

UNIVERSITI PUTRA MALAYSIA

PERFORMANCE OF SOLVENT (ACETONE-BUTANOL-ETHANOL) FERMENTATION BY CLOSTRIDWMSACCHAROBUTYL/CUM STRAIN P262 AND NCIMB8052 USING FREE AND IMMOBILIZED CELLS SYSTEM

By

NOR SUHAILA BINTI YAACOB

Thesis Submitted to the School of Graduate Studies, in Fulfillment of the Requirements for the Degree of Master of Science

June 2003

IB 2003 1

PERFORMANCE OF SOLVENT (ACETONE-BUTANOL-ETHANOL) FERMENTATION BY *CLOSTRIDIUM SACCHAROBUTYLICUM* STRAIN P262 AND NCIMB8052 USING FREE AND IMMOBILIZED CELLS SYSTEM

By

NOR SUHAILA BINTI YAACOB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

June 2003

Specially dedicated to my most beloved parents

Yaacob Othman and Dzaharah Faridah.

Your care, support and endless love "My success is only for you"

I never know what the future brings but I know you are here with me We'll make it through....

To all my Family

With you I have the strength to stand at all....

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in the fulfilment of the requirement of the Degree of Master Science

PERFORMANCE OF SOLVENT (ACETONE-BUTANOL-ETHANOL) FERMENTATION BY *CLOSTRIDIUM SACCHAROBUTYLICUM* STRAIN P262 AND NCIMB8052 USING FREE AND IMMOBILIZED CELLS SYSTEM

By

NOR SUHAILA BINTI YAACOB

June 2003

Chairman: Associates Profesor Arbakariya Ariff, Ph.D.

Institute: Bioscience

The performance of solvent (Acetone-butanol-ethanol) fermentation by two strains of *Clostridium saccharobutylicum* (P262 and NCIMB8052) were studied using different sizes of bioreactor (28 mL McCartney bottle, 0.5 L and 2 L stirred tank fermenter). The fermentations were carried out with batch process using freely suspended cells and immobilized cells system. Immobilization of cells was carried out, passively, using cubes of polyurethane foam as biomass support particles (BSP). To study the efficiency of cell immobilization, the variables investigated include pore size of BSP. BSP number and BSP size. The effect of chemical pretreatment on the efficiency of cell immobilization using BSP was investigated using activated carbon (charcoal) and glutaraldehyde. Among the chemical pretreatment applied to the BSP were 4% activated charcoal and 25% glutaraldehyde.

The size of bioreactor gave a significance influence on solvent fermentation performance by both solvent-producing strains. The highest production of total solvent (10.86 g/L) and (8.23 g/L) by strain P262 and NCIMB8052 was obtained in 2 L fermenter using 50 g/L glucose. respectively. In 0.5 L fermenter, production of total solvent was reduced to 7.99 g/L and 7.17 g/L for strain P262 and NCIMB8052, respectively. Further reduction of total solvent was observed in fermentation using 28 mL McCartney bottle. Reduction of solvent production was found to be associated with the activity of proteolytic enzyme (protease) detected in the culture during the fermentation. This proteolytic enzyme may be responsible in the degradation of enzyme involved in solvent fermentation, which in turn reduced solvent production significantly.

Among the different types of starch investigated, corn starch was the most susceptible to solvent production (15.67 g/L) by strain P262 followed by sago starch (14.54 g/L), rice (10.21 g/L), tapioca (8.84 g/L) and potato (8.66 g/L). In subsequent experiment to investigate the effect of sago starch concentration (10-80 g/L) on the performance of solvent fermentation, it was found that the highest solvent production (13.81 g/L) was obtained at 50 g/L sago starch. For fermentation using sago starch, the use of 2 L fermenter enhanced the solvent production by about 1.5 times higher as compared to 0.5 L fermenter (13.16 g/L). though the activity of amylolytic enzyme secreted did not significantly differ. When sago starch was used as a carbon source, very low solvent production (12.49 g/L-16.87 g/L) was obtained in all fermentations using strain NCIMB8052.

