
This is a repository copy of Verified Synthesis of Optimal Safety Controllers for Human-
Robot Collaboration.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174848/

Monograph:
Gleirscher, Mario orcid.org/0000-0002-9445-6863, Calinescu, Radu orcid.org/0000-0002-
2678-9260, Douthwaite, James et al. (5 more authors) (2021) Verified Synthesis of
Optimal Safety Controllers for Human-Robot Collaboration. Report.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Verified Synthesis of Optimal Safety Controllers for Human-Robot Collaboration

Mario Gleirschera,c,∗, Radu Calinescua, James Douthwaiteb, Benjamin Lesagea, Colin Patersona, Jonathan Aitkenb,
Rob Alexandera and James Lawb

aUniversity of York, Deramore Lane, York YO10 5GH, UK
bUniversity of Sheffield, Mappin Street, Sheffield S1 3JD, UK
cUniversity of Bremen, Bibliothekstrasse 5, 28359 Bremen, Germany

A R T I C L E I N F O

Keywords:
software engineering
controller synthesis
formal verification
probabilistic model checking
code generation
risk modelling
human-robot collaboration
cobot safety
manufacturing automation
digital twin

Abstract

In human-robot collaboration, software-based safety controllers are used to improve operational safety, e.g., by
triggering shutdown mechanisms or emergency stops to avoid accidents. Complex robotic tasks and increas-
ingly close human-robot interaction pose new challenges to controller developers and certification authorities.
Key among these challenges is the need to assure the correctness of safety controllers under explicit (and prefer-
ably weak) assumptions. To address this need, we introduce and evaluate a tool-supported approach for safety
controller synthesis and deployment. The new approach focuses on human-robot collaboration in manufac-
turing, and is informed by the process, risk analysis, and relevant safety regulations for the target application.
Controllers are selected from a design space of feasible controllers according to a set of optimality criteria, for-
mally verified against correctness criteria, and translated into executable code and validated in a digital twin.
The resulting controller can detect the occurrence of hazards, move the process into a safe state, and, in certain
circumstances, return the process to an operational state from which it can resume its original task.

1. Introduction

Effective collaboration between humans and robots (Nicolaisen,
1985; Jones, 1986) can leverage their complementary skills. But
such collaboration is difficult to achieve because of uncontrolled haz-
ards and because sensing, tracking, and safety measures are either
still unexploited in practice (Santis et al., 2008) or they are difficult
to validate following state-of-the-art safety regulations (Chemweno
et al., 2020). Since the 1980s, remote programming (also called tele-
programming) and simulation have led to some reduction of hazard
exposure. However, the effectiveness of human-robot collaboration
is still limited because of frequent conservative shutdowns, simplistic
emergency stops, and unspecific error handling procedures. Exten-
sive guarding arrangements interfere with manufacturing processes
and mobile robot applications. But effective work processes and com-
plex tasks require continuous close human-robot interaction (e.g.
mutual take-over of tasks), mutual clarification of intent, and trad-
ing off risk (Hayes and Scassellati, 2013; Villani et al., 2018). From
an operator’s perspective, robot movements need to be predictable,
and potential impacts on the human body need to be attenuated.
From a control perspective, the confident monitoring and control of
the robot speed and the separation between machines and humans
require high-quality stereo vision and laser scanners to distinguish
several safety zones. A decade after these issues were discussed
in Alami et al. (2006) and Haddadin et al. (2009), Ajoudani et al.
(2017) emphasise that the complex safety challenges of collabora-
tive robots (cobots for short, Gillespie et al., 2001) remain largely
unresolved. Increasingly complex robotic systems reduce the abil-
ity to understand and mitigate risks. Safety is a major barrier to
the more widespread adoption of cobots, with organisations such as
manufacturers having to resort to sub-optimal processes due to safety
concerns. Methods of ensuring safe human-robot interaction will de-
liver $7.3bn of savings, reducing costs of US-manufactured goods by
1% (Anderson, 2016). However, little such method and tool support
is available for engineers that have to implement and confidently as-
sure cobot safety requirements, that is, the results of cobot hazard
analyses and risk assessments (Chemweno et al., 2020).

Problem. Among the measures for improving cobot safety, the
monitoring of application processes, the handling of critical events,
and the mitigation of operational risk are the responsibility of soft-

∗Corresponding author

mario.gleirscher@york.ac.uk (M. Gleirscher); radu.calinescu@york.ac.uk (R.
Calinescu); j.douthwaite@sheffield.ac.uk (J. Douthwaite);
benjamin.lesage@york.ac.uk (B. Lesage); colin.paterson@york.ac.uk (C. Paterson);
jonathan.aitken@sheffield.ac.uk (J. Aitken); rob.alexander@york.ac.uk (R.
Alexander); james.law@sheffield.ac.uk (J. Law)

ORCID(s): 0000-0002-9445-6863 (M. Gleirscher); 0000-0002-2678-9260 (R.
Calinescu); 0000-0002-7149-0372 (J. Douthwaite); 0000-0003-4204-4020 (J. Aitken);
0000-0003-3818-0310 (R. Alexander)

ware-based safety controllers. To facilitate smooth human-robot col-
laboration with minimal interruption, the control engineers respon-
sible for designing these controllers need to closely consider the pro-
cess with its variety and complexity of adverse events, such as un-
usual operator behaviour and equipment failure modes. This leads
to complex requirements and design spaces for the safety controllers,
so these engineers must address questions in several areas:

1. Risk assessment. Which controller minimises the probability
of incidents in the presence of human and sensor errors?

2. Controller synthesis. Which design minimises nuisance to the
human, maximises productivity, etc. while maintaining safety?

3. Controller verification. Does a controller handle hazards when
detected and return the system to a useful safe state?

4. Controller validation. Does an implementation of the synthe-
sised controller exhibit the intended behaviour?

Preliminary solution. In Gleirscher and Calinescu (2020), we
provide initial answers to the first three questions, by introducing
a preliminary tool-supported approach for the synthesis of discrete-
event safety controllers that meet safety requirements and optimise
process performance in human-robot collaboration. We model the
application (e.g. a manufacturing process) as a Markov decision
process (MDP), and select correct-by-construction controllers from
an associated design space. The process model describes the be-
haviour of all involved actors including the controller. To describe
critical events (e.g. hazards) and controller actions (e.g. safety
mode changes), we employ the notion of risk structures (Gleirscher,
2017; Gleirscher et al., 2021) implemented in YAP (Gleirscher, 2021,
2020). YAP is a tool that supports risk modelling and controller de-
sign with a domain-specific language and automates the transfor-
mation of risk structures into guarded command language and, in
turn, MDPs. The preliminary approach from Gleirscher and Calin-
escu (2020) facilitates the verification of the safety of the MDP and
of probabilistic reach-avoid properties of selected MDP policies in-
cluding the controller. A verified controller extracted from such a
policy detects hazards and controls their mitigation by the execution
of a safety function, a transition to a particular safety mode, or a
safer process task or activity. Furthermore, in certain circumstances,
the controller returns the process to an operational state from which
it can resume its original task.

Contributions. In this paper, we extend our preliminary safety
controller synthesis approach from (Gleirscher and Calinescu, 2020;
Gleirscher, 2020) with multiple new capabilities, and we overcome
several of its limitations, as explained in the following paragraphs.

Gleirscher et al.: Preprint submitted to Elsevier Page 1 of 20

Verified Synthesis of Safety Controllers

We refine the process and risk modelling to enable the synthesis
of finer-grained controllers. For this, we provide a refined factor no-
tion in Section 4.2.1. We improve and extend the verification stage
by checking additional properties, increasing the confidence in the
synthesised controllers. We employ the tool EVOCHECKER (Gerasi-
mou et al., 2018) in addition to the model checker PRISM (Kwiat-
kowska et al., 2011), extending the verification capabilities of the
optimal synthesis procedure to significantly more complex combina-
tions of controller requirements.

We translate the controllers into executable code for a digital
twin framework (DTF) to foster controller validation in a realistic
environment. We assure the correctness of this translation by reusing
properties from model checking in run-time verification. The DTF
validation of the safety controller is based on randomised use-case
tests that satisfy well-defined state-based coverage criteria.

We demonstrate in the DTF how the synthesised safety controller
can automatically resume the nominal procedure after the mitigation
of hazards. We provide experimental results that confirm our safety
controller’s ability to achieve an increased process utility in addition
to ensuring high levels of freedom from accidents.

Overall, we increase the level of technical detail, to improve the
understanding and reproducibility of our results. Section 2 intro-
duces our case study as a running example, and Section 3 provides
the theoretical background. We describe our process modelling and
controller design method in Section 4, our approach to verified opti-
mal synthesis in Section 5, and explain in Section 6 how we imple-
ment, deploy, and validate the synthesised controllers in a realistic
purpose built digital twin. We evaluate and discuss our approach in
Section 7. Section 8 highlights related work. We conclude with a
short summary in Section 9.

2. Running Example: Manufacturing Cobots

Figure 1 shows a cobot-equipped manufacturing work cell at a
UK company (with the pictures anonymised for confidentiality rea-
sons) and replicated in a testbed at the University of Sheffield (Fig-
ure 1c). In the corresponding process,  , an operator, a stationary
collaborative robotic manipulator (robot arm for short), and a spot
welder (Figure 2a) collaborate repetitively on several activities (Fig-
ure 2b).1 Previous safety analysis (i.e., hazard identification, risk as-
sessment, and requirements derivation) resulted in two sensors. The
first one is a range finder using a rotating laser beam (indicated with
the highlighted area at the bottom of Figure 1a) to determine the dis-
tance between the spot welder and a person or an object intruding
into the highlighted area and triggering a slow down or an emer-
gency stop if the intruder approaches the spot welder. The second
one is a light barrier (the highlighted curtain indicated in Figure 1b)
triggering such a stop if something like a person’s arm reaches across
the workbench while the robot or the spot welder are active. Table 1
shows our partial safety analysis of the cell following the guidance
in Section 1. The right column specifies safety goals against each
accident and controller requirement candidates (e.g. mode-switch
requirements) handling each latent cause in the left column, and in-
dicating how the hazard is to be removed. The running example is
part of a case study organised around the AAIP project CSI: Cobot.2

Due to Covid-19 restrictions limiting access to physical facilities dur-
ing a critical phase of the project, we use a digital twin of the work
cell as a target platform to deploy and validate synthesised safety
controllers.

3. Background

This section summarises the background of the presented ap-
proach, particularly, cobot safety, probabilistic model checking, sys-
tem safety analysis, and risk-informed controller modelling.

3.1. Robot Safety: From Industrial to Collaborative

Hazards from robots have been studied since the advent of in-
dustrial robotics in the 1970s, resulting in risk taxonomies based on

1For the sake of simplicity, we use the notion of an activity as a hypernym
describing a task, a situation, a use case, or a scenario.

2See https://www.sheffield.ac.uk/sheffieldrobotics/about/csi-cobot.

spot

welder

robot

arm

end effector

(a) Safeguarded area (company)

(b) Workbench (company) with two handover loca-

tions (left and right receptacle) for part exchange

(c) Replica (research lab)

Figure 1: Actual (a, b) and replicated (c) work cell with cobot

Spot
welder

Cobot (robot arm)

Safeguarded
workspace

Workbench

Collaborative
workspace

Operator

(a) Work cell with cobot (conceptual, top view)

off

idle

exchWrkp

welding

moving

base

(b) Process activities

Figure 2: Work cell concept (a) and activities in the manufacturing process (b) per-

formed by the operator, the robot, and the spot welder, classified by the activity

groups moving and base (in light gray)

workspaces, tasks, and human body regions (Sugimoto, 1977; Jones,
1986; Alami et al., 2006; Haddadin et al., 2009; Wang et al., 2017;
Kaiser et al., 2018; Matthias et al., 2011; Marvel et al., 2015). The
majority of hazards are impact hazards (e.g. unexpected movement,
reach beyond area, dangerous workpieces, hazardous manipulation),
trapping hazards (e.g. operator locked in cage), and failing equip-

ment (e.g. valve, cable, sensor, controller). In the 1980s, robots
were programmed interactively by operators being in the cage while
powered, which had caused frequent accidents from trapping and
collision. However, from the late 1990s on, the increased use of
tele-programming contributed to the reduction of accidents related
to such hazards.

Addressing hazards outside the programming stage involves the
examination of each mode of operation (e.g. normal, maintenance)
for its hazardous behaviour, and the use of safety controllers to trig-
ger mode-specific safety measures (Jones, 1986). Malfunction diag-
nostics (e.g. fault detection, wear-out monitoring) can further in-
form these controllers. Table 2 shows a variety of measures (San-
tis et al., 2008) to prevent or mitigate hazards and accidents by
reducing the probability of the occurrence and the severity of the

Gleirscher et al.: Preprint submitted to Elsevier Page 2 of 20

Verified Synthesis of Safety Controllers

Table 1

Our partial safety analysis of the manufacturing cell referring to the measures recommended in ISO/TS 15066 (2016)

Id Critical Event (risk factor) Safety Requirement

Accident (to be prevented or alleviated) Safety Goal

RC The Robot arm harshly Collides with an operator. The robot shall avoid harsh active collisions with the operator.

WS Welding Sparks cause operator injuries (skin burns). The welding process shall reduce sparks injuring the operator.

RT The Robot arm Touches the operator. The robot shall avoid active contact with the operator.

Latent Cause (to be mitigated timely)† Controller Requirement‡

HRW The Human operator and the Robot use the

Workbench at the same time.

(m) The robot shall perform an appropriate mitigation (e.g. a safety-rated monitored stop) and (r)

resume normal operation after the operator has left the shared workbench.

HW The Human operator is entering the Workbench while

the robot is away from the workbench.

(m) If the robot moves a workpiece to the workbench then it shall switch to power & force limiting mode

and (r) resume normal operation after the operator has left the workbench.

HS The Human operator has entered the Safeguarded

area while the robot or the spot welder are active.

(m) The spot welder shall be switched off, the robot to speed & separation monitoring, and the operator

be notified to leave. (r) Robot and spot welder shall resume normal mode after the operator has left.

HC The Human operator is Close to the welding spot while

the robot is working and the spot welder is active.

(m) The spot welder shall be switched off, the robot to safety-rated monitored stop. (r) Both shall

resume normal or idle mode with a reset procedure after the operator has left.

†m: mitigation requirement, r: resumption requirement, ‡subjected to generalisation to define a controller design space

consequences of these hazards. If these measures use electronic
or mechatronic equipment, we speak of functional3 measures (e.g.
safety modes as exemplified below) and of intrinsic measures oth-
erwise (e.g. a fence around a robot, flexible robot surfaces). Func-
tional measures focusing on the correctness and reliability of a con-
troller (a programmable electronic or software system) are called
dependability measures (Alami et al., 2006; Avizienis et al., 2004).
Functional measures are said to be passive if they focus on sever-
ity reduction (e.g. force-feedback control), active otherwise. In this
work, we focus on the verified synthesis (Kress-Gazit et al., 2018) of
safety controllers that realise active functional safety measures.

Standardisation of safety requirements for industrial robots (Sug-
imoto, 1977) culminated in ANSI/RIA R15.06, ISO 10218 (2011),
13482, and 15066. Following ISO 10218, such robot systems com-
prise a robot arm, a robot controller, an end-effector, and a work
piece (see, e.g. Figure 2a). According to Helms et al. (2002) and
Kaiser et al. (2018), one can distinguish four scenarios of human-
robot interaction: (i) Encapsulation in a fenced robot work space,
(ii) co-existence without fencing but separation of human and robot
work space, (iii) cooperation with alternative exclusive use of shared
work space, and (iv) collaboration with simultaneous use of shared
work space and close interaction. Cooperation and collaboration are
the two most interactive of these scenarios and motivate our work. In
collaborative operation, the operator and the cobot (Gillespie et al.,
2001) can occupy the collaborative workspace simultaneously while
the cobot is performing tasks (ISO/TS 15066, 2016, Pt. 3.1). The col-

laborative workspace has to be a subset of the safeguarded workspace.
Based on these definitions, ISO 15066 recommends four safety

modes. First, a safety-rated monitored stop is an active functional
measure realised as a mode where the robot is still powered but
there is no simultaneous activity of the robot and the operator in the
shared workspace. Second, hand-guided operation refers to a mode
with zero-gravity control, that is, control without actuation beyond
the compensation of gravity, solely guided by an operator. Hand
guidance requires the robot to be in a compliant state, with con-
trol exerted by the operator through physical manipulation. Third,
speed & separation monitoring as an active functional measure refers
to a mode where speed is continuously adapted to the distance of
the robot and an operator. Forth, power & force limiting is a mode
with reduced impact of the robot on the human body and the robot’s
power and applied forces are limited. In this mode, a robot should
not impact a human with more than a defined force, with acceptable
forces mapped out for different impact points on the body. Heinz-
mann and Zelinsky (2003) propose such a mode always active dur-
ing a collaborative activity described as a discrete-event controller.
Long et al. (2018) propose a distance-triggered scheme to switch
between nominal (max. velocity), reduced (speed limiting), and pas-
sive (hand-guided) operating modes. Kaiser et al. (2018) and Villani

3Functional safety (see IEC 61508, ISO 26262) deals with the dependability,
particularly, correctness and reliability, of critical programmable electronic systems.
Safety functions or “functional measures” are the archetype of such systems.

