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Abstract: Multiparametric prostate magnetic resonance imaging (mpMRI) is widely used as a triage
test for men at a risk of prostate cancer. However, the traditional role of mpMRI was confined to
prostate cancer staging. Radiomics is the quantitative extraction and analysis of minable data from
medical images; it is emerging as a promising tool to detect and categorize prostate lesions. In this
paper we review the role of radiomics applied to prostate mpMRI in detection and localization of
prostate cancer, prediction of Gleason score and PI-RADS classification, prediction of extracapsular
extension and of biochemical recurrence. We also provide a future perspective of artificial intelligence
(machine learning and deep learning) applied to the field of prostate cancer.

Keywords: prostate cancer; artificial intelligence; multiparametric magnetic resonance imaging;
Gleason score; neoplasm recurrence; local

1. Introduction

Radiomics is a new frontier of medicine based on the extraction of quantitative features
(named radiomic features) from radiological images that cannot be seen by radiologist’s
naked eye and on the use of these data for the creation of clinical decision support systems.
Radiomic features (such as intensity, shape, texture or wavelet) are extracted from medical
images (CT, MRI or PET images) using advanced mathematical algorithms and providing
valuable information for personalized therapy [1].

In the last decade, several studies highlighted the enormous potential of radiomics in
both tumoral and nontumoral diseases of many organs and systems, including brain, lung,
breast, gastrointestinal and genitourinary tracts.

Several studies have investigated the role of radiomics in neuro-oncology. The ra-
diomics approach was used for the determination of WHO grades in patients with newly
diagnosed gliomas [2,3] reaching an accuracy of approximately 90% and may thus be of clin-
ical benefit in patients unsuitable for resection or biopsy. Furthermore, many studies [4–6]
reported that radiomics and machine learning in conjunction with multiparametric MRI
imaging in prediction of glioma local relapse after radiotherapy is the most promising ap-
proach, resulting in tumor infiltration map with an overall accuracy of approximately 90%.
Several studies have also applied the radiomics approach to patients with neurodegenera-
tive diseases, such as Alzheimer’s disease and Parkinson’s disease [7–9], and confirmed that
radiomics analysis can reach comparable results to those obtained by using well-established
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MRI features when classifying neurological patients, adding complementary information
about tissue heterogeneity. A recent clinical review [10] of radiomics application in lung
cancer has shown a promising role of the radiomics approach in many fields, like diagnosis,
distinguishing nonsmall cell lung cancer from other benign confounders or preinvasive
conditions, and prediction of radiotherapy response and outcomes of patients. Concerning
breast cancer, radiomics appears capable of offering imaging biomarkers, which are useful
not only for diagnosing breast cancer, but also for predicting the treatment response and
risk of recurrence [11]. For example, features extracted by MR images and MRI-based
techniques are widely used to predict the response of neoadjuvant chemotherapy [12]. Fur-
thermore, another study [13] showed that preoperative MRI signatures are able to estimate
disease-free survival in patients with invasive breast cancer. Several studies used radiomic
models and individual radiomic features to predict response to treatment in patients with
gastrointestinal tumors (gastric and gastroesophageal cancer, colorectal cancer, hepatic
cellular carcinoma and pancreatic cancer) [14], showing good predictive performance for
response to treatment, despite using various strategies to construct predictive models.
The radiomics approach was applied to bladder cancer and in kidney cancer evaluation,
showing promising feasibility of radiomics for characterizing, staging and grading [15].

Many original papers have been published so far on the diagnostic and prognostic role
of radiomics for prostate cancer. Therefore, the aim of this review is to analyze radiomic
applications in the field of prostate MRI for prostate cancer. A particular point of interest is
the analysis of the current and potential role of radiomics for tumor detection, prediction
of prostate imaging-reporting archiving and data system (PI-RADS) and Gleason grading,
and extracapsular extension of the tumor, as well as the assessment of tumor response
and outcome.

2. Multiparametric MRI in Prostate Cancer

Multiparametric MRI (mpMRI) can be briefly summarized as a method of combining
anatomic sequences (T1- and T2-weighted imaging) with functional sequences. The func-
tional sequences of choice are diffusion-weighted imaging (DWI), including the calculation
of apparent diffusion coefficient (ADC) and dynamic contrast-enhanced (DCE) maps [16].