The highest efficiency of immobilization of cells of *C. saccharobutylicum* strain P262 and NCIMB8052 was achieved by using 15 units/28 mI culture medium of 1 cm³ BSP having 60 ppi. The BSP pretreated with 4% activated charcoal increased the efficiency of cell immobilization significantly as compared to untreated BSP. On the other hand, BSP treated with glutaraldehyde was not singnificantly different as compared to untreated BSP. Fermentation using immobilized cells of strain P262 gave higher solvent production (19.86 g/L) than that obtained in fermentation using free cell (8.851 g/L). In addition, solvent production in fermentation using immobilized cells of strain P262 was higher as compared to fermentation using immobilized cells of NCIMB8052.

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memunuhi keperluan untuk ijazah Master Sains

PERLAKSANAAN FERMENTASI PELARUT (ACETON-BUTANOL-ETHANOL) OLEH *CLOSTRIDIUM SACCHAROBUTYLICUM* STRAIN P262 DAN NCIMB8052 MENGGUNAKAN SEL BEBAS DAN SISTEM SEL YANG DISEKATGERAK

Oleh

NOR SUHAILA BINTI YAACOB

Jun 2003

Pengerusi: Profesor Madya Arbakariya Ariff, Ph.D.

Institut: Biosains

Perlaksanaan fermentasi pelarut (Acetone-butanol-ethanol) oleh dua strain *C. saccharobutylicum* (P262 and NCIMB8052) dikaji menggunakan saiz bioreaktor yang berlainan (28 mL, 0.5 L dan 2 L fermenter yang berpengaduk). Fermentasi ini dijalankan secara proses sesekelompok menggunakan sel bebas dan sistem sel yang disekat gerak. Sel disekat gerak secara pasif menggunakan kiub span polyurethane sebagai partikel penyokong biojisim (BSP). Untuk mengkaji kecekapan sel yang disekat gerak, pembolehubah yang dikaji termasuklah saiz liang BSP, bil BSP dan saiz BSP. Kesan prarawatan kimia ke atas kecekapan sel disekat gerak menggunakan BSP dikaji menggunakan karbon yang diaktifkan (arang) dan glutaraldehyde. Di antara prarawatan kimia yang digunakan ke atas BSP adalah 4% arang yang diaktifkan dan 25% glutaraldehyde.

Saiz bioreactor memberikan pengaruh yang penting ke atas perlaksanaan fermentasi pelarut oleh kedua-dua strain penghasil pelarut. Penghasilan jumlah pelarut yang paling tinggi (10.86 g/L) dan (8.23 g/L) oleh strain P262 and NCIMB8052 didapati di dalam fermenter 2 L menggunakan 50 g/L glukosa. masing-masing. Di dalam fermenter 0.5 L, penghasilan jumlah pelarut berkurang kepada 7.99 g/L and 7.17 g/L bagi strain P262 and NCIMB8052, masing-masing. Penurunan jumlah pelarut seterusnya didapati di dalam fermentasi menggunakan 28 mL botol McCartney. Penurunan penghasilan pelarut didapati bergantung kepada aktiviti enzim proteolitik (protease) yang dikesan di dalam kultur semasa fermentasi. Enzim proteolitik mungkin bertanggungjawab di dalam penguraian enzim yang terlibat di dalam fermentasi pelarut, yang seterusnya akan menurunkan kadar penghasilan pelarut secara bekadaran.

Diantara jenis kanji berlainan yang dikaji. Kanji jagung adalah yang paling diterima untuk penghasilan pelarut (15.67 g/L) oleh strain P262 diikuti dengan kanji sagu (14.54 g/L), nasi (10.21 g/L), ubikayu (8.84 g/L) dan kentang (8.66 g/L). Di dalam ujikaji yang seterusnya untuk mengkaji kesan kepekatan kanji sago (10-80 g/L) di dalam perlaksanaan fermentasi pelarut. adalah didapati penghasilan pelarut yang paling tinggi (13.81 g/L) adalah didapati apabila 50 g/L kanji sagu digunakan. Untuk fermentasi menggunakan kanji sago, penggunaan 2 L fermenter menggalakkan penghasilan pelarut sehingga 1.5 kali lebih tinggi berbanding 0.5 L fermenter (13.16 g/L), meskipun begitu aktiviti enzim amilolitik yang dirembeskan adalah tidak banyak berbeza. Apabila kanji sago digunakan sebagai sumber karbon, penghasilan pelarut adalah sangat rendah (12.49 g/L-16.87 g/L) di dapati di dalam semua proses fermentasi menggunakan strain NCIMB8052.

