresponds to Eq. (15) with the choice (33)
for Φn(t).

C. Ballistic displacement with constant pace and
exponential resetting amplitudes

We now consider another variant of ballistic propaga-
tion, namely, of a constant duration between successive
resetting events, which we refer to as constant pace. The

distribution of the resetting interval lengths is

ψ(t) = δ

(

t−
1

r

)

. (39)

In Laplace space this implies the distributions

ψ̃(s) = exp
(

−
s

r

)

, Ψ̃(s) =
1− exp(−s/r)

s
, (40)

and consequently

Φ̃n(s) =
exp(−ns/r)− exp(−(n+ 1)s/r)

s
, (41)

After Laplace inversion,

Φn(t) = Θ
(

t−
n

r

)

−Θ

(

t−
n+ 1

r

)

. (42)

Thus, the density P (x, t) (Eq. (25)) is given by

P (x, t) =

(

Θ(t)−Θ

(

t−
1

r

))

δ(x− vt)

+Θ(vt− x)
∞
∑

n=1

(vt− x)n−1

ζn(n− 1)!
exp

(

x− vt

ζ

)

×

(

Θ
(

t−
n

r

)

−Θ

(

t−
n+ 1

r

))

. (43)

The mean 〈x(t)〉 of x(t) (Eq. (28)) becomes

〈x(t)〉 =

∞
∑

n=0

(

Θ
(

t−
n

r

)

−Θ

(

t−
n+ 1

r

))

×(vt− nζ)

= vt− ζ⌊rt⌋, (44)

where we introduce the floor function ⌊x⌋ = max{l ∈
Z|l ≤ x}. The variance Var{x(t)} (Eq. (29)) reads

Var{x(t)} = ζ2
∞
∑

n=0

(

Θ
(

t−
n

r

)

−Θ

(

t−
n+ 1

r

))

n,

= ζ2⌊rt⌋. (45)

In the long time limit results (44) and (45) coincide with
the corresponding mean and variance in the Poissonian
resetting time scenario, Eqs. (37) and (38).

In Fig. 4 the mean position and variance are shown
for two different examples of ballistic propagation and
exponential resetting amplitudes, demonstrating the lin-
ear growth of the mean height. In this example we see
that the constant pace scenario has the same mean as the
Poissonian resetting model but half the variance, as can
also be seen from comparison of Eqs. (38) and (45).

Let us compare the difference between the cases of con-
stant pace and Poissonian resetting intervals in more de-
tail. Fig. 5 illustrates the PDF P (x, t) for constant pace
(left panel) and Poissonian resetting (right panel) at dif-
ferent times. For the chosen values the maximum of the
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PDF increases with time, and the standard deviation of
the PDF increases in both panels. In the case of constant
pace resetting, we showed the distribution immediately
after resetting in Fig. 5. For Poissonian resetting the
possibility that no reset occurs up to time t is encoded in
the finite value at x = vt. Its value is detailed in the in-
set, showing a discontinuity of P (x, t) at x = vt and the
exponential relation between the probability of no reset
and time t.

Fig. 6 shows the behavior of the average (left panel)
and variance (right panel) of x(t). For constant pace
resetting the average 〈x(t)〉 increases linearly in time be-
tween successive resetting events, however the variance of
x(t) does not change in this time span. The correspond-
ing PDF moves linearly in time, but does not change its
shape during these time spans. The shape of the dis-
tribution only change at the resetting events. As it can
be seen in Fig. 6 the variance Var{x(t)} only increases
at these times. For Poissonian resetting the mean po-
sition depends linearly on t and increases or decreases,
depending on the sign of (v − rζ). Both possibilities are
shown in Fig. 6. Moreover, in presence of constant pace
resetting, we can see that 〈x(t)〉 increases faster than for
Poissonian resetting during the resetting interval lengths.
However, under the same choice of parameter the mean
for constant pace resetting coincides with the Poissonian
resetting at the resetting events. For Poissonian reset-
ting the relation between Var{x(t)} and t is linear and

increases faster as for "constant pace" resetting.

IV. DEPENDENT RESETTING PICTURE

In many realistic situations the height x(t) cannot as-
sume negative values, e.g., when the deposits in a river
bed shrink until they reach a solid bedrock, when the
value of a given stock becomes zero, or when a popula-
tion goes extinct. Random-amplitude resetting processes
with strictly positive x in our framework are described
by dependent resetting amplitudes, the main novel feature
introduced in this work.

For such dependent resetting amplitudes we use the
following relation between consecutive resetting points,

{

x(tn+1) = (y(tn+1)|x(tn))× cn+1

x(t0) = x0
, (46)

where the cn ∈ [0, 1) are iid random variables of the
running index n. For n = 0, Eq. (46) yields

x(t1) = (y(t1)|x0)× c1. (47)

With Eq. (47), φ1(x1, t1;x0, t0) becomes

φ1(x1, t1;x0, t0) =

∫ ∞

0

dy

y
G(y, t1;x0, t0)fC

(

x1
y

)

.

(48)
In Eq. (48) we only allow movement for positive heights,
0 ≤ y < ∞. Due to our requirement that height x(t)
cannot assume negative values, we impose the additional
condition that fC(cn) = 0 for cn < 0 and cn ≥ 1, such
that we only have to consider the range 0 ≤ c1 = x1/y <
1, in which fC(c1) 6= 0. Thus we have the inequality
0 ≤ x1/y < 1, or

0 ≤ x1 < y. (49)

For dependent resetting amplitudes we get the first
resetting picture of the process if we substitute
φ1(x1, t1;x0, t0), Eq. (48), into Eq. (5) and consider-
ing the range of x1 for which fC(x1/y) 6= 0 (compare
Eq. (49)). Thus, we get

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0)

+

∫ t

t0

dt1ψ(t1 − t0)

∫ ∞

0

dy

y
G(y, t1;x0, t0)

×

∫ y

0

dx1fC(x1/y)P (x, t;x1, t1). (50)

The key difference to Eq. (9) is that the y-integration is
restricted to y ∈ [0,∞) and that the resetting length PDF
q(x1−y) is replaced by the scaling function y−1fC(x1/y),
that in turn is part of the product distribution (48). We
derive the last resetting picture corresponding to the first
resetting picture (50) in App. D. We note that when the
PDF G is homogenous in space and time, the PDF P is
still homogeneous in time but the spatial homogeneity is
lost (App. D).
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A. Reduction to classical stochastic resetting

Before proceeding with our analysis we stop to proof
that our RASR process with dependent resetting ampli-
tudes is a generalization of classical SR. In fact we can
prove this equivalence for both the first resetting picture
and the last resetting picture if we set fC(cn) = δ(cn) and
use Poissonian resetting ψ(t) = r exp(−rt) along with the
initial position x0 = 0. With this deterministic resetting
mechanism we can verify the results of [38] for the first
renewal picture and [25] for the last renewal picture of
SR.

In the first resetting picture we have in our framework

P (x, t; 0, 0) = exp(−rt)G(x, t; 0, 0) +

t
∫

0

dt1r exp(−rt1)

×

∞
∫

0

dy

y
G(y, t1; 0, 0)

y
∫

0

dx1δ

(

x1
y

)

P (x, t;x1, t1)

= exp(−rt)G(x, t; 0, 0) + r

t
∫

0

dt1 exp(−rt1)

∞
∫

0

dyG(y, t1; 0, 0)

1
∫

0

dc1δ(c1)P (x, t; c1y, t1),
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in which c1 = x1/y. This implies that

P (x, t; 0, 0) = exp(−rt)G(x, t; 0, 0) + r

t
∫

0

dt1 exp(−rt1)

×

∞
∫

0

dyG(y, t1; 0, 0)P (x, t; 0, t1)

= exp(−rt)G(x, t; 0, 0) + r

t
∫

0

dt1 exp(−rt1)

×P (x, t; 0, t1), (51)

and therefore proves the equivalence to [38] with x0 = 0.