Table 2

Cobot safety measures associated to stages in the causal chain of events

Stage Type of Measure Examples

Hazard

prevention

1. Safeguard/barrier Fence, cage, interlock

2. IT safety Verified† safety controller

3. IT security Security-verified† (safety) controller

Hazard

mitigation &

accident

prevention

4. Reliability Fault-tolerant scene interpretation

5. Workspace intrusion

detection

Speed & separation monitoring,

safety-rated monitored stop

6. Shift of control Hand-guided operation

Accident

mitigation

(alleviation)

7. Power & force limita-

tion

Low weight parts, flexible surfaces;

variable impedance, touch-sensitive,

& force-feedback control

8. System halt Emergency stop, dead-man’s switch

†avoidance of development or programming mistakes

et al. (2018) describe and combine these modes with work layouts.
In addition to these safety modes, Alami et al. (2006) high-

light the necessity of a general shift from robots whose motion is
controlled only by following a pre-specified route of positions (also
known as position control) to robots whose motion control minimises
contact forces and energy (also known as interaction control). Over-
all, interaction-controlled robots, with less pre-planning and fewer
assumptions on workspace structure and robot actions, can exploit
the mentioned safety modes more effectively than position-controlled
robots with extensive pre-planning and stronger assumptions.

3.2. Probabilistic Model Checking and Trace Checking

The proposed approach employs MDPs, and corresponding sets
of discrete-time Markov chains (DTMCs), as a formal model of the
process  , and uses the policy space of an MDP, describing the de-
grees of freedom for decision making, to model the design space for
verified controller synthesis.

Definition 1. Markov decision process (MDP). Given all distributions

Dist(⋅) over a sort (e.g. an action alphabet A of a process ), an MDP

is a tuple  = (S, s0, A , � , L) with a set S of states, an initial state

s0 ∈ S, a probabilistic transition function � ∶ S ×A → Dist(S), and

a map L∶ S → 2AP labelling S with atomic propositions AP (Kwiat-

kowska et al., 2007).

Given a map A∶ S → 2A , |A(s)| > 1 signifies non-deterministic
choice in s. Choice resolution for S forms a policy.

Definition 2. Policy. A policy is a map � ∶ S → Dist(A) s.t.

�(s)(a) > 0 ⇒ a ∈ A(s). � is deterministic if ∀s ∈ S ∃a ∈ A(s)∶
�(s)(a) = 1 ∧ ∀a′ ∈ A ⧵ {a}∶ �(s)(a′) = 0.

In this paper, we restrict our self to the consideration of deter-
ministic policies.4 Let Π be the space of all such policies for .

4More precisely, we only consider memoryless policies, with some restrictions
on MDP policy synthesis, however, not relevant for our purposes.

Gleirscher et al.: Preprint submitted to Elsevier Page 3 of 20

Verified Synthesis of Safety Controllers

Then, action rewards defined by a map r
q
action ∶ S × A → ℝ≥0 allow

the comparison of policies in Π based on a quantity q.
Verification of  can be done using probabilistic computation

tree logic (PCTL) whose properties over AP are formed by

� ∶∶= true ∣ ap ∣ ¬� ∣ �∧� ∣ E' ∣ A' and ' ∶∶= X� ∣ �U�

with ap ∈ AP ; an optional bound b ∈ ℕ+ for U∼b with ∼ ∈ {<,≤
,=,≥}; the quantification operators P∼b∣[min∣max]=? ' to verify (or with
=?, to quantify) probabilities, and S∼b∣=?[ap] to determine long-run
probabilities. States correspond to valuations of state variables of
type B, ℕ, or ℝ. Hence, propositions in AP are of the form x ∼ f for
a variable x and a function (or constant) f ∶ S → ℝ ∪ B. The PCTL
extension R

q
∼b∣[min∣max]=?

[F� ∣ C[∼b]] calculates reachability and accu-

mulative action rewards. We use the abbreviations false ≡ ¬true,
F� ≡ trueU�, G� ≡ ¬ F¬�, and �W ≡ �U ∨ G�. With  ⊧ �
(s ⊧ �), we state that the MDP  from state s0 (the state s ∈ S) sat-

isfies the property �. Let [[�]]S denote the largest subset S′ ⊆ S with
∀s ∈ S′ ∶ s ⊧ � for a state predicate �. For the checking of a recorded
trace t of a system, we use fragments of linear and metric tempo-
ral logic whose properties over AP are formed by the propositional
fragment as defined above and by F, G, and UI , with a finite interval
I ⊂ ℝ≥0 × ℝ≥0. Comprehensive treatments of PCTL, linear and met-
ric temporal logic can be found in, for example, Kwiatkowska et al.
(2007); Basin et al. (2015) and Baier and Katoen (2008).

The concise construction of � , the behaviour of  , can be facili-
tated by using a flavour of probabilistic guarded command language
(pGCL), for example, as implemented in the PRISM tool (Kwiatkow-
ska et al., 2007, 2011). Guarded commands have the form [�]
 ⟶
� with an event (or action) label � and a probabilistic update � ap-
plicable to s ∈ S only if s ⊧
, where
 is an expression in the propo-
sitional fragment of PCTL.5 Generally, � ∶∶= �1 ∶ �1 + ⋯ + �n ∶ �n
with Σi∈1..n�i = 1 and �i being a multiple assignment �i ∶∶= x′i1

=

fi1 &⋯& x′in
= fin to state variables xk based on functions fj .

3.3. Risk Modelling for Controller Design

We view an application (e.g. Section 2) as a process,  , moni-
tored and influenced by a safety controller to mitigate hazards and
prevent accidents. Critical events, such as accidents (or mishaps),
their causes, and causal factors (e.g. hazards), are state properties.
We express these properties as subsets of S. In particular, mishaps

F ⊂ S are undesired states (e.g. all states where a person is injured
by welding sparks). For a mishap f ⊂ F , we further define a subset

Ξf ⊂ S from which f is reachable, for example, all states in S where

the operator is near the spot welder while the latter is active. We
call Ξf the causes of f . Causes are intersections of causal factors, in

particular, factors related to the subject of protection (e.g. the opera-
tor to be protected by the safety controller when being near the spot
welder) and a hazard f as a causal factor related to the system (e.g.
the spot welder being active; Leveson 1995, 2012). We call causes
latent or controllable6 if there are sufficient resources to prevent the
accident (e.g. time for removing f by transition to S⧵Ξf). Controlla-

bility can be justified, for example, by assuming that if the spark flow
is low there is a small time span left for the spot welder to be stopped
or the operator to leave without leading to an accident. f can also
refer to states in S ⧵ Ξf being critical because certain events (e.g. an

operator approaches the spot welder) cause a transition to Ξf , and

possibly f , if f stays active, further conditions hold, and no safety

measures are put in place promptly. Below, in Section 4.2.1, we will
use state propositions to identify the discussed critical events.

Based on these notions, risk modelling can be facilitated by spec-
ifying risk factors and combining them into risk structures (Gleirscher
et al., 2021). A risk factor f is a labelled transition system (LTS) mod-
elling the life cycle of a critical event in terms of phases. In its basic

form, f has the phases inactive (✁❆f), active (f), mitigated (f), and
mishap (f). Transitions between these phases signify endangerment

5We use ⟶ to separate guard and update expressions and → both for logical
implication and the definition of mappings.

6As opposed to immediate causes with limited or no risk handling controls.

Modelling of the Controller Design Space (Sec. 4)

Process
(Sec. 4.1)

Risk
(Sec. 4.2)

Stochasticity
(Sec. 4.3)

Mitigations
(Sec. 4.4)

Verified Optimal Controller Synthesis (Sec. 5)

Application
Application safe
with respect to
Critical Events

Controller Deployment & Validation (Sec. 6)

Performance
(Sec. 4.5)

Safety
Controller

Figure 3: Stages of the proposed approach to safety controller synthesis

events (e) as well as mitigation (m) and resumption (r) actions. A
risk structure from a factor set F (e.g. column Id in Table 1) operates

over a risk (state) space R(F) =
⨉

f∈F Pℎf with Pℎf = {✁❆f, f , f , f}.

Furthermore, let Ξ ⊂ S be the set of states labelled with at least one
cause, describing the abstract state where any critical event has at
least been sensed by the controller (e.g. HC with its handling about
to start, i.e., the controller transitioning from✟✟❍❍HC to HC). We call Ξ
the non-accident F -unsafe region. One can hypothesise relationships
between critical events using factor dependencies. Such relationships
can be identified and justified by, for example, a hazard operability
study, a failure mode effects analysis, or a fault tree analysis. Fur-
ther details about risk structures will be introduced along with our
approach explained below in Section 4.

3.4. Digital Twins

We focus on digital twins as a platform for controller deploy-
ment and validation. Digital twinning is a key Industry 4.0 technol-
ogy for enabling industrial automation, smart processes, and process
autonomy (Negri et al., 2017; Bolton et al., 2018). Together with
the Internet of Things and machine-to-machine communication, dig-
ital twinning enables both the creation of a better data infrastructure
and the adoption of smart manufacturing technologies. A digital twin
provides greater access to data relating to, and control over, a phys-
ical system, and has particular value in the design, implementation,
and evaluation of processes and safety controllers. The authors of
Kritzinger et al. (2018) and Tao et al. (2018) define a digital twin as:

“A digital twin is an integrated multi-physics, multi-
scale, probabilistic simulation of a complex product
and uses the best available physical models, sensor up-
dates, etc., to mirror the life of its corresponding twin."

More specifically, a digital twin is a digital representation of a physi-
cal system that operates in parallel7 with the real system. This con-
currency can persist throughout the life-cycle of the physical system.
Communication between the physical twin and its digital represen-
tation is bilateral, and as a result, both can be mutually informed
by real-world or simulated sensor data, requested actions and deci-
sions. As a means for safety verification and analysis, a digital twin
presents: (i) A faithful representation of the process domain and
state space, (ii) a means to interrogate and collect data that may not
be readily available from the physical system (independent of hard-
ware limitations), and (iii) an interface to the physical twin through
which real-world responses to new safety procedures can be demon-
strated.

4. Modelling for the Synthesis of Safety Controllers

Figure 3 provides an overview of the proposed approach to the
synthesis of safety controllers. The main idea is that the control en-
gineer designs a safety controller on top of an application, in this in-
stance, comprising activities where humans and robots collaborate.
The intention of the deployed controller is to increase safety with
respect to the critical events under consideration.

7A digital twin must be able to operate synchronously with the physical sys-
tem, but asynchronous operation is also permissible.

Gleirscher et al.: Preprint submitted to Elsevier Page 4 of 20

Verified Synthesis of Safety Controllers

In the modelling stage, the control engineer creates several mod-
els to obtain a design space including controller candidates to se-
lect from during synthesis. When modelling the process of the ap-
plication, the engineer as a domain expert describes the actions per-
formed by any of the actors in the application. The engineer then
performs a risk analysis resulting in a risk model that informs the pro-
cess model with a notion of operational risk. The abstraction chosen
for the model and a usual lack of knowledge about process details re-
quire the integration of stochasticity and performance estimates into
the model. With the risk- and performance-informed stochastic pro-
cess model, the engineer can specify controller behaviour in form
of a mitigation model. In the controller synthesis stage, an abstract
controller is automatically synthesised from the design space accord-
ing to risk- and performance-based optimality criteria. Finally, in the
deployment and validation stage, this controller is translated auto-
matically into an executable form. The three stages are supported by
the tools YAP, PRISM, EVOCHECKER, and the digital twin framework.
These stages are detailed in the following sub-sections and illustrated
with several examples from our case study introduced in Section 2.

4.1. Modelling Processes

For process modelling (Figure 4), we use pGCL to specify the ac-
tions of the process. The process model defines the state space to be
manipulated by these actions and includes the actions of the cobot
and the environment including human operators. We group actions
into activities as abstractions of the process. Activities describe cer-
tain tasks and facilitate the transition to risk modelling by structur-
ing hazard identification and the creation of a hazard list. The mode

model resulting from this abstraction step is an abstract LTS.

Process Modelling

Process
Model

Mode
Model

Artefact

 relies on
existing methods

e.g. in PRISM
pGCL

e.g. robotic
work cell

.yap file per
activity

Application

Process
Modelling

Mode
Extraction

Work Step

Legend:

Stageactors, actions
state space

e.g. activities,
tasks, safety modes

External
Artefact

Figure 4: Overview of the work steps and artifacts of the process modelling stage

We describe the process,  , as a set of guarded commands, dis-
tinguishing actions of relevant actors (e.g. a robot arm, a spot welder,
an operator) and the safety controller from events of a sensor mod-
ule and shared “manipulables” (e.g. workpiece support). Following
Section 3.2, the structure of the guarded commands describing the
behaviour in  follows the pattern

[�] ⋯ ∧
 ⟶ � +…

with an action label �, an action-specific condition
 and an update
� being part of the overall guard and update expressions. The state
space S is built from discrete variables (cf. Example 1) capturing
the world state (e.g. robot location, workbench status), sensory in-
puts (e.g. range finder), control outputs (e.g. robot behaviour, noti-
fications), user inputs (e.g. start button), and modes (e.g. activities,
safety modes).

4.1.1. Process Execution from a Controller’s Perspective

To account for the interaction of the safety controller with the
process, we include a fair cyclic execution scheme into the process
model. This scheme emulates the simultaneity of the controller and
the process. Execution steps alternate between the controller and
a set  of actors, ensuring in each cycle that each actor can take
its turn (Figure 5). Regarding the way the controller can influence
the process, we distinguish between directly controllable actors (e.g.
cobot, spot welder) and indirectly or not controllable actors (e.g. hu-
man operator). Both kinds of actors can perform logical and physical
actions following two corresponding command patterns:

[�] okp ∧⋯ ∧
 ⟶ � +… (logical action)

Process

Safety
Controller

Directly
Controllable

Actors

Indirectly
Controllable

Actors

m
sf

| ra | idle α

e

m | r

e

e.g.
think

calculate

Figure 5: Execution from the viewpoint of the safety controller. The execution is

coordinated by passing a single token between two groups of actors (dashed arcs)

performing actions in the process. The controller can perform an update or issue

control inputs to the process after every atomic event occurring in the process.

[�] okp ∧⋯ ∧
 ⟶ �& t′ = sc +… (physical action)

where okp guards the turn of an actor p and t stores the token passed
between the safety controller and the other actors. t′ = sc denotes
the safety controller’s turn. okp can include a condition for termi-
nating execution when reaching a final (or goal) state, resulting in
okp ≡ t = p ∧ ¬final. The controller can stay idle or, most ea-
gerly, intervene whenever one of the actors has completed an action.
This scheme is more restrictive than the CSP-style8 generalised paral-
lel composition of concurrent processes available by default in tools
such as PRISM (Kwiatkowska et al., 2011).

4.1.2. Modelling Activities and Safety Modes

To facilitate the design of a powerful class of safety controllers,
we organise actions (e.g. grab work piece, move robot arm to spot
welder) of  ’s controllable actors using mode variables, here, one
variable for the engagement of each actor in an activity (e.g. ract) and
one for the safety mode of the whole process (safmod). Mode vari-
ables group actions and, from a controller perspective, allow high-
level process control by filtering enabled actions. Thus, the structure
of the guarded commands for  is refined according to the pattern

[�] okp ∧
sm ∧
a ∧
 ⟶ � [& t′ = sc] +…

where
a guards the enabling of actions in certain activities (e.g. ex-
change work piece, Figure 2b) and
sm in certain safety modes (e.g.
speed & separation monitoring). We obtain safety- and task-aware
actions by conjoining
sm ∧
a. The update of t is optional to combine
certain actor-internal updates into atomic actions.