Kecekapan *C. saccharohutylicum* strain P262 dan NCIMB8052 yang disekat gerak adalah paling tinggi apabila menggunakan 15 unit/28 mL kultur medium, dengan saiz BSP 1 cm³ dan mempunyai 60 ppi. Prarawatan BSP dengan 4% arang yang diaktifkan meningkatkan kecekapan kadar sekat gerak sel berbanding dengan BSP yang tidak dirawat. Dengan kata lain, BSP yang dirawat dengan glutaraldehyde adalah tidak jauh berbeza berbanding BSP yang tidak dirawat. Fermentasi menggunakan sel P262 yang disekat gerak menghasilkan jumlah pelarut yang tinggi (19.86 g/L) berbanding yang diperolehi di dalam fermentasi menggunakan strain P262 yang disekat gerak adalah lebih tinggi berbanding fermentasi menggunakan strain NCIMB8052 yang disekat gerak.

ACKNOWLEDGEMENTS

All praise to Allah S.W.T. who has guide my safely, through every mile, grant me wealth, give me health and most of all give me care and love me well. I thank Allah S.W.T for giving me the strength to finished my study

I would like to express my sincere appreciation and deepest gratitude to my supervisor, Associated Professor Dr. Arbakariya Ariff for his invaluable guidance, never ending patient, kind and suggestions during the course of this study. My deep appreciation is also extent to the members of my supervisory committee, Dr Hirzun Mohd Yusof and Professor Dr Mohamed Ismail Abdul Karim for their constructive criticims, guidance and suggestions that have been a great help.

I also like to express my gratitude and thankfulness to staff Bioprocess and Fermentation Technology Laboratory, Mr Rosli Aslim, Mrs Aluyah, Mrs Latifah and Mrs Renuga for their assistance throughout my study. Thanks also extended to Universiti Putra Malaysia for 3 years Graduate Research Assistant (GRA) sponsorship offered. To Azizul, kak Madihah and Kak Rosfarizan, thanks for a kind and helps during my study. Sincere appreciation are also extended to Senior Research Officer. Malaysian Palm Oil Board (MPOB) Dr Siti Ramlah Ahmad Ali and staff at Entomology 2 for being so understanding and giving me a lot of chances and advices to complete my thesis.

Special thanks goes to my friend, Norrizan, Julia, Bazli, Mai, Anizam, Yan and Ayan for their kind, patience and for sacrificing their sleeping hours

while accompany me to stay overnight in the laboratory for sampling and working with GC and HPLC. My thankful also extended to my friend at Fermentation Technology Unit, IBS especially Fidh, Kak Nurul, Kak Ina, Sobri, Musa, and Oii. Their friendship we've shared together is highly appreciated. Special heartfelt appreciation is due to Shukrie, for a lot of help during my master study. Your care and support beyond words that cheerful my life.

Finally, I would like to express my highest gratitude to my parent for their enormous support, indebtedness, patience and endless love. You always there for me during my difficult time. Without you I wouldn't be who I am today. My deepest appreciation is recorded to my sister, Nora, Suzi and my brother, Amy for continuous support, encouragement and sacrifies that given during the period of this study. To my lovely niece and nephew, Memey, Fareez and Aiman, you always brighten my days.

Last but not least, special thanks goes to my bacteria, *Clostridium saccharobutylicum* that sometime make me in trouble. Thank you for your special behaviour.

I certify that an Examination Committee met on 12th June 2003 to conduct the final examination of Nor Suhaila binti Yaacob on her Master of Science thesis entitled "Performance of Solvent (Acetone-Butanol-Ethanol) Fermentation by *Clostridium saccharobutylicum* Strain P262 and NCIMB8052 Using Free and Immobilized Cells System" in accordance with the Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

RAHA ABDUL RAHIM, Ph.D.

