

UNIVERSITI PUTRA MALAYSIA

CRUSHING BEHAVIOUR OF WOVEN ROVING GLASS FIBRE/EPOXY LAMINATED COMPOSITE RECTANGULAR TUBES SUBJECTED TO 'QUASI-STATIC COMPRESSIVE LOAD

FAYIZ Y. M. ABU KHADRA

ITMA 2002 1

CRUSHING BEHAVIOUR OF WOVEN ROVING GLASS FIBRE/EPOXY LAMINATED COMPOSITE RECTANGULAR TUBES SUBJECTED TO QUASI-STATIC COMPRESSIVE LOAD

By

FAYIZ Y. M. ABU KHADRA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

November 2002

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

CRUSHING BEHAVIOUR OF WOVEN ROVING GLASS FIBRE/EPOXY LAMINATED COMPOSITE RECTANGULAR TUBES SUBJECTED TO QUASI-STATIC COMPRESSIVE LOAD

By

FAYIZ Y. M. ABU KHADRA

November 2002

Chairman: Associate Professor Abdel Magid Salem Hamouda, Ph.D.

Faculty: Institute of Advanced Technology

The automotive industry is exploring to adapting more fibre reinforced composite materials due to their stiffness to weight ratio. The amount of energy that a vehicle absorbs during a collision is a matter of concern to ensure safer and more reliable vehicle. The efficient use of composite material in the field of crashworthiness depends on the understanding of how a composite member absorbs and dissipates energy during the event of an impact.

An experimental and finite element investigation of the woven roving glass fibre/epoxy laminated composite rectangular tubes subjected to compressive loading were carried out under compressive loading. Through out this investigation, rectangular tubes with different cross-sectional aspect ratio varying (a/b) from 1 to 2 with 0.25 increment were investigated under axial and lateral loading conditions applied independently. The effects of increasing the cross-sectional aspect ratio on the load carrying capacity and the energy absorption capability were also presented and discussed. Finite element models to predict the load carrying capacity, failure

mechanism and stress contours at pre-crush stage of the rectangular tubes under axial and lateral loading conditions have been developed.

Experimental results show that the cross-sectional aspect ratio significantly affects the load c arrying capacity and the energy absorption capability of the tubes. The axially loaded rectangular tubes have better load carrying capacity and energy absorption capability compared to the laterally loaded rectangular tubes. The buckling failure mode has been identified for the rectangular tubes under the different loading conditions.

The developed finite element models approximately predict the initial failure load and the deformed shapes. The discrepancy between the finite element prediction and the experimental results is due to the assumption made in the finite element models and not considering the imperfection of the real tubes in the finite element models. From the experimental and finite element results 'knockdown' factors have been proposed to be used in the design phase of energy absorption elements to predict the initial failure load.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagi memenuhi keperluan untuk ijazah Master Sains

PENYIASATAN KEATAS RECTANGULAR KAPAS/EPOKSI YANG DIBAWAH BEBAN MAMPTAN PAKSI

Oleh

FAYIZ Y. M. ABU KHADRA

November 2002

Pengerusi: Profesor Madya Abdel Magid Hamouda, Ph.D.

Fakulti: Institut Teknlogi Maju

Disebakan oleh nisbah stiffnes teradap berat, industri automotif kini mencari dan mengadaptasikan kegunaan bahan komposit bergentian. Jumlah tenaga yang diserap ketika perlanggaran adalah perkara yang dititikberatkan bagi menentukan tahap keselamatan di dalam bidang ini bergantung kepada permahaman bagaimana member komposit tersebut menyerap dan menyelerakan tenaga impak.

Pada penyiasatan ini, didapati rectangular tubes dengan nisban aspek keratan rentas meliputi dari julat 1 hinnga 2 dengan 0.25 increment telah diselidiki dibawah bebanan axial dan lateral. Kesan daripada kenaikan nisbah aspek keratan rentas tersebut ialan pada kapasiti beban bawaan dan keupayaan penyerapan tenaga. Model elemen tidak terhingga digunakan untuk menganggar kapasti beban bawaan. Mekanisma kegagalan dan kontour stress didapati pada keadaan remukan rectangular tubes model.

ν

Elemen tidak terhingga yang telah di bentuk secara tepat telah mengunakan initial failure load dan kecacatan bentuk. Ketidak seragaman diantara elemen tidak terhingga dan keputsan ujikaji a dalah disebarkan dan andaian yang dibuat a dalah pada model elemen tidak terhingga dan tidak mengambil kira ketidak sempurnaan of the real tubes dalan model tersebut.

