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Singularities and uncertainties in arm configurations are the main problems in 

kinematics of serial robots. The complexity in the solution arises from robots 

geometry and non-linear equations (trigonometric equations) occur when 

transforming between Cartesian and joint spaces where multiple solutions and 

singularities exist. Mathematical solutions for the problem may not always 

correspond to the physical solution and methods of solution depend on the robot 

configuration. 

 

In this research, a trajectory tracking approach is proposed for a 6 Degrees Of 

Freedom (DOF) serial robot manipulator.  The proposed solution is carried out 

through two stages. First the kinematics model of the Fanuc  robot was 

solved using the D-H method to show the exact location of singular 

iM 710
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configurations of the robot, and then Artificial Neural Networks (ANNs) are 

trained to overcome these arising problems. Solving the Inverse Kinematics (IK) 

of serial manipulators by using ANNs has two problems, one of these is the 

selection of the appropriate configuration of the network and the other is the 

generating of suitable training data sets. 

 

In this research, although this is very difficult in practice, training data were 

recorded experimentally from sensors fixed on each joint to overcome the effect 

of kinematics uncertainties presence in the real world such as ill-defined linkage 

parameters, links flexibility and backlashes in gear train. Off-line training was 

implemented for the experimentally obtained training data. 

 

Two networks configurations from the literature were tested and developed 

following the recommendations of the original authors, then compared to find the 

best configuration to be used. First the effect of orientation of the tool was 

examined (as one of the networks does not considered the effect of orientation 

while the other network does), and then the effect of the Jacobian matrix to the 

solution for the both configurations was examined. 

 

Performance comparison shows that when the effect of the orientation of the 

tool was considered in the solution with the Jacobian matrix effect, better results 

in terms of precision and iteration during training the ANN were obtained. 
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The effect of the network architecture was also examined in order to find the 

best network configuration to solve the problem. A network with all the 

parameters considered together in one network has been compared to six 

different networks, where the parameters of every joint were considered 

independently. Results obtained show that having one network considering all 

the problem’s parameters together give a better response than using 6 different 

networks representing the parameters of each joint apart from other joints. 

 

The resultant network with the best configuration was tested experimentally 

using new different set of data that has never been introduced to the network 

before, this data set was meant to pass through the singular configurations, in 

order to show the generality and efficiency of the proposed approach. 

 

Experimental trajectory tracking has shown the ability of the proposed Artificial 

Neural Networks approach to overcome the disadvantages of using some 

schemes like the Fuzzy Learning Control for example that only remembers the 

most recent data sets introduced, as the literature has shown. 
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Singulariti dan ketidakpastian dalam konfigurasi lengan adalah masalah utama 

dalam kinematik robot bersiri. Kerumitan dalam penyelesaian timbul daripada 

geometri robot dan persamaan taksekata (persamaan trigonometri) terjadi 

apabila perubahan antara satah Kartesian dan ruang sambungan di mana 

penyelesaian berbilang dan singulariti wujud. Penyelesaian matematik untuk 

masalah ini mungkin tidak selalunya selaras dengan penyelesaian fizik dan 

kaedah-kaedah penyelesaian bergantung pada konfigurasi robot. 

 

Dalam penyelidikan ini, satu pendekatan penjejakan trajektori telah dicadangkan 

bagi enam darjah kebebasan pergerakan (DOF) pengolah robot bersiri. 

Penyelesaian yang dicadangkan dijalankan dengan dua peringkat. Pertama 

model kinematik robot Fanuc  diperolehi menggunakan kaedah D-H untuk iM 710
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menunjukkan lokasi sebenar konfigurasi singular robot, dan kemudian 

Rangkaian Neuro Buatan (ANNs) telah dilatih bagi mengatasi masalah yang 

muncul.  

 

Menyelesaikan kinematik songsang (IK) pemutar belit bersiri dengan 

menggunakan ANNs mempunyai dua masalah, satu daripadanya  adalah 

pemilihan konfigurasi rangkaian yang padan dan yang lain ialah penjanaan set-

set data latihan yang sesuai. 

 

Dalam penyelidikan ini, data latihan telah direkodkan secara eksperimen 

daripada pengesan yang ditetapkan pada setiap sendi untuk mengatasi kesan 

ketidakpastian kinematik yang hadir di dalam dunia sebenar seperti parameter 

rangkaian yang tidak ditakrif dengan baik, hubungan kelonggaran dan 

tendangan dalam gear latihan. Latihan luar talian telah dilaksanakan secara 

eksperimen untuk memperoleh data latihan. 

 

Dua konfigurasi rangkaian daripada pembacaan telah diuji dan dibangunkan 

mengikut cadangan penyelidik asal, kemudiannya dibandingkan bagi mencari 

konfigurasi terbaik untuk digunakan. Pertama, kesan orientasi alat telah 

diperiksa, dan kemudian kesan matriks Jacobian untuk penyelesaian bagi 

kedua-dua konfigurasi juga telah diperiksa.   

 

Perbandingan prestasi menunjukkan bahawa apabila kesan orientasi alat 

dipertimbangkan dalam penyelesaian dengan kesan matriks Jacobian, 
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keputusan lebih baik dari segi ketepatan dan lelaran semasa latihan ANN 

dialami.  

 

Kesan seni bina rangkaian telah juga diperiksa bagi tujuan mencari konfigurasi 

rangkaian yang terbaik untuk menyelesaikan masalah. Satu rangkaian dengan 

semua parameter dianggap bersama dalam satu rangkaian telah dibandingkan 

dengan enam rangkaian berbeza, di mana parameter bagi setiap sendi dianggap 

secara bebas. Keputusan yang diperolehi menunjukkan bahawa mempunyai 

satu rangkaian dengan mempertimbangkan kesemua parameter masalah 

bersama menunjukkan gerak balas yang lebih baik daripada menggunakan 

enam rangkaian berbeza yang mewakili parameter bagi setiap sendi yang 

bersendiri. 

 

Rangkaian yang dihasilkan dengan konfigurasi terbaik telah diuji secara 

eksperimen dengan menggunakan tiga set data baru berbeza yang tidak pernah 

diperkenalkan kepada rangkaian sebelum ini, set data ini telah ditetapkan untuk  

melalui konfigurasi singular, dengan tujuan untuk menunjukkan keluasan makna 

dan kecekapan bagi pendekatan yang telah dicadangkan.   

 

Eksperimen penjejakan trajektori telah menunjukkan keupayaan pendekatan 

Rangkaian Neuro Buatan cadangan untuk mengatasi kelemahan dalam 

menggunakan skima-skima seperti kawalan pengajaran Fuzzy contohnya yang 

hanya mengingati set data yang paling mutakhir diperkenalkan, seperti yang 

ditunjukkan dalam pembacaan. 
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