Associate Professor Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Chairperson)

ARBAKARIYA ARIFF, Ph.D.

Associate Professor Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

MOHAMMED ISMAIL ABDUL KARIM, Ph.D.

Professor Institute of Bioscience Universiti Putra Malaysia (Member)

HIRZUN MOHD YUSOFF, Ph.D.

Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

GULAM RUSUL PAHMAT ALI, Ph.D. Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 1 1 AUG 2003

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

ARBAKARIYA ARIFF, Ph.D.

Associate Professor Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Chairman)

MOHAMMED ISMAIL ABDUL KARIM, Ph.D.

Professor Institute of Bioscience Universiti Putra Malaysia (Member)

HIRZUN MOHD YUSOFF, Ph.D.

Department of Biotechnology Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

e. J

AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12 SEP 2003

DECLARATION

I hereby declare that the thesis is based on my original work expect for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other at UPM or other institutions.

Nor Suhaila Yaacob

Date : 25 A46 2003

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL SHEETS	xi
DECLARATION FORM	xiii
TABLE OF CONTENTS	xiv
LIST OF TABLES	xviii
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	xxiv

CHAPTER

I	INTRODUCTION	1
2	LITERATURE REVIEW	5
	2.1 Microorganism	5
	2.1.1 Clostridium Species	5
	2.2 Application of Acetone-Butanol-Ethanol (ABE)	7
	2.3 Biochemistry and Physiology of ABE Fermentation	10
	2.3.1 Acid-producing Pathway	12
	2.3.2 Solvent-producing Pathway	13
	2.4 Effect of Cultural Conditions on ABE Production	15
	2.4.1 Effect of Temperature	15
	2.4.2 Effect of pH	16
	2.4.3 Effect of Oxygen	18
	2.5 Effect of Medium Composition on ABE Production	19
	2.5.1 Effect of Carbon Sources	19
	2.5.2 Effect of Nitrogen Sources	23
	2.6 Fermentation Techniques	24
	2.6.1 Batch Culture	24
	2.6.2 Continuous Culture	28
	2.6.3 Immobilized Cell Systems	31
	2.6.3.1 Immobilization of Cells	31
	2.6.3.2 Support Material	32
	2.6.3.3 Production of ABE using immobilized	
	microorganisms	34
	2.7 The Use of Starch as Carbon Sources in Acetone-Butanol-Ethanol	
	Production	36
	2.7.1 Starch	38
	2.7.1.1 Amylose	41
	2.7.1.2 Amylopectin	42
	2.7.1.3 α -amylase (endo-amylase)	43
	2.7.1.4 Glucoamylase (exo-amylase)	44
	2.7.1.5 Protease	46

Х	v

2		17
د	GENERAL MATERIALS AND METHODS	47
	3.1 Microorganism and the Mannehance 3.2 Madium Composition for Acatona Butanol Ethanol Formantation	47
	3.2 Medium Composition for Accione-Dutanor-Ethanor rementation	49
	3.2.2 Preculture Medium	49
	3.3 General Technique for Penaration of Strict Anerobic Medium	77
	in Air-Tight Bottle	51
	3.4 Experimental Design	53
	3.5 Fermenter	56
	3.5.1 Batch Culture	60
	3.6 Analytical Procedure	63
	3.6.1 Determination of Solvents (ABE)	63
	3.6.2 Determination of Organic acid (Acetic and Butyric)	64
	3.6.3 Cell Concentration	64
	3.6.3.1 Biomass Determination	64
	3.6.3.1.1 Dry Cell Weight of Free Cells	64
	3.6.3.1.2 Dry Cell Weight of Immobilized Cells	65
	3.6.4 Determination of Glucose	65
	3.6.5 Determination of Starch Concentration	67
	3.6.6 Extracellular Enzyme Assay	67
	3.6.6.1 Quantitative Analysis of α -amylase	67
	3.6.6.2 Quantitative Analysis of Glucoamylase	68
	3.6.6.3 Quantitative Analysis of Protease	69
4	THE PERFORMANCE OF SOLVENT (ACETONE-BUTANOL-	
,	FTHANOL) FERMENTATION BY TWO STRAINS OF	
	<i>C</i> saccharobutylicum IN DIFFERENT SIZES OF FERMENTER	70
	4.1 Introduction	70
	4.2 Materials and Methods	71
	4.2.1 Inoculum Preparation	71
	4.2.2 Medium	71
	4.2.3 Fermentation	72
	4.2.4 Assays	73
	4.3 Result and Discussion	
	4.3.1 Batch Fermentation Using 28 mL McCartney Bottle	74
	4.3.2 Batch Fermentation Using 0.5 L Stirred Tank Fermenter	79
	4.3.3 Batch Fermentation Using 2 L Stirred Tank Fermenter	83
	4.3.4 Effect of Protease Activity on the Performance of	
	Solvent Fermentation	87
	4.4 Conclusion	91

