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The automotive industry is exploring to adapting more fibre reinforced composite 

materials due to their stiffness to weight ratio. The amount of energy that a vehicle 

absorbs during a collision is a matter of concern to ensure safer and more reliable 

vehicle. The efficient use of composite material in the field of crashworthiness 

depends on the understanding of how a composite member absorbs and dissipates 

energy during the event of an impact. 

An experimental and finite element investigation of the woven roving glass 

fibre/epoxy laminated composite rectangular tubes subjected to compressive loading 

were carried out under compressive loading. Through out this investigation, 

rectangular tubes with different cross-sectional aspect ratio varying (alb) from 1 to 2 

with 0.25 increment were investigated under axial and lateral loading conditions 

applied independently. The effects of increasing the cross-sectional aspect ratio on 

the load carrying capacity and the energy absorption capability were also presented 

and discussed. Finite element models to predict the load carrying capacity, failure 

iii 



mechanism and stress contours at pre-crush stage of the rectangular tubes under 

axial and lateral loading conditions have been developed. 

Experimental results show that the cross-sectional aspect ratio significantly affects 

the l oad c arrying capacity a nd t he e nergy absorption capability 0 f t he t ubes. T he 

axially loaded rectangular tubes have better load carrying capacity and energy 

absorption capability compared to the laterally loaded rectangular tubes. The 

buckling failure mode has been identified for the rectangular tubes under the 

different loading conditions. 

The developed finite element models approximately predict the initial failure load 

and the deformed shapes. The discrepancy between the finite element prediction and 

the experimental results is due to the assumption made in the finite element models 

and not considering the imperfection of the real tubes in the finite element models. 

From the experimental and finite element results 'knockdown' factors have been 

proposed to be used in the design phase of energy absorption elements to predict the 

initial failure load. 
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Disebakan oleh nisbah stiffnes teradap berat, industri automotif kini mencari dan 

mengadaptasikan kegunaan bahan komposit bergentian. Jumlah tenaga yang diserap 

ketika perlanggaran adalah perkara yang dititikberatkan bagi menentukan tahap 

keselamatan di dalam bidang ini bergantung kepada permahaman bagaimana 

member komposit tersebut menyerap dan menyelerakan tenaga impak. 

Pada penyiasatan ini, didapati rectangular tubes dengan nisban aspek keratan rentas 

meliputi dari julat 1 hinnga 2 dengan 0.25 increment telah diselidiki dibawah 

bebanan axial dan lateral. Kesan daripada kenaikan nisbah aspek keratan rentas 

terse but ialan pada kapasiti beban bawaan dan keupayaan penyerapan tenaga. Model 

elemen tidak terhingga digunakan untuk menganggar kapasti beban bawaan. 

Mekanisma kegagalan dan kontour stress didapati pada keadaan remukan 

rectangular tubes model. 
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Elemen tidak terhingga yang telah di bentuk secara tepat telah mengunakan initial 

failure load dan kecacatan bentuk. Ketidak seragaman diantara elemen tidak 

terhingga d an keputsan uj ikaj i a dalah d isebarkan dan andaian y ang dibuat a dalah 

pada model elemen tidak terhingga dan tidak mengambil kira ketidak sempumaan of 

the real tubes dalan model tersebut. 

Daripada keputusan dan permodelan ini 'knockdown' faktor telan dicadangkan 

untuk kegunaan fasa rekabentuk keupayaan penyerapan elemen untuk menganggar 

kegagalan beban permulaan. 

vi 



ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude and deep thanks to my supervisor 

Associate Professor Dr. Abdel Magid Salem Hamouda for his kind assistance, 

support, advice, encouragement and suggestions throughout this work and during the 

preparation of this thesis. 

I would like to express my appreciation to Associate Professor Dr. Barkawi Bin 

Sahari for his suggestions and constructive criticisms given at different stages of this 

study. 

My heartfelt appreciation also goes to Dr. Elsadig Mahdi Ahmed for his useful ideas 

and c ritical but c onstructive c omments t o w ork on. 0 ur fruitful d iscussion w ould 

never go unmentioned. 

Finally, I would like to express my indebtedness to my family. My thank you goes 

especially to my father and my brother, Fawwaz, for their moral and financial 

support. 