Example 1. The following listing describes part of the enumerations

used to define the discrete state space S of .

1 // spatial locations

2 const int atTable = 0; const int sharedTbl = 1; const int inCell = 2; const int

atWeldSpot = 3;

3 // range finder signals

4 const int far = 0; const int near = 1; const int close = 2;

5 // notification signals

6 const int ok = 0; const int leaveArea = 1; const int resetCtr = 2;

The following commands specify two actions, r_moveToTable and r_grab-

LeftWorkpiece, for the actor robotArm in the activity exchWrkp.

1 [r_moveToTable] OK_wc

2 & (safmod=normal|safmod=ssmon|safmod=pflim)

3 & ract=exchWrkp & (rloc != sharedTbl)

4 & (((wps!=right) & reffocc=1) | (wps=left & (reffocc=0)))

5 −> (rloc'=sharedTbl)&(turn'=sc);

6 [r_grabLeftWorkpiece] OK_wc

7 & (safmod=normal|safmod=ssmon|safmod=pflim|safmod=hguid)

8 & ract=exchWrkp & rloc=sharedTbl & reffocc=0 & wps=left

9 −> (reffocc'=1)&(wpfin'=0)&(wps'=empty)&(turn'=sc);

4.2. Modelling Risk

For our synthesis approach to lead to correct and effective con-
trollers, we need an expressive risk model (Figure 6). To obtain such
a model, we translate the hazard list into a set of risk factors (Sec-
tion 4.2.1). For this, we transcribe safety analysis results into factor

8Following the synchronous interleaving semantics of Hoare’s Communicat-
ing Sequential Processes.

Gleirscher et al.: Preprint submitted to Elsevier Page 5 of 20

Verified Synthesis of Safety Controllers

Risk Modelling

Hazard List Risk Model

e.g. hazard operability studies

critical events risk factors for
each activity

comparison of
activities, safety modes

gradient matrices
for mode switching

costs
for risk

Hazard
Identification

Activity-based
Risk Modelling

associating risk
with actions

Action-based
Risk Modelling

Situational Risk
Modelling

Figure 6: Overview of the work steps and artifacts of the risk modelling stage

f
-s

a
fe

re
g
io

n

f
-m

it
ig

a
te

d
re

g
io

n

f
-u

n
sa

fe
re

g
io

n

f
-i

n
a
ct

iv
e

re
g
io

n

✁✁❆❆f
hazard

inactive

f
critical event
detected

f
accident
happened

f ′
safety mode
activated

f ′′
hazard
mitigated

f
causal factor

removed

f
′safety mode

resumed

e escalation

e

e

undetected
escalation

msm

m
a

msf

m

rsf

rsm

r
a

alleviation

f-mitigated
operation

f-unsafe
operation

f-nominal
operation

Figure 7: Refined notion of a risk factor f . The states of this LTS are called phases,

the transitions are labelled with events and actions. Endangerment e (monitored)

and accident e events; actions m
∗

and r
∗

of the safety controller with the actions m
sf

and r
a

where the controller interacts with the process waiting for a response; in gray,

arbitrary process actions not controllable or observable by the safety controller.

LTSs (Section 3.3). Then, we define a risk profile for each of the pro-
cess actions (Section 4.2.1). For each hazard in the hazard list, the
risk profile of an action describes the risk that a performance of the ac-
tion results in an accident related to this hazard. The final step of risk
modelling consists of capturing risk-related situational change (i.e.,
a change of activity or safety mode) in the process with a risk gradi-

ent (Section 4.2.2). For this, we associate a numerical measure with
each activity transition (i.e., each situational change), that describes
the change in overall risk level. We proceed analogously with the
definition of safety modes and the corresponding risk assessment.

4.2.1. Refined Risk Factors

Shown in Figure 7, we develop and use a refinement of the no-
tion of a risk factor introduced in Section 3.3. As before, for a factor
f , we refer to any state of  where f is inactive as the f -inactive region

or, equivalently, as ✁❆f . Any state of  where f has occurred and any
causal factor is still active is subsumed by the f -unsafe region, which
includes three phases: hazard detected (f), safety mode activated
(f ′), and hazard mitigated (f ′′). The f -mitigated region refers to any
state deviating from  ’s nominal state but with any causal factor of

f removed. The f -mitigated region includes the phase f , reached

when causal factors of f have been removed, and f
′
, reached after

deactivating a safety function and resuming from the current safety

mode. The phases f , f
′
, and ✁❆f together constitute the f -safe region

of  .
When a critical event e is detected in the f -safe region, f is

switched to f . For a critical event, we distinguish its ground truth
predicate � (i.e., the cause) from the detector (or monitoring) pred-
icate � (i.e., the sensor) where � ⇔ � in case of perfect sensing.
Critical event detection follows the pattern

[e] okS ∧ � ∧ rel(a, f) ∧ ¬(f ∨ f) ⟶ f

where rel(a, f) is a relevance indicator determining whether to react
on � in an activity a or, more generally, in a particular situation.
With ¬(f ∨ f), we ignore re-occurrences while f is active or after an

accident. Idling of the safety controller (Figure 5) is captured by

[idle] okS ∧ ¬� ∧ (✁❆f ∨ f) ⟶ t′ = next(p)

where next(p) passes the token from the actor p to the next actor in
 (Figure 5). The other actions will be explained in Section 4.4.

Activity-based Risk. Factor LTSs guide the formalisation of haz-
ards, their causes, and mishaps and the events in the causal chain (e.g.
a mishap event leads to a mishap state). This way, factors support the
design of mitigations to reduce accidents, and alleviations to reduce
consequences. Hence, all critical events related to an activity should
be translated into a factor set.

Action-based Risk. To measure overall and factor-specific risk
in  , we define an action multi-reward structure

rriskaction ∶ S × A × F → ℝ≥0

over . Action rewards are guarded, in particular, they require that
f is active. For example, if rriskaction(s, a, f) > 0 then f is active in state s.

4.2.2. Situational Risk

The decision space of the safety controller for mitigations and
resumptions includes choices from sets of safety modes (Ssm) and
activities (Sa) to switch to from a particular mode and activity. To
simplify the design space in , we resolve this choice during gen-
eration (Section 5.1) using a categorical risk gradient ∇r = [)r∕(a →

a′),)r∕(sm → sm′)]T . For categorical variables x, we allow the con-
vention)y∕(x → x′) denoting the change of y when x changes its
value from x to x′.

We implement ∇r with two skew-diagonal matrices ℝ
|Ssm|×|Ssm|

and ℝ
|Sa|×|Sa|, assuming that they can be (manually) derived from

safety analysis based on the following justification. Assume that, in
the activities a, a′ ∈ Sa, actors vary in physical movement, force, and
speed. If a means more or wider movement, higher force applica-
tion, or higher speed than in a′, then a change from a to a′ will likely
reduce risk. Hence,)r∕(a → a′) ≥ 0. Similarly, assume that the safety
modes sm, sm′ ∈ Ssm vary  ’s capabilities by relaxing or restricting
the range and behavioural shape of the permitted actions. If sm re-
laxes capabilities more than sm′, then a change from sm to sm′ will
likely reduce risk. Again,)r∕(sm → sm′) ≥ 0. Skew-diagonality of
the matrices provides that)r∕(sm′ → sm) ≤ 0. The matrices for ∇r
can be specified as part of a YAP model.

Example 2. We instantiate f according to Figure 7 for the hazard HC

from Table 1. When an operator approaches an active spot welder, an

event eHC is detected, activating HC by a transition to a state where the

predicate HC holds, a state in [[HC]]R ⊂ R(F). The safety controller

will then start with performing mitigations to reach phase HC. The

handling of HC includes the switching to a speed & separation mon-

itoring mode, issuing an operator notification, and waiting for the

operator’s response. From HC, the controller can continue with re-

sumptions (e.g. switching from speed & separation monitoring back to

normal) to finally return to phase ✟✟❍❍HC where both HC and HC are

false.

Further endangerments (e.g. erroneous robot movement) may re-

activate HC from phase HC or HC
′
. An accident eHC with the spot

welder or robot arm, leading to phase HC, can occur, for example,

because of a faulty range finder responsible for the detection of eHC or

too slow mitigations mHC

sm and mHC

a . In HC, alleviations (e.g. flexible

robot surfaces, protective goggles) can reduce certain consequences. We

start encoding HC in a YAP model below.

1 HC desc "(H)uman (C)lose to active spot welder and cobot working"

2 requiresOcc (HS) // imposes relationship between cause/guard conditions of HS and

HC, e.g. not HC => not HS

3 mitPreventsMit (HS)

4 guard "hSM_PERM & hACT_WELDING & hloc=atWeldSpot"

As a factor dependency, we identify HC requiresOcc (HS), expressing the

assumption that the factor HS must have occurred prior to the activa-

tion of HC. Using the guard directive, we specify � , the ground truth

Gleirscher et al.: Preprint submitted to Elsevier Page 6 of 20

Verified Synthesis of Safety Controllers

0

HS

HRW

HSHRW

HSHC HC

HS

HRW

HSHRW

HSHRW

HSHC

HSHC

HC

HSHRW

HSHC

HSdet

HRWdet

HSres

HRWdet

HCdet

HRWres

HSdet

HRWres HSres

HCres2, HCres

HSres

HCres2, HCres

HSdet

stopped, pflim,

ssmon

HRWdet

HCdet

HRWmit3, HRWmit2

HSdet

HRWres

HRWmit3, HRWmit2

HSres

HCSrmstIdleV is,HCHguidAud,

HCStOffV is

HSres

HCres2, HCres

HCSrmstIdleV is,HCHguidAud,

HCStOffV is

HSdet

HRWmit3, HRWmit2

stopped, pflim,

ssmon

stopped, pflim,

ssmon

HCSrmstIdleV is,HCHguidAud,

HCStOffV is

Figure 8: Risk graph for Example 2 from factors HC, HRW, and HS, with 15 risk states, serving as a specification to be refined by a synthesised controller. Dependencies

“HC prevents HRW” and “HRW prevents HC” encode the assumption of one operator in the work cell. DetectorsHSdet orHRW det (dottet arcs) instantiate endangerments,

and stopped, pflim, ssmon, and HSres exemplify mitigations and resumptions (solid arcs). The darker shaded a risk state, the more dangerous it is, qualitatively.

Stochastic Modelling

Process
Model

e.g. MDP handled
by PRISM or
evoChecker

e.g. probabilities of
human error, failures, etc.

Stochastic
Modelling

Figure 9: Overview of the work steps and artifacts of the stochastic modelling stage

predicate for the activation of HC. Figure 8 shows the resulting risk

structure for our case study as a risk graph.

The risk profile for the robot arm actions and the factors HC and

HS is encoded in the YAP model in an intuitive and compact manner.

1 guard risk_HC risk_HS;

2 // actor: robotArm

3 r_moveToTable: "" "5" "9";

4 r_grabLeftWorkpiece: "" "0" "3";

5 r_placeWorkpieceRight: "" "0" "3";

6 r_moveToWelder: "" "5" "9";

Based on the activity automaton in Figure 2b, we encode ∇r in our YAP

model with the two distance matrices act and safmod.

1 distances act {

2 off : 0;

3 idle : 1 0;

4 exchWrkp: 3 2 0;

5 welding: 5 4 2 0;

6 }

7
8

9 distances safmod {

10 normal: 0;

11 hguid: −2 0;

12 ssmon: −1 1 0;

13 pflim : −2 0 −1 0;

14 srmst: −3 −1 −2 −1 0;

15 stopped: −4 −2 −3 −2 −1 0;

16 }

4.3. Modelling Stochastic Adversarial Phenomena

In this stage (Figure 9), we integrate adversarial stochastic phe-
nomena into the process model. Probabilistic choice in  can be
used to model various phenomena, such as accidents, human error,
and sensor failure.

Mishaps. In the refined factor model (Figure 7), a mishap e
leading to phase f is always possible, assumed to happen more likely

in the f -unsafe region than in the f -safe region. Accident-prone phys-

ical actions follow the two command patterns:

[�] okp ∧
 ∧ ¬� ⟶�& t′ = sc

[e
�
] okp ∧
 ∧ � ∧ ¬f ⟶prf ∶ f & �′ & t′ = sc

+ (1 − prf)∶ �& t′ = sc

with the probability prf of a mishap under the condition � that the

critical event has occurred, independent of whether or not f was
detected. prf can be inferred from observations, experiments, or

accident statistics.

Human Error. A human error model can be informed by hierar-
chical task analysis (Stanton, 2006). We introduce a particular class
of human errors into  using the pair of probabilistic commands

[�l] okop ∧ ¬� ∧
 ⟶ (sp?1 ∶ prℎe)∶ �
′ = true

+ (sp?0 ∶ 1 − prℎe)∶ t
′ = sc

[�p] okop ∧ � ∧
 ⟶ �& �′ = false& t′ = sc

with a predicate sp specifying when action �p is safe or permitted to
be performed, the probability prℎe of an operator to commit a specific
error when this action is not safe or not permitted, and a deontic flag
� controlling whether the logical action �l is to be reified into the
physical action �p with a potentially dangerous update �.

Sensor Failure. Informed by a fault tree or failure mode effects
analysis, one can consider sensor and actuator faults in a way similar
to human error. To model fault behaviour, we employ the pattern

[�] okp ∧
 ⟶ (1 − prs)∶ �corr & t′ = sc + prs ∶ �fail & t′ = sc

with a probability prs of a sensor failing to detect a specific event
implied by
, an update �corr modelling the correct behaviour of the
sensor, and an update �fail modelling its failure behaviour.

Example 3. We model the accident that, with a 20% chance, HC
follows HC ′ (i.e., HC remains undetected because of a sensor fault) or

HC (i.e., the safety controller is not reacting timely). For the encoding

of HC, YAP’s input language supports the specification of the actions

with the mishap HC as a bad outcome if HC is undetected or not

mitigated timely, the probability of HC under these conditions, and the

severity of the expected consequences from HC. Furthermore, we model

the human error that, with a 10% chance, the operator enters the cell,

knowing that the robotArm and the spotWelder are active. Finally, we

specify as a sensor failure that the range finder as the detector of eHC

Gleirscher et al.: Preprint submitted to Elsevier Page 7 of 20

Verified Synthesis of Safety Controllers

Mitigation Modelling

Mitigation Model

e.g. hazard
operability studies,
probabilistic risk
analysis

 Safety
Requirements

safety functions,
activity/mode switches

mitigation
alternatives

Hazard Analysis &
Risk Assessment

Factor-based
Mitigation Modelling

Adding Mitigation
Options

application-specific

Figure 10: Overview of the work steps and artifacts of the mitigation modelling stage

fails in 5% of the cases when the operator enters the cell.

The command patterns explained in this section can be com-
bined, offering many degrees of modelling freedom not further dis-
cussed here. For practical examples, see also Gleirscher (2020).

4.4. Modelling Mitigations

For mitigation modelling (Figure 10), we complete the factor
LTSs introduced in Section 4.2.1 with mitigation actions. The ability
of stochastic models, such as MDPs, to express nondeterminism sup-
ports the modelling of alternative mitigation options. To extend the
controller design space, we can thus specify several such options for
each factor. Differences in the quality of these options (e.g. expected
nuisance and effort) can be quantified using reward structures.

The capabilities of actors in  determine the controllability of
critical events. To restrict the controller design space, we allow three
kinds of actions: action filters (i.e., safety modes, cf. Section 1), activ-

ity changes (e.g. change from welding to off), and safety functions (e.g.
interacting with the operator through warnings). These mitigations
are mirrored by corresponding resumptions. We continue with our
discussion of how mitigation and resumption actions, according to
the refined factor LTS in Figure 7, are translated into pGCL.

Let f ∈ F be the risk factor under consideration for the rest of
this section. Given the ground truth predicate � and the correspond-
ing detector predicate � for f (Section 4.2.1), we assume to have
identified a causal factor � such that ¬� ⇒ ¬� ∧ ¬� (i.e., an ab-
sent causal factor eliminates the cause) and � ⇒ � (i.e., the causal
factor is detectable). Factor dependencies, such as requiresOcc in Ex-
ample 2, can be used to automatically derive part of � (cf. YAP,
Gleirscher 2020).