94
94
96
96
96
•

	520	5.2.3 Fermentation 5.2.4 Assays	97 98
	5.3 R	 5.3.1 Effect of Different Types of Starches 5.3.2 Effect of Sago Starch Concentration 5.3.3 Batch Fermentation in Two Different Sizes of Fermenter 	99 104
	5.4 C	Using Starch as Carbon Sources onclusion	109 117
6.	IMMO NCIM USEI 6.1 In 6.2 M	 OBILIZATION OF Clostridium saccharobutylicum P262 AND M88052 USING POL YURETHANE FOAM FOR SUBSEQUENT D IN ACETONE-BUTANOL-ETHANOL (ABE) PRODUCTION troduction laterials and Methods 6.2.1 Microorganisms and Medium 6.2.2 Immobilization Procedure 6.2.2.1 Immobilization of <i>C. saccharobutylicum</i> on Glutaraldehyde-treated Polyurethane Foam 6.2.2.2 Immobilization of <i>C. saccharobutylicum</i> on 4% Activated Charcoal-treated Polyurethane Foam 6.2.3 Fermentation 6.2.3 Immobilized Fermentation 6.2.4 Assays esults and Discussion 6.3.1 The Pretreatment of Biomass Support Particles (BSP): Polyurethane Foam for Subsequent Used as Immobilized Support in Acetone-Butanol-Ethanol (ABE) Production 6.3.1.1 Effect of Different Pore Sizes of Polyurethane Foa on the Efficiency of Immobilized <i>C.</i> <i>saccharobutylicum</i> P262 and NCIMB8052. 6.3.1.2 Effect on Different Chemical Pretreatment and B Sizes on the Efficiency of Immobilized <i>C.</i> <i>saccharobutylicum</i> P262 and NCIMB8052. 6.3.1.3 Effect of BSP Number (Treated with Activated Charcoal) on the Efficiency of Immobilized <i>C.</i> <i>saccharobutylicum</i> P262 and NCIMB8052. 6.3.2 ABE Fermentation by <i>C. saccharobutylicum</i> P262 and NCIMB8052. 6.3.2.1 Cell Growth and Glucose Consumption 6.3.2.2 Solvent Production by <i>C. saccharobutylicum</i> Strain P262 and NCIMB8052 (Immobilized Cell) 6.3.3 Acetone-Butanol-Ethanol Fermentation in Freely Suspended Culture of <i>C. saccharobutylicum</i> Strain P262 and NCIMB8052 (Immobilized Cell) 6.3.4 Cell Growth and Glucose Consumption 6.3.2.1 Cell Growth and Glucose Consumption 6.3.2.2 Solvent Production by <i>C. saccharobutylicum</i> Strain P262 and NCIMB8052 (Immobilized Cell) 	118 118 119 119 119 120 121 121 121 122 123 50 123 50 125 128 128 128 131 131 131 137 146 146
		6.3.3.1 Cell Growth and Glucose Consumption 6.3.3.2 Solvent Production by <i>C. saccharobutylicum</i> Stra	146 ain
	63	P262 and NCIMB8052 (Free Cell)	147
	0.5	Conclusion	133

