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Abstract: The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic

diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin

(17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishma-

niasis. Parasite death was shown to occur in association with severe ultrastructural alterations in

Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results

in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this

process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophago-

somes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo,

such as glycosomes, or fuse with lysosomes. ATG5-knockout (∆atg5) parasites, which are incapable

of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when

compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced

cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in

both WT- and ∆atg5-treated parasites compared to controls, in the absence of proteasome overload.

In conjunction with previously described ultrastructural alterations, herein we present evidence

that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the

formation of immature autophagosomes and, consequently, incidental parasite death.

Keywords: Hsp90; leishmaniasis; chemotherapy; Hsp90 inhibitors; autophagy; ubiquitin

1. Introduction

Leishmania spp. are protozoan parasites [1,2] that cause leishmaniasis, which can
present in a variety of clinical manifestations, including skin and visceral forms [3]. Being
one of the most important neglected tropical diseases, leishmaniasis affects millions of
people worldwide. Financial investment in new therapeutic strategies has been scarce [3],
resulting in pentavalent antimonials being the drug of choice for more than 70 years in
Brazil. However, antimonial therapy requires parenteral administration at high dosage and
involves a lengthy therapeutic course that can result in a range of serious side effects [4]. Re-
cent increases in therapeutic failure [5–7] reinforce the importance of developing new drugs
capable of replacing or complementing existing strategies for leishmaniasis treatment.
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Heat shock protein 90 (Hsp90) has been considered as a potential molecular target
for the treatment of parasitic diseases [8–10]. Hsp90 inhibitors, such as geldanamycin or
17-N-allylamino-17-demethoxygeldanamycin (17-AAG), have demonstrated inhibitory
effects on the differentiation process of Leishmania in vitro [11] and were shown to exert
anti-parasitic activity in vitro and in vivo [12–16]. These inhibitors are members of a family
of antibiotics that selectively bind to the Hsp90 ATP pocket, preventing ATP hydrolysis
and folding of client proteins that do not achieve a tertiary structure. In mammals, these
unfolded proteins are eventually degraded in the ubiquitin-proteasome system, which can
result in cell death secondary to proteasome overload. This can subsequently lead to the
formation of protein aggregates [17–20], resulting in the activation of a protective selective
autophagic process in order to avoid aggregate accumulation in the cytoplasm [21–23].
Alternatively, Hsp90 inhibition can lead to a pronounced transcription of Hsp70, Hsp90 and
Hsp40, responsible for mounting mis- or unfolded proteins, thereby limiting the formation
of polyubiquitylated protein aggregates [24].

In previous studies, we have demonstrated that 17-AAG was capable of controlling
Leishmania infection (in vitro [15] and in vivo [16]) by eliminating promastigotes, which
colonize the insect vector, as well as amastigotes, which are found within vertebrate host
cells [15,16]. Nevertheless, the mechanism by which Hsp90 inhibition causes parasite death
remains unclear. Electron microscopy revealed ultrastructural alterations suggestive of
the activation of autophagy in parasites, including progressive cytoplasmic vacuolization,
double-membrane vacuoles, myelin figures and vacuoles containing cytoplasmic material,
all occurring in the absence of significant alterations in cellular nuclei, mitochondria or
plasma membranes [15].

The conserved autophagic process in eukaryotic cells is responsible for the turnover
of long-lived proteins and organelles inside autophagosomes [25,26], which plays an im-
portant role in cellular homeostasis and in cell survival in response to different types of
stress [25,27–29]. Autophagosomes are formed in successive steps involving the recruit-
ment and activation of proteins of the ATG (AuTophaGy-related genes) family [30–32]. In
Leishmania parasites, ATG12 must firstly conjugate with ATG5 in order for ATG8 to partici-
pate in the assembly of this complex, resulting in the formation of autophagosomes [33–35]
that may acquire cargo and fuse with lysosomes, thereby forming autolysosomes [33,34].
The engulfed material is degraded, generating small molecules that may be utilized for cell
survival [36,37]. Autophagy has also been identified as essential to the differentiation of
Leishmania promastigotes into amastigotes [33]. By contrast, autophagic induction has been
associated with death in eukaryotic cells [30,38]. Thus, the true role played by autophagy
with respect to the mechanism responsible for causing protozoan parasite death in response
to several stress stimuli, including antiparasitic drugs, remains to be elucidated [39].