Let a mitigation option (at, smt, sf) ∈ Sa × Ssm × SF for f with a
target activity at, a target safety mode smt, and sf picked from a set
SF of safety functions. For each combination (smcur, acur) ∈ Ssm ×Sa
possible in a state s ∈ S, the controller provides a safety mode switch

[msm] okS ∧ f ∧ smcur ⟶ smnew & f ′

and an activity switch

[ma] okS ∧ f ′ ∧ acur ⟶ anew & f ′′

where smnew and anew are determined according to the scheme

xnew =

{
xt, if)r∕(xcur → xt) ≥ 0

xcur, otherwise
. (1)

We use the non-strict order ≥ because a switch to a desired target
within the same risk level should be allowed. Then, the controller
activates a safety function sf through the commands

[msf] okS ∧ f ′′ ∧ � ∧ ¬sf ⟶ sf & t′ = p

[msf] okS ∧ f ′′ ∧ � ∧ sf ⟶ t′ = p .

Reaching phase f ′′ constitutes the first set of logical controller ac-
tions. The performance of these actions is followed by an interaction
with the process. If this interaction results in the elimination of �,
the controller finalises the mitigation stage with the command

[m] okS ∧ f ′′ ∧ ¬� ⟶ f .

The controller subsequently moves into the resumption stage, con-
tinuing with the deactivation of the safety function through

[rsf] okS ∧ f ∧ ¬� ∧ sf ⟶ sf−1

and the resumption from the current to a more progressive safety mode

from any risk state rs ∈ R(F) by

[rsm] okS ∧ f ∧ ¬� ∧ ¬� ∧ rs ∧ smcur ∧ ¬sf ⟶ smnew & f
′
.

Beyond its basic enabling condition (okS ∧ f), the controller checks
whether both the cause of the critical event and, particularly, the
causal factor subject of mitigation have been removed (¬� ∧ ¬�).

Analogously, the resumption of the current activity to a more pro-

ductive activity from any risk state rs ∈ R(F) is accomplished with

[ra] okS ∧ f
′
∧ ¬� ∧ ¬� ∧ rs ∧ acur ∧ ¬sf ⟶ anew & ✁❆f & t′ = p .

Given a resumption option (at, smt) ∈ Sa × Ssm and the set am(rs) ⊆
F of factors active or mitigated in risk state rs, the reaction of the
controller follows the scheme

(anew, smnew) = arg(f .at ,f .smt) max
f∈am(rs)

{
∇r ∣ ∇r < [at, smt]

T
}
. (2)

This scheme determines the most permissive yet allowed combina-
tion of activity and safety mode to switch to among all activated or
mitigated factors in rs, that is, the combination with the maximum
acceptable risk as seen from (acur, smcur) and rs according to ∇r.

In order for the controller to be able to safely deal with a fac-
tor set F , we assume that each of the controller actions is idempo-

tent. Note how phase indicators (e.g. f) ensure that the controller

is performing in the right context (e.g. if rs ∈ [[f]]R ⊂ R(F)). The
discussion of alleviations is out of scope of this synthesis approach.

Example 4. Continuing with Example 2, we specify mitigation actions

in our YAP model as shown below for the factor HC with three mitiga-

tion and two resumption options.

1 HC ...

2 detectedBy (.HCdet)

3 mitigatedBy (.HCHguidAud,.HCStOffVis,.HCSrmstIdleVis)

4 resumedBy (.HCres,.HCres2) ...;

5
6 mode HCdet desc "light barrier"

7 guard "hSM_PERM & hACT_WELDING & rngDet=close";

8 mode HCStOffVis desc "emergency stop / cobot+welder turned off / visual notif."

9 cf "hST_HOinSGA" // causal factor

10 update "(notif '=leaveArea)" // safety function

11 target (act=off , safmod=stopped); // target activity /safety mode

12 mode HCSrmstIdleVis desc "safety−rated mon. stop / cobot+welder idle / visual notif."

13 cf "hST_HOinSGA" update "(notif'=leaveArea)" target (act=idle, safmod=srmst);

14 mode HCStOffAud desc "emergency stop / cobot+welder turned off / audio−vis. notif."

15 cf "hST_HOinSGA" update "(notif'=leaveArea)" target (act=off, safmod=stopped);

16 mode HCHguidAud desc "hand−guided welding / moderate vis. notif."

17 cf "hST_HOinSGA" update "(notif'=leaveArea)" target (safmod=hguid);

18 mode HCres desc "exchange workpiece and start over"

19 cf "hST_HOinSGA"

20 update "(notif '=ok)" // deactivate safety function

21 target (act=exchWrkp, safmod=normal);

22 mode HCres2 desc "continue welding if workpiece still unfinished"

23 cf "hST_HOinSGA" update "(notif'=ok)" target (act=welding, safmod=normal);

The directive detectedBy defines the sensor predicate � , stating that “the

human operator is in the safeguarded area” (hST_HOinSGA). The factor

attribute mitigatedBy associates HC with three mitigation options, and

the attribute resumedBy with two resumption options. For example,

in the action HCStOffVis, (i) update models a safety function, issuing a

notification to the operator to leave the safeguarded area, and (ii) target

switches the manufacturing cell to the activity off and to the safety mode

stopped,a all triggered by the range finder (rngDet=close). The guard

and detectedBy attributes are translated into a pair of predicates for

, RCE_HC (�) describing world states, and CE_HC (�) signifying

states monitored by the range finder.

1 // HC:monitor "(H)uman (C)lose to active spot welder and cobot working"

2 formula CE_HC = (hSM_PERM & hACT_WELDING & rngDet=close) & (HSp=act |

HSp=mit1 | HSp=mit2 | HSp=mit | HSp=res) & (HRWp!=act);

3 formula RCE_HC = (hSM_PERM & hACT_WELDING & hloc=atWeldSpot) & (HRWp!=

act);

aIn a design variant discussed in Gleirscher and Calinescu (2020), we allow

Gleirscher et al.: Preprint submitted to Elsevier Page 8 of 20

Verified Synthesis of Safety Controllers

Performance Modelling

Process
Model

associate utility
with actions

costs/rewards for
performance
optimisation

Action-based
Performance Modelling

Figure 11: The work step and artifact of the performance modelling stage

mitigations to synchronise with the robotArm and spotWelder on an event stop.

4.5. Modelling Performance

In analogy to the rewards for mitigation actions, in this stage (Fig-
ure 11), we quantify performance (e.g. effort, productivity) for all
non-controller actions in the process. As a result, optimal policy syn-
thesis from  is based on several reward structures quantifying the
performance of both the safety controller and the process.

For controller performance, we distinguish mitigation and re-
sumption options by manually estimated quantities such as disrup-

tion of the manufacturing process, nuisance of the controller to the
operator, and resources (e.g. effort, time) consumed by the con-
troller. We formalise these quantities as action rewards r

q
action with

q ∈ {disr,nuis,eff,time}. As shown in Example 5, rewards can de-
pend on parameters other than state variables.

Analogously, concerning process performance, we associate with
each process action a productivity measure depending on the safety

mode, using an action reward structure r
prod
action.

Example 5. In a YAP model, mitigation and resumption options can

be associated with action rewards:

1 mode HCStOffVis ...

2 disruption=9 nuisance="alarmIntensity1 * 5"

3 effort=5.5; // wear/tear intensive , maintenance effort, energy

4 mode HCSrmstIdleVis ...

5 disruption=7.5 nuisance="alarmIntensity1 * 6" effort=6.5;

6 mode HCStOffAud ...

7 disruption=10 nuisance="alarmIntensity1 * 9" effort=5;

Note how nuisance depends on the parameter alarmIntensity1 modelling

the loudness or brightness of an alarm sound or lamp that can be varied

in the search for an optimal controller. Rewards for process actions can

be specified in a concise manner in a YAP model.

1 guard_prod prod;

2 // actor: robotArm

3 r_moveToTable: "" "h";

4 r_grabLeftWorkpiece: "" "m";

5 r_placeWorkpieceRight: "" "h";

6 r_moveToWelder: "" "h";

5. Verified Synthesis of Safety Controllers

In this stage, we integrate the risk and mitigation models with
the process model, resulting in a risk-informed reward-enhanced sto-
chastic model that includes the controller design space in the process
decision space (Figure 12). The action sets for the cobot, the op-
erator, and the controller are now combined. With this integrated
model, we perform a constrained policy synthesis to select an opti-
mal yet abstract safety controller from the design space. We use con-
straints to encode the safety requirements and optimisation queries to
facilitate this selection. For this to work, we express safety require-
ments as PCTL properties and verify them using a stochastic model
checker. We accomplish controller synthesis in two settings.

The MDP Setting. We perform optimal policy synthesis from
an MDP (using PRISM) where the design space is encoded as non-
deterministic choice (e.g. among mitigation options). This approach
has already been discussed in Gleirscher and Calinescu (2020).

The parametric DTMC (pDTMC) Setting. We perform an evo-
lutionary search (using EVOCHECKER) of a set of DTMCs. This set

Verified Optimal Controller Synthesis

Process
Model

Verified Abstract
Controller

design space of controller
encoded in pGCL/MDP

optimal MDP policy meeting
additional (e.g. safety) constraints

Controller
Verification

requires insertion
of placeholders

Verified Optimal
Controller Synthesis

Design Space
Generation

Figure 12: Overview of the work steps and artifacts of the controller synthesis stage

defines the design space by fixing the parameters of a pDTMC. This
pDTMC can be obtained from the original MDP by replacing non-
deterministic choice with random choice and by introducing the cor-
responding parameters. In both cases, optimal policy synthesis pro-
duces a DTMC containing an abstract discrete-event safety controller.
The pDTMC-based approach avoids the split into two verification
stages as previously required in Gleirscher and Calinescu (2020).

The synthesis follows a two-staged search through the controller
design space: The first stage focuses on the generation of the guarded
commands according to Section 4.4. The gradient ∇r (Section 4.2.2)
resolves the calculation of risk-minimal control updates for these
commands. Reward structures are generated for risk and perfor-
mance quantification (Section 4.5) in the second stage. Then, a
stochastic model checker performs verified policy synthesis for .
In Gleirscher and Calinescu (2020), we use  as an MDP for pol-
icy synthesis with PRISM (Kwiatkowska et al., 2011) and extract a
controller from the resulting DTMC representing the policy.

Here, we enhance this approach. The flexible CSP-style concur-
rency of the pGCL modules is replaced by a more restrictive alter-
nation (Section 4.1.1) of the process  and the safety controller,
thereby resembling a closed-loop control scheme. The avoidance
of interleaving and synchronous events for modelling real-time phe-
nomena (e.g. sensor faults) results in an MDP that does not con-
tain states where process actors and the controller compete in non-
deterministic choices. The only choices left are actor-internal choices
including the choice to idle and pass the token. As a consequence,
we obtain fairness for the controller and a simplification of . Ad-
ditionally, we interpret  as a pDTMC rather than an MDP. Choice
in the safety controller among action options is explicitly controlled
through decision parameters. This scheme results in the removal of
non-deterministic choice from the controller and a randomisation of
residual choice in  . We further improve the way how accidents can
happen in . For fine-granular risk and performance quantification,
we allow additional design space parameters (e.g. alarm intensity) to
be used. We use EVOCHECKER (Gerasimou et al., 2018) for the search
of optimal controllers in the space of DTMCs defined by these param-
eters. The modelling, analysis, and pre-processing required for the
approach in Gleirscher and Calinescu (2020) and its enhancement
described here are supported by the YAP tool (Gleirscher, 2020).

5.1. Design Space and Reward Structure Generation

The design space is created by instantiating the command pat-
terns of the generic factor LTS in Figure 7. These patterns are used by
Algorithm 1 as implemented by YAP. The function COMPCMD com-
poses guard and update expressions and integrates these into con-
troller commands compliant with the specifications in Section 4.4.
The functions GRADUPDM and GRADUPDR implement Equation (1)
respectively Equation (2) for controlling the updates of safety modes
and activities. ASf refers to the set of mitigation options for factor
f . Sa

refers to the set of activity tuples, that is, combinations of
activities the actors can be involved at a particular point in time.

The other command patterns in Section 4.4 are generated anal-
ogously. We omit the corresponding generation functions here. The
listing in Example 6 shows a fragment of the design space.

Example 6. pGCL fragment generated for the factor HC:

1 // Endangerments (monitor, extension point: sensor and monitoring errors)

Gleirscher et al.: Preprint submitted to Elsevier Page 9 of 20

Verified Synthesis of Safety Controllers

Algorithm 1 Controller design space generation

1: function GENSAFETYMODEMITIGATIONS(F , Ssm))
2: for all sm ∈ Ssm, f ∈ F ,ms ∈ ASf do
3: msm ← COMPCMD(f ∧ sm, GRADUPDM(sm,ms)) ⊳ create mit.

4: A ← A ∪ {msm} ⊳ add mitigation command

5:

6: function GENACTIVITYMITIGATIONS(F , Sa)
7: for all a ∈ Sa , f ∈ F ,ms ∈ ASf do
8: ma ← COMPCMD(f ′ ∧ a, GRADUPDM(a,ms)) ⊳ create command

9: A ← A ∪ {ma} ⊳ add mitigation command

10: . . .
11:

12: function GENMODERESUMPTIONS(F , Ssm)
13: for all rs ∈ R(F), sm ∈ Ssm, f ∈ am(rs), ms ∈ ASf do
14: (�, �, sf) ← obtained from factor model for f
15: ra ← COMPCMD(f ∧¬� ∧¬�∧rs∧sm∧¬sf , GRADUPDR(rs,f ,ms))
16: ⊳ create safety mode resumption

17: A ← A ∪ {ra} ⊳ add command

2 [si_HCact] OK_S & !(HCp=act | HCp=mit1 | HCp=mit2 | HCp=mis) &

3 wact=idle & ract=exchWrkp & CE_HC −> (HCp'=act); ...

4 // Change of safety modes

5 [si_HCSrmstIdleVissafmod] OK_S & HCp=act & dpHCmit=HCHCSrmstIdleVis &

6 safmod=normal −> (safmod'=srmst)&(HCp'=mit1); ...

7 // Frame switches

8 [s_HChalt] OK_S & HCp=mit1 & dpHCmit=HCHCSrmstIdleVis & wact=welding &

9 ract=exchWrkp −> (wact'=idle)&(HCp'=mit2); ...

10 // Execution of safety functions

11 [si_HCSrmstIdleVisfun] OK_S & HCp=mit2 & dpHCmit=HCHCSrmstIdleVis &

12 hST_HOinSGA & !(notif=leaveArea) −>

13 (notif '=leaveArea)&(token'=mod(token+1,ag))&(turn'=token+1); ...

14 // For entering the mitigated phase

15 [si_HCmit] OK_S & HCp=mit2 & dpHCmit=HCHCSrmstIdleVis & !(hST_HOinSGA)

16 −> (HCp'=mit); ...

17 // Switching off safety functions

18 [si_HCres2fun] OK_S & HCp=mit & dpHCres=HCHCres2 & !(hST_HOinSGA) &

19 (notif =leaveArea | notif =leaveArea | notif =leaveArea) −> (notif'=ok); ...

20 // Meta−policy for resuming to a less restrictive safety mode

21 [si_HCres2safmod] OK_S & HCp=mit & dpHCres=HCHCres2 & !CE_HC &

22 !hST_HOinSGA & (HSp=mit|HSp=res) & (HRWp=mit|HRWp=res) & safmod=normal

23 & notif =ok −> (safmod'=pflim)&(HCp'=res); ...

24 // Resuming actor's activities

25 [s_HCresume2] OK_S & HCp=res & dpHCres=HCHCres2 & !CE_HC &

26 !(hST_HOinSGA) & (HSp=mit|HSp=res) & (HRWp=mit|HRWp=res) &

27 wact=welding & ract=exchWrkp −> (wact'=welding) & (ract'=welding) &

28 (token'=mod(token+1,ag)) & (turn'=token+1) & (HCp'=inact); ...

Example 7 shows a fragment of the reward structures generated
from the YAP model described in the Sections 4.2.1 and 4.5.