Daripada keputusan dan permodelan ini 'knockdown' faktor telan dicadangkan untuk kegunaan fasa rekabentuk keupayaan penyerapan elemen untuk menganggar kegagalan beban permulaan.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and deep thanks to my supervisor Associate Professor Dr. Abdel Magid Salem Hamouda for his kind assistance, support, advice, encouragement and suggestions throughout this work and during the preparation of this thesis.

I would like to express my appreciation to Associate Professor Dr. Barkawi Bin Sahari for his suggestions and constructive criticisms given at different stages of this study.

My heartfelt appreciation also goes to Dr. Elsadig Mahdi Ahmed for his useful ideas and critical but constructive comments to work on. Our fruitful discussion would never go unmentioned.

Finally, I would like to express my indebtedness to my family. My thank you goes especially to my father and my brother, Fawwaz, for their moral and financial support.

I certify that an Examination Committee met on 12th November 2002 to conduct the final examination of Fayiz Y. M. Abu Khadra on his Master of Science thesis entitled "Crushing Behaviour of Woven Roving Glass Fibre/Epoxy Laminated Composite Rectangular Tubes Subjected to Quasi-static Compressive Load" in accordance with Unversiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Megat Mohamad Hamdan Megat Ahmad, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Abdel Magid Salem Hamouda, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Barkawi Bin Sahari, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Elsadig Mahdi Ahmed, Ph.D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D, Professor / Deputy Dean, School of Graduate Studies, Universiti Putra Malaysia

Date **5** 1 DEC 2002

This thesis submitted to the senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Abdel Magid Salem Hamouda, Ph.D. Associate Professor

Faculty of Engineering Universiti Putra Malaysia (Chairman)

Barkawi Bin Sahari, Ph.D. Associate Professor Faculty of Engineering

Universiti Putra Malaysia (Member)

Elsadig Mahdi Ahmed, Ph.D. Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

eif

AINI IDERS, Ph.D. Professor / Dean School of Graduate studies, Universiti Putra Malaysia

Date: 13 FEB 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Fayiz Y. M. Abu Khadra Date: 27/12/2002

TABLE OF CONTENTS

Λ DSTD Λ CT	Page
	111
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xv
LIST OF FIGURE	xvi
NOMENCLATURE	xxi

CHAPTER

1	INTR	ODUC	ΓΙΟΝ	1
	1.1	Resea	rch Objectives	3
	1.2	Signif	ficance of the Study	4
2	LITE	RATUR	REREVIEW	5
	2.1	Comp	posite Materials	5
		2.1.1	Glass Fiber	5
		2.1.2	Matrix Materials	7
		2.1.3	Fabrications Methods of Composite Shells	8
			2.3.3.1 Hand Lay-up	9
			2.1.3.2 Filament Winding	9
	2.2	Mecha	anics of Composite Materials	10
		2.2.1	Isotropic Linear Elastic Materials	10
		2.2.2	Anisotropic Materials	12
		2.2.3	Transformation of Axes	14
		2.2.4	Transformed Reduced Stiffness	16
		2.2.5	Classical Lamination Theory	17
		2.2.6	Laminate Stiffness: The ABD Matrix	18
	2.3	Energ	y Absorption in Composite Materials	22
		2.3.1	Crashworthiness Parameters	24
			2.3.1.1 Load-Carrying Capacity	25
			2.3.1.2 Energy Absorption Capability	26
		2.3.2	Crushing Behaviour of Composite Materials and Failure	
			Modes	27
		2.3.3	Variables Affecting the Energy Absorption Capability	33
			2.3.3.1 Structural Geometry	33
			2.3.3.2 Microstructural Variables	38
	• •		2.3.3.3 Loading Conditions	41
	2.4	Discus	ssion	42
	2.5	Summ	ary	43
3	METH	IODOL	.OGY	44
	3.1	Experi	imental work	46
		3.2.1	Geometry	48