While T1-weighted imaging is of limited use in assessing prostate morphology or in
identifying a tumor within the gland, T2-weighted imaging provides high spatial resolution
and defines the zonal anatomy by differentiating the peripheral zone from the transition
zone [17]. Furthermore, in T2-weighted images, the peripheral zone has high signal
intensity, while prostate cancer (PCa) appears as an area of lower signal. However, low
T2 signal in the peripheral zone may also be seen in benign abnormalities, including
prostatitis, fibrosis, scar tissue, postbiopsy hemorrhage or postirradiation. Introduction of
mpMRI with the use of functional sequences may overcome these limitations; although the
individual sequences are useful, T2-weighted imaging in combination with two functional
sequences has been shown to provide better characterization of PCa [18–20].

In 2015, the prostate MR imaging study (PROMIS) group proposed a new diagnostic
pathway in which mpMRI was used as a triage test for men at a risk of PCa [21]. The
PROMIS study proposed mpMRI before prostate biopsy to avoid unnecessary biopsy,
reduce false-negative results on targeted biopsy and increase the identification of clinically
significant PCa not identified at digital rectal exploration or located in occult areas of the
gland (apical distal, midline, subcapsular and anterior areas) [22,23].

For some years now, mpMRI has been considered an important diagnostic tool for
the detection of PCa and it is recommended by the American College of Radiology and
European Society of Urogenital Radiology (ESUR) [24,25].

Because prostate MRI interpretation can be subjective and inconsistent, suspicion
scores for prostate cancer on an MRI (PI-RADS) have been developed on a 1- to 5-point
scale (based on fixed criteria) for improved standardization of MRI interpretation and
reporting. The first general version of the PI-RADS system was released in 2012 and
included clinical guidelines for the performance of mpMRI along with a 5-point Likert
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scale for image interpretation [26]. A more refined scoring system were introduced in
PI-RADS version 2, which was released in 2015 [27] and updated in 2019 with version
2.1, providing revised imaging acquisition parameters and a revised scoring system while
maintaining the overall framework described in version 2 [28].

Most members of the PI-RADS Steering Committee recommend the use of 3T equip-
ment for performing prostate MRI; even both 3T and 1.5T systems are acceptable [28]. Even
if PI-RADS version 2.1 recommends the use endorectal coil with some 1.5T MRI systems,
especially older ones, some studies demonstrated that prostate cancer foci may be detected
by using a pelvic phase array receiver coil without reducing sensitivity as compared to an
endorectal coil [29].

Following PI-RADS version 2.1 recommendations, MRI protocol for prostate study
must include T1-weighted (T1W), T2-weighted (T2W), diffusion-weighted (DWI) and dy-
namic contrast enhanced (DCE) imaging [28]. PI-RADS version 2.1 confirms the dominant
role of the DWI and T2W sequences in the peripheral zone (PZ) and in the transition zone
(TZ), respectively [24].

A recent study comparing the accuracy of mpMRI in 29 studies revealed that the
sensitivity and specificity of prebiopsy mpMRI ranged from 42 to 100% and from 12
to 100%, respectively [25]. Another recent study confirms that the sensitivity and the
specificity of mpMRI for clinically significant PCa is 93% and 41%, respectively, with a
negative predictive value and positive predictive value of 89% and 51%, respectively [30].
However, mpMRI has a low accuracy in the detection of small tumor foci, i.e., less than
0.5 cm3 [31].

3. Radiomics in Prostate Cancer
3.1. Detection and Localization of PCa

McNeal in 1988 divided the prostate gland into a peripheral zone (PZ), central zone
and transitional zone (TZ), consisting of 70%, 25% and 5% of the prostate volume, respec-
tively [32]. PCa arises in the PZ in 80% of cases; less commonly it originates in the TZ
or, rarely, in the central zone. Some studies have found that tumors originating in the
peripheral zone are the most aggressive [33].