Example 7. The listing below shows two reward structure fragments,

one for risk from an active HC and one for nuisance.

1 // Risk of HC−mishap when performing nominal action ...

2 rewards "risk_HC"

3 [rw_leaveWelder] !CYCLEEND & (RCE_HC | CE_HC) & safmod=pflim : 0.6 * 5 * 9.0;

4 [h_exitPlant] !CYCLEEND & (RCE_HC | CE_HC) & safmod=hguid : 0.4 * 2 * 9.0;

5 [r_moveToTable] !CYCLEEND & (RCE_HC | CE_HC) & safmod=hguid : 0.4 * 5 * 9.0;

6 ...

7 endrewards

8 ...

9 // Nuisance (e.g. to the human operator; per mitigation option)

10 rewards "nuisance"

11 [si_HCStOffVisfun] REWGUARD_HC : alarmIntensity1 * 5 / 1;

12 [si_HRWmit2fun] REWGUARD_HRW : alarmIntensity2 * 4 / 1;

13 [si_pflimfun] REWGUARD_HS : alarmIntensity1 * 8 / 1;

14 ...

15 endrewards

5.2. Verified Optimal Synthesis

The pGCL action system consists of the process (i.e., cobot, weld-
ing machine, and operator) and the safety controller generated ac-
cording to Section 5.1. The policy space Π includes the controller
design space. This action system is expanded into an MDP by a prob-
abilistic model checker such as PRISM or it is used as a pDTMC by
EVOCHECKER relying on DTMC model checking. Choice in Π stems
from commands (e.g. mitigations, resumptions) simultaneously en-
abled in a state s ∈ S, yielding multiple policies for s and from com-

mands enabled in multiple states, giving rise to a policy for each
ordering in which these commands can be chosen.

Controller solutions selected from the design space are subjected
to two kinds of requirements. The first are optimisation objectives,
such as minimal energy consumption. The second are probabilistic
and reward-based constraints for safety (i.e., unlikely reachability of
bad states, e.g. accidents below probability threshold; accumulated
risk below reward threshold) and response (e.g. timely controller
response exceeds probability threshold). Both kinds of requirements
are expressed in reward-enhanced, quantitative PCTL (Section 3.2).

Optimisation Objectives. An optimal policy �⋆ ∈ Π, includ-
ing the controller decisions, can be selected based on, for example,
minimum nuisance or maximum productivity. For that,  includes
action rewards to quantify controller and process performance (Sec-
tion 4.5), risk reduction potential (in the MDP setting), and risk
based on factors, modes, and activities as explained in Section 4.2.

Constraints. Constraints are of the form �⋆ ⊧ �wf ∧ �c . �wf
captures well-formedness,9 including properties for the verification
of, for example, hazard occurrence and freedom from pre-final dead-
locks, and properties for the falsification of, for example, that final
states must not be initial states. Hazard occurrence fosters our focus
on adversarial environments. �wf can help one to simplify model
debugging, decrease model size, remove deadlocking states, and re-
duce vacuity of verification results.

�c specifies safety-carrying correctness and can include progress,
safety, liveness, and reliability properties. For example, we want to
verify reach-avoid properties of type A G F
 ∧ A G¬�; or that the
probability of failure on demand of the controller or the probabil-
ity of a mishap from any hazard is below a threshold. With A G(f →

P>p[F f]) ∧ A G(f → P>p[F ✁❆f]), we constrain the search for solutions
in the design space to controllers whose mitigation paths from criti-
cal events are complete with at least probability p. In the MDP set-
ting (as explained in Section 5), our model allows the evaluation of
freedom from accidents in  with

P¬A ≡ fs∈Ξ Ps
min=?

[¬F W✚❩F] (3)

where f ∈ {min,mean,max}. For the non-accident F -unsafe region Ξ

(Section 3.3), Equation (3) requires the controller to minimise the
probability of mishaps until the F -safe region (i.e., S ⧵ (Ξ ∪ F)) is
reached. P¬A aggregates min, the arithmetic mean �, and max proba-
bilities over Ξ. In the pDTMC setting, we use the plain quantification
operator P. Table 3 contains further examples of properties in �wf
and �c to be verified or falsified of .

Verified Synthesis. Based on the action rewards from the Sec-
tions 4.2.1 to 4.2.2, the model checker investigates all choice reso-
lutions and parameter valuations for  that fulfil well-formedness
and further PCTL constraints. The checker then identifies policies
that fulfil the given constraints and are (Pareto-)optimal with respect
to the optimisation objectives. The existence of an optimal strategy
depends on the existence of a strategy in Π that fulfils the PCTL
constraints. Note that, by Definition 2, all policies considered for
 are of the same size but may vary in their distribution of choice
among the involved actors. The overall result of this step is a verified
and optimal abstract controller extracted from the selected policy �⋆.
An example of such a policy is visualised in Figure 13.

6. Controller Deployment and Validation

Given the execution semantics of a target platform (e.g. the dig-
ital twin framework), the selected controller can now be translated
into a concrete executable form (Figure 14) to be deployed, vali-
dated, demonstrated, and eventually used on this platform.

9Well-formedness refers to the class of properties (see, e.g. Table 3) to be
checked to establish basic model validity prior to more interesting correctness
properties related to the application under consideration.

Gleirscher et al.: Preprint submitted to Elsevier Page 10 of 20

Verified Synthesis of Safety Controllers

Table 3

Objectives to be queried over Π and properties to be checked of every � ∈ Π

Property† Description

Optimisation objectives

Reff
max=?

[C] Assuming an adversarial environment, select �
that maximally utilises the safety controller.

Rnuis
min=?

[C<T] Select � that minimises nuisance up to time T .

Objectives with reward-based constraints

R
prod

max=?
[C] ∧ Rsev

≤s
[C]

∧ Rrisk
≤r

[C]

Select controller that maximises productivity con-

strained by risk level r and expected severity s.

R
prod

max=?
[C] ∧ Rsev

≤s
[C] Select controller that maximises productivity con-

strained by exposure p to severe injuries.

Well-formedness constraints in �wf

E F final  can finish the production cycle.

E F(f ∧ ¬final) f can occur during a production cycle.

E F(deadlock∧¬final)  can deadlock early. (f)

A F f f is inevitable. (f)

∀s ∈ S ∶ ¬final∨¬init Some initial states are also final states. (f)

Correctness constraints in �c

A G(� → A F<t f) The controller detects � for f within t steps.

A G(� ∧ ✁❆f → A(� U f)) The controller timely responds to the belief of � .‡

A G(f → P>p[F f])

∧ A G(f → P>p[F✁❆f])
The controller lively handles hazard f .

A G(f → P>p[F final]) The controller resumes  so it can finish its cycle

after f has occurred.

P>p[G¬F] Mishap freedom is more likely than p.

S<p F The steady-state probability of any f is below p.

† deadlock: state with no commands enabled, final: end of manufacturing

cycle, init: initial state of a manufacturing cycle, F : mishap state, p: probability

bound, f: to be falsified, prod: productivity, eff : controller effectiveness, sev:

severity, risk: risk level. ‡We adopt the universality pattern after Dwyer et al.

(1999) using U instead of W because of the required response; note that we

have to use the sensor predicate � rather than the ground truth predicate � .

6.1. Controller Implementation

The abstract controller, c, is part of the calculated policy �⋆, a
DTMC with state space Sc ⊆ S. Sc is a result of combining the risk
state space, generated by YAP from the factor set F , with the process
state space. According to Definition 2, the transition relation of �⋆

is a list of (state, action, probability, state)-tuples. The controller as a
deterministic part of �⋆ is a set of transitions �c ⊆ Sc ×Sc that, at the
concrete level, again comprises guarded commands of the form

[

event
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

controller action]

guard
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

process state ∧ risk state

→ mode & activity switch, safety function
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

update

.

We use the transition matrix obtained from the model checker (e.g.
PRISM) to translate controller actions in �⋆ into concrete actions.
Following the four-relation structure of controller models in Parnas
and Madey (1995), this step involves (i) the translation of the ab-
stract states into guard conditions based on a mapping of concrete
process states into abstract states, and (ii) the translation of the ab-
stract updates into low-level procedures generating control inputs to
the process. Figure 15 shows the activation scheme of the concrete
controller when deployed on an execution platform. Algorithm 2
describes the corresponding discrete-event SAFETYCONTROLLER. Ac-
cording to Figure 5, through Line 4, the controller is aware of each
atomic update of any of the monitored variables.

Example 8. In our case study, the check of whether p ∈ Sc in Line 6

of Algorithm 2 is implemented as a switch statement iterating over all

relevant combinations of events known from . The function HAN-
DLEEVENT is responsible for issuing control inputs, such as switching

into a power & force limitation mode and notifying the operator to

leave the work cell if HC is activated. The function UPDATERISKSTATE

792

1068

481

hi_mayEnterCell

1069

hi_mayEnterCell

879

si_idle:1 484

h_enterCell:1

487

si_HSact:1

1075

499

h_exitPlant:1

505

si_HSmit:1

1077

h_exitPlant:1

1097

552

hi_mayWithDrawArm

1099

hi_mayWithDrawArm

900

si_HRWmit2fun:1

384

h_withDrawArm:1

410

si_HRWmit:1

688

r_moveToWelder:1

si_idle:1

695

rw_weldStep:1

si_idle:1

638

rw_leaveWelder:1

731

r_grabLeftWorkpiece:1

si_HRWmit2fun:1

r_moveToWelder:1

208

s_noopHRWres:1

409

si_HRWresfun:1

si_HRWressafmod:1

497

si_ssmonsafmod:1

s_HSssmon:1

489

s_noopHSres:1

si_HSressafmod:1

Figure 13: Visualisation of an optimal policy �⋆ (lower right box) refining the risk

graph for our case study in Figure 8. The controller decisions (solid arcs), the spot

welder and cobot actions (dashed arcs), probabilistic choices of the operator (dotted

arcs). The two zoomed fragments highlight that mitigation of HS or HRW can deal

with a variety of environments, for example, adversarial human decisions.

Controller Deployment & Validation

Concrete
Controller

Controller
Implementation

Controller
Deployment

Application Safe
wrt. Hazard List

Controller
Validation

Figure 14: Overview of the work steps and artifacts of the controller deployment and

validation stage

inactivestart

change?

active

relevant?

no: idle
yes: wake up

no: sleep

yes: handle
& update

Figure 15: Execution of the controller in the digital twin framework

is responsible for managing and remembering the risk state internal to

the controller (e.g. state in the mitigation of HC). In the supplemental

materiala for this work, we provide modelling and code examplesb and

a videoc of the controller in action.

aSee https://github.com/douthwja01/CSI-artifacts/tree/master/JSS.
bSee the hrc2 example of the YAP package (https://github.com/ytzemih/yap).
cSee https://youtu.be/cm-XkZ_aitQ.

Expected Overhead. The detection and handling overhead is
the time elapsed in every cycle of the while loop in Algorithm 2.
Let d ∶ � → ℝ be the processing time required for an action, for
example, the calculation of the detection of HC in eHC. If imple-
mented as part of a sequential cell controller, Line 6 requires a time

Gleirscher et al.: Preprint submitted to Elsevier Page 11 of 20

Verified Synthesis of Safety Controllers

Algorithm 2 Execution of the safety controller

1: procedure SAFETYCONTROLLER(in State m, out State c)
2: (p, r, r′) ← INIT ⊳ initialise controller and risk state

3: while true do
4: if (p, r) ≠ (m, r′) then ⊳ wake up on event/change

5: (p, r) ← (m, r′) ⊳ capture monitored process state

6: if p ∈ Sc then ⊳ is the event relevant?

7: c ← HANDLEEVENT(p,r) ⊳ issue control command

8: r′ ← UPDATERISKSTATE(p,r) ⊳ stay active if changed

slot of length Σf∈F d(e
f) in each control cycle. If Line 6 is monitored

simultaneously in dedicated safety controller hardware, the slowest
detection rate for F is 1∕maxf∈F d(e

f). The overhead for handling f

in Line 7 can be estimated from Figure 7 and may range from

df
min

= d(mf

sm) + d(m
f

a) + d(m
f) + d(rfsm) + d(r

f

a)

to df
max

= df
min

+ x ⋅ d(mf

sf
) + d(rf

sf
) with a repetition factor x ∈ ℕ.

The overhead of the implementation in Algorithm 2 can be ob-
tained by recording timed event traces from an execution platform
(e.g. the DTF). In order for the controller to interact with such a
platform, the YAP model is extended by an interface specification in
addition to the model fragments discussed in the previous sections.
This interface is discussed in more detail in the following section.

6.2. Controller Deployment

Section 3.4 introduces the notion of actors within a collaborative
manufacturing setting involving a cobot and an operator (see Fig-
ure 16). We are able to reconstruct this setting in the form of a digital
twin using our digital twin framework. The DTF is a toolchain devel-
oped in C# and visualised in Unity3D that provides the kinematic,
communication, and data infrastructure necessary to deploy digital
twins on real world systems 10. Using the DTF APIs for the MATLAB®

robotics toolbox and the Robotic Operating System framework11, the
safety controller’s actions are exchanged with the physical platform
in real-time where a response is demonstrated.

We represent the scenario with as an aggregation of actions and
decisions made by each actor. Actors may then be identified as
(i) digital twins—actors with a distinct collection of models, state-
machines and behaviours that emulate the capabilities of the phys-
ical system—and (ii) abstract actors without physical embodiment
that may provide a service, communicate with or control other ac-
tors. The term environment will be used to describe this complete set
of actors.

Process Representation. Let  be the set of all actors. Exam-
ining the process from a network perspective allows us to model an
actor n ∈  as a communication node, similar to the robotic oper-
ating system framework. Following terminology in Broy (2010), the
actor n is able to communicate with other nodes through an interface
In = (S

j
n , P

k
n). Here, Sn = [S1

n , S
2
n , ..., S

j
n] and Pn = [P 1

n , P
2
n , ..., P

k
n]

denote the subscription (or input) and publication (or output) chan-
nels of actor n respectively. This decentralised structure allows us
to represent a process controller p ∈  as abstract actor with known
feedback and command channels Sp and Pp respectively. The process
controller is modelled as a state machine that responds to feedback
from actor n and issues a requested action on Pp.

Each sensor present in the process is similarly introduced as a
digital twin actor s ∈ . Here, data originating from the sensing
capabilities of s are broadcast to assigned channels Ps in order to
inform the network of changes to the physical environment. Manip-
ulators and machinery are modelled as digital twins of the physical
equipment, with behaviours informed by the actuation constraints
of the physical system. In response to commands issued by p, the
robot digital twin is able to interact with the work piece, operator
or tendered machine. This communication is then forwarded and
expressed by the physical twin as seen in Figure 16.

10See https://github.com/douthwja01/CSI-artifacts/JSS/.
11See https://www.ros.org.

Figure 16: The DTF applied to our case study. Requests issued to the robot within

the DTF are enacted by the physical twin in the real-world system. The robot, LIDAR,

and light barrier provide feedback to the environment.

Safety Controller. A safety controller c ∈  is introduced to
the DTF as a singleton node declared as an abstract actor. c commu-
nicates on fixed channels Pc = [P 1

c , P
2
c , ..., P

l
c] with a family of process

actors {pi}i∈1..k ⊂ . The nominal procedure of p is governed by a lo-
cal hierarchical state machine responding to process updates on Sp.
To allow the safety controller to intervene in this nominal procedure,
the interpreter behaviour Sc is implemented as a parent state ma-
chine as seen in Figure 17. This secondary state machine allows then
a safety controller to enact changes to n’s safety mode(s) in response
to requests made over channels in Pc .

Example 9. As part of the case study presented in Section 2, an en-

vironment has been developed to evaluate the synthesised safety con-

troller. This environment, shown in Figure 16, presents us with a dis-

tributed system composed of multiple digital twins, with each physical

actor (e.g. robot, spot welder, operator) and component (e.g. sensors)

in the real-world process assigned its own individual twin.

The process is a work-piece exchange and welding task, overseen

by a process controller that issues and responds to tasks assigned to

each actor. The safety controller observes feedback from the process

controller, a workbench light barrier and a LIDAR positioned within the

cell. Figure 17 then describes the communication of safety mode and

activity change requests to all actors within the environment on occur-

rence of a critical event, following the event handling logic in Figure 15.