We hypothesize that 17-AAG induces abnormal activation of autophagy in Leishmania spp.,
resulting in parasite death. To test this, several genes of the autophagic pathway were geneti-
cally modified in L. major promastigotes, which were used to investigate the participation of
autophagy in parasite death following treatment with 17-AAG.

2. Materials and Methods

2.1. Leishmania Culturing

Leishmania major (MHOM/JL/80/Friedlin) were cultivated in modified HOMEM
medium (Gibco, Carlsbad, CA, USA) supplemented with 10% (v/v) heat-inactivated fetal
calf serum (Gibco) and 1% (v/v) penicillin streptomycin solution (Sigma, St. Louis, MO,
USA) at 25 ◦C until mid-log phase was achieved, corresponding to 5 × 106 parasites/mL.

2.2. Generation of Parasite Mutants Expressing Fluorescent Markers

All mutant parasites used in this research were previously generated by our collabora-
tors and are described as follows: (i) green fluorescent protein-ATG8 (GFP-ATG8) plasmid
as described by Besteiro et al. [33]; (ii) the glycosome targeting SQL motif labelled with
RFP plasmid (RFP-SQL) as described by Cull et al. [40]; (iii) the proCPB lysosomal-marker
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labeled with RFP plasmid (RFP-proCPB) by Huete-Perez et al. [41]. Null mutant atg5 para-
sites (∆atg5), ∆atg5 expressing GFP-ATG8 (∆atg5(GFP-ATG8)) and ∆atg5::ATG5 parasites
re-expressing ATG5 in the ∆atg5 null mutant were generated by Williams et al. [35] and
used as controls. In sum, two plasmids, both derived from pGL345-HYG, the pGL345ATG5-
HYG5′ 3′ and pGL345ATG5-BLE5′ 3′, were generated with fragments of the 5′ and 3′ UTRs
flanking the ORF of ATG5 gene. The resulting linearized cassettes were used in two rounds
of electroporation using a nucleofector transfection system according to the manufacturer’s
instructions (Lonza, Basel, Switzerland) to produce a heterozygous cell line, simultaneously
resistant to hygromycin and bleomycin. To select the parasites that successfully expressed
the desired proteins, an appropriate antibiotic was used to treat each transfected parasite
line: G418 (Neomycin) at 50 µg/mL; Hygromycin at 50 µg/mL; Blasticidin S at 10 µg/mL;
Phleomycin at 10 µg/mL (all from InvivoGen, San Diego, CA, USA).

2.3. Parasite Treatment with 17-AAG or Pentamidine

In accordance with each experimental protocol, promastigotes of L. major were submitted
to treatment procedures using the antileishmanial 17-AAG (InvivoGen, San Diego, CA, USA)
(100, 300 or 500 nM) or pentamidine (Sigma, St. Louis, MO, USA) (10, 20 and 30 µM) for up to
72 h. At the end of each treatment period, parasites were pelleted by centrifugation for 3 min
at 1000× g and then washed thrice in PBS for medium removal. Cells were then resuspended
in PBS and a 10 µL suspension was spread thinly over a slide covered with a 22 × 40 mm
coverslip, then sealed with nail varnish to perform fluorescence microscopy.