Conversely, in the last resetting picture we have [cf. Eq. (D11)]

P (x, t; 0, 0) = exp(−rt)G(x, t; 0, 0) +

∞
∑

n=1

t
∫

0

dτn

1
∫

0

dcn

∞
∫

0

dy′n





n−1
∏

i=1

τn+1−i
∫

0

dτn−ir exp(−r(τn+1−i − τn−i))





×





n−1
∏

i=1

∞
∫

0

dy′n−iG(y
′
n+1−i, τn+1−i; cn−iy

′
n−i, τn−i)

1
∫

0

dcn−iδ(cn+1−i)





×δ(c1)r exp(−rτ1)G(y
′
1, τ1; 0, 0) exp(−r(t− τn))G(x, t; cny

′
n, τn)

= exp(−rt)G(x, t; 0, 0) +

∞
∑

n=1

rn
t
∫

0

dτn





n−1
∏

i=1

τn+1−i
∫

0

dτn−i



 exp(−r[τn − τn−1]) exp(−r[τn−1 − τn−2])

× . . .× exp(−r[τ3 − τ2]) exp(−r[τ2 − τ1]) exp(−rτ1) exp(−r[t− τn])G(x, t; 0, τn)

= exp(−rt)G(x, t; 0, 0) + r

t
∫

0

dτ

∞
∑

n=1

(rτ)n−1

(n− 1)!
exp(−rt)G(x, t; 0, τ), (52)

with τ = τn. This demonstrates that

P (x, t; 0, 0) = exp(−rt)G(x, t; 0, 0) + r

t
∫

0

dτ exp(−r[t− τ ])G(x, t; 0, τ), (53)

and completes our proof of equivalence with the formulation in [25] for x0 = 0.

B. Ballistic propagation with dependent resetting amplitude

For the spatial Laplace transform P̄ (u, t;x0) =
∫∞

0
dx exp(−ux)P (x, t;x0) of the one-sided density P (x, t;x0) =

P (x, t;x0, t0 = 0) in the first resetting picture (50) respectively the last resetting picture (D2) for the case of ballistic
propagation, we use Eq. (D2) with G(x, t; y, τ) = δ(x− y − v(t− τ)). Collecting terms, P (x, t;x0) reads

P (x, t;x0) = Ψ(t)δ(x − x0 − vt) +

∞
∑

n=1

t
∫

0

dτn

1
∫

0

dcn

∞
∫

0

dyn ×





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)

×

∞
∫

0

dyn−iδ(yn+1−i − cn−iyn−i − v(τn+1−i − τn−i))

1
∫

0

dcn−ifC(cn+1−i)





×fC(c1)ψ(τ1)δ(y1 − x0 − vτ1)Ψ(t− τn)δ(x − cnyn − v(t− τn)), (54)
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and after the spatial Laplace transform we find

P̄ (u, t;x0) = Ψ(t) exp(−u(x0 + vt)) +

∞
∑

n=1

t
∫

0

dτn

1
∫

0

dcn





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)

1
∫

0

dcn−ifC(cn+1−i)





×fC(c1)ψ(τ1)Ψ(t− τn) exp



−u



x0

n
∏

j=0

cj + v(t− τn) + v

n
∑

j=1

(τj − τj−1)

n
∏

k=j

ck







 , (55)

in which c0 = 1 and τ0 = 0. Performing a Laplace transform in time (with the corresponding Laplace variable s), in
addition, our general result for the PDF reads

˜̄P (u, s;x0) =

∞
∑

n=0

Ψ̃(s+ uv)





n
∏

k=1

1
∫

0

dckfC(ck)ψ̃

(

s+ uv

k
∏

i=1

ci

)



 exp



−ux0

n
∏

j=0

cj



 . (56)

To compute the mean

〈x(t)|x0〉 = −P̄ ′(0, t;x0) (57)

and variance

Var{x(t)|x0} = P̄ ′′(0, t;x0)−
(

P̄ ′(0, t;x0)
)

, (58)

we use the first and second derivatives of P̄ (u, t;x0), Eq. (55), with respect to u and set u = 0. It is easier to work
with the Laplace transform (56) in time. General formulas for the first and second derivatives of Eq. (56) with respect
to the Laplace variable u are presented in App. E. They will be used in Sections IVC and IVD below.

C. Ballistic displacement with arbitrary resetting times and uniform dependent resetting amplitudes

We now turn to the ballistic displacement process with arbitrary resetting intervals but the specific choice of uniform
dependent resetting amplitudes. This choice allows us to specify (E2) and (E4) when we inlude fC(c) = 1. Thus for

the first and second moment of c we get 〈c〉 = 1/2 and 〈c2〉 = 1/3. The first derivative ˜̄P ′(u, t;x0) becomes

˜̄P ′(0, s;x0) =

∞
∑

n=0

(

v

(

ψ̃n(s)Ψ̃′(s) + ψ̃n−1(s)ψ̃′(s)Ψ̃(s)

(

1−
1

2n

))

− x0

(

ψ̃(s)

2

)n

Ψ̃(s)

)

. (59)

The second derivative ˜̄P ′′(u, t;x0) reads

˜̄P ′′(0, s;x0) =

∞
∑

n=0

v2
(

ψ̃n(s)Ψ̃′′(s) +
1

2
ψ̃n−1(s)ψ̃′′(s)Ψ̃(s)

(

1−
1

3n

)

+ 2ψ̃n−1(s)ψ̃′(s)Ψ̃′(s)

(

1−
1

2n

))

+

∞
∑

n=0

(

v2Ψ̃(s)ψ̃′2(s)ψ̃n−2(s)

(

1 +
3

3n
−

4

2n

)

+ x20

(

ψ̃(s)

3

)n

Ψ̃(s)

)

−

∞
∑

n=0

2vx0

((

ψ̃(s)

2

)n

Ψ̃′(s) + 2ψ̃n−1(s)ψ̃′(s)Ψ̃(s)

(

1

2n
−

1

3n

)

)

. (60)

For constant pace resetting times, we have a periodic reset with ψ(t) = δ (t− 1/r) corresponding to expressions
(40). Thus, the resetting amplitude is the only stochastic variable in this process. After some algebra and Laplce
inversion we find

P̄ ′(0, t;x0) = −
∞
∑

n=0

Φn(t)

(

v
(

t−
n

r

)

+
v

r

(

1−
1

2n

)

+
x0
2n

)

, (61)

in which Φn(t) = Θ (t− n/r)−Θ(t− (n+ 1)/r). The mean 〈x(t)|x0〉, Eq. (57), then yields in the form

〈x(t)|x0〉 = x0 + vt+

⌊rt⌋
∑

n=1

(

1

2n

(v

r
− x0

)

−
v

r

)

(62)
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with the asymptotic properties

lim sup
t→∞

〈x(t)|x0〉 = 2
v

r
,

lim inf
t→∞

〈x(t)|x0〉 =
v

r
. (63)

Thus, in the long time limit the oscillating average 〈x(t)|x0〉 is restricted by the two bounds (63).
Similarly we compute the second derivative of the PDF,

P̄ ′′(0, t;x0) =

∞
∑

n=0

Φn(t)

(

v2
(

t−
n

r

)2

+
2v2

r

(

t−
n

r

)

(

1−
1

2n

)

+
v2

2r2

(

3 +
5

3n
−

8

2n

)

−
2vx0
2n

(

t−
n

r

)

)

+

∞
∑

n=0

Φn(t)

(

4vx0
r

(

1

2n
−

1

3n

)

+
x20
3n

)

, (64)

in which Φn(t) = Θ (t− n/r)−Θ(t− (n+ 1)/r). The variance, Eq. (58), finally reads

Var{x(t)|x0} =

⌊rt⌋
∑

n=1

(

x20

(

3

4n
−

2

3n

)

+ 2
x0v

r

(

4

3n
−

3

4n
−

1

2n

)

+
1

2

(v

r

)2
(

6

4n
+

4

2n
−

10

3n

))

t→∞
−→

1

2

(v

r

)2

. (65)

D. Ballistic propagation and Poissonian resetting times

We now consider Poissonian resetting intervals with rate r, ψ(t) = r exp(−rt). Such exponential distributions are
in fact used in several SR studies, including [24, 40, 46, 52]. For the resetting amplitudes we first derive a general
solution and then consider specific examples.