6.3. Controller Validation by Testing

The validation of a controller implementation c in the DTF can
be done by use-case-based testing of scenarios generated from the
process model . Given a use case U , a misuse case MU , an initial
state s0 ∈ S, a set  (U) of traces in vicinity  of U , we say that c,
as deployed in the DTF, conforms with  with respect to U , written
c ≈U R′, if and only if  ⊧ R ∧ ∀t ∈  (U)∶ t ⊧ R′. Moreover,
we say that c complies with  with respect to MU if and only if
 ̸⊧ R ∧ ¬∃t ∈  (MU)∶ t ⊧ R′. Finally, we say that the controller
implementation is (U,MU, , R)-valid if and only if c ≈U R′ and
the closest MU we can find, with c ≉MU R′ and no overlap with U
regarding  , suggests implausible inputs to the DTF.

For controller testing, we translate requirementsR given as PCTL
properties (Table 3) into corresponding linear and metric temporal
logic properties in R′. Particularly,

G(� ∧ ✁❆f → � U[0,d] f) (4)

Gleirscher et al.: Preprint submitted to Elsevier Page 12 of 20

Verified Synthesis of Safety Controllers

Se
ns

in
g

Sa
fe

ty
 C

on
tr

ol
Pr

oc
es

s
C

on
tr

ol

Command Channel Feedback Channel

Safety Mode Request

Safety Controller (SC)

Actor

Barrier Broken

Light Barrier

Distance Measurement

LIDAR

Performance Limitation
Speed Limitation

Robot SC

Welder Action

Command

Weld Complete
Welder Controller

Robot Action

Command

Robot In Position
Robot Controller

Robot State

Robot

Welder state

Welder

Robot StateCommand

Weld Complete

Robot In Position

Activity Request

Figure 17: Communication structure in the DTF. In accordance with our case study, a

safety mode is requested by the safety controller (middle block) to apply to the welder

and robot digital twins (bottom block). In response, the nominal process for both

systems is overridden. For example, in response to a detected hazard the controller

may issue the safety action “safety stop”, preventing the process continuing.

requires c to detect the critical event, that is, to get active whenever
the sensor predicate � holds true within d time units. Furthermore,

(
(F final) →

(
G(f → F f) ∧ G(f → F ✁❆f)

))
∧ G¬f (5)

states for a completed process (F final) that whenever the controller
detects f (Table 1) it moves the DTF to a state where f is mitigated

(f → F f) and from there, given the environment (e.g. operator)
eventually reacts, it returns the process to a state where f is inactive

and operation is resumed as far as possible (f → F ✁❆f). Even if the
environment does not react, an accident never occurs (G¬f).

We describe U and MU as (generated) sequences of inputs to
the DTF and the vicinity  as a set of (randomly generated) configu-
rations of the DTF (e.g. considering the operator being far, near, and
close to the spot welder, and entering the cell at different times). We
statistically explore  (U) by playing in a sample to the DTF, record
the event trace t, and verify t ⊧ R′ using the metric temporal logic
run-time checker PYMTL (Vazquez-Chanlatte, 2019).

Data Extraction. To allow communications between actors to
be recorded and analysed, an additional abstract actor is introduced
as a network snooper. This actor subscribes to updates from a family
of actors {pi}i∈1..n ⊂  and exposes their communications externally
as a series of discrete event streams. As the scenario is executed,
the generated streams are marked with a reference time and origin
of each data packet. Communications between the safety controller,
process controller and other process members are then recovered for
forensic analysis and evaluation of the safety controller.

The safety controller may be exported as a C# extension to our
DTF and deployed within a digital twin of the case study in Section 2.
At the point of analysis, each data stream is composed of a series of
data packets with an assigned timestamp and entity identifier. Each
event stream from time t = 0 ∶ n is exported from the database fol-
lowing the scenario execution. This allows the data to be presented
as a ledger of all monitored channels, indicating where inter-actor
communication occurred, actor states have changed and instances
where the controller guards have been triggered.

7. Evaluation

In this section, we pose three research questions about safety,
utility, and scalability, describe the evaluation methodology for each
of these questions, and discuss the results of our evaluation.

7.1. Research Questions and Methodology

Based on the questions raised in Section 1, we investigate key
aspects of our approach by asking three research questions (RQs).

RQ1 (Safety) What is the likelihood of accident-free operation un-
der the control of a synthesised safety controller?

RQ2 (Utility) Does the safety controller reduce the number of hard
stops of the robot due to hazards, compared to a basic con-
troller that switches off the system whenever the operator in-
trudes the work cell?

RQ3 (Scalability) How well can the proposed approach deal with
multiple hazards and mitigation and resumption options?

Methodology for RQ1 (Safety). We answer RQ1 in two stages,
first based on our modelling approach (RQ1a) and, second, sup-
ported by our deployment and validation approach (RQ1b).

Methodology for RQ1a. We evaluate freedom from accidents
according to Equation (3), leading to probability triples comprising
min, the arithmetic mean �, and max.

In the MDP setting, we use PRISM to synthesise policies from 

according to the three optimisation queries

R
pot

max=?
[C] ∧ Pmax=?[F finalt], (a)

R
prod

max=?
[C] ∧ Pmax=?[F finalt], and (b)

Reff
max=?

[C] ∧ Rnuis
max=?

[C]. (c)

where finalt = {s ∈ S ∣ s ∈ final ∧ all tasks finished ∧ s ∉ F }.
In the spirit of negative testing, Equation (a) aims at maximising the
use of the safety controller (i.e., approximating worst-case behaviour
of the operator and other actors) while maximising the probability
of finishing two tasks, that is, finishing a workpiece and carrying
through cell maintenance. This query does not take into account
further opmitisation parameters defined for mitigations and resump-
tions. As opposed to that, Equation (b) fosters the maximisation of
productivity, any combination of decisions allowing the finalisation of
tasks is preferred, hence, transitions leading to accidents or the use of
the controller are equally neglected. While Equation (c) also forces
the environment to trigger the controller, these policies represent the
best controller usage in terms of nuisance and effort. Because of re-
strictions in the use of Rmin for MDPs, we maximise costs interpreting
positive values as negative (e.g. the higher the nuisance the better).
We then investigate the Pareto front of optimal policies synthesised
from the Equations (a) to (c). For policies with less than 1000 states,
we inspect the corresponding policy graphs (e.g. whether there is a
path from initial to final or whether paths from unsafe states reach-
able from initial avoid deadlocks). Finally, we evaluate accident free-
dom according to Equation (3), except that we use P=? for DTMCs
instead of Pmin=?.

12

In the pDTMC setting, we use EVOCHECKER to synthesise poli-
cies for  according to the objective

P≤0[F(deadlock ∧ ¬final)] (6)

∧R
prod
max [C

≤T]∕
(

Rdisr
max

[C≤T] + Reff
max

[C≤T]
)

(Productivity)

∧Rnuis
min

[C≤T] (Nuisance)

∧Σf∈F

(
sf ⋅ R

riskf
min

[C≤T]
)

(Risk)

over a time period [0, T] and with factor-specific scaling factors sf .
This objective contains a probabilistic constraint ruling out early dead-
locks, and three optimisation queries for maximising productivity,
minimising nuisance, and minimising overall risk from a factor set F .
We then assess the resulting Pareto front, extract a solution from this
front, and use YAP to refine that solution into a concrete controller.

12To keep manual workload under control, if the model checker (here, PRISM)
lists several adversaries, we apply the experiment only to the first listed.

Gleirscher et al.: Preprint submitted to Elsevier Page 13 of 20

Verified Synthesis of Safety Controllers

Methodology for RQ1b. In Section 5.2, we described the syn-
thesis of a correct abstract controller and, in Section 6.1, its transla-
tion into a concrete controller c interfacing with the DTF explained
in Section 6.2. Then, how do we assure the transfer of the results
on freedom from accidents of the abstract controller (RQ1a) to the
concrete one in the DTF? For this, we follow the framework in Sec-
tion 6.3 and deploy and test c in the DTF for compliance with  in
certain use cases and assess its behaviour in misuse cases.

The DTF is used in a simulation capacity to validate the pro-
posed safety controller. The simulation provides for (i) automated
testing and (ii) a safe environment for evaluation, whilst represent-
ing a faithful one-to-one construction of the work cell. Physical, digi-
tal, or mixed environments expose the same interface for integration
with the DTF; the same controller can be used in either context with-
out modification. As such, integration with the physical work cell is
not evaluated, in part due to limited access to the lab replica.13

We follow one use case (U) and one misuse case (MU) to exer-
cise the risk factors HC, HS, and HRW described in Table 1:

U: During operation, the operator reaches across the workbench
and walks to the spot welder.

MU: During operation, an operator reaches across the workbench
while another operator walks to the spot welder.

We perform tests for the use case as outlined in Figure 19. The
operator first heads to the workbench, breaking the light barrier
(HRW), before heading inside the cell (HS) close to the spot welder
(HC). The observed stream of events during each test can be split
for the independent validation of each risk factor. Considering the
stream as a whole provides for the validation of hazard mitigation
and the absence of impact on further actions.

The operator waits at given positions while the cobot and spot
welder proceed through their scheduled activities. Variations in the
time spent by the operator in different states result in different in-
terleavings of the operator and robot, and such variations in turn
might be ground for the activation of hazards in the system. The
configuration for each test is a vector of 4 values corresponding to
4 wait operations of the operator: entering the workbench, at the
workbench, entering the work cell, and at the spot welder. To bound
the time taken by each test, the values are picked such that the oper-
ator completes its actions in less than 20s. This is ample time for the
robot to perform its own actions, and the operator is able to disrupt
the different tasks in the process either by walking to the spot welder
or reaching across the workbench. We rely on the Dirichlet-Rescale
algorithm (Griffin et al., 2020) for generating vectors such that the
values of the vector sum to a given total, and the distribution of vec-
tors in the constrained space is uniform.

We rely on situation-based coverage criteria, proposed by Alexan-
der et al. (2015), to assess the performance of our test campaign, and
whether we have achieved a satisfactory level of testing. We define
our situations in terms of either the actions of the spot welder, the
actions of the robot, or the position of the arm, when the operator
is reaching at the workbench or entering the cell in accordance with
the use case. Full coverage is achieved when all such actions or po-
sitions have been observed under both interference factors. We also
ensure all valid states for all risk factors have been encountered (as
defined in Figure 7). This ensures causal factors have been encoun-
tered, mitigated, and the system could resume operation.

Methodology for RQ2 (Utility). We argue that the synthesised
safety controller is better than a state-of-the-art controller that only
has a stop mode and performs no automatic resumption. For this ar-
gument, we compare the whole range of controllers from the design
space with those controllers that always perform a safety stop when
detecting a critical event. Based on that, we informally assess the in-
crease in productivity and fluency of collaboration, and the decrease
of mean-time to finishing a process cycle. This argument underpins
our contribution to the problem statement in Section 1.

13At the time of writing, COVID-19 prevents access to the Sheffield Robotics
lab and physical components of the case study.

Productivity
1.4 1.6 1.8 2.0 2.2

R
isk

0

2

4

6

8

10

12

(ii)

(i)

(iii)

(a) Projection: risk and productivity

Productivity
1.4 1.6 1.8 2.0 2.2

N
u
isan

ce

4

6

8

10

12

(i)

(ii)

(iii)

(b) Projection: nuisance and productivity

Figure 18: Two projections of a 3D Pareto front for the optimisation objective in

Formula (6) for the time period up to T = 30

Methodology for RQ3 (Scalability). We prepare and analyse
multiple increments of the risk model, each adding one critical event,
mitigation options, and constraints to the model. We record the re-
sulting model sizes and analysis times.

7.2. Results

In the following, we present the results of our evaluation sepa-
rately for each research question.

7.2.1. Results for RQ1a: Safety in the Model

We consider as inputs a risk model and a process model of the
work cell, with a single initial state of these models where all actors
are in the activity off and no critical event has occurred. The risk
model is given in YAP’s input language and the behavioural model
is given in PRISM’s flavour of pGCL, instrumented with YAP template
placeholders. We consider the two settings explained in Section 5.
In the MDP setting, we use YAP 0.5.1 for generating the design
space (Section 5.1) embedded into a process model without alternat-
ing execution semantics and with controller synthesis directly from
an MDP using PRISM 4.5. In the improved pDTMC setting, we use
YAP 0.7.1 for generating the design space embedded into a process
model with the alternating execution semantics described in Sec-
tion 4.1.1, an improved accident model, and with controller synthe-
sis from a pDTMC using EVOCHECKER and PRISM 4.5. For RQ1a, we
used GNU/Linux 5.4.19 and 5.8.0 (x86, 64bit), and an Intel® Core
i7-8665U CPU with up to 8 Threads of up to 4.8 GHz, and 16 GiB
RAM.

The results for the original MDP setting are displayed in Ta-
ble 4, which shows the data collected based on seven increasingly
more complex risk models. The (min,mean,max) probability triples
are denoted by ⌊�⌉. The result ⌊�⌉ = [1, 1, 1] for a policy denotes
100% conditional freedom from accidents. This desirable result is
most often achieved with Equation (c) due to the fact that simul-
taneity of decisions of the environment and the safety controller in
the same state is avoided by focusing on rewards only specified for
controller actions. Such rewards model the fact that a controller is
usually much faster than an operator. Equations (a) and (b) show
poorer freedom from accidents because productivity rewards given
to the environment compete with rewards given to the safety con-
troller to exploit its risk reduction potential.

In the improved pDTMC setting, we focus on a single risk model
with the three factors HS, HC, and HRW. We calculate ⌊�⌉ for Equa-
tion (3) for a process without a safety controller and one with a con-
troller. Table 5 shows an increase in average freedom from accidents
from 87% to around 97% when using a safety controller. Starting
from any state in the process shows that there are very safe states
with a probability of accidents of down to 0% (max column) and
rather dangerous states with a probability of up to 37% (min col-
umn). Overall, going from 13% down 3% average accident proba-
bility (across the three risk factors) means that the controller in this
particular process leads to a reduction of accidents by 77%.

The 3D Pareto front in Figure 18 indicates that the lower the risk

Gleirscher et al.: Preprint submitted to Elsevier Page 14 of 20

Verified Synthesis of Safety Controllers

Table 4

Results of the experiment for RQ1a (accident-free operation) and RQ3 (scalability) in the MDP setting

Risk Model† MDP† (a) max-ASC† (b) max-prod (c) opt-ASC

F mr∕c |R(F)| tY P¬A Ξ sta∕tra P¬A Ξ tP P¬A Ξ tP P¬A Ξ tP
[ms] ⌊�⌉ ⌊�⌉ [s] ⌊�⌉ [s] ⌊�⌉ [s]

HC 5/0 3 40 [.9,.9,.9] 14 322/1031 [1,1,1] 3 .02 [1,1,1] 1 .02 [1,1,1] 6 .15

+HS 9/2 5 52 [.92,.96,.98] 256 930/3483 [.07,.66,1] 11 .77 [0,.88,1] 8 .82 [.95,.98,1] 18 .9

+WS 11/3 8 44 [.93,.97,1] 288 1088/3865 [0,.29,1] 17 2.1 [0,.8,1] 5 2 [1,1,1] 24 1.5

+HRW 13/7 16 65 [.93,.97,1] 981 7675/33322 [1,1,1] 17 9.7 [1,1,1] 11 9.4 [1,1,1] 15 13.3

+HW 15/8 36 76 [.93,.97,1] 2296 21281/98694 [1,1,1] 15 42.9 [0,.71,1] 7 41.4 [1,1,1] 15 46.6

+RT 15/9 50 87 [.93,.97,1] 2864 21965/100133 [1,1,1] 13 48.2 [1,1,1] 9 46.4 [1,1,1] 15 53.8

+RC 15/15 122 162 [.93,.99,1] 12079 21670/102263 [0,.94,1] 35 38 [0,.72,1] 22 36.6 [1,1,1] 36 51.1

† F . . . critical event set; mr/c. . . number of mitigations+resumptions/constraints; |R(F)|. . . cardinality of the relevant subset of R(F) defined in Section 3.3; tY . . . YAP’s

processing time; P¬A. . . probability of conditional freedom from accidents; Ξ. . . set of F -unsafe states; sta∕tra. . . number of states/transitions of the MDP (sta equals the

size of the policies); Equations (a) to (c). . . optimisation queries; tP . . . PRISM’s processing time

Table 5

Comparison of minimum, average (�), and maximum freedom from accidents ac-

cording to Equation (3) of a process with a controller and a process without one.