VII 



I certify that an Examination Committee met on 1 2th November 2002 to conduct the 
final examination of Fayiz Y. M. Abu Khadra on his Master of Science thesis 
entitled "Crushing Behaviour of Woven Roving Glass Fibre/Epoxy Laminated 
Composite Rectangular Tubes Subjected to Quasi-static Compressive Load" in 
accordance with Unversiti Pertanian Malaysia (Higher Degree) Act 1 980 and 
Universiti Pertanian Malaysia ( Higher Degree) Regulations 1 98 1 .  The committee 
recommends that the candidate be awarded the relevant degree. Members of the 
Examination Committee are as follows: 

Megat Mohamad Hamdan Megat Ahmad, Ph.D. 
Associate Professor 
Faculty of Engineering 
Universiti Putra Malaysia 
(Chairman) 

Abdel Magid Salem Hamouda, Ph.D. 
Associate Professor 
Faculty of Engineering 
Universiti Putra Malaysia 
(Member) 

Barkawi Bin Sahari, Ph.D. 
Associate Professor 
Faculty of Engineering 
Universiti Putra Malaysia 
(Member) 

Elsadig Mahdi Ahmed, Ph.D. 
Lecturer 
Faculty of Engineering 
Universiti Putra Malaysia 
(Member) 

SHAMSHER MOHAMAD RAMADILI, Ph.D, 
Professor / Deputy Dean, 
School of Graduate Studies, 
Universiti Putra Malaysia 

Date � 1 DEC 2002 

VIII 



This thesis submitted to the senate of Universiti Putra Malaysia has been accepted as 
fulfillment of the requirements for the degree of Master of Science. The members of 
the Supervisory Committee are as follows: 

Abdel Magid Salem Hamouda, Ph.D. 
Associate Professor 
Faculty of Engineering 
Universiti Putra Malaysia 
(Chairman) 

Barkawi Bin Sahari, Ph.D. 
Associate Professor 
Faculty of Engineering 
Universiti Putra Malaysia 
(Member) 

Elsadig Mahdi Ahmed, Ph.D. 
Lecturer 
Faculty of Engineering 
Universiti Putra Malaysia 
(Member) 

IX 

--���=�-�-�----�------------

AINI IDERS, Ph.D. 
Professor / Dean 
School of Graduate studies, 
Universiti Putra Malaysia 

Date: '1 3 FEB 2003 



DECLARATION 

I hereby declare that the thesis is based on my original work except for quotations 
and citations, which have been duly acknowledged. I also declare that it has not been 
previously or concurrently submitted for any other degree at UPM or other 
institutions. 

Fayiz Y. M. Abu Khadra 

Date: 2-� /12/2 ob2 

x 



TABLE OF CONTENTS 

ABSTRACT 
ABSTRAK 
ACKNOWLEDGEMENTS 
APPROVAL 
DEC LARA nON 
LIST OF TABLES 
LIST OF FIGURE 
NOMENCLA TURE 

CHAPTER 

1 INTRODUCTION 
1 . 1  Research Objectives 
1 .2 Significance of the Study 

2 LITERATURE REVIEW 
2. 1 Composite Materials 

2. 1 . 1  Glass Fiber 
2. 1 .2 Matrix Materials 
2. 1 .3 Fabrications Methods of Composite Shells 

2.3 .3 . 1  Hand Lay-up 
2 . 1 .3 .2 Filament Winding 

2.2 Mechanics of Composite Materials 
2.2. 1 Isotropic Linear Elastic Materials 
2.2 .2 Anisotropic Materials 
2.2.3 Transformation of Axes 
2 .2.4 Transformed Reduced Stiffness 
2.2.5 Classical Lamination Theory 
2.2.6 Laminate Stiffness: The ABD Matrix 

2.3 Energy Absorption in Composite Materials 
2 .3 . 1  Crashworthiness Parameters 

2 .3 . 1 . 1  Load-Carrying Capacity 
2.3 . 1 .2 Energy Absorption Capability 

2 .3 .2 Crushing Behaviour of Composite Materials and Failure 
Modes 

2.3.3 Variables Affecting the Energy Absorption Capability 
2 .3 . 3 . 1  Structural Geometry 
2 .3 .3 .2 Microstructural Variables 
2 .3 .3 .3 Loading Conditions 