We start from Eqs. (E2) and (E4) and use the resetting time distributions with their Laplace transforms ψ̃(s) =

r/(r + s) and Ψ̃(s) = 1/(r + s). Evaluating the geometric series we obtain the derivatives of the PDF. After Laplace
inversion, these read

P̄ ′(0, t;x0) =
v

r (1− 〈c〉)
(exp (−rt (1− 〈c〉))− 1)− x0 exp (−rt (1− 〈c〉)) , (66)

P̄ ′′(0, t;x0) =
2v2

r2 (〈c〉 − 〈c2〉)

(

exp
(

−rt
(

1− 〈c2〉
))

1− 〈c2〉
−

exp (−rt (1− 〈c〉))

1− 〈c〉

)

+
2v2

r2 (1− 〈c〉) (1− 〈c2〉)
+ x20 exp(−rt[1 − 〈c2〉])

+
2x0v

r (〈c〉 − 〈c2〉)

(

exp(−rt[1− 〈c〉]) − exp(−rt[1− 〈c2〉])
)

. (67)

We then derive the mean and variance,

〈x(t)|x0〉 =
v

r (1− 〈c〉)
(1− exp(−rt[1− 〈c〉])) + x0 exp(−rt[1 − 〈c〉]), (68)

Var{x(t)|x0} =
2v2 exp(−rt)

r2(〈c〉 − 〈c2〉)

(

exp(rt〈c2〉)

1− 〈c2〉
−

exp(rt〈c〉)

1− 〈c〉

)

+
2v2

r2 (1− 〈c〉)

(

1

1− 〈c2〉
+

exp(−rt[1 − 〈c〉])

1− 〈c〉

)

−
v2 (1 + exp(−2rt[1− 〈c〉]))

r2 (1− 〈c〉)2

+
2x0v exp(−rt)

r
×

(

exp(rt〈c〉) − exp(rt〈c2〉)

〈c〉 − 〈c2〉
+

exp(−rt[1 − 2〈c〉])− exp(rt〈c〉)

1− 〈c〉

)

+x20
(

exp(−rt[1 − 〈c2〉])− exp(−2rt[1− 〈c〉])
)

, (69)

with the initial condition x(0) = x0.
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The propagating process is ballistic (v = 0.5) in all cases. Numerical results are shown by points, the analytical results by solid
lines.

For uniformly distributed resetting amplitudes with 〈c〉 = 1/2 and 〈c2〉 = 1/3 we then find the specific expressions

〈x(t)|x0〉 = x0 exp

(

−
rt

2

)

+ 2
v

r

(

1− exp

(

−
rt

2

))

t→∞
−→ 2

v

r
(70)

and the variance

Var{x(t)|x0} = x20

(

exp

(

−
2rt

3

)

− exp(−rt)

)

+
vx0
r

(

4 exp(−rt) + 8 exp

(

−
rt

2

)

− 12 exp

(

−
2rt

3

))

+
(v

r

)2
(

2− 16 exp

(

−
rt

2

)

+ 18 exp

(

−
2rt

3

)

− 4 exp(−rt)

)

t→∞
−→ 2

(v

r

)2

. (71)

Moreover, for the case of a deterministic reset to the initial height, 〈c〉 = 0 and 〈c2〉 = 0, we arrive at

〈x(t)|x0 = 0〉 =
v

r
(1− exp(−rt)) (72)

Var{x(t)|x0 = 0} =
v2

r2
−

2v2t exp(−rt)

r
−
v2 exp(−2rt)

r2
. (73)

For Poissonian resetting times both mean and variance become independent of the initial height in the long time
limit. The functional behavior of both quantities for Poissonian and constant pace resetting times are shown in Fig. 7,
in which we use the nomalized expressions

〈x(t)|x0〉 =
〈x(t)|x0〉

lim sup
t→∞

〈x(t)|x0〉
, (74)

Var{x(t)|x0} =
Var{x(t)|x0}

lim
t→∞

Var{x(t)|x0}
. (75)

In this asymptotic limit the normalized mean converges to unity for Poissonian resetting. In contrast, with constant
pace resetting times the oscillating quantity 〈x(t)|x0〉 is limited from above by unity. Based on definition (74) of the
normalized mean, the two different convergence behaviors are compared in the upper panel of Fig. 7. The normalized
variance in Eq. (75) has the same limiting value for both Poissonian and constant pace resetting, see the lower panel
of Fig. 7.
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E. Derivation of the probability density P (x, t) for Poissonian resetting, ballistic propagation and dependent
resetting amplitudes

To derive a differential equation for the PDF P (x, t;x0; t0) we use the fact that the process is homogeneous in
time and derived the master equation for P (x, t;x0), for which (x(t +∆t)|x0) = c(x(t)|x0) with probability r∆t and
(x(t+∆t)|x0) = x(t)|x0) + v∆t with probability 1− r∆t,

∂P (x, t;x0)

∂t
= −v

∂P (x, t;x0)

∂x
− rP (x, t;x0) + r

∞
∫

0

dy

y
P (y, t;x0)fC

(

x

y

)

, (76)

with P (x, 0;x0) = δ(x− x0). For the Laplace transform P̄ (u, t;x0) of P (x, t;x0) with respect to x this yields

∂P̄ (u, t;x0)

∂t
= −uvP̄ (u, t;x0)− rP̄ (u, t;x0) + r

1
∫

0

dcP̄ (uc, t;x0)fC(c) (77)

with P̄ (u, 0;x0) = exp(−ux0).

1. Comparison with classical Stochastic Resetting

If we assume a standard SR to the initial condition x0 we have fC(c) = δ(c). Moreover, the relation of the
corresponding random variable, and thus the partial differential is slightly different. Explicitly, (x(t + ∆t)|x0) =
c× (x(t)|x0) + x0 with probability r∆t and (x(t +∆t)|x0) = (x(t)|x0) + v∆t with probability 1− r∆t, thus

∂P (x, t;x0)

∂t
= −v

∂P (x, t;x0)

∂x
− rP (x, t;x0) + r

∫ ∞

0

P (y, t;x0)

y
δ

(

x− x0
y

)

dy

=
∂P (x, t;x0)

∂t
= −v

∂P (x, t;x0)

∂x
− rP (x, t;x0) + rδ(x − x0) (78)

where P (x, 0;x0) = δ(x− x0) and we used the condition that P (x, t;x0) is normalized and the scaling property of the
delta function, δ(ax) = δ(x)/|a| for a ∈ R. Finally, in the case of SR with an arbitrary initial distribution φ0(x) the
distribution of x at time t can be computed from ρ(x, t) =

∫∞

0 φ0(x0)P (x, t;x0)dx0 and we get

∂ρ(x, t)

∂t
= −v

∂ρ(x, t)

∂x
− rρ(x, t) + rφ0(x) (79)

with ρ(x, 0) = φ0(x). Eq. (78) is homogeneous in space and confirms the results of Ref. [24] for ballistic displacement
instead of a diffusive displacement.

2. Stationary distribution for ballistic displacement, uniform dependent resetting amplitude and Poissonian resetting

We get the stationary solution of Eq. (77) for fC(c) = 1 with P ∗(x) = lim
t→∞

P (x, t;x0) for limt→∞ ∂P (x, t;x0)/∂t = 0.