T1W, T2W, DWI and DCE images provide important anatomical and functional infor-
mation; however, about 25% of PCa in TZ may either not be recognized or mistaken for a
benign prostatic hyperplasia nodule by mpMRI [34]

The use of computer-aided diagnosis tools used to complement radiologists’ as-
sessments increases sensitivity and specificity in detecting PCa [35]. Recent radiomic
publications for detection and location of PCa are summarized in Table 1.

Recently, there has been considerable interest in the role of texture features extracted
from the computer (or radiomics) for detection [34]. In literature, there are many arti-
cles that aim to provide a radiomics approach based on mpMRI for the detection and
localization of PCa in the peripheral and transition zones [36,37].

In 2016, Cameron et al. [38] proposed a quantitative comprehensive feature model
called MAPS (morphology, asymmetry, physiology and size) based on radiomics for
automatic detection of PCa and achieved an accuracy, sensitivity and specificity of 87%,
86% and 88%, respectively.

In 2018, Khalvati et al. [39] proposed an optimal multiscale radiomics-driven frame-
work (MPCaD) for automated localization and detection of PCa. MPCaD leverages the
full set of voxel-level quantitative radiomic features and incorporates region-level feature
descriptors in a pipeline to better characterize and detect tumor regions. This framework
incorporating computed high-b DWI (CHBDWI) and correlated diffusion imaging and was
evaluated using clinical prostate mpMRI data from 30 patients. The authors demonstrated
that the proposed framework exhibits enhanced differentiation of tumor and healthy tissue,
reaching, with the full modalities model, a sensitivity, specificity and accuracy of 0.82, 0.89,
and 0.86, respectively. The authors confirmed that the quantitative radiomic characteristics
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extracted from magnetic resonance imaging of the prostate can be used to detect and
localize PCa.

Table 1. Summary of radiomic manuscripts for detection and location of prostate cancer.

Author MRI Sequences Software and Features Conclusion

Ginsburg SB
at al., 2017 T2, ADC, DCE

Signal intensities on T2w and ADC
values, kinetic features on DCE,

edge descriptors, first-order
statistical, co-occurrence,

Gabor, Haar

Zone-aware classifier significantly improves
the accuracy of cancer detection in the PZ

Bleker J
et al., 2020 T2, ADC, DCE Pyradiomics

Clinically significant PZ prostate cancer
lesions can be quantified using a radiomics
approach based on features extracted from

T2w + DWI

Sidhu HS
et al. 2017 T1, T2, ADC TexRAD v.3.3

Textural evaluation technique may have
particular relevance for such patients who
are more likely to have TZ tumors that are

systematically undersampled by TRUS

Cameron A
et al., 2016

T2, DWI, ADC, Correlated
Diffusion Imaging (CDI) MAPS

In addition to being easier to interpret by
radiologists, the MAPS feature model

achieves higher classification performance
(respect to conventional mpMRI)

Khalvati F
et al., 2018

T2, DWI, Computed
High-b

Diffusion-Weighted
Imaging (CHB-DWI),
Correlated Diffusion
Imaging (CDI), ADC

MPCAD
Quantitative radiomic features extracted

from mpMRI of prostate can be utilized to
detect and localize prostate cancer

Wibmer A
et al., 2015 T2, ADC Haralick Texture Analysis

Haralick-based texture features showed
significant differences between noncancerous

and malignant prostate tissue

Nketiah
et al., 2021 T2, ADC

GLCM and GLRLM features,
Spearman correlations,

Mann–Whitney U-tests, SVM

T2W MRI-derived textural features
correlated significantly with pathological

findings (cancer grade group) from
multiple institutions

Another study by Wibmer et al. [40] investigated whether Haralick texture analy-
sis [41] of prostate MRI was useful for PCa detection on both the peripheral and transitional
zone. They enrolled 147 patients extracted texture features (energy, entropy, correlation,
homogeneity and inertia) from T2-weighted images and ADC maps. They found that in
peripheral zone, on both T2-weighted images and ADC maps, entropy and inertia were
significantly higher in prostate cancer areas than in noncancerous areas, whereas energy,
correlation and homogeneity areas were significantly lower. For the transitional zone on
ADC maps, entropy and inertia were significantly higher in the cancer areas than in non-
cancerous areas, whereas energy, correlation and homogeneity were significantly lower; on
T2-weighted images, inertia was significantly higher in cancer lesions than in noncancerous
areas whereas correlation was significantly lower. They concluded that Haralick-based
texture features allowed for differentiating benign and malignant prostate tissue.