2.4. Assessment of Autophagosome Formation and Autophagosome Colocalization with Glycosomes
and Lysosomes by Fluorescence Microscopy

Fluorescence microscopy was used: (i) to assess the presence of GFP-ATG8-labelled
vesicles, characteristic of autophagosomes, which appear as punctate structures as pre-
viously described [40,42] and (ii) to evaluate the effects of 17-AAG treatment on the
autophagosomal maturation process using the two L. major double-mutant promastig-
otes: GFP-ATG8 and RFP-SQL; GFP-ATG8 and proCPB-RFP. To quantify the number of
GFP-ATG8-labelled vesicles and determine the percentage of parasites containing GFP-
ATG8-labelled vesicles, after mounting for up to 1 h, parasite smears were observed under
a DeltaVision Core deconvolution microscope (Applied Precision Inc., Issaquah, WA, USA)
using GFP or mCherry filters at 1,000 magnification. For cell visualization, DIC images
were also obtained under polarized light. All images were processed and analyzed using
SoftWoRx image analysis software (Applied Precision Inc.) [40,42]. At least 300 para-
sites were counted for each combination of treatment and time point, with no less than
three independent experiments considered. Also, the effects of 17-AAG treatment on
the autophagosomal maturation process was evaluated in the double-mutant L. major
promastigotes. Autophagosome colocalization with glycosomal cargo or with lysosomes
was evaluated after treatment with 500 nM of 17-AAG at 24 or 48 h. Parasites were also
imaged using a DeltaVision Core deconvolution microscope as described above. Images
were submitted to colocalization analysis using SoftWoRx image analysis as previously
described [43].

2.5. Parasite Viability

Axenic parasites in mid-log phase were treated with serial dilutions of 17-AAG for
48 h at concentrations ranging from 10 to 15,625 nM or with DMSO (control), and after
adding AlamarBlue (Invitrogen, Carlsbad, CA, USA) (10% final concentration) followed by
incubation for another 24 h at 24 ◦C, reagent absorbance was measured at the wavelengths
of 570 and 600 nm.

To evaluate the kinetics of 17-AAG on the viability of ∆atg5 compared to WT and
∆atg5::ATG5 parasites, promastigote cultures were treated with 300 nM and 500 nM of the
Hsp90 inhibitor for 24 h, 48 h and 72 h at 24 ◦C. AlamarBlue was added and absorbance
was measured as described above. Treatment effect was estimated by determining the area
under the curve (AUC) for each group.
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2.6. Parasite Growth Curve

Leishmania cell lines (WT, ∆atg5 and ∆atg5::ATG5) at a concentration of 105 cells/mL
were incubated in 10 mL of HOMEM medium supplemented with 10% (v/v) heat-inactivated
fetal calf serum and 1% (v/v) penicillin streptomycin solution. Cells were treated or not
with 100 nM of 17-AAG and counts were performed daily for at least 13 days. Parasite
numbers were recorded and plotted.

2.7. Western Blot to Assess Ubiquitylated Proteins

The accumulation of ubiquitylated proteins in parasites treated with 17-AAG (500 nM)
for 24 h was evaluated by Western blot analysis. As a positive control, parasites were treated
with the proteasome inhibitor MG132 (3 µM) for 24 h. Following treatment, parasites
were pelleted by centrifugation for 3 min at 1000× g, and then washed thrice in PBS for
medium removal. Protein extraction was then performed for Western blot analysis as
described below.

Parasites were lysed with laemmli buffer (2-Mercaptoethanol 0.1%, bromophenol blue
0.0005%, glycerol 10%, SDS 2%, Tris-HCl 63 mM, pH 6.8) at a proportion of 10 µL of buffer
for 106 parasites, then boiled for 5 min and cell extracts were stored at −20 ◦C. Proteins
were transferred from a 12% polyacrylamide gel, following electrophoresis, to a Hybond-
C nitrocellulose membrane (Amersham, GE Healthcare, Little Chalfont, UK). Transfer
was carried out by semi-dry blotting using a BioRad Trans-Blot SD Semi-Dry Transfer
Cell at 30 volts for 45 min, with membranes and filter papers soaked in transfer buffer
(20 mM Tris-HCl, 15 mM glycine, 20% (v/v) methanol, in distilled water). Membranes were
subsequently incubated in a blocking solution for 1 h at room temperature or overnight
at 4 ◦C under agitation. After blocking, each membrane was incubated with 1:1000 FK2
anti-ubiquitin antibody (LifeSensors, Malvern, PA, USA) diluted in fresh TBST buffer
with 3% milk for 1 h at room temperature. Secondary anti-mouse antibody conjugated
with horseradish peroxidase (HRP) (Promega, Madison, WI, USA) was diluted at 1:10,000
in fresh TBST buffer and each membrane was first incubated with an ECL (Enhanced
Chemiluminescence) solution (SuperSignal West Pico Chemiluminescent Substrate Kit,
Pierce, Rockford, IL, USA), and then exposed on Kodak photographic film. An antibody
against elongation factor 1α (EF1α) (Millipore, Germany) was used for loading control.
Western blotting experiments were performed three times.