Thus, for the spatial Laplace transform P̄ ∗(u) becomes

0 = −uvP̄ ∗(u)− rP̄ ∗(u) + r

∫ 1

0

P̄ ∗(uc)dc, ⇔ u(uv + r)P̄ ∗(u) = r

∫ u

0

P̄ ∗(c′)dc′, (80)

with c′ = uc. If we now differentiate Eq. (80) with respect to u and use the normalization condition P̄ ∗(0) = 1, we
get

(2uv + r)P̄ ∗(u) + u(uv + r)P̄ ∗′

(u) = rP̄ ∗(u), (81)

implying P̄ ∗′

(u) = 2v
uv+r

P̄ ∗(u) and P̄ ∗(0) = 1. The solution is given by

P̄ ∗(u) =
r2

(uv + r)2
. (82)

Eq. (82) solves Eq. (80), which proves our claim.
Thus, the stationary solution P ∗(x) is the inverse Laplace transform of P̄ ∗(u), Eq. (82),

P ∗(x) = lim
t→∞

P (x, t;x0) =
( r

v

)2

x exp
(

−
rx

v

)

. (83)
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3. Proof of equality between partial differential equation (77) and integral representation (56)

Let ˜̄P (u, s) denote the Laplace transform of P̄ (u, t), we can obtain the following forms for Poissonian resetting in
double-Laplace space,

˜̄P (u, s;x0) =
exp(−ux0)

r + s+ uv
+

r

r + s+ uv

1
∫

0

dc ˜̄P (uc, s;x0)fC(c) (84)

with the following iterative approximations

0th approximation =
exp(−ux0)

r + s+ uv

1st approximation =
exp(−ux0)

r + s+ uv
+

r

r + s+ uv

1
∫

0

dc
exp(−ux0c)

r + s+ uvc
)fC(c)

2nd approximation =
exp(−ux0)

r + s+ uv
+

r

r + s+ uv

1
∫

0

dc1
exp(−ux0c1)

r + s+ uvc1
fC(c1)

+
r

r + s+ uv

1
∫

0

dc1
rfC(c1)

r + s+ uvc1

1
∫

0

dc2
exp(−ux0c1c2)fC(c2)

r + s+ uvc1c2

nth approximation =
exp(−ux0)

r + s+ uv
+

1

r + s+ uv

n
∑

m=1





m
∏

j=1

1
∫

0

dcj
rfC(cj)

(

r + s+ uv
∏j

i=1 ci

)



 exp



−x0

m
∏

j=1

cj





such that we find

˜̄P (u, s;x0) =
exp(−ux0)

r + s+ uv
+

1

r + s+ uv

∞
∑

n=1





n
∏

j=1

1
∫

0

dcj
rfC(cj)

(

r + s+ uv
∏j

i=1 ci

)



 exp



−x0

n
∏

j=1

cj



 , (85)

which is equal to Eq. (56) for Poissonian resetting, and thus proves our claim.

F. Graphical illustration for dependent resetting

We finally illustrate the difference between ballistic
propagation with Poissonian and constant pace resetting
for uniform dependent resetting amplitude. To this end
we compare the corresponding PDFs at different times
respectively show the behavior of mean and variance of
(x(t)|x0).

Fig. 8 shows the position PDF for ballistic displace-
ment, uniformly distributed resetting amplitude and two
different distributions of resetting interval lengths. For
each process the impact of different initial values x0 is
shown. It is obvious that the influence of initial values
eventually disappears, as can be seen in the upper panels.
In the left panel of Fig. 8 constant pace resetting is used.
When the impact of the initial value disappears (lower
left panel) the PDF of x has a uniform part for small
values of x. However, the uniform character disappears
from a certain value of x and decreases in the tail. The
distribution does not change its shape, however, the PDF
of x fulfills a periodic movement. This motion of the dis-

tribution P (x, t;x0) is divided in a linear shift in time
and a shift in the opposite direction as a point process in
time. In the right panels of Fig. 8 Poissonian resetting is
used. The height of the probability of no resets is inde-
pendent of the value of x0. This probability is mapped
at x = vt+x0 and decreasing in time. For longer t (right
lower panel) it can be seen that the process is stationary.

In Fig. 9 we can see the temporal behavior of the av-
erage and variance of (x(t)|x0). We show the results
for ballistic displacement process which is interrupted
by uniform dependent resetting events for two different
distributions of resetting interval lengths. All analytical
results are numerically verified, see Fig. 9. The vanish-
ing impact of different initial values x0 for average and
variance of (x(t)|x0) with t can be seen in all panels.
The average 〈x(t)|x0〉 (left upper panel) increases lin-
early with t during the constant resetting interval lengths
and decreases at the resetting points. After some time
the average of (x(t)|x0) is confined to a certain range
and has a periodic switch between linear increase and
decrease as a point process in time. The corresponding
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Figure 8: PDF P (x, t;x0) of the height profile for different initial heights and ballistic motion with uniform resetting. Left:
"constant pace" resetting. Right: Poissonian resetting, compared to the classical resetting scenario with enforced resets to the
origin. Top: t = 1/r. Bottom: t = 10/r. Numerical results are shown by points, analytical results by solid lines. Parameters:
v = 0.5 and r = 0.125.

Var{x(t)|x0} (left lower panel) stays the same during the
resetting interval lengths and increases discontinuously
at the resetting points, a jump in the figure. For longer t
the variance Var{x(t)|x0} converges to a finite limit. In
the right panels of Fig. 9 the convergence of average and
variance of (x(t)|x0) in presence of Poissonian resetting
is obvious. Thus, this process is stationary.

Fig. 10 shows the PDF for ballistic propagation with
Poissonian resetting times for classical resetting to the
origin and uniform resetting amplitudes, for two different
initial heights x0. At early times of the process (top
panel) the difference due to the initial height is distinct,
while in the long time limit (bottom panel) the PDFs for
the two uniform-resetting cases coincide. The difference
to the classical resetting case with enforced resetting to
the origin clearly results in a lower height profile.

V. CONCLUSIONS

We introduced a generalized resetting concept with
random resetting amplitudes in two different scenarios:
independent resetting, in which the height profile may
become negative, depending on the specific resetting am-
plitude PDF and the propagating process; and dependent
resetting, in which the positivity of the height profile is
guaranteed by the definition of the resetting amplitude
PDF. We derived an explicit analytical formulation of the
process and analyzed specifically ballistic propagation in
the presence of Poissonian resetting times and different
resetting amplitude PDFs. We also demonstrated that

the classical resetting theory with mandatory resets to
the origin is contained in our model in the dependent
case, whereas the independent scenario is a specific case
of jump diffusion [83] with one-sided jump lengths.

Physically, the RASR process introduce here corre-
sponds to the scenario of a propagating stochastic or de-
terministic process, that is interrupted by random resets.
This may correspond to the geophysical stratigraphic
scenario, in which the propagation mimics the gradual
build-up or decay of a sedimentation profile, whereas
the resets represent sudden erosion events. The latter
could be seasonal ("constant pace") or random-in-time
weather events such as extreme floods. In fact our model
is similar (albeit more flexible) to that proposed in [86],
where constant rates of accumulation were considered
the null hypothesis and the effect of random erosion pe-
riods on bed hiatus length distributions were explored.
We also note similar strategies developed for ecohydrol-
ogy applications [87], and the general development of a
class of jump processes [84]. In a different context we
could think of population dynamics interrupted by epi-
demics, pathogens (e.g., embodied by bacterial biofilms)
decimated by antibiotic treatment (here, both periodic
and "random" application protocols are being employed
in clinical studies), or crises-interrupted financial mar-
kets. All these cases process correspond to the intermit-
tent picture of a parent process (the "propagation") with
superimposed resetting statistic.