	3.2.2	Materia	ls	49
	3.2.3	Fabricat	tion Process	50
	3.2.4	Loading	g Conditions	52
	3.2.5	Test Pro	ocedure	53
3.3	Finite	Element	work	54
3.4	Discu	ssion		55
EVDE			ODV.	56
	Aviall	IAL WO	JKK I Composite Restancyler Tybes	56
4.1			i composite Rectangular Tubes	57
	4.1.1	Luau-D	Displacement Relations	50
	4.1.2	Crushin	Displacement Relations	50
	4.1.5	Effect o	f the a/b Patio on the Load Carrying Canacity of	00
	4.1.4	the Tub	in the abornanto on the Load Carrying Capacity of	62
			Effect of the a/b Ratio on the Initial Crushing	02
		4.1.4.1	load	62
		<i>A</i> 1 <i>A</i> 2	Effect of the a/h ratio on the Average Crushing	02
		4.1.4.2	load	63
	415	Effect o	of the a/b Ratio on the Energy absorption Canability	05
	7.1.5	of the T	ubes	64
		4151	Effect of the a/b Ratio on the Energy Absorbed	04
			in the Pre-crush Stage	64
		4152	Effect of Cross-sectional Aspect Ratio on the	01
			Total Energy Absorbed	65
		. 4.1.5.3	Effect of Cross-sectional Aspect Ratio on the	
			Specific Energy	66
		4.1.5.4	Effect of Cross-sectional Aspect Ratio on Crush	00
			Force Efficiency	66
		4.1.5.4	Effect of Cross-sectional Aspect Ratio on the	
			Stroke Efficiency	67
	4.1.6	Summar	ry	69
	4.1.7	Conclus	sions	69
4.2	Latera	lly loaded	d Rectangular Tubes on the 'A' Side	70
	4.2.1	Load-D	isplacement Relations	70
	4.2.2	Energy-	Displacement Relations	72
	4.2.3	Crushin	g History and Failure Modes	73
	4.2.4	Effect o	of the a/b Ratio on the Load Carrying Capacity of	
		the Tub	es	79
		4.2.4.1	Effect of the a/b ratio on the Initial crushing load	79
		4.2.4.2	Effect of the a/b ratio on the Average crushing	80
			load	
	4.2.5	Effect o	f the a/b Ratio on the Energy Absorption	80
		Capabil	ity of the Tubes	
		4.2.5.1	Effect of the a/b Ratio on the Total Energy	80
			Absorbed	~
		4.2.5.2	Effect of the a/b Ratio on the Energy Absorbed	80
			in the Pre-crush Region	
		4.2.5.3	Effect of the a/b Ratio on the Specific Energy	82
		4.2.5.4	Effect of the a/b Ratio on the Crush Force	
			Efficiency	82

4

		4.2.6	Summary	85
		4.2.7	Conclusions	85
	4.3	Latera	Illy loaded Rectangular Tubes on the 'B' Side	86
		4.3.1	Load-Displacement Relations	86
		4.3.2	Energy-Displacement Relations	88
		4.3.3	Crushing History and Failure Modes	89
		4.3.4	Effect of the Cross-sectional Aspect Ratio on the load	
			Carraving Capacity of the tubes	92
			4.3.4.1 Effect of the cross-sectional Aspect Ratio on the Initial Crushing load	92
			4.3.4.2 Effect of the a/b ratio on the Average Crushing Load	93
		4.3.5	Effect of the Cross-sectional Aspect Ratio a/b on the	94
			Energy Absorption Capability	
			4.3.5.1 Effect of the a/b ratio on the Total Energy	
			Absorbed	94
			4.3.5.2 Effect of the a/b Ratio on the Specific Energy	94
			4.3.5.3 Effect of the a/b Ratio on the Crush Force	
			Efficiency	96
		436	Summary	96
		4.3.0	Conclusions	07
		ч.у.т	Conordisions	71
5	FINIT	E ELEN	MENT WORK	98
	5.1	Model	lling Composite Materials Using the ANSYS Finite	98
		Eleme	nt Software	
	5.2	Axiall	v loaded Rectangular Tubes	101
		5.2.1	Finite Element Model	101
		5.2.2	Finite Element Results and Comparison with the	102
			Experimental Results	
	5.3	Rectar	ngular tubes under Lateral load on the 'A' side	106
		5.3.1	Finite Element Model	106
		5.3.2	Finite Element Results and Comparison with the	
			Experimental Results	107
	54	Rectar	agular tubes under Lateral load on the 'B' side	110
	5.1	5 4 1	Finite Flement Model	110
		542	Finite Element Results and Comparison with the	110
		5.1.2	Experimental Results	111
	5 5	Conclu	Lisions	114
	0.0	00		
6	OVEF	RALL D	ISCUSSION	115
	6.1	Experi	mental Work	115
	6.2	Finite	Element Results	117
	6.3	Conclu	usion	119
7	CONC	CLUSIO	NS AND FUTURE WORKS	120
	7.1	Quasi-	static Axial Crushing of the Rectangular Tubes	120
	7.2	Quasi-	static Lateral Crushing on the 'A' Side	121
	7.3	Quasi-	static Lateral Crushing on the 'B' Side	122
	7.4	Effect	of the Loading Conditions	122
	7.5	Finite	Element Analysis	123