7	GENERAL CONCLUSION AND SUGGESTIONS FOR FURTHER WORK	154
	REFERENCES APPENDICES BIOGRAPHICAL SKETCH	158 172 178

LIST OF TABLES

Table	Page
1. Classification of Clostridium Species	6
2. Application of Acetone-Butanol-Ethanol (ABE)	9
3. Culture pH for Solvent Fermentation by Clostridium Species	17
4. Possible Raw Materials for the Solvent Fermentation by C. acetobutytlicum	22
5. Support Material Used in Immobilization of Clostridium Species	34
6. Production of Solvent by Immobilized Viables Cell	35
7. The Used of Starch as Carbon Source in Solvent and Enzyme Production	38
8. The Composition (%) of Various Starches	39
9. Composition of Reinforced Clostridial Medium (RCM)	49
10. Composition of Preculture Medium	50
11. The Vitamin Used for the Formulation of Medium in ABE Fermentation	50
12. Dimension and Operating Variables for the Two Different Sizes of Stirred Tank Fermenter	60
13. Comparison of the Performance of ABE Fermentation in Batch Culture of C saccharobutylicum Strain P262 and NCIMB8052 Using 50 g/L Glucose at 180 rpm Agitation Speed	2. 77
14. Comparison of the Performance of Direct Fermentation of Different Starches into Solvent by <i>C. saccharobutylicum</i> P262 Which also Include Data for Fermentation Using Glucose (50 g/L carbon sources)	102
15. Comparison of the Performance of Direct Fermentation of Different Starches into Solvent by <i>C. saccharobutylicum</i> NCIMB8052 Which Also Include Data for Fermentation Using Glucose (50 g/L carbon sources)	105
16. Comparison of the Performance of Direct Fermentation of Different Sago Starch Concentrations to Solvent by <i>C. saccharobutylicum</i> P262	108
 Comparison of the Performance of Direct Fermentation of Different Sago Starch Concentrations to Solvent by C. saccharobutylicum NCIMB8052 	110

 Comparison of the Performance of Direct Fermentation of Sago Starch into Solvent by C. saccharobutylicum P262 and NCIMB8052 Using Different Sizes of Stirred Tank Fermenter. 	115
 Comparison of Results for Cell Immobilization of Two C. saccharobutylicum Strain Using Different Chemical Treatment and BSP Size. McCartney Bottle Experiment. Incubation 10 Days, 37°C. Inoculum 10% 	128
20. Glucose Consumption by <i>C. saccharobutylicum</i> cells (P262) in McCartney Bottle Experiments in the Presence of BSPs. Incubation 7 Days; 50 rpm.	132
 Glucose Consumption by C. saccharobutylicum Cells (P262) in McCartney Bottle Experiments in the Presence of BSPs. Incubation 7 Days; Static Condition. 	132
22. Glucose Consumption by <i>C. saccharobutylicum</i> Cells (NCIMB8052) in McCartney Bottle Experiments in the Presence of BSPs. Incubation 7 Days; 50 rpm.	133
23. Glucose Consumption by <i>C. saccharobutylicum</i> Cells (NCIMB8052) in McCartney Bottle Experiments in the Presence of BSPs. Incubation 7 Days; Static Condition.	133
24. Cell Growth (Dry Weight) of <i>C. saccharobutylicum</i> cells (P262) Inside 15 unit of BSPs (0.349 g) and Outside the Particles. McCartney Bottle Experiments. Incubation: 7 Days, 50 rpm. Total Glucose: 30g/L	134
 25. Cell Growth (Dry Weight) of <i>C. saccharobutylicum</i> cells (P262) Inside 15 unit of BSPs (0.349 g) and Outside the Particles. McCartney Bottle Experiments. Incubation: 7 Days, Static. Total Glucose: 30 g/L 	134
26. Cell Growth (Dry Weight) of <i>C. saccharobutylicum</i> Cells (NCIMB8052) Inside 15 unit of BSPs (0.349 g) and outside the particles. McCartney Bottle Experiments. Incubation: 7 Days, 50 rpm. Total Glucose: 30 g/L	136
 27. Cell Growth (Dry Weight) of <i>C. saccharobutylicum</i> Cells (NCIMB8052) Inside 15 unit of BSPs (0.349 g) and Outside the Particles. McCartney Bottle Experiments. Incubation: 7 Days. Static. Total Glucose: 30 g/L 	136
 28. Glucose Consumption by Free Cells of <i>C. saccharobutylicum</i> Cells (Strain P262) in McCartney Bottle Experiments. Incubation: 7 Days; Static Condition, pH 6. 	148