Nketiah et al. [42] performed a single arm, multicenter study to evaluate the potential
of T2-weighted image-derived textural features for quantitative assessment of peripheral
zone prostate cancer aggressiveness. They extracted traditional intensity histogram features
from T2-weighted images and ADC maps and second- and high-order statistical image
textural features based on gray level co-occurrence matrix (GLCM) and gray level run
length matrix (GLRLM) from T2-weighted images. Spearman correlations were used to
evaluate association between textural features and PCa grade groups. Mann–Whitney
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U-tests and support vector machine (SVM) classifier were evaluated to differentiate and
classify low-(grade group 1) vs. intermediate/high-(grade group≥ 2) aggressive cancers,
respectively. The cross-validation scheme employed in support vector machine classifier
training and testing across six institutional centers, and it works in the following way:
at each iteration, data from one institution was held out for testing, and data from the
remaining five institutions used for training. The mean classification accuracy across the
centers was highest for the combined ADC and T2W intensity-textural features (84%)
compared to ADC histogram (75%), T2W histogram (72%), T2W textural (72%) features
alone or T2W histogram and texture (77%), T2W and ADC histogram (79%) combined.

3.2. Application of MR-Derived Metrics in PCa

The main application of mpMRI was localization and staging of PCa. Radiomics ap-
plied to mpMRI of the prostate have a wide application field, including tumor localization
and detection, prediction of prognosis and follow-up after treatment. The great amount of
data generation and the increasing volume of imaging data demanded the application of
computerized methods to analyze mpMRI data and extract useful information.

Computerized quantitative analysis may lead to effective, accurate and reproducible
analysis of large amounts of data from mpMRI. The main advantage of quantitative
MRI will be elimination of subjective assessment by radiologists. A way to improve the
characterization of focal lesions at multiparametric MR imaging could be to use computer-
aided diagnosis (CAD) systems. CAD and artificial intelligence tools have been investigated
for PCa diagnosis with mpMRI data. Several studies have been found CAD effective in
aiding radiologists in PCa diagnosis. For example, Hambrock et al. [35] showed that the use
of a CAD system in clinical condition could significantly improve the characterization of
prostate lesions by less experienced readers. Niaf et al. [43] showed that a CAD system may
improve the characterization of prostate lesions with mpMR imaging by increasing reading
specificity. However, although numerous studies have shown promising results, the low
specificity and high false-positive rate of CAD continue to be a major problem [44,45], so
that further multicenter studies with large populations are needed for validation.

Another way to reduce the subjective evaluation by radiologists is the automatic
segmentation method by the machine and deep learning approach. In the biomedical
imaging field, target delineation is routinely used as the first step in any automated disease
diagnosis system to obtain quantitative parameters from biomedical images. Deep learning
algorithms have been applied in automatic segmentation of the prostate gland [46,47] with
potential benefit for patient management personalization. As a future perspective, the
integration of a deep learning network in radiological PACS would lead to a rapid and
precise procedure of segmentation of the prostate gland, thus reducing interuser variability.

3.3. Prediction of Gleason Score and PI-RADS

Gleason score (GS) is the current clinical gold standard for prognostication of PCa [48].
GS allows for the stratification of patients into different risk groups based on architectural
alterations of prostate tissue based on biopsy or prostatectomy [49], allowing discrimination
between clinically significant and not significant PCa, defined as GS < 4 + 3, or as the
maximum length of the tumor nucleus < 6 mm [50]. Some articles have confirmed that
radiomics can predict GS in vivo [48]. Recent radiomic publications for prediction of GS
are summarized in Table 2.
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Table 2. Summary of radiomic manuscripts for prediction of Gleason score.