7.6	Suggestions for Further Work	124
REFERENC	CES	126
BIODATA	OF THE AUTHOR	130

LIST OF TABLES

Table		Page
3.1	Description of the Woven Roving Rectangular Tubes	49
3.2	Specimens Identifications	52
4.1	Crashworthiness parameters for axially loaded tubes	69
4.2	Crashworthniss Parameters for laterally loaded rectangular tubes on the 'A' side	85
4.3	Crashworthniss parameters for laterally loaded tubes on the 'B' side	98
5.1	Results of the FEM eigenvalue analysis for axially loaded tubes	103
5.2	Results of the FEM eigenvalue analysis for laterally loaded tubes on the 'A side	108
5.3	Results of the FEM eigenvalue analysis for laterally loaded tubes on the 'B' side	112

LIST OF FIGURES

Figure		Page
2.1	Different fibre architectures	7
2.2	An orthotropic material	12
2.3	Rotation of axes	15
2.4	Definition of force resultants N_x , N_Y , and N_{xy}	19
2.5	Definition of moment resultants M_x , M_y , and M_{xy}	20
2.6	Laminate nomenclature	21
2.7	Flow chart describe steps for a stress analysis for a composite laminate	23
2.8	Schematic presentation of the load-displacement curve for a composite material under axial crush condition	24
2.9	Various failures at different scales	29
2.10	Transverse shearing crushing mode	30
2.11	Lamina Bending crushing mode	31
2.12	Local buckling crushing mode	32
2.13	Various variables that influence Energy absorption capability of composite materials	34
3.1	Flow chart describes the methodology used in the study	45
3.2	Flow chart describes the experimental work	47
3.3	Cross-sectional Area	48
3.4	Flow chart describes the fabrication process of the specimens	51
3.5	Schematic presentation of the fabrication process	51
3.5	Rectangular tubes with various cross-sectional aspect ratios	52
3.6	Schematic presentation of the Loading Conditions	53
3.7	Flow chart describes the Finite Element work	54

4.1	Load-displacement relations for axially loaded rectangular tubes with various cross-sectional aspect ratios a/b	58
4.2	Energy-displacement relations for axially loaded rectangular tubes with various cross-sectional aspect ratios a/b	59
4.3	Typical crushing history for axially loaded tube with the cross- sectional aspect ratio a/b=1.0	60
4.4	Axially crushed rectangular tubes with various cross-sectional aspect ratios	61
4.5	Initial crushing load as a function of the cross-sectional aspect ratio a/b axially loaded tubes	63
4.6	Average crushing load as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	64
4.7	Energy absorbed in the pre-crush region as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	65
4.8	Total energy absorption as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	66
4.9	Specific energy as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	67
4.10	Crush force efficiency as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	68
4.11	Stroke efficiency as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	68
4.12	Load-displacement curves for laterally loaded rectangular tubes on the 'A' side with various cross-sectional aspect ratios	71
4.13	Energy-displacement curves for laterally loaded rectangular tubes on the 'A' side with various cross-sectional aspect ratios	72
4.14	Crushing history for laterally loaded tube on the 'A' side with the cross-sectional aspect ratio $a/b = 1.0$	74
4.15	Crushing history for laterally loaded tube on the 'A' side with the cross-sectional aspect ratio $a/b = 1.25$	75
4.16	Crushing history for laterally loaded tube on the 'A' side with the cross-sectional aspect ratio $a/b = 1.50$	76