Process . . . min � max

. . . with a safety controller 63% 97% 100%

. . . without a safety controller 63% 87% 100%

of a controller (Conjunct Risk in Formula 6) the lower the productiv-
ity (Conjunct Productivity) due to the interventions of the controller
(cf. Figure 18a). Figures 18a and 18b show (i) four controllers in the
design space with low nuisance (Conjunct Nuisance) and medium
productivity and risk, and (ii) two minimal-risk controllers with low
nuisance but low productivity. (iii) Controllers that minimise nui-
sance and maximise productivity tend to do this at the cost of high
risk. If the minimal-risk controllers under (ii) are not satisfactory, a
more detailed trade-off regarding the controllers in (i) or a repetition
of the analysis with different design parameters or an altered process
and controller model will have to be made.

7.2.2. Results for RQ1b: Safety in the Digital Twin

We performed 100 tests for the use case shown in Figure 19.
This proved sufficient to achieve full coverage of (i) the mitigation
states for all considered risk factors, and (ii) operator interference
types across spot welder and cobot states. All recorded traces t ver-
ify t ⊧ R′, that is, all traces satisfy the selected properties translated
from Table 3. Risk factors were correctly detected (with d = 0.25ms
in Property 4) and mitigated by the synthesised safety controller in
all observed situations in the DTF. All results for RQ1b were pro-
duced under the Windows 10 Home Edition operating system, build
19042.985, on an Intel® Core i5-8250U 4-core CPU at 1.8 GHz, with
8 GiB RAM. The whole test suite, including validation of the traces,
took less than two hours to complete. No time compression was used,
the DTF ran simulations in real-time.

Figure 20 illustrates the output of the DTF for the use case (Fig-
ure 19). Each image captures the state of the system as the operator
begins a wait operation. The use case highlights the activation of
all monitored risk factors (see Table 1) with the operator and cobot
making concurrent use of the workbench, and the operator in the
vicinity of the spot welder as an operation is about to start.

MU relies on two operators simultaneously following the be-
haviours outlined by U . The tested model assumes a single operator
interacts with the system, such that an operator must leave the work-
bench before entering the work cell. As such, the safety controller
correctly mitigates the risk due to both cobot and operator reaching
for the workbench. However, as the second operator enters the cell
the related risk factors are neither identified as active nor mitigated.
Figure 21 highlights the situation, with the second operator in close
proximity to an active spot welder.

The work cell is safe considering a single operator following the
use case, that is entering the work cell or the workbench during op-
eration. However, the risk and process models would need to be
revised to account for multiple operators interacting with the sys-

Figure 19: Use case describing operator, cobot and spot welder (inter)actions

Core Scenario in Work Cell Use Caseact

Operator RobotArm and spotWelder

wait moveToTable

extendArm

wait

grabLeft WorkPiece

wait

goToTable

withDraw Arm

leaveTable

enterCell

approach WeldSpot

wait

exitPlant

moveToWelder

weldStep

leaveWelder

moveToTable

placeWorkpieceRight

Work piece

Work piece
support

Work piece

Initial State: Operator in front
of the workbench. Work piece
positioned in left receptacle.

Final State: Operator has left the work cell.
Finished work piece positioned in the right
receptacle.

tem (e.g. by removing factor dependencies between HRW and HS,
see Section 4.2.1). The case with two operators would normally
be picked up in an extended risk assessment following Table 1, but
it was not relevant to this particular process. This case is also not
within scope for the purposes of keeping this example simpler.

7.2.3. Results for RQ2: Utility

In the MDP approach, Table 6 highlights several aspects. First,
the fact that none of the controller configurations achieves the pro-
ductivity level (64.19) of the process without a controller. Such a
process reaches a theoretical productivity maximum assuming no
safety requirements, which is for obvious reasons not desirable. Per-
haps unsurprisingly, safety comes at the cost of productivity. How-
ever, more importantly, among all configurations, the one switching
to “stopped”, whenever eHS, eHC, or eHRW occurs, is the one perform-
ing the poorest (37.06, highlighted in gray). As expected, controllers
implementing the pflim and ssmon safety modes as part of their pol-
icy are among the highest performing variants (51.42). With the best
safety controller, the process achieves about 40% more productivity
than with the worst controller and is only 25% less productive than
the maximum productivity achievable in the process. Moreover, the
most risky configurations (68, highlighted in gray) are around 77%
less risky than not using a safety controller. However, the most diffi-
cult trade-off is to be made between very low risk controllers (≤ 9)
and moderate risk controllers (≥ 49) where the gain in productivity

Gleirscher et al.: Preprint submitted to Elsevier Page 15 of 20

Verified Synthesis of Safety Controllers

(a) System configuration for

testing, with the operator’s path

highlighted by numbered way-

points.

(b) Initial state. The operator

waits in front the workbench

while the cobot moves to re-

trieve a work piece.

(c) The controller issues mit-

igations as the operator and

cobot simultaneously reach for

the workbench (HRW).

(d) The operator leaves the

workbench while the cobot

moves to the spot welder. The

risk factor has been removed.

(e) The controller issues a stop

in response to the operator ap-

proaching the spot welder dur-

ing operation (HS and HC).

(f) Welding resumes after the

operator leaves the work cell.

The notification to leave the cell

is deactivated.

Figure 20: Illustration of different states of the use case described in Figure 19. Each image further highlights, in the top right corner, the state of the different actors of the

system as the use case progresses, that is, the sensors (light barrier and LIDAR), the safety controller (HRW , HS, HC , and the safety mode), and the activities (of the cobot

and the spot welder). A visual notification instructing the operator to leave the handover table or welding area are issued in the form of blue and red lights respectively.

Spot welder

Operator

Cobot

Workbench

Figure 21: Result for the misuse case (MU): the second operator is not notified to

leave the work cell, and the spot welder remains active while he is in close proximity.

is comparatively little. Finally, with this model instance, the addition
of the factor HC does neither influence risk nor productivity.

Regarding the expected overhead (Section 6.1), we used the
C# profiling tool integrated in the development environment for the
DTF. We measured the execution time of control cycles in the DTF
across 1000 invocations of the controller. Our observations cover
both nominal activity, and the occurrence of risk factors. The longest
observed execution time dHS,HC,HRWmax , its high watermark, is around
40ms. The high watermark occurs upon activation of a risk factor,
and accounts for mode switch, and the required mitigation actions.
In the absence of a mitigation requirement, the average execution
time dHS,HC,HRW is less than 1ms. Execution times are expected to be
lower in the physical twin. Profiling was performed on the same en-
vironment as for RQ1b, that is a 1.8 GHz i5 CPU with 8 GiB of RAM
running Windows 10.

7.2.4. Results for RQ3: Scalability

We answer this question using six increments applied to a basic
risk model (Table 4). We only consider the MDP setting because
applying model increments in the pDTMC setting will not provide
additional insights into the scalability aspect of our method.

For demonstration of YAP’s capabilities, the incident RT and the
accident RC are included in the risk model without handler com-
mands. However, these factors add further constraints on R(F) to be
dealt with by the safety controller. Hence, mr stays at 15 actions and

Table 6

Comparison of a process without a safety controller with processes including con-

trollers using different safety mode and task switching policies. Safety functions such

as warnings are not taken into account in this comparison.

Process Configuration† Productivity‡ Risk‡

HC HRW HS [units] [units]

smrst / idle stop stop 37.06 0

stop / off stop stop 37.06 0

hguid / – stop stop 37.06 0

smrst / idle pflim stop 44.75 9

stop / off pflim stop 44.75 9

hguid / – pflim stop 44.75 9

smrst / idle stop pflim 46.26 49

stop / off stop pflim 46.26 49

Using controller hguid / – stop pflim 46.26 49

smrst / idle stop ssmon 48.15 59

stop / off stop ssmon 48.15 59

hguid / – stop ssmon 48.15 59

smrst / idle pflim pflim 49.90 58

stop / off pflim pflim 49.90 58

hguid / – pflim pflim 49.90 58

smrst / idle pflim ssmon 51.42 68

stop / off pflim ssmon 51.42 68

hguid / – pflim ssmon 51.42 68

No controller – – – 64.19 291

†Configuration of mitigation options (safety mode and activity switches), smrst :

safety-rated monitored stop, stop: power shutdown with user-initiated work cell

reset, hguid : hand-guided operation, pflim: power & force limitation, ssmon:

speed & separation monitoring, idle: currently not performing work steps, off :

work cell not in operation; ‡According to R
prod

max=?
[C≤T] and Property (Risk) with

T = 50.

c rises to 15 constraints. In model 7 (last line of Table 4), R(F) (122
risk states) and the Ξ-region of S (12079 states) differ by two or-
ders of magnitude. Risk states offer a higher level of abstraction for
risk assessment. The derivation of properties that focus on relevant
regions of the MDP state space from a risk structure can ease the
state explosion problem in explicit model checking. For example, the
constraints HRW prevents HC and HC prevents HRW express that the
combined occurrence of HC and HRW is considered infeasible or ir-
relevant by the safety engineer. Hence, checking properties of the
corresponding region of the MDP state space can be abandoned.

7.3. Threats to Validity

Internal Validity. Too strong environmental assumptions reduce

the scope of the safety guarantee. To limit the need for game-theoretic

Gleirscher et al.: Preprint submitted to Elsevier Page 16 of 20

Verified Synthesis of Safety Controllers

reasoning about , we reduce non-deterministic choice for the envi-
ronment (i.e., operator, cobot, spot welder). The more deterministic
such choice, the closer is the gap between the policy space Π and
the controller design space. Any decisions left to the environment
will make a verified policy �⋆ safe relative to �⋆ ’s environmental
decisions. These decisions form the assumption of the controller’s
safety guarantee. Occupational health and safety assumes trained
operators not to act maliciously, suggesting “friendly environments”
with realistic human errors. To increase the priority of the con-
troller in the MDP-based approach, we express realistic worst-case
assumptions, for example, by minimising factor- and activity-based
risk and maximising the risk reduction potential. The pDTMC-based
approach weakens such assumptions by the fact that all outcomes of
environmental decisions remain in the policy in form of probabilis-
tic choices. Hence, the controller extracted from �⋆ will contain an
optimal choice for all states reachable from environmental decisions.
Obtaining appropriate trade-offs between productivity and safety is
challenging. Hence, in the future we may switch to game-theoretic
approaches which may allow for a more nuanced view of the envi-
ronment and hence allow for even greater productivity.

Incorrect application of tools. EVOCHECKER relaxes constraints if
the constrained solution space is empty, leading to solution under
relaxed constraints. Hence, the design space needs to be redefined
in order for EVOCHECKER to select from a non-empty set of solutions
obeying safety-related hard constraints.

Insufficient validation. Confidence in the testing-based validation
depends on the range and complexity of (mis)use cases and the pa-
rameters used for randomisation. The use case for RQ1b is generic
enough to cover a wide range of work cell scenarios and the misuse
case clarifies the environmental assumptions of the use case.

External Validity. Reality gap through inadequate quantification.

The lab replica of the work cell matches closely to the one in the com-
pany. This allowed us to develop an accurate digital twin and an MDP
compliant with the actual work cell that incorporates all relevant pa-
rameters (particularly, probabilities). We crafted the MDP such that
assessment and optimisation based on probabilities and rewards rely
more on qualitative relations between the parameters rather than
accurate numbers. It is more important and easier to conservatively
assess whether an activity or safety mode is more or less dangerous
than another and it is less important and more difficult to provide ac-
curate numbers. The resulting gap between optimality in the model
and optimality in the digital twin should hence not alter the demon-
strated confidence in the controller. More accurate numbers can be
obtained from observations, and after a model update, a repeated
synthesis can improve productivity of the safety controller.

Incorrect sensing assumptions. In our case study, the safety con-
troller relies on the detection of an operator (e.g. extremities, body)
and a robot (e.g. arm, effector) entering a location, the cell state (e.g.
grabber occupied, workbench support filled), and the work piece lo-
cation (e.g. in grabber, in support). For , we assume the tracking
system (i.e., range finder and light barrier in the industrial setting,
MS Kinect14 in the lab replica) to map the location of the operator
and robot to the areas “in front of the workbench”, “on the work-
bench”, “in the workcell”, and “close to the spot welder” rather than
to a fine-grained occupancy grid. In Figure 1b, the range finder sig-
nals “at welding spot” if the closest detected object is nearer than
the close range, and “in cell” if the closest object is nearer than the
wide range. Tracking extensions, not discussed here, could include
object silhouettes and minimum distances, operator intent, or joint
velocities and forces.

Incorrect real-time behaviour. pGCL, as we used it, requires care
with the modelling of real-time behaviour, particularly, when actions
from several concurrent modules are enabled. To model real-time
controller behaviour, we synchronise operator actions with sensor
events and, in the original MDP setting, force the priority of con-
troller reactions in �⋆ by maximising the risk reduction potential (cf.
pot in Table 3). While synchronisation restricts global variable use,
increasing ’s state space, we found it to be the best solution in the
multi-module MDP setting. The alternating execution scheme used

14See https://en.wikipedia.org/wiki/Kinect.

in pDTMC setting, however, avoids the use of rewards to implement
priorities and prevent actors from competing in an unnatural way.

7.4. Discussion

Tool Restrictions and Model Debugging. State rewards allow
a natural modelling of, e.g. risk exposure. However, in PRISM 4.5,
one needs to use action rewards for multi-objective queries of MDPs.
Risk gradients help to overcome a minor restriction in PRISM’s defi-
nition of action rewards.15 Alternatively, we could have introduced
extra states at the cost of increasing ’s state space, undesirable for
synthesis. Rewards require the elimination of non-zero end compo-
nents (i.e., deadlocks or components with cycles that allow infinite
paths and, hence, infinite reward accumulation). PRISM provides
useful facilities to identify such components, however, their elimi-
nation is non-trivial and laborious in larger models and can require
intricate model revisions. We strongly discretise model parameters
such as location to further reduce the state space and keep the model
small. We use probabilistic choice in synchronous updates only in
one of the participating commands to simplify debugging. We avoid
global variables to support synchronisation with complex updates

Misuse Cases for Controller Testing. Misuse cases help in ex-
ploiting deficiencies of a control concept through counterexamples.
The latter can be generated from the process model and exercised as
negative test cases to aid in debugging the controller. We explored
this idea in Gleirscher (2011), applying a PROLOG-based GOLOG in-
terpreter that constructs counterexamples from backward depth- and
breadth-first search from a given accident state. PRISM uses forward
breadth-first search from an initial state and stops when reaching an
accident state. In both cases, explicit state exploration is used with
the usual problem of state space explosion. In any case, an envi-
ronment model is needed to express accident states. In this work,
we prefer a model checker because the encoding of the stochastic
process in pGCL appeared to be easier than in a stochastic situation
calculus and because of more flexibility of expressing properties to
be verified in PCTL.

8. Related Work

Our work builds upon a set of well known theoretic principles on
which research on controller design and synthesis (Kress-Gazit et al.,
2018) for collaborative robots has been carried out. In the following,
we compare our results with other results.

Risk-informed Controller Design and Verification. Askarpour
et al. (2016) discuss controller assurance of a cobot work cell based
on a discrete-event formalisation in the linear-time temporal lan-
guage TRIO. Actions are specified as pre/inv/post-triples for contract-
based reasoning with the SAT solver Zot. Violations of the safety in-
variant inv lead to pausing the cell. Fine-grained severity quantifica-
tion (Vicentini et al., 2020) allows a controller to trigger safety mea-
sures on exceeding of certain risk thresholds. Additionally, Askar-
pour et al. (2019) present a model of erroneous or non-deterministic
operator behaviour to enable designers to refine controller models
until erroneous behaviours are mitigated. This approach aims at risk-
informed prototyping and exhaustive exploitation of all possible exe-
cutions to identify constraint violations and remove hazardous situa-
tions. Risk thresholds correspond to a refined variant of Property (4).
Whilst not the focus of this work, our approach also allows for the
quantification of severity in detector predicates (�). Their severity
model (Askarpour et al., 2019; Vicentini et al., 2020) inspires future
risk factor models. Instead of a priority parameter, which reduces
state variables, we use guards to implement action orderings. Our
approach is more flexible because it can deal with multiple mitiga-
tion options offering more variety in safety responses. Beyond model
consistency checks and the search of counterexamples for model re-
pair, our approach yields an executable policy. Our use of pGCL
and PCTL (Kwiatkowska et al., 2007) results in a separation of ac-
tion modelling and property specification. Although this separation

15Currently, rewards cannot be associated with particular updates, that is, with
incoming transitions rather than only states.