 Glucose Consumption by Free Cells of C. saccharobutylicum Cells (Strain NCIMB8052) in McCartney Bottle Experiments. Incubation: 7 Days: Static Condition, pH 6. 	148
 Cell Concentration (Dry Weight) of Free Cell of C. saccharohutylicum (Strain P262) in McCartney Bottle Experiments. Incubation: 7 Days, Static Condition, pH 6. 	149
 31. Cell Concentration (Dry Weight) of Free Cell of C. saccharobutylicum (Strain NCIMB8052) in McCartney Bottle Experiments. Incubation: 7 Days, Static Condition, pH 6. 	149

LIST OF FIGURES

Fig	Figures	
1.	Biochemical Pathway for Conversion of Sugar into Organic Solvents by C. saccharobutylicum	11
2.	Typical Example of Time Course of Batch solvent Fermentation	27
3.	Time Course of Continuous Culture for Solvent Production	29
4.	The Use of Enzyme in Starch Processing	40
5.	Amylose Structure Molecules	41
6.	Amylopectine Sturcture Molecules	42
7.	The Culture of C. saccharobutylicum in RCM Medium	48
8.	Photograph of C. saccharobutylicum taken Using Light Microscope (x 100)	48
9.	Apparatus for Deoxygenating the Medium	51
10	. Preparation of Strictly Anaerobic Medium	52
11.	Flow Diagram of the Experimental Work	54
12.	. 2 L Stirred Tank Fermenter	57
13.	0.5 L Stirred Tank Fermenter	58
14	. Schematic Diagram of Stirred Tank Bioreactor	59
15.	. Batch Culture of ABE Fermentation	61
16	Glucose Enzymatic Reaction	66
17.	A Typical Time Course of Solvent Fermentation by <i>C. saccharobutylicum</i> Strain P262 Using Glucose as a Carbon Source in 28 mL McCartney Bottle. The initial pH was 6.5.	75
18.	A Typical Time Course of Solvent Fermentation by <i>C. saccharobutylicum</i> Strain NCIMB 8052Uusing Glucose as a Carbon Source in 28 mL McCartney Bottle. The initial pH was 6.5.	76
19.	A Typical Time Course of Solvent Fermentation by <i>C. saccharobutylicum</i> Strain P262 using Glucose as a Carbon Source using in 0.5 L Stirred Tank Fermenter. The initial pH was 6.5.	80

20. A Typical Time Course of Solvent Fermentation by <i>C. saccharobutylicum</i> Strain NCIMB8052 using Glucose as a Carbon Source in 0.5 L Stirred Tank Fermenter The initial pH was 6.5.	81
21. A Typical Time Course of Solvent Fermentation by <i>C. saccharobutylicum</i> Strain P262 Using Glucose as a Carbon Source in 2 L stirred tank Fermenter. The initial pH was 6.5.	84
22. A Typical Time Course of Solvent Fermentation by <i>C. saccharobutylicum</i> Strain NCIMB8052 Using Glucose as a Carbon Source in 2 L Stirred Tank Fermenter. The initial pH was 6.5.	85
23. Activityof Enzyme Involved in ABE Production During Growth of C. saccharobutylicum Strain P262 and NCIMB8052 in 28 mL McCartney Bottle. The initial pH was 6.5	88
24. Activity of Enzyme Involved in ABE Production During Growth of <i>C. saccharobutylicum</i> Strain P262 and NCIMB8052 in 0.5 L Stirred Tank Fermenter. The initial pH was 6.5	90
25. Activity of Enzyme Involved in ABE Production During Growth of <i>C. saccharobutylicum</i> Strain P262 and NCIMB8052 in 2 L Stirred Tank Fermenter. The initial pH was 6.5	92
26. Profile of pH, Amylase, Glucose and Dry Cell Weight During the Solvent Fermentation by <i>C. saccharobutylicum</i> P262 Using Different Types of Starch (Including Glucose) in 250 mL Modified Scoth Bottle.	100
27. Profile of Glucoamylase, Protease, Total Solvent and Total Acid During Solvent Fermentation by <i>C. saccharobutylicum</i> P262 Using Different Types of Starch (Including Glucose) in 250 mL Modified Scoth Bottle.	t 101
 The Time Course of Solvent Fermentation by C. saccharobutylicum P262 Using 50 g/L Sago Starch in 250 mL Modified Scotch Bottle. 	106
29. The Time course of Solvent Fermentation by <i>C. saccharobutylicum</i> P262 Using 50 g/L Sago Starch in Two Different Sizes of Stirred Tank Fermenter	111
 Organic Acid Production in Solvent Fermentation by <i>C. saccharobutylicum</i> P262 Using 50 g/L Sago Starch in Two DifferentSsizes of Stirred Tank Fermenter. 	112
31. Solvent Fermentation by <i>C. saccharobutylicum</i> P262 Using 50 g/L Sago Starch in Two Different Sizes of Stirred Tank Fermenter.	113
32. Effect of Pore Size of BSP on Immobilization of <i>Clostridium saccharobutylicum</i> Cells to Polyurethane Foam	124
33. Photograph of BSP (Polyurethane Foam) with 45 ppi (0.5 cm ³)	125