4.17	Crushing history for laterally loaded tube on the 'A' side with the cross-sectional aspect ratio $a/b = 1.75$	77
4.18	Crushing history for laterally loaded tube on the 'A' side with the cross-sectional aspect ratio $a/b = 2.00$	78
4.19	Initial crushing load as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'A' side	81
4.20	Average crushing load as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'A' side	81
4.21	Total energy as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'A' side	83
4.22	Energy Absorbed in the pre-crush region as a function of the a/b ratio for laterally loaded tubes on the 'A' side	83
4.23	Specific energy as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'A' side	84
4.24	Crush force efficiency as a function of the cross- sectional aspect ratio a/b for laterally loaded tubes on the 'A' side	84
4.25	Load-displacement curves for laterally loaded rectangular tubes on the 'B' side with various cross-sectional aspect ratios a/b	87
4.26	Energy-displacement curves for laterally loaded rectangular tubes on the 'B' side with various cross-sectional aspect ratios a/b	89
4.27	Crushing history for laterally loaded tube on the 'B' side with the cross-sectional aspect ratio a/b=1.25	90
4.28	Crushing history for laterally loaded tube on the 'B' side with the cross-sectional aspect ratio a/b=1.50	90
4.29	Crushing history for laterally loaded tube on the 'B' side with the cross-sectional aspect ratio a/b=1.75	91
4.30	Crushing history for laterally loaded tube on the 'B' side with the cross-sectional aspect ratio $a/b=2.0$	91
4.31	Initial crushing load as a function of the a/b ratio for laterally loaded tubes on the 'B' side	92
4.32	Average crushing load as a function of the a/b ratio forlaterallyloaded tubes on the 'B' side	93
4.33	Total energy as a function of the a/b ratio for laterally loaded tubes on the 'B' side	95

4.34	Specific energy as a function of the a/b ratio laterally loaded tubes on the 'B' side	95
4.35	Crush force efficiency as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'B' side	96
5.1	Shell 91 element	99
5.2	Flow chart describes the eigenvalue analysis using the ANSYS finite element program	100
5.3	Typical mesh for rectangular Tube with the cross- sectional aspect ratio a/b=1.00.	101
5.4	[0] ₄ Laminate	102
5.5	Experimental deformed shape and buckling mode with stress contour for axially loaded rectangular composite tube with a/b=1.0	104
5.6	Experimental deformed shape and buckling mode with stress contour for axially loaded rectangular composite tube with $a/b=1.25$	104
5.7	Experimental deformed shape and buckling mode with stress contour for axially loaded rectangular composite tube with $a/b=1.50$	104
5.8	Experimental deformed shape and buckling mode with stress contour for axially loaded rectangular composite tubes with $a/b=1.75$	105
5.9	Experimental deformed shape and buckling mode with stress contour for axially loaded rectangular composite tube with a/b=2.0	105
5.10	Experimental and FEM initial crushing load as a function of the cross-sectional aspect ratio a/b for axially loaded tubes	106
5.11	Typical mesh generation of laterally loaded rectangular tube with the aspect ratio a/b=1.0	107
5.12	Experimental and the finite element initial crushing load as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'A' side.	108
5.13	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'A' side with $a/b=1.0$	109

5.14	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'A 'side with a/b=1.25	109
5.15	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'A' side with $a/b=1.50$	109
5.16	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'A' side with $a/b=1.75$	110
5.17	Experimental deformed shape and Buckling mode with stress contour for laterally loaded rectangular on the 'A' side with a/b=2.0	110
5.18	Experimental and the finite element initial crushing load as a function of the cross-sectional aspect ratio a/b for laterally loaded tubes on the 'B' side.	111
5.19	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'B' side with a/b=1.25	112
5.20	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'B' side with $a/b=1.50$	113
5.21	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'B' side with $a/b=1.75$	113
5.22	Experimental deformed shape and buckling mode with stress contour for laterally loaded rectangular on the 'B' side with $a/b=2.0$	114

NOMENCLATURE

А	Cross-sectional area
a/b	Cross-sectional aspect ratio
E	Young's Modulus
E_1	Longitudinal Young's Modulus (direction-1)
E ₂	Transverse Young's Modulus (direction-2)
E ₃	Transverse Young's Modulus (direction-3)
G12	In-plane Shear Modulus(in the 1-2 Planes)
Μ	mass
L	length
P ₁	Initial crushing load
\overline{P}	Average crushing load
Qu	Reduced stiffnesses $(i,j=1,2,6)$
\overline{Q}_{y}	Transformed reduced stiffnesses (i,j=1,2,6)
S_y	Reduced compliances (i,j=1,2,6)
\overline{S}_{y}	Transformed reduced compliances $(i,j=1,2,6)$
Nx	Stress resultant in x-direction
Ny	Stress resultant in y-direction
N _{xy}	Shear force
M_{x}	Moment resultant in x-direction
My	Moment resultant in y-direction
Mxy	Moment resultant in xy-plane
A _{ıj}	Elements of the A Matrix
B _{ıj}	Elements of the B Matrix
D_{ij}	Elements of the D matrix
E	Total energy absorbed
Es	Specific energy absorbed
CEF	Crush force efficiency
SE	Stroke efficiency
AX	Axial loading condtions
LTA	Lateral loading condition on the 'A' side
LTB	Lateral loading condition on the 'B' side
t	Thickness of the tube
V_{f}	Volume fraction of fibre
Wf	Weight of fibre
Wm	Weight of matrix
ρ	Density
ρ _f	Density of fibre
ρ_m	Density of matrix
V	Volume

CHAPTER 1

INTRODUCTION

Structural crashworthiness is now an essential requirement in the design of automobiles, rail cars and aerospace application. The structural crashworthiness covers the energy absorbing capability of crushing structural part as well as the demand to provide a protective shell around the occupants i.e. post crash structural integrity.