2.4 Discussion 
2.5 Summary 

3 METHODOLOGY 
3 . 1  Experimental work 

3 .2 . 1  Geometry 

xi 

Page 
111 
V 
Vll 
Vlll 
X 
xv 
XVI 
XXI 

1 
3 
4 

5 
5 
5 
7 
8 
9 
9 
1 0  
10 

1 2  
14  
1 6  
1 7  
1 8  
22 
24 
25 
26 

27 
33 
33  
38 
41 
42 
43 

44 
46 
48 



3 . 3  
3 .4 

3 .2.2 Materials 
3 .2.3 Fabrication Process 
3 .2.4 Loading Conditions 
3.2 .5 Test Procedure 
Finite Element work 

Discussion 

49 
50 
52 

53 
54 

55  

4 EXPERIMENTAL WORK 56 
4.1 Axially Loaded Composite Rectangular Tubes 56 

4 . 1 . 1  Load-Displacement Relations 57 
4. 1 .2 Energy-Displacement Relations 58 
4. 1 .3 Crushing History and Failure Modes 60 
4. 1 .4 Effect of the alb Ratio on the Load Carrying Capacity of 

the Tubes 62 
4 . 1 .4. 1 Effect of the alb Ratio on the Initial Crushing 

load 62 
4. 1 .4.2 Effect of the alb ratio on the Average Crushing 

load 63 
4. 1 .5 Effect of the alb Ratio on the Energy absorption Capability 

of the Tubes 64 
4. 1 . 5 . 1  Effect of the alb Ratio on the Energy Absorbed 

in the Pre-crush Stage 64 
4.1.5 .2 Effect of Cross-sectional Aspect Ratio on the 

Total Energy Absorbed 65 
4 . 1 .5 .3  Effect of Cross-sectional Aspect Ratio on the 

Specific Energy 66 
4 . 1 .5 .4 Effect of Cross-sectional Aspect Ratio on Crush 

Force Efficiency 66 
4. 1 .5 .4 Effect of Cross-sectional Aspect Ratio on the 

Stroke Efficiency 67 
4 . 1 .6 Summary 69 
4. 1 .  7 Conclusions 69 

4.2 Laterally loaded Rectangular Tubes on the 'A' Side 70 
4.2 . 1  Load-Displacement Relations 70 
4.2.2 Energy-Displacement Relations 72 
4.2.3 Crushing History and Failure Modes 73 
4.2.4 Effect of the alb Ratio on the Load Carrying Capacity of 

the Tubes 79 
4.2.4. 1 Effect of the alb ratio on the Initial crushing load 79 
4.2.4.2 Effect of the alb ratio on the Average crushing 80 

load 
4.2.5 Effect of the alb Ratio on the Energy Absorption 80 

Capability of the Tubes 
4.2. 5 . 1  Effect of  the alb Ratio on the Total Energy 80 

Absorbed 
4.2.5.2 Effect of the alb Ratio on the Energy Absorbed 80 

in the Pre-crush Region 
4.2.5 .3 Effect of the alb Ratio on the Specific Energy 82 
4.2. 5 .4 Effect of the alb Ratio on the Crush Force 

Efficiency 

xii 

82 



4.2.6 Summary 85 
4.2.7 Conclusions 85 

4.3 Laterally loaded Rectangular Tubes on the 'B' Side 86 
4.3 . 1  Load-Displacement Relations 86 
4 .3 .2 Energy·Displacement Relations 88 
4.3 .3 Crushing History and Failure Modes 89 
4 .3 .4 Effect of the Cross-sectional Aspect Ratio on the load 

Carraying Capacity of the tubes 92 
4.3 .4 . 1  Effect of  the cross-sectional Aspect Ratio on the 92 

Initial Crushing load 
4.3.4.2 Effect of the alb ratio on the Average Crushing 93 

Load 
4 .3 .5  Effect of the Cross-sectional Aspect Ratio alb on the 94 

Energy Absorpation Capability 
4.3 .5 . 1 Effect of the alb ratio on the Total Energy 

Absorbed 94 
4.3 .5 .2 Effect of the alb Ratio on the Specific Energy 94 
4.3 .5 .3 Effect of the alb Ratio on the Crush Force 

Efficiency 96 
4.3 .6 Summary 96 
4.3 .7 Conclusions 97 

5 FINITE ELEMENT WORK 98 
5 . 1  Modelling Composite Materials Using the ANSYS Finite 98 

Element Software 
5 .2  Axially loaded Rectangular Tubes 1 0 1  

5 .2 . 1 Finite Element Model 1 0 1  
5 .2.2 Finite Element Results and Comparison with the 1 02 