xxii

xxiii

34. Photograph of BSP (Polyurethane Foam) with 60 ppi (0.5 cm ³)	125
35. Photograph of 60 ppi Treated with Activated Charcoal (1.0 cm^3)	126
36. Photograph of 60 ppi Treated with Glutaraldehyde (1.0 cm^3)	12 7
37. Effect of BSP Treatment and Size on Immbillization of <i>Clostridium</i> saccharobutylicum Cells to Polyurethane Foam.	127
38. Effect of BSP number on immbillization of <i>Clostridium saccharohutylicum</i> Cells to Polyurethane Foam.	130
39. Immobilized of <i>C. saccharobutylicum</i> Cell in Three Different pH (pH 5, 6, 7)	135
40. Effect of Initial pH Between 5-7 on the Organic Acid Production by <i>C. saccharobutylicum</i> in the Presence of BSP. Inoculum: 2%. Incubation 35°C	138
41. Effect of Initial pH Between 5-7 on the Organic Acid production by <i>C. saccharobutylicum</i> in the Presence of BSP. Inoculum: 6%. Incubation 35°C	139
42. Effect of Initial pH Between 5-7 on the Organic Acid Production by <i>C. saccharobutylicum</i> in the Presence of BSP. Inoculum: 10%. Incubation 35°C	141
43. Effect of Initial pH Between 5-7 on the ABE Production by <i>C.</i> <i>saccharobutylicum</i> in the Presence of BSP. Inoculum: 2%. Incubation 35°C	142
44. Effect of Initial pH Between 5-7 on the ABE Production by <i>C. saccharobutylicum</i> in the Presence of BSP. Inoculum: 6%. Incubation 35°C.	144
45. Effect of Initial pH Between 5-7 on the ABE Production by <i>C. saccharobutylicum</i> in the Presence of BSP. Inoculum: 10%. Incubation 35°C	145
46. Free Cell in Fermentation Medium (pH 6)	147
47. Solvent Fermentation by <i>C. saccharobutylicum</i> Free Cells in McCartney Bott Experiments. Static Condition. Incubation: 35°C.	tle 150
48. Solvent Fermentation by <i>C. saccharobutylicum</i> Free Cells in McCartney Bott Experiments. Static Condition. Incubation: 35°C.	tle 152

LIST OF ABBREVIATIONS

ABE	:	Acetone-Butanol-Ethanol
RCM	1	Reinforced Clostridial Media
rpm	;	Rotation per minute
ppi	:	Pore Per Inch
BSP	:	Biomass Support Particles
Μ	;	Molar
μ	:	Specific growth rate
D	:	Dilution rate
Х	;	Cell concentration
h	:	Hour
S	:	Substrate
Р	:	Product

