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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirements for the degree of Doctor of Philosophy 

 

 

CHANNEL MODELLING AND ESTIMATION IN MULTIPLE-INPUT 

MULTIPLE-OUTPUT ORTHOGONAL FREQUENCY DIVISION 

MULTIPLEXING WIRELESS COMMUNICATION SYSTEMS  

 

By 

 

MOHAMMED ABDO SAEED HEZAM 

 

September 2008 

 

Chairman: Professor Borhanuddin Mohd. Ali, PhD 

 

Faculty: Engineering 

 

 

In wireless communications, the demands for high data rates, enhanced mobility, 

improved coverage, and link reliability have enormously increased in recent years 

and are expected to further increase in the near future. To meet these requirements, 

new concepts and technologies are needed. Theoretical studies have shown that using 

multiple antennas at the transmitter and receiver, known as multiple-input multiple-

output (MIMO) technology, can dramatically increase the capacity, coverage, and 

link reliability of a communication system. Orthogonal frequency-division 

multiplexing (OFDM) is an attractive technique for high data rates transmission over 

frequency-selective fading channels, due to its capability in combating the 

intersymbol interference (ISI). The combination of MIMO and OFDM results in a 

powerful technique that incorporates the advantages of both MIMO and OFDM, and 

is a strong candidate for fourth generation (4G) wireless communication systems. 

 

In this thesis, two issues related to realizing practical mobile MIMO OFDM 

communication systems are addressed. The first issue is about MIMO channel 
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modeling and effect of realistic channels on the theoretical capacity. For this target, a 

geometrically-based three-dimensional (3-D) scattering MIMO channel model is 

developed. The correlation expressions are derived and analytically evaluated. The 

impact of spatial correlation on MIMO channel capacity is investigated under 

different antenna array configurations, angular energy distributions, and parameters. 

Analytical and numerical results have shown that the elevation angle has 

considerable effect on the spatial correlation and consequently on the MIMO channel 

capacity for the case when the antenna array of the mobile station (MS) is vertically 

oriented. This has led to a conclusion that 3-D scattering MIMO channel modeling is 

necessary for accurate prediction of MIMO system performance.     

 

The second issue addressed in this thesis is the channel estimation in MIMO OFDM 

systems. New time-domain (TD) adaptive estimation methods based on recursive 

least squares (RLS) and normalized least-mean squares (NLMS) algorithms are 

proposed. These estimators are then extended to blindly track the time-variations of 

the channel in the decision-directed (DD) mode. Simulation results have shown that 

TD adaptive channel estimation and tracking in MIMO OFDM systems is very 

effective in slow to moderate time-varying fading channels. It was observed that the 

performance of the DD RLS-based estimator always outperform that of the DD 

NLMS estimator at low mobility and low SNR. In contrast, it was found that the DD 

NLMS estimator gives better tracking performance at moderate mobility and higher 

SNR. However, as the training rate is reduced, comparable performance with both 

estimators is obtained at high SNR. Finally, it has been shown that channel 

estimation in TD is more accurate with less complexity compared to its counterpart 

in frequency-domain (FD). 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PERMODELAN SALURAN DAN TAKSIRAN DALAM TEKNOLOGI 

MASUKAN BERBILANG KELUARAN BERBILANG DAN 

PEMULTIPLEKSAN PEMBAHAGI FREKUENSI ORTHOGONAL DALAM 

SISTEM KOMUNIKASI TANPA WAYAR 

 

Oleh 

 

MOHAMMED ABDO SAEED HEZAM 

 

September 2008 

 

Pengerusi: Profesor Borhanuddin Mohd. Ali, PhD 

 

Fakulti: Kejuruteraan 

 

 

Dalam komunikasi tanpa wayar, tuntutan untuk data kelajuan tinggi, pergerakan 

yang meningkat, liputan yang ditambahbaik, dan kebolehpercayaan pautan sudah 

bertambah pada tahun kebelakangan ini dan dijangka akan kian bertambah dalam 

masa terdekat. Konsep baru dan teknologi terkini diperlukan untuk memenuhi 

keperluan ini. Kajian teoretikal menunjukkan bahawa penggunaan beberapa antena 

di pemancar dan penerima, yang dikenali sebagai teknologi masukan berbilang 

keluaran berbilang(MIMO), boleh secara dramatik menambah keupayaan muatan, 

liputan, dan kebolehpercayaan pautan suatu sistem komunikasi. Pemultipleksan 

pembahagi frekuensi orthogonal (OFDM) adalah suatu teknik menarik untuk 

pengiriman data kelajuan tinggi diatas saluran memudar yang frekuensi bersifat 

memilih, kerana kemampuannya dalam menangani masalah gangguan antara 

simbol(ISI). Gabungan MIMO dan OFDM, menghasilkan teknik terbaik yang 

mengambil kelebihan kedua-dua MIMO dan OFDM dan merupakan calon terulung 

untuk sistem komunikasi tanpa wayar generasi ke empat (4G). 
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Di dalam tesis ini, dua isu yang berkaitan dalam merealisasikan sistem komunikasi 