Experimental Results 
5 . 3  Rectangular tubes under Lateral load on the 'A'  side 1 06 

5 .3 . 1  Finite Element Model 106 
5 .3 .2 Finite Element Results and Comparison with the 

Experimental Results 1 07 
5 .4 Rectangular tubes under Lateral load on the 'B'  side 1 1 0 

5 .4 . 1  Finite Element Model 1 1 0 
5.4.2 Finite Element Results and Comparison with the 

Experimental Results 1 1 1  
5.5 Conclusions 114 

6 OVERALL DISCUSSION 1 1 5 
6 . 1  Experimental Work 1 1 5  
6.2 Finite Element Results 1 1 7 
6 .3  Conclusion 1 1 9 

7 CONCLUSIONS AND FUTURE WORKS 120 
7. 1 Quasi-static Axial Crushing of the Rectangular Tubes 1 20 
7 .2 Quasi-static Lateral Crushing on the ' A' Side 12 1  
7 .3 Quasi-static Lateral Crushing on the 'B' Side 1 22 
7.4 Effect of the Loading Conditions 122 
7 .5 Finite Element Analysis 1 23 

XIII 



7.6 Suggestions for Further Work 

REFERENCES 

BIODATA OF THE AUTHOR 

xiv 

124 

1 26 

1 30 



LIST OF TABLES 

Table Page 

3 . 1  Description of the Woven Roving Rectangular Tubes 49 

3 .2 Specimens Identifications 52 

4. 1 Crashworthiness parameters for axially loaded tubes 69 

4.2 Crashworthniss Parameters for laterally loaded rectangular tubes 
on the 'A' side 85 

4.3 Crashworthniss parameters for laterally loaded tubes on the 'B'  
side 98 

5 . 1  Results of the FEM eigenvalue analysis for axially loaded tubes 1 03 

5.2 Results of the FEM eigenvalue analysis for laterally loaded tubes 
on the 'A side 1 08 

5 .3 Results of the FEM eigenvalue analysis for laterally loaded 
tubes on the 'B'  side 1 1 2 

xv 



LIST OF FIGURES 

Figure Page 

2. 1 Different fibre architectures 7 

2.2 An orthotropic material 12  

2.3 Rotation of axes 1 5  

2.4 Definition of force resultants Nx, Ny, and Nxy 1 9  

2.5 Definition of moment resultants Mx, My, and Mxy 20 

2.6 Laminate nomenclature 2 1  

2.7 Flow chart describe steps for a stress analysis for a composite 
laminate 23 

2.8 Schematic presentation of the load-displacement curve for 
a composite material under axial crush condition 24 

2.9 Various failures at different scales 29 

2. 1 0  Transverse shearing crushing mode 30 

2. 1 1  Lamina Bending crushing mode 31  

2. 1 2  Local buckling crushing mode 32 

2. 1 3  Various variables that influence Energy absorption capabilityof 
composite materials 34 

3. 1 Flow chart describes the methodology used in the study 45 

3.2 Flow chart describes the experimental work 47 

3.3 Cross-sectional Area 48 

3.4 Flow chart describes the fabrication process of the specimens 5 1  

3.5 Schematic presentation of the fabrication process 5 1  

3.5 Rectangular tubes with various cross-sectional aspect ratios 52 

3.6 Schematic presentation of the Loading Conditions 53 

3.7 Flow chart describes the Finite Element work 54 

XVI 



4. 1 Load-displacement relations for axially loaded rectangular tubes 
with various cross-sectional aspect ratios alb 

58 

4.2 Energy-displacement relations for axially loaded rectangular 
tubes with various cross-sectional aspect ratios alb 

59 

4.3 Typical crushing history for axially loaded tube with the cross-
sectional aspect ratio aIb=1 .0 60 

4.4 Axially crushed rectangular tubes with various cross-sectional 
aspect ratios 6 1  

4.5 Initial crushing load as a function of the cross-sectional aspect 
ratio alb axially loaded tubes 63 

4.6 Average crushing load as a function of the cross-sectional 
aspect ratio alb for axially loaded tubes 64 

4.7 Energy absorbed in the pre-crush region as a function of the 
cross-sectional aspect ratio alb for axially loaded tubes 65 