The qualitative difference between independent and
dependent resetting is that the latter case becomes sta-
tionary for ballistic propagation and Poissonian resetting
times, whereas the former remains non-stationary. The
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fact that our basic model can be recast in these two vari-
ants underlines the flexibility embedded in this simple
extension of classical resetting (SR). Another appeal is
the relatively straightforward, fully analytical descrip-
tion, with the caveat that not all resulting expressions
can be expressed fully explicitly. Having said this, we
believe that our results represent an attractive extension
of the resetting process. Apart from the above physical
scenarios the described flexibility of our extension of the
resetting dynamics will be of interest in the mathematical
theory of random search processes.
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Appendix A: Mathematical identity between first and last resetting picture

In this section we prove the following formal mathematical identity that will be used in Appendix B below to
demonstrate the equivalence of the first and the last resetting pictures:

n
∏

j=1

(

∫ t

tj−1

dtj

∫ A2

A1

dyj

∫ A4

A3

dzjη1(tj , tj−1, yj, yj−1, zj, zj−1)

)

η2(x, t, tn, yn, zn)

=

∫ t−t0

0

dτn

∫ A2

A1

dyn

∫ A4

A3

dzn

(

n−1
∏

i=1

∫ τn+1−i

0

dτn−i

∫ A2

A1

dyn−i

∫ A4

A3

dzn−i

×η1(τn+1−i + t0, τn−i + t0, yn+1−i, yn−i, zn+1−i, zn−i)
)

×η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τn + t0, yn, zn)

⇔

n
∏

j=1

(

∫ t−t0

τj−1

dτj

∫ A2

A1

dyj

∫ A4

A3

dzjη1(τj + t0, τj−1 + t0, yj , yj−1, zj, zj−1)

)

η2(x, t, τn + t0, yn, zn)

=

∫ t−t0

0

dτn

∫ A2

A1

dyn

∫ A4

A3

dzn

(

n−1
∏

i=1

∫ τn+1−i

0

dτn−i

∫ A2

A1

dyn−i

∫ A4

A3

dzn−i

×η1(τn+1−i + t0, τn−i + t0, yn+1−i, yn−i, zn+1−i, zn−i)
)

×η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τn + t0, yn, zn) (A1)

with τj = tj − t0 for 0 ≤ j ≤ n. To prove Eq. (A1) we use the method of induction. For n = 1, the Eq. (A1) is
obviously fulfilled,

∫ t−t0

0

dτ1

∫ A2

A1

dy1

∫ A4

A3

dz1η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τ1 + t0, y1, z1)

=

∫ t−t0

0

dτ1

∫ A2

A1

dy1

∫ A4

A3

dz1η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τ1 + t0, y1, z1). (A2)

Next, we take the inductive step n⇒ (n+ 1),

n+1
∏

j=1







t−t0
∫

τj−1

dτj

A2
∫

A1

dyj

A4
∫

A3

dzjη1(τj + t0, τj−1 + t0, yj , yj−1, zj , zj−1)






η2(x, t, τn+1 + t0, yn+1, zn+1)

=

t−t0
∫

τn

dτn+1

A2
∫

A1

dyn+1

A4
∫

A3

dzn+1η1(τn+1 + t0, τn + t0, yn+1, yn, zn+1, zn)

×

n
∏

j=1







t−t0
∫

τj−1

dτj

A2
∫

A1

dyj

A4
∫

A3

dzjη1(τj + t0, τj−1 + t0, yj , yj−1, zj , zj−1)






η2(x, t, τn+1 + t0, yn+1, zn+1),
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i.e.,

t−t0
∫

0

dτn

t−t0
∫

τn

dτn+1

A2
∫

A1

dyn

A4
∫

A3

dzn

×





n−1
∏

i=1

τn+1−i
∫

0

dτn−i

A2
∫

A1

dyn−i

A4
∫

A3

dzn−iη1(τn+1−i + t0, τn−i + t0, yn+1−i, yn−i, zn+1−i, zn−i)





×

A2
∫

A1

dyn+1

A4
∫

A3

dzn+1η1(τn+1 + t0, τn + t0, yn+1, yn, zn+1, zn)η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τn + t0, yn, zn)

=

t−t0
∫

0

dτn+1

τn+1
∫

0

dτn

A2
∫

A1

dyn

A4
∫

A3

dzn

×





n
∏

i=2

τn+2−i
∫

0

dτn+1−i

A2
∫

A1

dyn+1−i

A4
∫

A3

dzn+1−iη1(τn+2−i + t0, τn+1−i + t0, yn+2−i, yn+1−i, zn+2−i, zn+1−i)





×

A2
∫

A1

dyn+1

A4
∫

A3

dzn+1η1(τn+1 + t0, τn + t0, yn+1, yn, zn+1, zn)η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τn + t0, yn, zn)

=

t−t0
∫

0

dτn+1

A2
∫

A1

dyn+1

A4
∫

A3

dzn+1

×





n
∏

i=1

τn+2−i
∫

0

dτn+1−i

A2
∫

A1

dyn+1−i

A4
∫

A3

dzn+1−iη1(τn+2−i + t0, τn+1−i + t0, yn+2−i, yn+1−i, zn+2−i, zn+1−i)





×η1(τ1 + t0, t0, y1, y0, z1, z0)η2(x, t, τn + t0, yn, zn). (A3)

This proves our claim.

Appendix B: Derivation of last resetting picture for independent resetting amplitudes

In this section we aim to show the equivalence of the description in the first resetting picture,

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0) +

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

−∞

dyG(y, t1;x0, t0)

∞
∫

−∞

dx1q (x1 − y)P (x, t;x1, t1) (B1)

and the last resetting picture that includes all resetting steps,

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0) +

∞
∑

n=1

t−t0
∫

0

dτn

∞
∫

−∞

dxn

∞
∫

−∞

dyn

×





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)

∞
∫

−∞

dyn−iG(yn+1−i, τn+1−i + t0;xn−i, τn−i + t0)

∞
∫

−∞

dxn−iq (xn+1−i − yn+1−i)





×q (x1 − y1)ψ(τ1)G(y1, τ1 + t0;x0, t0)Ψ(t− t0 − τn)G(x, t;xn, τn + t0). (B2)
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To this end we write Eq. (B2) as

P (x, t;x′, t′) = Ψ(t− t′)G(x, t;x′, t′) +

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq (xj − yj)






Ψ(t− tn)G(x, t;xn, tn) (B3)

with t0 = t′ and x0 = x′. The equivalence of Eqs.(B2) and (B3) will be proven in this section below. Now we
substitute P (x, t;x0, t0) and P (x, t;x1, t1) in the first resetting picture, Eq. (B1) with Eq. (B3). The left hand side
(LHS) of Eq. (B1) after this substitution becomes

LHS = P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0) +

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq (xj − yj)






Ψ(t− tn)G(x, t;xn, tn). (B4)

As P (x, t;x1, t1) in Eq. (B1) has the initial value x1 at t1, these two variables have the lowest index 1 instead of 0,
and thus instead of Eq. (B4) one gets

P (x, t;x1, t1) = Ψ(t− t1)G(x, t;x1, t1)

+

∞
∑

n=2







n
∏

j=2

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq(xj − yj)






Ψ(t− tn)G(x, t;xn, tn). (B5)

Substituting (B5) into the RHS of Eq. (B1) we get

RHS = Ψ(t− t0)G(x, t;x0, t0)

+

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

−∞

dyG(y, t1;x0, t0)

∞
∫

−∞

dx1q(x1 − y)Ψ(t− t1)G(x, t;x1, t1)

+

t
∫

t0

dt1

∞
∫

−∞

dy

∞
∫

−∞

dx1

∞
∑

n=2







n
∏

j=2

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq (xj − yj)







×ψ(t1 − t0)G(y, t1;x0, t0)q(x1 − y)Ψ(t− tn)G(x, t;xn, tn)

= Ψ(t− t0)G(x, t;x0, t0)

+

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

−∞

dy1G(y1, t1;x0, t0)

∞
∫

−∞

dx1q(x1 − y1)Ψ(t− t1)G(x, t;x1, t1)

+

∞
∑

n=2







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq(xj − yj)