2.8. Assessment of Protein Aggregation

Axenic promastigotes of L. major lines (WT, ∆atg5 and ∆atg5::ATG5) were treated
with 17-AAG (500 nM) or MG132 (3 µM) for 24 h at 24 ◦C. The aggregation of soluble
proteins was analyzed following a previously described protocol [44] employing SDS-
PAGE. Briefly, 3 × 108 parasites were centrifuged at 1800× g at 4 ◦C for 10 min. The pellet
was resuspended in 500 µL of lysis buffer (50 mM potassium phosphate buffer, 1 mM EDTA,
5% glycerol, 1 mM protease inhibitor, Roche, Mannheim, Germany) and submitted to a 5
freeze-thaw cycles (liquid nitrogen-water). Intact cells were removed by centrifugation at
1800× g for 5 min and proteins were quantified. Then, 1 mg of protein from each group
was centrifuged at 15,000× g for 20 min to isolate the membrane and aggregate fractions.
Next, pellets were resuspended in lysis buffer, then sonicated and membrane proteins
were removed via the addition of 2% NP40 followed by centrifugation at 15,000× g for
20 min. Pellets were resuspended in 100 µL of SDS sample buffer and heated at 95 ◦C for
5 min. Samples were then analyzed using 10% SDS-PAGE, followed by silver labeling
using a Bio-Rad Silver Stain kit (Bio-Rad, Hercules, CA, USA) in accordance with the
manufacturer’s instructions. Experiments were independently repeated three times.

2.9. Statistical Analysis

The half maximal inhibitory concentration (IC50) of 17-AAG in L. major WT, ∆atg5
and ∆atg5::ATG5 promastigotes was determined by performing sigmoidal regression
on each respective concentration-response curve. Data are presented as the mean ±
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standard deviation of the mean under parametric analysis (One-way ANOVA or Welch’s
ANOVA test followed by Tukey’s or Dunnett’s Multiple Comparisons) or medians and
quartile ranges in the case of non-parametric analysis (Kruskal-Wallis test, Dunn’s multiple
comparison). All data were analyzed using the Prism program (GraphPad software, V.
9.1.0 La Jolla, CA, USA).

3. Results

3.1. 17-AAG Induces Autophagosome Formation in Promastigote Forms of Leishmania

Treatment of Leishmania parasites with 17-AAG at the concentration of 500 nM re-
sulted in an increased number of parasites containing green-labeled punctate structures
(Figure 1A). After 48 h of treatment at both 300 and 500 nM, among counted parasites,
33.1% (Q1: 29.3; Q3: 33.9) and 37.4% (Q1: 34.7; Q3: 37.8, p < 0.05), respectively, of parasites
contained punctate structures, while these alterations were seen in only 19.2% (Q1: 17.2;
Q3: 21.1) of control parasites (Figure 1B; p < 0.05). This percentage of L. major promastigotes
containing punctate structures increased after 72 h of treatment, with a median value
of 36.1% (Q1: 32.1; Q3: 44.4) of the parasites treated with 300 nM and 50.2% (Q1: 43.5;
Q3: 55.2, p < 0.05) of those treated with 500 nM revealing labeled vesicles in the cytosol,
while the level of control parasites containing punctate structures was 20.1% (Q1: 18.3;
Q3: 22.6) at 72 h of treatment (Figure 1B). The median values of the number of punctate
structures in parasites treated with 300 nM of 17-AAG at 48 and 72 h were not statistically
different compared to diluent-treated L. major promastigotes. The median number of GFP-
ATG8-labeled vesicles per parasite after 48 and 72 h was higher in parasites treated with
500 nM of 17-AAG, with values of 1.8 (Q1: 1.7;Q3:1.8, p < 0.05) and 2.0 (Q1: 1.8; Q3: 2.2),
respectively, compared to median values of 1.4 (Q1: 1.2; Q3: 1.5, p < 0.05) and 1.2 (Q1: 1.2;
Q3: 1.4) (Figure 1B) in control parasites. The atg5-deficient parasites expressing GFP-ATG8
(∆atg5(GFP-ATG8)) treated with 17-AAG exhibited no fluorescent punctate structures,
confirming that the vesicles detected in GFP-ATG8 parasites were indeed autophagosomes
(Figure 1C). As an additional control, parasites were treated with another antileishmanial,
pentamidine, at concentrations of 10, 20 or 30 µM for 24, 48 and 72 h. Treatment with
pentamidine caused cell death (data not shown), yet few punctate structures were detected
in the cytosol of treated parasites (Figure 1D). This indicates that parasite death is not
always associated with autophagosome formation in Leishmania parasites.