4.8 Total energy absorption as a function of the cross-sectional 
aspect ratio alb for axially loaded tubes 66 

4.9 Specific energy as a function of the cross-sectional aspect 
ratio alb for axially loaded tubes 67 

4. 1 0  Crush force efficiency as a function of the cross-sectional 
aspect ratio alb for axially loaded tubes 68 

4. 1 1  Stroke efficiency as a function of the cross-sectional aspect ratio 
alb for axially loaded tubes 68 

4. 1 2  Load-displacement curves for laterally loaded rectangular tubes 
on the 'A' side with various cross-sectional aspect ratios 7 1  

4. 1 3  Energy-displacement curves for laterally loaded rectangular 
tubes on the 'A' side with various cross-sectional aspect ratios 72 

4. 14  Crushing history for laterally loaded tube on the 'A ' side with 
the cross-sectional aspect ratio alb = 1 .0 74 

4. 1 5  Crushing history for laterally loaded tube on the 'A' side with the 
cross-sectional aspect ratio alb =1 .25 75 

4. 1 6  Crushing history for laterally loaded tube on the 'A' side with the 
cross-sectional aspect ratio alb =1.50 76 

XVII 



4. 1 7  Crushing history for lateral ly loaded tube on the 'A' side with the 
cross-sectional aspect ratio alb = 1 .  7 5 77 

4 . 1 8  Crushing history for laterally loaded tube on the 'A' side with the 
cross-sectional aspect ratio alb =2.00 78 

4 . 1 9  Initial crushing load as a function of the cross-sectional 
aspect ratio alb for laterally loaded tubes on the 'A' side 8 1  

4.20 Average crushing load as a function of the cross-sectional 
aspect ratio alb for laterally loaded tubes on the 'A' side 8 1  

4 .2 1  Total energy as a function o f  the cross-sectional aspect ratio alb 
for laterally loaded tubes on the 'A' side 83 

4 .22 Energy Absorbed in the pre-crush region as a function 
of the alb ratio for laterally loaded tubes on the ' A' side 83 

4 .23 Specific energy as a function of the cross-sectional aspect 
ratio alb for laterally loaded tubes on the 'A' side 84 

4.24 Crush force efficiency as a function of the cross- sectional 
aspect ratio alb for laterally loaded tubes on the 'A' side 84 

4.25 Load-displacement curves for laterally loaded rectangular tubes 
on the 'B' side with various cross- sectional aspect ratios alb 87 

4 .26 Energy-displacement curves for l aterally loaded rectangular 
tubes on the 'B' side with various cross-sectional aspect ratios 
alb 89 

4.27 Crushing history for laterally loaded tube on the 'B' side 
with the cross-sectional aspect ratio alb=1 .25 90 

4.28 Crushing history for laterally loaded tube on the 'B '  side 
with the cross-sectional aspect ratio alb=1 .50 90 

4 .29 Crushing history for laterally loaded tube on the 'B' side 
with the cross-sectional aspect ratio alb= 1 .  75 91 

4.30 Crushing history for laterally loaded tube on the 'B ' side 
with the cross-sectional aspect ratio alb=2.0 91  

4 .3 1 Initial crushing load as a function of the alb ratio for laterally 
loaded tubes on the 'B' side 92 

4.32 Average crushing load as a function of the alb ratio 
forlateral lyloaded tubes on the 'B' side 93 

4 .33 Total energy as a function of the alb ratio for laterally 
loaded tubes on the 'B'  side 95 

xviii 



4.34 Specific energy as a function of the alb ratio l aterally 
loaded tubes on the 'B ' side 95 

4 .35 Crush force efficiency as a function of the cross- sectional 
aspect ratio alb for laterally loaded tubes on the 'B'  side 96 

5 . 1  Shell 91  element 99 

5 .2 Flow chart describes the eigenvalue analysis using the ANSYS 
finite element program 1 00 

5 .3  Typical mesh for rectangular Tube with the cross- sectional 
aspect ratio aIb=I .OO. 1 0 1  

5.4 [0]4 Laminate 1 02 

5 . 5  Experimental deformed shape and buckl ing mode with 
stress contour for axially loaded rectangular composite tube 

with alb=l .O 1 04 

5 .6 Experimental deformed shape and buckl ing mode with stress 
contour for axially loaded rectangular composite tube with 
aIb=1 .25 1 04 