praktikal MIMO OFDM bergerak dibincang. Persoalan pertama adalah mengenai 

permodelan saluran MIMO dan kesan saluran realistik terhadap kemampuan muatan 

teoritikal. Untuk sasaran ini, model saluran MIMO berselerak berdasar geometrik 

tiga dimensi (3-D) adalah dibina. Ungkapan hubungkait diterbitan dan dinilai secara 

analitik. Kesan hubungkait ke atas ruang muatan saluran MIMO bardasarkan 

konfigurasi tatasusunan antena yang pelbagai, taburan kuasa sudut dan parameter 

yang berbeza dikaji.  Keputusan analitik dan numeric telah menunjukkan bahawa 

sudut peninggian mempunyai pengaruh ke atas  hubungkait ruang dan seterusnya ke 

atas muatan saluran MIMO dalam kes tatasusunan antena stesen mobil (MS) 

diorientasikan secara vertikal. Ini mencetuskan kesimpulan bahawa permodelan 

saluran MIMO berselerak 3-D diperlukan untuk membuat ramalan yang tepat ke atas 

kecekapan sistem MIMO. 

 

Isu kedua yang dibincang di dalam tesis ini adalah mengenai taksiran saluran dalam 

sistem MIMO OFDM. Kaedah taksiran penyesuaian baru domain masa (TD) 

berdasarkan re-kursif paling kecil kuasa dua (RLS) dan algoritma normal paling kecil 

purata kuasa dua (NLMS) dicadangkan. Taksiran ini dipanjangkan untuk mengesan 

variasi saluran dalam mod arahan-keputusan (DD).  Hasil simulasi menunjukkan 

bahawa taksiran saluran adaptif domain masa dan pengesanan dalam sistem MIMO 

OFDM adalah berkesan dalam saluran pudar masa berubah perlahan ke pertengahan. 

Adalah diperhatikan bahawa hasil taksiran DD RLS sentiasa lebih baik daripada 

taksiran DD NLMS sewaktu pergerakan yang rendah dan pada nisbah isyarat ke 

bisingan (SNR) rendah. Sebaliknya kontra didapati bahawa taksiran DD NLMS 

memberikan pretasi pengesanan yang adalah lebih baik daripada DD RLS pada tahap 
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pergerakan pertengahan dan SNR yang lebih tinggi. Walau bagaimanapun bila kadar 

latihan turun, keputusan yang sama antara kedua cara taksiran diperolehi pada tahap 

SNR yang tinggi. Akhir sekali, telah ditunjukkan bahawa penaksiran dalam domain 

masa adalah lebih tepat dengan kadar kompleks yang kurang berbanding dengan 

domain-frekuensi (FD). 
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A/D Analog-to-Digital Converter 
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Notations and Symbols 

 

 

Symbols with bold face represent either vectors or matrices as it is stated. The 

symbols with regular font are used for scalar quantities.  

 
T(.)   complex transpose 

 


a   complex conjugate of vector a  

 
H(.)   complex transpose and conjugate (Hermitian) 

 

   convolution product 

 

    Kronecker product 

 

  element-wise Schur-Hadamard multiplication operator 

 
(.)   Moore-Penrose inverse 

 

.   Euclidean norm 

 
1

A   inverse of matrix A  

 
T

A   inverse transpose of matrix A  

 

NI   NN   identity matrix 

 

det (A) determinant of matrix A  

 

Re {a}  real part of complex scalar a 

 

Im {a}  imaginary part of complex scalar a 

 

Rank(A) rank of matrix A 

 

diag (.) diagonal matrix of the argument vector 

 

vec{H} stacks columns of the matrix H on top of each other 

 

{.}unvec   inverse of {.}vec  operation 

 

(.)tr   trace of the argument matrix 

 

{.}E    expectation operator 
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 (.)   dirac delta function 

 

min   minimum 

 

max  maximum 

 

arg max maximizing argument 

 

lim  limit 

 

e   exponential function 

 

â   estimate of a  

 

);( yxI  mutual information between vector x  and vector y  

 

)(xp   probability distribution function of the vector x 

 

)(wH   differential entropy of the vector w  

 

xxR   covariance matrix of the vector x 

 

a   magnitude of the complex vector a 

 

(.)0J   0th order Bessel function of the first kind 
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