3.2. 17-AAG Inhibits the Autophagosome Maturation Process

Since the inhibition of endosome and autophagosome fusion with lysosomes by chloro-
quine has been previously shown to be involved in parasite death [45–47], we investigated
whether treatment with 17-AAG was capable of altering the autophagosomal maturation
process. In double-mutant parasites expressing GFP-ATG8 and the glycosomal marker,
RFP-SQL, a mean value of 22.7% ± 4.4 of the total number of counted autophagosomes
colocalized with glycosomes in parasites treated with 17-AAG (500 nM, 24 h), similar
to untreated double-mutant parasites (30.5% ± 6.4) (Figure 2A,B). After 48 h of treat-
ment, a comparable proportion of colocalization was observed in labeled compartments
(20.5% ± 3.9) in treated parasites, which was significantly lower than that detected in
control parasites treated with DMSO, 41.6% ± 5.2 (Figure 2A,B; p = 0.0006). Additionally,
double-mutant parasites expressing both GFP-ATG8 and the lysosomal marker, proCPB-
RFP, when treated with 17-AAG (500 nM) for 24 and 48 h, exhibited a remarkably lower
proportion of autophagosome-lysosome colocalization after 24 h, with mean values of
8.2% ± 5.1 (p = 0.0197) and 48 h, 12.1% ± 11.6, in comparison to DMSO-treated controls:
35.6% ± 16.6 and 38.6% ± 25.6, respectively (Figure 2C,D). These findings indicate that
17-AAG treatment resulted in inhibition of the autophagosome maturation process via
fusion inhibition of ATG8-labelled vesicles with compartments labelled with lysosomal
and glycosomal markers.
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Figure 1. Evaluation of autophagosome formation in Leishmania promastigotes following treatment with 17-AAG. (A) Axenic

promastigotes of Leishmania expressing GFP-ATG8 were treated or not with 17-AAG (500 nM) for 24 or 48 h and imaged

by fluorescence microscopy. (B) The percentage of cells bearing autophagosomes and the number of autophagosomes

per cell were calculated at 24, 48 and 72 h after treatment with 17-AAG (300 or 500 nM). (C) ∆atg5[GFP-ATG8] parasites

were treated with 17-AAG and imaged by fluorescence microscopy. (D) Comparison of the percentage of cells bearing

autophagosomes after treatment with pentamidine (10, 20 or 30 µM) or 17-AAG (500 nM) for 24 and 48 h. Lines within the

floating bars represent medians and floating bar quartiles (Q: 25% and 75%) from one out of three independent experiments

(Kruskal-Wallis test, Dunn’s multiple comparison test, * p < 0.05).
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Figure 2. Analysis of fusion between autophagosomes and glycosomes or lysosomes. (A) Axenic promastigotes of Leishmania

expressing GFP-ATG8 and RFP-SQL were treated or not with 17-AAG (500 nM) and imaged by fluorescence microscopy.