Author MRI Sequences Software and Features Conclusion

Fehr D
et al., 2015 T2, ADC

In-house software implemented in
Matlab (for first-order features);

in-house software implemented in C++
(for Haralick features)

Addition of texture-based features drastically
improves the classification accuracy of GS in

comparison with using ADC mean or T2
mean alone

Cuocolo R
et al., 2019 T2, ADC Pyradiomics

Radiomics analysis
through the quantitative assessment of geometric

parameters has the
potential to be used as a noninvasive test to predict

GS for patients
with clinically significant PCa

Wibmer A
et al., 2015 T2, ADC Haralick Texture Analysis Haralick-based texture features showed significant

differences in tumors with different GS

Chaddad A
et al., 2018 T2, ADC

Gray level co-occurrence matrices
(GLCMs), neighborhood gray-tone

difference matrix (NGTDM), gray-level
zone size matrix (GLSZM/GLZM)

Radiomics analysis has the potential to be used as
a non-invasive test to predict GS

Min X
et al., 2019 T2, DWI, ADC In-house software implemented in

Matlab (version 2014a)

mpMRI-based radiomics signature have the
potential to noninvasively discriminate between

clinically significant PCa and clinically
insignificant PCa

Vignati A
et al., 2015 T2, ADC Gray level co-occurrence

matrices (GLCMs)
Contrast and homogeneity GLCM features allow

evaluation of PCa aggressiveness

Many studies have been conducted in order to discriminate between clinically signifi-
cant and not significant PCa using MRI radiomic features. Fehr et al. [51] in 2015 conducted
a study on 147 patients and found that a combination of T2w and ADC magnetic resonance
characteristics of the Haralick plot were able to distinguish low GS from intermediate
and high GS with 92% accuracy. In another study, Cuocolo et al. [52] evaluated whether
radiomic shape features derived from MR images could be effective in clinically significant
PCa detection. They enrolled 75 patients and extracted ten shape features both from axial
T2-weighted and ADC maps images, after lesion tridimensional segmentation. Using
multivariable analysis, the parameter defined as surface area to volume ratio extracted
from ADC maps was the strongest independent predictor of clinically significant PCa with
AUC of 0.78, specificity of 97% and sensitivity of 56%.

Studies conducted to discriminate between clinically significant and not significant
PCa using MRI radiomic features were performed using different MRI scanners (1.5T or 3T)
and extracting radiomic features from T2-weighted and ADC maps [40,51,53–55]. These
studies confirmed that radiomics can predict GS and allows differentiation between low to
intermediate-high risk GS.

Therefore, in addition to confirming the presence of disease in vivo, radiomics is able
to distinguish between clinically significant and not clinically significant PCa, allowing the
early identification of patients who could be better candidates for active surveillance than
definitive therapy [48].

The PI-RADS version 2.1, approved by the American College of Radiology, stratifies
prostate lesions into different PCa risk categories [56]. However, this classification system
has some limitations, including the potential interindividual variability in lesion categoriza-
tion by radiologists [57]. Furthermore, at least 20–30% of the lesions indicated as PI-RADS
3 prove to be malignant lesions and this causes confusion in the diagnostic and therapeutic
management of the patients [58].

Recently, some studies have verified the possibility of using radiomics to attribute
PI-RADS scores. Wang et al. [57] used a machine learning-based system (support vector
machine (SVM) based on radial basis function (RBF) kernel) to analyze radiomic features
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extracted from T2-weighted and DWI. They found that when radiomic features were added,
the diagnostic performance of PI-RADS was improved with an increase in sensitivity from
79% to 94.4% in PCa in the peripheral zone, and from 73.4% to 91.6% in PCa in the
transitional zone. The authors confirmed that MR radiomics can help to improve the
performance of PI-RADS in clinically significant PCa.

In addition, Giambelluca et al. [58], using texture analysis software (MaZda 4.6),
extracted first-, second- and third-order radiomic features from 46 PI-RADS 3 lesions
segmented on T2-weighted and ADC maps. The authors found nine and six independent
texture parameters on T2-weighted images and ADC maps, respectively, that significantly
correlate with the final histological results. This confirmed that radiomic features can help
to distinguish between PCa and nontumor tissue among PI_RADS 3 lesions.