Ψ(t− tn)G(x, t;xn, tn) (B6)

with y1 = y. Then,

RHS = Ψ(t− t0)G(x, t;x0, t0)

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq(xj − yj)






Ψ(t− tn)G(x, t;xn, tn), (B7)

and thus RHS = LHS, which proves our claim. Thus, Eq. (B3) solves the first resetting picture of Eq. (B1), and
Eq. (B3) describes the RASR with independent resetting amplitudes. If we can show that Eq. (B3) and the last
resetting picture of Eq. (B2) are equal, we demonstrate that both mathematical representations describe the same
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process. To this end, consider

LHS = P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0)

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

−∞

dyjG(yj , tj ;xj−1, tj−1)

∞
∫

−∞

dxjq(xj − yj)






Ψ(t− tn)G(x, t;xn, tn)

= Ψ(t− t0)G(x, t;x0, t0)

+
∞
∑

n=1







n
∏

j=1

t−t0
∫

τj−1

dτjψ(τj − τj−1)

∞
∫

−∞

dyjG(yj , τj + t0;xj−1, τj−1 + t0)

∞
∫

−∞

dxjq(xj − yj)







×Ψ(t− τn)G(x, t;xn, τn + t0), (B8)

with τj = tj − t0 for 1 ≤ j ≤ n.
If we now use Eq. (A1) with the substitution (B9), we obtain























η1(tj , tj−1, yj, yj−1, zj, zj−1) = ψ(tj − tj−1)G(yj , tj ; zj−1, tj−1)q(zj − yj)

η2(x, t, tn, yn, zn) = Ψ(t− t0)G(x, t; zn, tn)

zj = xj , tj = τj + t0

A1, A3 = −∞, A2, A4 = ∞

, (B9)

for 1 ≤ j ≤ n. We then find

LHS = Ψ(t− t0)G(x, t;x0, t0) +

∞
∑

n=1

t−t0
∫

0

dτn

∞
∫

−∞

dxn

∞
∫

−∞

dyn





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)





×





n−1
∏

i=1

∞
∫

−∞

dyn−iG(yn+1−i, τn+1−i + t0;xn−i, τn−i + t0)

∞
∫

−∞

dxn−iq(xn+1−i − yn+1−i)





×q(x1 − y1)ψ(τ1)G(y1, τ1 + t0;x0, t0)Ψ(t− t0 − τn)G(x, t;xn, τn + t0), (B10)

which represents exactly the last resetting picture (B2), proving our claim.
If we assume a free propagator, that is homogeneous in space and in time, the stochastic process with resetting itself

will be homogeneous in space and time, G(x, t;x0, t0) = G(x−x0, t− t0; 0, 0) ⇒ P (x, t;x0, t0) = P (x−x0, t− t0; 0, 0).
By assuming G(x, t;x0, t0) = G(x − x0, t− t0; 0, 0) the density P (x, t;x0, t0), Eq. (B10), then becomes

P (x, t;x0, t0) = Ψ(t− t0)G(x − x0, t− t0; 0, 0) +

∞
∑

n=1

t−t0
∫

0

dτn

∞
∫

−∞

dxn

∞
∫

−∞

dyn

×





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)

∞
∫

−∞

dyn−iG(yn+1−i − xn−i, τn+1−i − τn−i; 0, 0)

∞
∫

−∞

dxn−iq (xn+1−i − yn+1−i)





×q (x1 − y1)ψ(τ1)G(y1 − x0, τ1; 0, 0)Ψ(t− t0 − τn)G(x − xn, t− t0 − τn; 0, 0),

= Ψ(t− t0)G(x − x0, t− t0; 0, 0) +

∞
∑

n=1

t−t0
∫

0

dτn

∞
∫

−∞

dx′n

∞
∫

−∞

dy′n

×





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)

∞
∫

−∞

dy′n−iG(y
′
n+1−i − x′n−i, τn+1−i − τn−i; 0, 0)

∞
∫

−∞

dx′n−iq
(

x′n+1−i − y′n+1−i

)





×q (x′1 − y′1)ψ(τ1)G(y
′
1, τ1; 0, 0)Ψ(t− t0 − τn)G(x − x0 − x′n, t− t0 − τn; 0, 0), (B11)

in which x′j = xj − x0 and y′j = yj − x0 for 1 ≤ j ≤ n. On the right hand side of Eq. (B11) x and x0 as well as t and
t0 only occur as differences x− x0 and t− t0 and not as single terms. Thus, G(x, t;x0, t0) = G(x− x0, t− t0; 0, 0) ⇒
P (x, t;x0, t0) = P (x− x0, t− t0; 0, 0), which proves our claim.
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Appendix C: Differential equation for P (x, t) with Poissonian resetting, ballistic displacement process, and
arbitrary independent resetting amplitudes

To derive a differential equation for the PDF P (x, t;x0; t0) we use the fact that the process is homogeneous in space
and time. We use the short-hand form P (x, t) for the choice x(t0 = 0) = 0. As the x-propagation for ballistic motion
reads

x(t+∆t) =

{

x(t) + z with probability r∆t
x(t) + v∆t with probability 1− r∆t

. (C1)

This means that














∂P (x, t)

∂t
= −v

∂P (x, t)

∂x
− rP (x, t) + r

∞
∫

−∞

dzP (x− z, t)q(z)

P (x, 0) = δ(x)

. (C2)

For the characteristic function we therefore find






∂P̂ (k, t)

∂t
= ikvP̂ (k, t)− rP̂ (k, t) + rP̂ (k, t)q̂(k)

P̂ (k, 0) = 1
. (C3)

The solution of Eq. (C3) is

P̂ (k, t) = exp(ikvt)

∞
∑

n=0

(rt)n

n!
exp(−rt)(q̂(k))n, (C4)

which verifies our result (15) for Poissonian resetting.

Appendix D: Derivation of last resetting picture for dependent resetting amplitudes

We now show the equivalence of the first resetting picture

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0) +

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

0

dy

y
G(y, t1;x0, t0)

y
∫

0

dx1fC

(

x1
y

)

P (x, t;x1, t1)

= Ψ(t− t0)G(x, t;x0, t0) +

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

0

dyG(y, t1;x0, t0)

1
∫

0

dc1fC(c1)P (x, t; c1y, t1), (D1)

with c1 = x1/y, and the last resetting picture

P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0) +

∞
∑

n=1

t−t0
∫

0

dτn

1
∫

0

dcn

∞
∫

0

dyn

×





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)

∞
∫

0

dyn−iG(yn+1−i, τn+1−i + t0; cn−iyn−i, τn−i + t0)

1
∫

0

dcn−ifC(cn+1−i)





×fC(c1)ψ(τ1)G(y1, τ1 + t0; c0y0, t0)Ψ(t− t0 − τn)G(x, t; cnyn, τn + t0), (D2)

with c0 = 1 and y0 = x0. Therefore,

P (x, t;x′, t′) = Ψ(t− t′)G(x, t;x′, t′)

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)






Ψ(t− tn)G(x, t; cnyn, tn), (D3)
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with t0 = t′, c0 = 1, and y0 = x′. The LHS of Eq. (D1) after substitution reads

LHS = P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0)

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)






Ψ(t− tn)G(x, t; cnyn, tn). (D4)

As P (x, t; c1y1, t1) in Eq. (D1) has the initial value c1y1 at t1, these three variables have 1 as lowest index, and we
write

P (x, t;x1, t1) = Ψ(t− t1)G(x, t; c1y1, t1)

+

∞
∑

n=2







n
∏

j=2

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)






Ψ(t− tn)G(x, t; cnyn, tn). (D5)

Substituting Eq. (D5) into the RHS of Eq. (D1) we get

RHS = Ψ(t− t0)G(x, t;x0, t0)

+

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

0

dyG(y, t1;x0, t0)

1
∫

0

dc1fC(c1)Ψ(t− t1)G(x, t; c1y1, t1)