(B) Quantification of autophagosome-glycosome colocalization after treatment of Leishmania with 17-AAG. (C) Axenic

promastigotes of Leishmania expressing ATG8-GFP and proCPB-RFP were treated or not with 17-AAG (500 nM) and imaged

by fluorescence microscopy. (D) Quantification of Leishmania autophagosome-lysosome colocalization after treatment with

17-AAG. Bars represent medians ± SD from one out of three independent experiments (Unpaired t test, *** p = 0.0006,

* p = 0.0197).

3.3. atg5-Deficient Parasites Are More Resistant to 17-AAG-Induced Cell Death Than
WT Parasites

To evaluate whether autophagy plays a role in 17-AAG-induced parasite death,
IC50 values were determined for ∆atg5 parasites treated with 17-AAG for 48 h, which
showed a mean value of 174.3 nM ± 15.7, 83.7% higher than that determined for WT
(Figure 3A, p < 0.01). Moreover, when the atg5 gene was added back to the ∆atg5 parasites
(∆atg5::ATG5), the resulting IC50 value was 104.3 nM ± 32.9, similar to that found in WT
L. major promastigotes (95.0 nM ± 23.1) (Figure 3A, p < 0.01). In addition, when cultivated
in medium containing 100 nM of 17-AAG for 13 days, ∆atg5 parasites grew faster than
either WT or ∆atg5::ATG5, as assessed by growth curves (Figure 3B) and the area under
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the curve (AUC) (Figure 3C). This marked growth was especially noticeable during the log
growth phase (days 5–6) when 500% more ∆atg5 parasites were seen compared to WT or
∆atg5::ATG5 (Figure 3B). In contrast, no differences in parasite growth rates were observed
among these three parasite lines when cultivated in 17-AAG-free medium (Figure 3B).
Even when the highest concentrations of 17-AAG (300 and 500 nM) were administered to
promastigotes for up to 72 h, less toxicity was evidenced in the ∆atg5 lineage compared to
WT or ∆atg5::ATG5 L. major parasites (Figure 3D). These findings provide evidence that
∆atg5 parasites are less susceptible to cell death following treatment with 17-AAG, which
suggests the participation of autophagy in inhibitor-induced parasite death.

Figure 3. Effect of 17-AAG on survival and replication of WT, ∆atg5 and ∆atg5::ATG5 Leishmania.

(A) IC50 values for 17-AAG in different Leishmania lineages. Bars represent mean ± SD from four inde-

pendent experiments (One-way ANOVA, Tukey’s multiple comparisons test, ** p < 0.01). (B) Growth

curve reflecting 13 day-counts of WT, ∆atg5 and ∆atg5::ATG5 parasites, treated or not with 17-AAG

at 100 nM. Symbols are representative of means ± SD from three independent experiments. (C) Area

under the curve (AUC) analysis of WT, ∆atg5 and ∆atg5::ATG5 growth depicted in panel (B), fol-

lowing treatment with 17-AAG. Bars represent mean ± SD from three independent experiments

(one-way ANOVA test, Tukey’s multiple comparison test * p = 0.0321 0.05, ** p = 0.0016). (D) AUC

analysis of WT, ∆atg5 and ∆atg5::ATG5 viability following treatment with 17-AAG at 300 nM and

500 nM for 24 h, 48 h and 72 h. Bars represent mean ± SD of a single experiment performed in

quadruplicate (Welch’s ANOVA test, Dunnett’s T3 multiple comparison test * p < 0.05, ** p < 0.01).
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3.4. 17-AAG Treatment Results in Increased Accumulation of Ubiquitylated Proteins, but Not
Protein Aggregates, in L. major Parasites