Hou et al. [59] in 2020 developed a model integrating data extracted from T2W, DWI
and ADC maps images of 271 patients. This model achieved promising performance in
improving diagnostic accuracy in PI-RADS 3 by allowing clinically significant PCa to be
differentiated from indolent and normal cases.

3.4. Prediction of Extracapsular Extension

Radical prostatectomy is considered the preferred approach for patients with localized
PCa [60]. Accurate preoperative staging is important because any extracapsular extension
(ECE) of the tumor influences the clinical decision-making process [61,62]. Various predic-
tive models have been analyzed to try to understand the risk of ECE before surgery. The
Partin tables and Memorial Sloan–Kettering (MSK) preradical prostatectomy nomograms
are two of the most used models [63].

Many studies have shown that the accuracy of mpMRI for ECE detection varies from
62% to 76% but decreases up to 30% in the case of apex tumors [63].

Currently, neither predictive models nor mpMRI are effective in detecting the real risk
of ECE due to their intrinsic limitations [63].

In recent years, a few studies proposed a radiomics approach to evaluate ECE.
Ma et al. [63] proposed radiomic signatures based on T2W images to predict the side-
specific probability of ECE for patients with PCa. They proposed a radiomics signature
incorporating 17 selected features and demonstrated favorable discrimination capabilities
in both the training and validation datasets, along with good calibration performances.

Losnegard et al. [64], in 2020, tested how the MRI radiomics approach performs in
combination with preoperative clinical variables and radiology MRI interpretation. Texture
features were extracted from T2-weighted and ADC maps using a Matlab toolbox (Lloyds
function), and quantitative DCE time-series features were extracted using an in-house tool.
Then, they used the extracted feature in a supervised machine learning setting in order
to obtain the probabilities for patients to have ECE. A logistic regression model to obtain
probabilities of ECE was calculated from clinical variables (PSA level, TNM stage, Gleason
grade and score, percentage of positive core) and combined with radiomic features. They
found that features extracted from T2-weighted and ADC maps were the best radiomic
features while nonadditional benefit was added from DCE features. Moreover, they reached
a good performance of combined models, with an AUC of 0.79 in prediction of ECE. They
concluded that MR radiomics may represent a valuable adjunct to conventional prediction
models for ECE.

The proposed radiomics signature had superior diagnostic performance compared,
for example, to the visual assessments of radiologists, particularly for apical tumors [63].

In addition, Xu et al. [65] proposed a radiomics model based on mpMRI able to
differentiate ECE and non-ECE lesions in preoperative time. They extracted radiomic
features from T2-weighted images, DWI, ADC maps and DCE images using the Python
package Pyradiomics (version 2.2.0). They retained 30 features by the use of a maximum
relevancy and minimum redundancy algorithm. Finally, by the use of the least absolute
shrinkage and selection operator (LASSO) regression algorithm, the final radiomics model
was built and integrated with the clinical model to build a combined nomogram. They
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found that the combined nomogram outperformed the clinical model in diagnosing ECE,
but was comparable with using the radiomics model alone.

A major limitation of all the reported studies, however, is that results are not validated
on large population or in a multicenter study, and needs validation to have a role in future
clinical application.

3.5. Prediction of Biochemical Recurrence after Treatment (Surgery or Radiotherapy)

Biochemical recurrence (BCR) occurs in 50% of patients who underwent radical prosta-
tectomy, especially those with high-risk characteristics such as locally advanced disease
(T3-4), positive margins (R1) or high Gleason score [66].

Adjuvant radiotherapy includes BCR-free survival, but its impact on overall survival
is controversial and also a major cause of side effects [67].

For these reasons, radiotherapy (RT) is often provided exclusively in patients with
BCR [67]. MpMRI allows recognition of seminal vesicle invasion or ECE, both of which are
important predictors of biochemical relapse-free survival at five years [68].