An energy absorber device is designed such that in the event of crash it absorbs impact energy in a controlled manner, such that the net deceleration of the occupants of a car is less than the net deceleration above which irreversible brain damage occurs.

Composite materials are found to have an energy absorption capability, structural weight reduction, and improved vehicle safety by higher or at least equivalent crash resistance compared to metallic structure. Therefore, the increasing use of composite material in aerospace and in automobile industries has resulted in many economical and technical advantages. The efficient use of energy absorbing devices made from composite material depends on the full understanding of the crushing behaviour of tubular structures. The only possible way to fully understand the crushing behaviour is in performing crushing tests to understand how the various variables influence the crushing behaviour. In a later stage the generated data can be very useful in deriving

mathematical models which can describe the crushing behaviour and predict the energy absorbed from a tubular structure, because the development and validation of reliable analytical and simulation tools for the crashworthiness studies is an important means of reducing development cost and tests for certifications to meet safety and crashworthiness requirements.

The current research work focuses in studying the effect of the various variables, which influence the energy absorption capability of composite materials. Much of the experimental work on composite material has been carried out using axisymmetric cylindrical tubes mainly because they are easy to fabricate and their geometry has proven to be one of the most favourable shapes for energy absorption. This geometry is self-stabilising and allows testing of relatively thin-section laminates. The lack of edges along its length reduces the complexity of the boundary conditions and provides consistency throughout the cross section. Also composite cones show high-energy absorption performance with the advantage of a selftriggering capability.

Limited work is available on the flat plates. A test fixture for crushing flat plate specimens is needed. The plate is stabilised by steel rod that provide a simplysupported boundary condition on the sides of the specimens. Some researchers suggest by testing flat plate the complexity of the geometry reduced and the response may be more easily studied. Furthermore, the manufacturing cost of flat specimens is less than that of tube specimens. Using such specimens, the influence of the various variables on failure modes and the energy absorption performance can be studied.

Tubes of square and rectangular cross-sections tubes made of metal are frequently used as energy absorbing structural elements, the S-rail of an automobile is an example. Studies on the crushing behaviour of these tubes have been frequently conducted, although the use of square and rectangular tubes made of composite materials as an energy absorbing structural element can result in many technical and economical advantages. Studies on the performance of square and rectangular tubes made of composite material under compressive load are very scarce. Therefore, the main aim of the present work is to explore the response of square and rectangular tubes to axial and lateral compressive load. In this project the load-displacement response, the specific energy absorption capability, and failure mode of rectangular tubes will be investigated when the cross-sectional aspect ratio increases from 1 to 2 in 0.25 increment.

1.1 Research Objectives

The aims of this study can be summarised as follows:

- To study the performance of the woven roving glass/epoxy composite material under quasi-static compressive load.
- To explore the behavior of the rectangular tubes under quasi-static compressive load.
- To investigate the effect of the cross-sectional aspect ratio on the crushing behaviour of the tubes under quasi-static compressive load.
- To study the effect of loading conditions on the crushing behaviour of the rectangular tubes.

1.2 Significance of the Study

This study is important because of the following:

- Tubes of square and rectangular cross-sections made of metal are frequently used as energy absorber elements, the use of composite tubes instead of metal tubes can result in much technical and economical advantage.
- The efficient use of composite tubes as energy absorber depends on the understanding of their crushing behaviour.
- The generated data from this study can be useful in the design phase of energy absorber elements made from composite materials.

The remainder of this thesis is organised as follows: Chapter 2 reviews the literature of the fibre reinforced composite materials and studies on their use as energy absorption structural element. The methodology used in this study is explained in chapter 3. In chapter 4, the experimental results will be presented and discussed. In chapter 5 finite element results will be presented and discussed. Overall discussion is presented in chapter 6. Finally, the conclusion from the work and the proposal for future studies are listed in chapter 7.