Due to the participation of autophagy in Leishmania death arising from 17-AAG
treatment, we hypothesized that autophagic activation could be consequent to Hsp90
inhibition, which causes a subsequent enhancement in the amount of ubiquitylated protein.
Low basal levels of ubiquitylated proteins were seen in all untreated WT, ∆atg5 and
∆atg5::ATG5 parasites (Figure 4). Treatment with 17-AAG (500 nM for 48 h) induced an
overall increase in the amounts of ubiquitin-labeled proteins in WT, ∆atg5 and ∆atg5::ATG5
parasites (Figure 4). A similar result was observed after 48 h of 17-AAG treatment (data not
shown). As expected, of the three lines evaluated, ∆atg5 parasites demonstrated the greatest
accumulation of ubiquitylated proteins after treatment with either 500 nM of 17-AAG or
3 µM of MG132 (Figure 4). Predictably, the treatment of parasites with MG132 (3 µM, 48 h)
increased the accumulation of ubiquitylated proteins in all three parasite lines evaluated.
Moreover, treatment with MG132 also resulted in a higher proportion of autophagosomes
in GFP-ATG8 parasites, as evidenced by the mean percentage of parasites bearing punctate
structures: 14.7% ± 3.5 in parasites treated for 24 h with 3 µM of MG132, in comparison to
a mean value of 10.9% ± 1.5 in control parasites (Figure 5A,B). This difference increased at
48 h to 30.6% ± 4.6 of parasites treated with 3 µM of MG132 compared to 6.8% ± 2.0 in
controls (Figure 5B, p = 0.0007). As was also expected, positive controls treated with 500 nM
of 17-AAG exhibited a significant increase in the percentage of parasites containing labeled
vesicles: 20.8% ± 1.3 (p = 0.0035) at 24 h and 21.1% ± 4.3 at 48 h (p = 0.0091) (Figure 5B).
Increased ubiquitylated protein accumulation can result in proteasomal overload and the
accumulation of protein aggregates or, alternatively, enhancement in the transcription of
Hsp70, Hsp90 and Hsp40 [48].

Figure 4. Ubiquitylated protein profiles of WT, ∆atg5 and ∆atg5::ATG5 after 17-AAG or MG132

treatment. WT, ∆atg5 and ∆atg5::ATG5 parasites were treated with 17-AAG (500 nM) or MG132

(3 µM) for 48 h. Protein extracts were electrophoresed on a 12% gel, blotted and probed with an FK2

anti-ubiquitin antibody. EF1α was used as loading control.
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Figure 5. Evaluation of autophagosome formation in promastigotes of Leishmania following treatment with MG132.

(A) Promastigotes of Leishmania expressing GFP-ATG8 were treated or not with MG132 (3 µM) and imaged by fluorescence

microscopy. (B) The percentage of cells bearing autophagosomes was calculated after treatment with 17-AAG (500 nM) or

MG132 (3 µM) for 24 and 48 h. Bars represent mean ± SD of three independent experiments (One-way ANOVA, Tukey’s

multiple comparisons test, ** p < 0.01, *** p < 0.001).

Using SDS-PAGE, protein extracts of all parasite strains: WT, ∆atg5 and ∆atg5::ATG5
treated with 17-AAG (500 nM for 24 h) did not result in increased protein aggregate
formation in comparison to untreated parasites, while positive control parasites treated
with MG132 (3 µM for 24 h) revealed increased amounts of protein aggregates (Figure 6).
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Figure 6. Effect of 17-AAG treatment on WT, ∆atg5 and ∆atg5::ATG5 protein aggregate formation.

Culture aliquots from WT, ∆atg5 and ∆atg5::ATG5 parasites treated with 17-AAG (500 nM) or MG132

(3 µM) for 24 h were withdrawn and analyzed to determine quantities of insoluble protein aggregates

by cell lysis and centrifugation. Protein aggregates were subjected to SDS-PAGE followed by silver

staining. One experiment is representative of two independent experiments.

4. Discussion

The present study confirmed that in Leishmania treated with 17-AAG, autophagy
is induced by an increased percentage of autophagosomes expressing GFP-ATG8, as
well as higher overall numbers of labeled autophagosomes per parasite. We also found
that the macroautophagy-deficient ∆atg5[GFP-ATG8] Leishmania, which is unable to form
autophagosomes, did not form any detectable punctate structures.