+

t
∫

t0

dt1

∞
∫

0

dy

1
∫

0

dc1

∞
∑

n=2







n
∏

j=2

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)







×ψ(t1 − t0)G(y, t1;x0, t0)fC(c1)Ψ(t− tn)G(x, t; cnyn, tn)

= Ψ(t− t0)G(x, t;x0, t0)

+

t
∫

t0

dt1ψ(t1 − t0)

∞
∫

0

dy1G(y1, t1;x0, t0)

1
∫

0

dc1fC(c1)Ψ(t− t1)G(x, t; c1y1, t1)

+

∞
∑

n=2







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)






Ψ(t− tn)G(x, t; cnyn, tn) (D6)

with y1 = y. Then,

RHS = Ψ(t− t0)G(x, t;x0, t0)

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)






Ψ(t− tn)G(x, t; cnyn, tn), (D7)

and thus we have the identity RHS = LHS. Consequently Eq. (D3) solves the first resetting picture of Eq. (D1). This
implies that Eq. (D3) describes the RASR with a dependent resetting amplitude. If we show that Eq. (D3) and the
last resetting picture of Eq. (D2) are equal, this means that both mathematical representations are equivalent. To
proceed,

LHS = P (x, t;x0, t0) = Ψ(t− t0)G(x, t;x0, t0)

+

∞
∑

n=1







n
∏

j=1

t
∫

tj−1

dtjψ(tj − tj−1)

∞
∫

0

dyjG(yj , tj ; cj−1yj−1, tj−1)

1
∫

0

dcjfC(cj)






Ψ(t− tn)G(x, t; cnyn, tn)

= Ψ(t− t0)G(x, t;x0, t0)

+

∞
∑

n=1







n
∏

j=1

t−t0
∫

τj−1

dτjψ(τj − τj−1)

∞
∫

0

dyjG(yj , τj + t0; cj−1yj−1, τj−1 + t0)

1
∫

0

dcjfC(cj)







×Ψ(t− τn − t0)G(x, t; cnyn, τn + t0), (D8)
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with τj = tj − t0 for 1 ≤ j ≤ n. If we now use Eq. (A1) with the substitutions























η1(tj , tj−1, yj , yj−1, zj, zj−1) = ψ(tj − tj−1)G(yj , tj ; zj−1yj−1, tj−1)fC(zj)

η2(x, t, tn, yn, zn) = Ψ(t− t0)G(x, t; znyn, tn)

tj = τj + t0, zj = cj

A1 = 0, A2 = ∞, A3 = 0, A4 = 1

(D9)

for 1 ≤ j ≤ n, we get

LHS = Ψ(t− t0)G(x, t;x0, t0) +

∞
∑

n=1

t−t0
∫

0

dτn

1
∫

0

dcn

∞
∫

0

dyn





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)





×





n−1
∏

i=1

∞
∫

0

dyn−iG(yn+1−i, τn+1−i + t0; cn−iyn−i, τn−i + t0)

1
∫

0

dcn−ifC(cn+1−i)





×fC(c1)ψ(τ1)G(y1, τ1 + t0;x0, t0)Ψ(t− t0 − τn)G(x, t; cnyn, τn + t0), (D10)

which is exactly the last resetting picture.
If we assume that the free propagator is homogeneous in space and in time, the stochastic process will be also

homogeneous in time but not in space, G(x, t;x0, t0) = G(x− x0, t− t0; 0, 0) ⇒ P (x, t;x0, t0) = P (x, t− t0;x0, 0). By
assuming G(x, t;x0, t0) = G(x − x0, t− t0; 0, 0) the density P (x, t;x0, t0), Eq. (D10), becomes

P (x, t;x0, t0) = Ψ(t− t0)G(x − x0, t− t0; 0, 0) +

∞
∑

n=1

t−t0
∫

0

dτn

1
∫

0

dcn

∞
∫

0

dyn





n−1
∏

i=1

τn+1−i
∫

0

dτn−iψ(τn+1−i − τn−i)





×





n−1
∏

i=1

∞
∫

0

dyn−iG(yn+1−i − cn−iyn−i, τn+1−i − τn−i; 0, 0)

1
∫

0

dcn−ifC(cn+1−i)





×fC(c1)ψ(τ1)G(y1 − x0, τ1; 0, 0)Ψ(t− t0 − τn)G(x − cnyn, t− t0 − τn; 0, 0). (D11)

On the right hand side of Eq. (D11) t and t0 only arise as differences t− t0, however x and x0 occur as single term.
Thus, G(x, t;x0, t0) = G(x− x0, t− t0; 0, 0) ⇒ P (x, t;x0, t0) = P (x, t− t0;x0, 0) 6= P (x− x0, t− t0; 0, 0), which proves
our claim.

Appendix E: First and second derivatives of Eq. (56) with respect to the Laplace variable u

The first derivative of Eq. (56) reads

˜̄P ′(u, s;x0) =
∞
∑
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Using Eq. (E1) and with the notation 〈c〉 =
∫ 1

0
cfC(c)dc this expression is rewritten as
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The second derivative of Eq. (56) is
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With the definition 〈c2〉 =
∫ 1

0 c
2fC(c)dc we further transform this expression to
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˜̄P ′′(0, s;x0) can now be simplified to

˜̄P ′′(0, s;x0) =

∞
∑

n=0

v2
(

ψ̃n(s)Ψ̃′′(s) + ψ̃n−1(s)ψ̃′′(s)Ψ̃(s)
〈c2〉 − 〈c2〉n+1

1− 〈c2〉
+ 2ψ̃n−1(s)ψ̃′(s)Ψ̃′(s)

〈c〉 − 〈c〉n+1

1− 〈c〉

)

+

∞
∑

n=0

2v2Ψ̃(s)(ψ̃′)2(s)

(

ψ̃n−2(s)〈c2〉〈c〉

(1− 〈c2〉)(1 − 〈c〉)
+

ψ̃n−2(s)〈c2〉〈c〉n+1

(〈c〉 − 〈c2〉)(〈c〉 − 1)
+

ψ̃n−2(s)〈c〉〈c2〉n+1

(〈c〉 − 〈c2〉)(1 − 〈c2〉)

)

−

∞
∑

n=0

2vx0

(

ψ̃n(s)Ψ̃′(s)〈c〉n + ψ̃n−1(s)ψ̃′(s)Ψ̃(s)
〈c2〉n+1 − 〈c〉n〈c2〉

〈c2〉 − 〈c〉

)

+

∞
∑

n=0

x20ψ̃
n(s)Ψ̃(s)〈c2〉n. (E4)

[1] A. Einstein, Ann. Phys. 322, 549 (1905).
[2] P. Lévy, Processus stochastiques et mouvement brownien

(Gauthier-Villars, Paris, 1965)
[3] P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908)
[4] W. Brenig, Statistical theory of heat: nonequilibrium

phenomena (Springer, Berlin, 1989)
[5] R. Zwanzig, Nonequilibrium statistical mechanics (Ox-

ford University Press, Oxford UK, 2001)
[6] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A kinetic

view of statistical physics ( Cambridge University Press,
Cambridge UK, 2010).

[7] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez,
Rev. Mod. Phys. 83, 81 (2011).

[8] M. Vergassola, E. Villermaux, and B. I. Shraiman, Na-
ture 445, 406 (2007).

[9] A. Montanari and Z. Riccardo, Phys. Rev. Lett. 88,
178701 (2002).

[10] M. Sheinman, O. Bénichou, Y. Kafri, and R. Voituriez,



25

Rep. Prog. Phys. 75, 026601 (2012).
[11] M. v Smoluchowski, Z. Phys. Chem. 92, 129 (1917).
[12] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E.

da Luz, E. P. Raposo and H. E. Stanley, Nature 401, 911
(1999).

[13] V. V. Palyulin, A. V. Chechkin, and R. Metzler, Proc.
Natl. Acad. Sci. USA 111, 2931 (2014).