5 .7  Experimental deformed shape and buckl ing mode with stress 
contour for axially loaded rectangular composite tube with 
aIb=1 .50 1 04 

5 . 8  Experimental deformed shape and buckling mode with stress 
contour for axially loaded rectangul ar composite tubes with 
aIb=1 .75 1 05 

5 .9 Experimental deformed shape and buckl ing mode with stress 
contour for axially loaded rectangular composite tube with 
alb=2.0 105  

5 . 1 0  Experimental and FEM initial crushing load as a function 
of the cross- sectional aspect ratio alb for axially loaded tubes 1 06 

5 . 1 1 Typical mesh generation of laterally loaded rectangular 
tube with the aspect ratio alb=l.O 1 07 

5 . 1 2  Experimental and the finite element initial crushing load as a 
function of the cross-sectional aspect ratio alb for laterally loaded 
tubes on the 'A' side. 1 08  

5 . 1 3  Experimental deformed shape and buckling mode with stress 
contour for laterally loaded rectangular on the 'A' side with 
alb=1 .0 1 09 

XIX 



5.1 4 Experimental deformed shape and buckling mode with stress 
contour for laterally loaded rectangular on the 'A ' side with 
a/b=1 .25 1 09 

5 . 1 5  Experimental deformed shape and buckling mode with stress 
contour for laterally loaded rectangular on the 'A' side with 
a/b=1 .50 1 09 

5 . 1 6  Experimental deformed shape and buckl ing mode with stress 
contour for laterally loaded rectangular on the 'A' side with 
a/b=1 .75 1 1 0 

5 . 1 7  Experimental deformed shape and Buckl ing mode with stress 
contour for laterally loaded rectangular on the 'A' side with 
a/b=2.0 1 1 0 

5 . 1 8  Experimental and the finite element initial crushing load as a 
function of the cross-sect ional aspect ratio a/b for l aterally loaded 
tubes on the 'B' side. 1 1 1  

5 . 1 9  Experimental deformed shape and buckling mode with stress 
contour for lat erally loaded rectangular on the 'B' side with 
a/b=1 .25 1 1 2 

5 .20 Experimental deformed shape and buckling mode with stress 
contour for laterally loaded rectangular on the 'B' side with  
a/b=1 .50 1 1 3 

5 .21 Experimental deformed shape and buckling mode with stress 
contour for laterally loaded rectangular on the 'B' side with 
a/b= 1 .  75 1 1 3  

5 .22 Experimental deformed shape and buckl ing mode with stress 
contour for laterally loaded rectangular on the 'B' 
side with a/b=2.0 1 14 

xx 



NOMENCLATURE 

A Cross-sectional area 
alb Cross-sectional aspect ratio 
E Young's Modulus 
E1 Longitudinal Young's Modulus (direction- I )  
E2 Transverse Young's Modulus (direction-2) 
E3 Transverse Young's Modulus (direction-3) 
G 12 In-plane Shear Modulus(in the 1 -2 Planes) 
M mass 
L length 

p\ Initial crushing load 

Ji Average crushing load 

Q\J Reduced stiffnesses (i,j=I ,2,6) 

Q Transformed reduced stiffnesses (ij= 1 ,2,6) 
I) 

SIj Reduced compliances (ij=I,2,6) 

SIj Transformed reduced compliances (ij=I ,2,6) 

Nx Stress resultant in x-direction 
Ny Stress resultant in y-direction 
Nxy Shear force 
Mx Moment resultant in x-direction 
My Moment resultant in y-direction 
Mxy Moment resultant in xy-plane 
AIJ Elements of the A Matrix 
B\J Elements of the B Matrix 
D\J Elements of the D matrix 
E Total energy absorbed 
Es Specific energy absorbed 
CEF Crush force efficiency 
SE Stroke efficiency 
AX Axial loading condtions 
L TA Lateral loading condition on the 'A' side 
LTB Lateral loading condition on the 'B'  side 
t Thickness of the tube 
V f Volume fraction of fibre 
W r Weight of fibre 
W m Weight of matrix 

P Density 

Pr Density of fibre 

Pm Density of matrix 
V Volume 

XXI 



CHAPTER! 

INTRODUCTION 

Structural crashworthiness is now an essential requirement in the design of 

automobiles, rail cars and aerospace application. The structural crashworthiness 

covers the energy absorbing capability of crushing structural part as well as the 

demand to provide a protective shell around the occupants i.e. post crash structural 

integrity. 