The present study also found that treatment with 17-AAG induced a reduction in the
degree of colocalization between autophagosomes and glycosomes, as well as between
autophagosomes and lysosomes, in comparison to controls. Hsp90 is known to control the
expression of hundreds of proteins involved in diverse cell functions [49,50]. A previous
report described the involvement of Hsp90 in controlling vesicle trafficking and fusion
by folding proteins, responsible for recycling RAB proteins from vesicle membranes back
into the cytoplasm [51] and vesicle transport proteins that play a role in the transport of
glycoproteins from the Golgi to other compartments [52]. Since reduced colocalization
of the proCPB-RFP and GFP-ATG8 was observed in Leishmania following treatment with
17-AAG compared to untreated parasites, we speculate that Hsp90 inhibition results in
the unfolding or incorrect folding of parasite proteins involved in vesicle trafficking and
fusion. The inhibition of the fusion of newly-formed autophagosomes with lysosomes
could result in the trapping of proteins and organelles within autophagosomes, leading to
parasite death. In agreement with our findings, a recent study described that disrupting a
cysteine protease located in the vacuolar compartment (VAC) of Toxoplasma gondii caused a
reduction in the proteolytic activity of parasite lysosomes, the accumulation of undigested
autophagosomes in parasite cytoplasm, and subsequently, a reduction in the intensity of
infection [53].

We found that survival in ∆atg5 L. major promastigotes increased compared to WT
parasites under treatment with 17-AAG. Indeed, we showed that ∆atg5 L. major were not
only able to survive and proliferate more efficiently than WT at a low dosage of 17-AAG
(100 nM) for 13 days, but were also found to be more resistant to death at higher dosages
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(300 and 500 nM). These findings lead us to propose that the activation of the autophagic
pathway contributes to Leishmania cell death. Macroautophagy is a successful adaptive
strategy that functions as a protective mechanism activated under different physiological
stress stimuli [54–56]. Similarly to our study, it has been shown that autophagy is induced
in T. gondii in response to endoplasmic reticulum stress, followed by the accumulation
of unfolded proteins [57]. Also, incomplete autophagosome maturation was shown to
be harmful to eukaryotic cells [58], including mammals [48,59] and T. gondii [53]. More-
over, it was previously demonstrated that several Leishmania lines present an inability to
complete the transformation process from promastigotes to amastigotes, including ∆atg5
parasites [35], ∆atg4.2 parasites expressing a mutant vesicular sorting protein 4 [33] form
autophagosomes that do not fuse with lysosomes, and ∆cpa/cpb parasites, which do form
autophagosomes that fuse with lysosomes, produce non-degraded lysosomal content due
to the deficiency of CPA and CPB enzymes [42,60]. This inability to complete transfor-
mation leads to a reduced survival rates inside macrophages in vitro [33,35,42,60] and
in vivo [35].

The inhibition of Hsp90 in cancer cells results in an increase in the accumulation
of ubiquitylated proteins in the cytosol [19], and subsequently, proteasome overload,
leading to both the accumulation of unfolded and misfolded proteins [23,61] and protein
aggregate formation [62–64]. We speculate that a similar event could take place in parasites
treated with 17-AAG. The accumulation of polyubiquitylated proteins following treatment
with Hsp90 inhibitors in animal models of neurodegenerative disease [17,24,65] inhibited
protein aggregate formation from the activation of Hsp70 and Hsp40 [48,66]. The present
study showed that treating Leishmania parasites with 17-AAG led to the accumulation
of ubiquitylated proteins at levels similar to those observed in parasites treated with the
proteasome inhibitor, MG132. Although 17-AAG treatment induced the accumulation
of polyubiquitylated proteins, Hsp90 inhibition most likely did not result in proteasome
overload, as no enhancement in the formation of protein aggregates was detected (Figure 6),
likely due to the activation of other Hsps [66].

In sum, our findings evidence that Leishmania cell death caused by 17-AAG is asso-
ciated with abnormal activation of the autophagic pathway, resulting in the formation of
autophagosomes unable to achieve complete autophagolysosomal maturation and there-
fore incapable of degrading engulfed material.
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