To date, there are only a few studies on radiomics prediction of BCR. Bourbonne
et al. [69] trained and validated a radiomics-based model that appears to be predictive of
BCR and biochemical recurrence-free survival after radical prostatectomy in patients with
PCa. They extracted first-order intensity metrics, second- and third-order textural features
from T2-weighted and ADC maps of 107 patients. Then, a univariate and multivariate Cox
regression analysis was performed to identify independent factors and the correlation with
BCR was assessed. This model has a negative predictive value of 96% and could be used to
identify patients at very low risk of recurrence. It would also help stratify patients after
radical prostatectomy by helping the clinician adapt postoperative management. Using
this model, patients with very low risk of BCR could avoid RT, thus reducing side effects,
while patients with high risk of BCR could be offered intensified postsurgical monitoring
or adjuvant RT.

Zhong et al. [70], in a retrospective study conducted on 91 patients, evaluated the
relationship between pretreatment mpMRI radiomic features and BCR in patients with
localized prostate cancer. The authors of this study validated a model with an improved pre-
dictive value over conventional imaging metrics that could facilitate MRI-based prognostic
predictions and assist in the decision making for the individual treatment.

4. Future Perspective

Radiomics will play an important role in the future directions of personalized medicine.
To achieve this goal and to allow the transition to clinical implementation, future radiomic
studies should move to multimodality imaging (CT, MR, PET etc.) from current single
modality imaging. The integration of image information of different scales from anatomical
to molecular levels is mandatory.

For example, by combining information from mpMRI and prostate-specific membrane
antigen (PSMA), PET might offer complementary information in PCa detection, overcoming
the limitation of each single technique to identify the entire intraprostatic tumor amount.
The aim of the study of Kesch et al. [71] was to define a genomic index lesion based
on chromosomal copy number alterations (CNAs) as a marker for tumor aggressiveness
in prostate biopsies in direct correlation to mpMRI and 68Ga-PSMA-PET/CT imaging
features. A strong correspondence between the multi-imaging features and the genomic
index lesions was identified. Consequently, this study demonstrates that multi-imaging
features can guide to the genomically most aggressive region within the prostate. Papp
et al. [72] aimed to investigate the diagnostic performance of PSMA PET/MRI in vivo
models for predicting low vs. high lesion risk, together with BCR and overall patient risk,
with machine learning. They demonstrated the potential to enhance risk classification
in primary prostate cancer patients built on PET/MRI radiomics and machine learning
without biopsy sampling.



J. Imaging 2021, 7, 34 9 of 13

In addition, to date, radiomics research is mostly retrospective studies performed in
single institution, given the immediate availability of both imaging and clinical follow-up
data. Conversely, there should be prospective studies performed in different institutions.
On the other hand, it is obvious that radiomic features are vulnerable to imaging and re-
construction settings among different scanners and centers. For this reason, the integration
of image-quality harmonization algorithms in radiomic workflows must be mandatory
to correctly analyze data from different scales, obtaining more accurate and more robust
results. In addition, the calculated features should be compliant with the ones provided in
2020 by the imaging biomarker standardization initiative (IBSI) standard [73] to set a robust
methodological radiomics framework. Finally, not all extracted features carry out impor-
tant information. Statistical models should be used to identify a subset of relevant features
that correlate with the outcome in order to reduce the dimensionality of the problem, thus
improving prediction accuracies [74].

Another major challenge concerning the radiomics is the theranostics. Theranostics
combine specified therapeutics and specified diagnostics, such as through the use of
radioactive iodine therapy. In this scenario, radio-labeled ligands targeting prostate-specific
membrane antigen (PSMA) in PET imaging are expected to have good results in diagnosis
and treatment of patients with hormone refractory prostate cancer [75]. Consequently, the
usefulness of PET radiomic features for the aim of cancer marker evaluation, selection of
patients expecting a better response, and development of prognostic markers is constantly
growing [76]. Nevertheless, radiomics requires substantial amounts of data not easily
available in the field of medical imaging, particularly in the nuclear medicine area

As is well known, radiomics uses machine-learning or deep-learning techniques to
build clinical models. In particular, deep learning methods automatically discover features
from data using a general-purpose learning procedure with the advantage of removing a
critical task from the current workflow of radiomics, i.e., the tumor segmentation (Figure 1).
However, this requires more quantities of labeled data for the training process. For all these
motivations, the scientific community should start a phase of a more systematic approach
to radiomics, in such a way as to allow a real and immediate application in the clinical field.
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