An e nergy absorber d evice i s designed s uch t hat i n  t he e vent of crash it absorbs 

impact energy in a controlled manner, such that the net deceleration of the occupants 

of a car is less than the net deceleration above which irreversible brain damage 

occurs. 

Composite materials are found to have an energy absorption capability, structural 

weight reduction, and improved vehicle safety by higher or at least equivalent crash 

resistance compared to metallic structure. Therefore, the increasing use of composite 

material in aerospace and in automobile industries has resulted in many economical 

and technical advantages. The efficient use of energy absorbing devices made from 

composite material depends on the full understanding of the crushing behaviour of 

tubular structures. The only possible way to fully understand the crushing behaviour 

is in performing crushing tests to understand how the various variables influence the 

crushing behaviour. In a later stage the generated data can be very useful in deriving 



mathematical model s  which can describe the crushing behaviour and predict the 

energy absorbed from a tubular structure, because the development and validation of 

reliable analytical and simulation tool s for the crashworthiness studies is an 

important means of reducing development cost and tests for certifications to meet 

safety and crashworthiness requirements. 

The current research work focuses in studying the effect of the various variables, 

which influence the energy absorption capability of composite material s. Much of 

the experimental work on composite material has been carried out using axi

symmetric cylindrical tubes mainly because they are easy to fabricate and their 

geometry has proven to be one of the most favourable shapes for energy absorption. 

This geometry is self- stabilising and allows testing of relatively thin-section 

laminates. The lack of edges along its length reduces the complexity of the boundary 

conditions and provides consistency throughout the cross section. Also composite 

cones show high-energy absorption performance with the advantage of a self

triggering capabil ity. 

Limited work is available on the flat plates. A test fixture for crushing flat plate 

specimens is needed. The plate is stabil ised by steel rod that provide a simply

supported boundary condition on the sides of the specimens. Some researchers 

suggest by testing flat plate the complexity of the geometry reduced and the 

response may be more easily studied. Furthermore, the manufacturing cost of flat 

specimens is less than that of tube specimens. Using such specimens, the influence 

of the various variables on failure modes and the energy absorption performance can 

be studied. 
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Tubes of square and rectangular cross-sections tubes made of metal are frequently 

used as energy absorbing structural elements, the S-rail of an automobile is an 

example. Studies on the crushing behaviour of these tubes have been frequently 

conducted, although the use of square and rectangular tubes made of composite 

materials as an energy absorbing structural element can result in many technical and 

economical advantages. Studies on the performance of square and rectangular tubes 

made of composite material under compressive load are very scarce. Therefore, the 

main aim of the present work is to explore the response of square and rectangular 

tubes to axial and lateral compressive load. In this project the load-displacement 

response, the specific energy absorption capability, and failure mode of rectangular 

tubes will be investigated when the cross-sectional aspect ratio increases from 1 to 2 

in 0.25 increment. 

1.1 Research Objectives 

The aims of this study can be summarised as follows: 

• To study the performance of the woven roving glass/epoxy composite 

material under quasi-static compressive load. 

• To explore the behavior of the rectangular tubes under quasi-static 

compressive load. 

• To investigate the effect of the cross-sectional aspect ratio on the crushing 

behaviour of the tubes under quasi-static compressive load. 

• To study the effect of loading conditions on the crushing behaviour of the 

rectangular tubes. 
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1.2 Significance of the Study 

This study is important because of the following: 

• Tubes of square and rectangular cross-sections made of metal are frequently 

used as energy absorber elements, the use of composite tubes instead of metal 

tubes can result in much technical and economical advantage. 

• The efficient use of composite tubes as energy absorber depends on the 

understanding of their crushing behaviour. 

• The generated data from this study can be useful in the design phase of energy 

absorber elements made from composite materials. 

The remainder of this thesis is organised as follows: Chapter 2 reviews the literature 

of the fibre reinforced composite materials and studies on their use as energy 

absorption structural element. The methodology used in this study is explained in 

chapter 3 .  In chapter 4, the experimental results will be presented and discussed. In 

chapter 5 finite element results will be presented and discussed. Overall discussion is 

presented in chapter 6. Finally, the conclusion from the work and the proposal for 

future studies are listed in chapter 7. 
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