[14] Moreau, M., et al., EPL 77, 20006 (2007).
[15] M. A. Lomholt, T. Koren, R. Metzler, and J. Klafter,

Proc. Natl. Acad. Sci. USA 105, 11055 (2008).
[16] P. H. von Hippel and O. G. Berg, J. Biol. Chem. 264,

675 (1989).
[17] M. A. Lomholt, T. Ambjörnsson, and R. Metzler, Phys.

Rev. Lett. 85, 260603 (2005).
[18] O. Pulkkinen and R. Metzler, Phys. Rev. Lett. 110,

198101 (2013).
[19] D. Boyer, and C. Solis-Salas, Phys. Rev. Lett. 112,

240601 (2014).
[20] Y. Li and L. Han, Comp. Eng. & Science 3, 4 (2008).
[21] G. J. Stigler, J. Polit. Econ. 69, 213 (1961).
[22] H. E. Plesser, and S. Tanaka, Phys. Lett. A 225, 228

(1997).
[23] S. C. Manrubia and D. H. Zanette, Phys. Rev. E 59, 4945

(1999).
[24] M. R. Evans and S. N Majumdar, Phys. Rev. Lett. 106,

160601 (2011).
[25] M. R. Evans, and S. N. Majumdar, J. Phys. A 44, 435001

(2011).
[26] M. Montero and J. Villarroel, Phys. Rev. E 87, 012116

(2013).
[27] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, and G.

Schehr, Phys. Rev. Lett. 113, 220602 (2014).
[28] D. Campos and V. Méndez, Phys. Rev. E 92, 062115

(2015).
[29] D. B. Poll and Z. P. Kilpatrick, J. Stat. Mech. 2016,

053201 (2016).
[30] M. R. Evans and S. N. Majumdar, J. Phys. A 51, 475003

(2018).
[31] Ł. Kuśmierz and E. Gudowska-Nowak, Phys. Rev. E 99,

052116 (2019).
[32] J. Masoliver, Phys. Rev. E 99, 012121 (2019).
[33] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Phys.

Rev. E 100, 012119 (2019).
[34] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Phys.

Rev. E 100, 012120 (2019).
[35] I. Eliazar, and S. Reuveni, E-print arXiv:2004.09289

(2020).
[36] S. Eule and J. J. Metzger, New J. Phys. 18, 033006

(2016).
[37] A. Nagar and S. Gupta, Phys. Rev. E 93, 060102 (2016).
[38] A. Pal, A. Kundu, and M. R. Evans, J. Phys. A 49,

225001 (2016).
[39] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603

(2017).
[40] U. Bhat, C. De Bacco, and S. Redner, J. Stat. Mech.

2016, 083401 (2016).
[41] A. V. Chechkin and I. M. Sokolov, Phys. Rev. Lett. 121,

050601 (2018).
[42] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Phys.

Rev. E 92, 052126 (2015).
[43] D. Boyer, M. R. Evans, and S. N. Majumdar, J. Stat.

Mech. 2017, 023208 (2017).
[44] S. Reuveni, M. Urbakh, and J. Klafter, Proc. Natl. Acad.

Sci. USA 111, 4391 (2014).

[45] S. Reuveni, Phys. Rev. Lett. 116, 170601 (2016).
[46] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603

(2017).
[47] M. R. Evans and S. N. Majumdar, J. Phys. A 52, 01LT01

(2018).
[48] A. Pal, Ł. Kuśmierz, and S. Reuveni, Phys. Rev. E 100,

040101 (2019).
[49] A. Pal, Ł. Kuśmierz, and S. Reuveni, New J. Phys. 21,

113024 (2019).
[50] A. S. Bodrova and I. M. Sokolov, Phys. Rev. E 101,

052130 (2020).
[51] A. Maso-Puigdellosas, D. Campos, and V. Mendez, Phys.

Rev. E 100, 042104 (2019).
[52] M. R. Evans and S. N. Majumdar, J. Phys. A 47, 285001

(2014).
[53] J. Whitehouse, M. R. Evans, and S. N. Majumdar, Phys.

Rev. E 87, 022118 (2013).
[54] A. Chatterjee, C. Christou, and A. Schadschneider, Phys.

Rev. E 97, 062106 (2018).
[55] A. Pal, Phys. Rev. E 91, 012113 (2015).
[56] C. Maes and T. Thiery, J. Phys. A 50, 415001 (2017).
[57] S. Ahmad, I. Nayak, A. Bansal, A. Nandi, and D. Das,

Phys. Rev. E 99, 022130 (2019).
[58] S. Ray and S. Reuveni, E-print arXiv:1907.12208 (2020).
[59] S. Gupta, S. N. Majumdar, and G. Schehr, Phys. Rev.

Lett. 112, 220601 (2014).
[60] S. Gupta and A. Nagar, J. Phys. A 49, 445001 (2016).
[61] R. Falcao and M. R. Evans, J. Stat. Mech. 2017, 023204

(2017).
[62] U. Basu, A. Kundu, and A. Pal, Phys. Rev. E 100,

032136 (2019).
[63] D. S. Steiger, T. F. Rønnow, and M. Troyer, Phys. Rev.

Lett. 115, 230501 (2015).
[64] S. M. Maurer and B. A. Huberman, J. Econ. Dyn. &

Control 25, 641 (2001).
[65] A. M. Berezhkovskii et al., J. Phys. Chem. B 121, 3437

(2016).
[66] G. J. Lapeyre and M. Dentz, Phys. Chem. Chem. Phys.

19, 18863 (2017).
[67] É. Roldán et al., Phys. Rev. E 93, 062411 (2016).
[68] T. Robin, L. Hadany, and M. Urbakh, Phys. Rev. E 99,

052119 (2019).
[69] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.

Roichman, E-print arXiv:2003.03096 (2020).
[70] H. A. Einstein, Der Geschiebetrieb als Wahrschein-

lichkeitsproblem, Dissertation (ETH Zurich, ZH,
Switzerland, 1936).

[71] G. Scherz, Steno geological papers (Odense University
Press, Odense, Denmark, 1969).

[72] J. Barrell, Bull. Geol. Soc. Amer. 28, 745 (1917).
[73] E. Antevs, J. Geol. 62, 516 (1954).
[74] A. N. Kolmogorov, Amer. Math. Soc. Trans. 53, 171

(1951).
[75] W. Schwarzacher, Sedimentation models and quantita-

tive stratigraphy. Vol. 19. Elsevier, 1975.
[76] F. J. Molz, H. H. Liu, and J. Szulga, Water Res. Res. 33,

2273 (1997).
[77] P. M. Sadler, J. Geol. 89, 569 (1981).
[78] J. D. Pelletier and D. L. Turcotte, J. Sediment. Res. 67,

(1997).
[79] F. Lillo and R. N. Mantegna, Physica A 338, 125 (2004).
[80] L. Lin, R. E. Ren, and D. Sornette, Int. Rev. Fin. Anal.

33, 210 (2014).
[81] C. S. Holling, Ann. Rev. Ecol. Systemat. 4, 1 (1973).



26

[82] E. Kussell and S. Leibler, Science 309, 2075 (2005).
[83] S. G. Kou and H. Wang, Adv. Appl. Prob. 35, 504 (2003).
[84] E. Daly and A. Porporato, Phys. Rev. E 81, 061133

(2010).
[85] H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455

(1975).
[86] R. Schumer and D. J. Jerolmack, J. Geophy. Res.: Earth

Surface 114, F3 (2009).

[87] I. Rodriguez-Iturbe, A. Porporato, L. Ridolfi, V. Isham,
and D. R. Coxi, Proc. R. Soc. Lond. A 455, 3789 (1999).

[88] In the classical resetting framework, in which the parti-
cle is returned to its initial position each time, this ap-
proach is reduced to the "first renewal picture" defined
in Ref. [38]. The same holds for the term "last resetting
picture" introduced below.