Gleirscher et al.: Preprint submitted to Elsevier Page 17 of 20

Verified Synthesis of Safety Controllers

is a non-essential difference, it syntactically supports a more inde-
pendent working on two typical abstraction levels, required process
properties and process implementation.

Verified Controller Synthesis for Cobots. A number of authors
have suggested synthesis approaches for controllers in human-robot
collaboration. Key features of these approaches are verified optimal
synthesis for collaborative plan execution, quantitative verification
of plans, code generation for deployment on robot platforms.

For generic robots, Orlandini et al. (2013) and Bersani et al.
(2020) employ synthesis by game solving (i.e., finding winning strate-
gies) over timed game automata (TIGA) supported by the model
checker UPPAAL-TIGA. Correctness properties can be formulated as
reach-avoid problems (i.e., reach the goal state and avoid unsafe
states) specified as A[safeU goal] in timed computation tree logic.
From a timeline-based plan description (Cesta and Fratini, 2008),
Orlandini et al. (2013) generate a TIGA with clock constraints en-
coding temporal degrees of freedom for performing control actions.
From the TIGA, a winning strategy (i.e., a robust plan execution
minimising violations of clock constraints) is then synthesised. The
TIGA-based stage is continuously performed during operation. The
distinction of controllable (i.e., duration known) from uncontrol-
lable actions (i.e., duration unknown) allows one to react to tem-
porally uncertain environmental events by obtaining strategies that
can schedule robot actions in the presence of worst-case timing of
the environment. In Cesta et al. (2016), an extension of this ap-
proach is applied to controller synthesis for safe human-robot collab-
oration. For task coordination between humans and robots, Cesta
et al. (2016) and other works utilise the distinction of uncontrollable
and controllable actions. Our reactive execution scheme (Figure 5)
accommodates this basic feature required to separate the capabilities
of the cobot from the capabilities of its physical environment.

Kshirsagar et al. (2019) demonstrate on-line controller synthesis
for human-robot handovers obeying timing constraints specified in
signal temporal logic. Cobot kinetics need to be given in terms of or-
dinary differential equations. Being suitable for low-level synthesis
in homogeneous action systems, this approach could be integrated
into our framework, for example, for controlling a speed and separa-
tion monitoring mode switched on during a handover.

MDP policy synthesis has also been used to generate optimal mo-
tion plans for mobile robots (Lahijanian et al., 2012). The MDPs used
in this solution model the physical layout of the space within which
a mobile robot can navigate. As such, the problem addressed in this
work is complementary to our use of probabilistic models and MDP
policy synthesis, as our approach tackles the generation of optimal
hazard mitigation actions.

Modelling of Controllers for Cobots. Domain-specific languages

for controller design can support control engineers in encoding their
control schemes. Cesta et al. (2016) employ domain and problem
definition languages (DDL & PDL) for encoding the state spaces and
action domains a controller can select from. Bersani et al. (2020)
provide a lean language for robotic controller design. Models in that
language typically include a description of the uncontrollable envi-
ronment. Safety properties can be difficult to formulate, as shown in
Bersani et al. (2020) and, particularly, when dealing with multiple
hazards or risk factors. We provide YAP’s input language for safety
controller design informed by risk models, streamlining the specifi-
cation of safety properties from multiple hazards.

Approaches such as Lahijanian et al. (2012) and Kshirsagar et al.
(2019) focus on homogeneous action systems, that is, systems with
few and similar types of actions manipulating type-wise simple state
spaces (e.g. movement in a Euclidean plane or in a 2D grid). Such
systems make it easier to provide complete and tractable synthesis al-
gorithms for realistic models. In contrast, and as suggested by Kress-
Gazit et al. (2018), our approach focuses on heterogeneous action sys-

tems, such as human-robot collaboration, which can be characterised
by a wide variety of actions over a heterogeneously typed state space.
Such actions can differ in their complexity and discrete or continuous
nature (e.g. grabbing a work piece, moving a robot arm, performing
a welding action, switching a mode, turning off an alarm sound).

Robust controllers are able to deal with unstructured environ-

ments, to react to a wide variety of uncontrollable adverse events (e.g.
human error). Overall, they guarantee correct behaviour under weak
assumptions. Game-based approaches, such as policy synthesis for
TIGAs (Jessen et al., 2007; Orlandini et al., 2013; Bersani et al.,
2020), inherently support such environments. Whilst our MDP-based
approach benefits from more efficient algorithms and provides fine-
grained methodological guidance, an extension to utilise the greater
flexibility of game-based approaches should be part of our next steps.

A distinctive feature of safety controllers is their ability to con-

trol the resumption of normal operation (i.e., the recovery from a con-
servative or degraded safe state) in addition to mitigation. While
resumption is implicit to many solutions for homogeneous-action
reach-avoid problems (Orlandini et al., 2013; Bersani et al., 2020),
for heterogeneous action systems, resumptions often need to be mod-
elled separately (e.g. switching off a safety mode or function, resum-
ing/restarting a suspended/cancelled task). Risk factors at the core
of our approach accommodate primitives for specifying resumptions.

Overall, an advantage of timeline-based approaches (Cesta et al.,
2016) is their ability to encode physical domains qualitatively. In
pGCL, corresponding domain constraints need to be distributed over
action guards, which can be cumbersome. Moreover, an advan-
tage of TIGAs over MDPs is that time is continuous and managed
via clocks, leading to more concise models. However, in summary,
our use of pGCL enables the concise encoding of the action domain
of human-robot collaboration with multiple actors operating over a
discrete state space. MDPs represent a natural model of interac-
tion of agents with an uncontrollable and uncertain environment.
Reward-enhanced PCTL provides a flexible and expressive language
for specifying multiple objectives (e.g. minimum risk, maximum per-
formance) and reward constraints (e.g. accepted risk thresholds).
We could enhance our approach to probabilistic timed automata in
order to further increase model fidelity.

Controller Deployment. An important step in many synthesis
approaches is the deployment of the resulting controllers in an ex-
ecution environment. Although for another domain (i.e., climate
control in a pig stable), Jessen et al. (2007) show how controllers
synthesised using UPPAAL-TIGA can be embedded as components
of a Simulink model to perform validation by simulation. As part
of their evaluation, Bersani et al. (2020) demonstrate the deploy-
ment of their controllers on the low-cost platform Turtlebot used as
a cobot. Orlandini et al. (2013) deploy their approach as a module
on a Gen

oM-based robotic software platform with a mapping into the
real-time framework BIP. Their flexible approach could be a potential
route for future extensions of our approach. Currently, YAP provides
a generator for C# modules for the DTF (Sections 3.4 and 6.2).

Overall, to the best of our knowledge, our method is the first
end-to-end approach to synthesising and deploying safety controllers
for handling multiple risks from collaborative robots in manufactur-
ing processes. The works discussed above either address parts of
the synthesis challenge or implement alternative solutions for cobot
(safety) controllers.

9. Conclusion

We introduced a tool-supported approach for the verified syn-
thesis of optimal safety controllers from Markov decision processes,
focusing on human-robot collaboration. These controllers implement
regulatory safety goals for such applications. We describe steps for
streamlined application modelling and risk-informed controller de-
sign and demonstrate our method using a tool chain consisting of
YAP (Gleirscher, 2021) for structured risk modelling and pGCL pro-
gram generation, EVOCHECKER (Gerasimou et al., 2018) for search-
based policy synthesis from pDTMCs, and PRISM (Kwiatkowska et al.,
2011) for probabilistic model checking and MDP policy synthesis.
We show that our approach can be used to incrementally build up
multi-hazard models including alternative mitigation and resump-
tion strategies. We also discuss how our approach can simplify ex-
plicit model checking when dealing with large state spaces. Our ap-
proach improves the state of the art of controller synthesis for col-

Gleirscher et al.: Preprint submitted to Elsevier Page 18 of 20

Verified Synthesis of Safety Controllers

laborative robots, particularly when dealing with multiple risks, mit-
igation options, activities and safety modes. That way, we contribute
to the alignment of lower-level requirements posed by cobot safety
standards (e.g. ISO 15066) with higher-level cobot hazard analysis
and risk assessment (Chemweno et al., 2020) through a structured
risk-informed design approach. Furthermore, we translate the veri-
fied controllers into executable code and deploy them on the digital
twin framework and, thus, accomplish a smooth transition between
formal controller verification and testing-based controller validation
in a realistic environment. Using the DTF, we demonstrate the con-
troller’s correct and timely response in a representative use case. In
summary, the verification and validation results generated by our ap-
proach can contribute evidence to a controller assurance case (Gleir-
scher et al., 2019; Foster et al., 2020; Calinescu et al., 2018).

Future Work. For optimal synthesis, the proposed method uses
parameters such as upper risk and severity bounds as constraints. We
plan to introduce parameters for probabilities, such as sensor failure
and human error, into the MDP and to use parametric risk gradients
by extending YAP.

It is important to model all relevant behaviours of the environ-
ment, or more generally the uncontrollable actions, the safety con-
troller needs to respond to in order to increase freedom from ac-
cidents. Hence, in future work, we plan to use stochastic games to
more accurately (and less conservatively) model the behaviour of the
environment in which this controller operates. We also plan to ex-
plore online policy synthesis (Calinescu et al., 2017) to allow more
variety in environmental decisions (e.g. mitigating hazards due to
malicious operators). This corresponds to weakening the assump-
tions under which the controller can guarantee safety.

Accident data for the considered industrial application was gen-
erally not available. We were also unable16 to collect data from the
lab replica. Thus, we had to make best guesses of probabilities (cf.
Section 4.3). However, the frequency of undesired intrusion of oper-
ators into the safeguarded area and accident likelihood can be trans-
ferred into our case study.

The DTF is a full-fledged digital twin, from which the interaction
between the safety controller and the real system can be demon-
strated. Limited access to the physical cell has required validation
in the digital twin to take precedence. Further validation integrating
the physical work cell will therefore be the focus of future work.

The case study can be extended by randomised control decisions
with fixed probabilities (e.g. workload), by adding uncertain action
outcomes (e.g. welding errors), and by time-dependent randomised
choice of mitigation options. To use time in guarded commands, we
want to explore clock-based models rather than only using reward
structures, as far as the synthesis capabilities allow this.

For motion planning over finite partitions of geometric spaces,
Lahijanian et al. (2012) describe algorithms for the synthesis of MDP
policies that maximise the probability of a given arbitrary PCTL for-
mula. By assuming that state estimation is precise, the authors avoid
the use of partially observable MDPs in their application. To improve
our approach regarding the synthesis over homogeneous action sys-
tems, their algorithms could be integrated into our MDP synthesis
tool chain, for example, in addition to PRISM or underpinning the
search-based synthesis in EVOCHECKER.

References

Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.,
2017. Progress and prospects of the human-robot collaboration. Autonomous
Robots 42, 957–975. doi:10.1007/s10514-017-9677-2.

Alami, R., Albu-Schaeffer, A., Bicchi, A., Bischoff, R., Chatila, R., et al., 2006.
Safe and dependable physical human-robot interaction in anthropic domains:
State of the art and challenges, in: IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, pp. 1–16. doi:10.1109/iros.2006.6936985.

Alexander, R., Hawkins, H., Rae, A., 2015. Situation coverage – a coverage cri-
terion for testing autonomous robots. volume Report number YCS-2015-496.
Department of Computer Science, University of York.

Anderson, G., 2016. The Economic Impact of Technology Infrastructure for Ad-
vanced Robotics. Economic Analysis Briefs. NIST. URL: https://tsapps.nist.gov/
publication/get_pdf.cfm?pub_id=921956.

16Due to restricted lab access during the COVID-19 pandemic.

Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F., 2016. SAFER-HRC: Safety
analysis through formal vERification in human-robot collaboration, in: LNCS.
Springer, pp. 283–295. doi:10.1007/978-3-319-45477-1_22.

Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F., 2019. Formal model of hu-
man erroneous behavior for safety analysis in collaborative robotics. Robotics
and Computer-Integrated Manufacturing 57, 465–476. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0736584518303247, doi:10.1016/j.rcim.2019.01.001.

Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C., 2004. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on 1, 11–33. doi:10.1109/TDSC.2004.2.

Baier, C., Katoen, J.P., 2008. Principles of Model Checking. MIT P.
Basin, D., Klaedtke, F., Müller, S., Zălinescu, E., 2015. Monitoring metric first-order

temporal properties. Journal of the ACM 62, 1–45. doi:10.1145/2699444.
Bersani, M.M., Soldo, M., Menghi, C., Pelliccione, P., Rossi, M., 2020. PuRSUE

-from specification of robotic environments to synthesis of controllers. For-
mal Aspects of Computing 32, 187–227. URL: http://link.springer.com/10.1007/

s00165-020-00509-0, doi:10.1007/s00165-020-00509-0.
Bolton, A., Butler, L., Dabson, I., Enzer, M., Evans, M., Fenemore, T., Harradence,

F., 2018. The Gemini Principles. Technical Report. Centre for Digital Built
Britain,University of Cambridge. Cambridge, UK. URL: https://www.cdbb.cam.ac.

uk/system/files/documents/TheGeminiPrinciples.pdf.
Broy, M., 2010. A logical basis for component-oriented software and systems engi-

neering. The Computer Journal 53, 1758–82. doi:10.1093/comjnl/bxq005.
Calinescu, R., Autili, M., Cámara, J., Di Marco, A., Gerasimou, S., Inverardi, P.,

Perucci, A., Jansen, N., Katoen, J.P., Kwiatkowska, M., et al., 2017. Synthesis
and verification of self-aware computing systems, in: Self-Aware Computing
Systems. Springer, pp. 337–373. doi:10.1007/978-3-319-47474-8_11.

Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T., 2018.
Engineering trustworthy self-adaptive software with dynamic assurance cases.
IEEE Transactions on Software Engineering 44, 1039–1069. doi:10.1109/TSE.
2017.2738640.

Cesta, A., Fratini, S., 2008. The timeline representation framework as a planning
and scheduling software development environment, in: Proc. of 27th Workshop
of the UK Planning and Scheduling SIG, pp. 1–8. URL: https://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.432.1860&rep=rep1&type=pdf.
Cesta, A., Orlandini, A., Bernardi, G., Umbrico, A., 2016. Towards a planning-

based framework for symbiotic human-robot collaboration, in: Emerging Tech-
nologies and Factory Automation (ETFA), 21st Int. Conf., IEEE. pp. 1–8.
doi:10.1109/etfa.2016.7733585.

Chemweno, P., Pintelon, L., Decre, W., 2020. Orienting safety assurance with
outcomes of hazard analysis and risk assessment: A review of the ISO 15066
standard for collaborative robot systems. Safety Science 129, 104832. doi:10.
1016/j.ssci.2020.104832.

Dwyer, M.B., Avrunin, G.S., Corbett, J.C., 1999. Patterns in property specifications
for finite-state verification, in: ICSE, pp. 411–20. doi:10.1145/302405.302672.

Foster, S., Gleirscher, M., Calinescu, R., 2020. Towards deductive verification of
control algorithms for autonomous marine vehicles, in: Engineering of Complex
Computer Systems (ICECCS), 25th Int. Conf., Singapore, pp. 113–118. doi:10.
1109/ICECCS51672.2020.00020, arXiv:2006.09233.

Gerasimou, S., Calinescu, R., Tamburrelli, G., 2018. Synthesis of probabilistic
models for quality-of-service software engineering. Automated Software Engi-
neering 25, 785–831. doi:10.1007/s10515-018-0235-8.

Gillespie, R.B., Colgate, J.E., Peshkin, M.A., 2001. A general framework for cobot
control. IEEE Transactions on Robotics and Automation 17, 391–401. doi:10.
1109/70.954752.

Gleirscher, M., 2011. Hazard-based selection of test cases, in: Automation of Soft-
ware Test (AST), 6th ICSE Workshop, pp. 64–70. doi:10.1145/1982595.1982609.

Gleirscher, M., 2017. Run-time risk mitigation in automated vehicles: A model
for studying preparatory steps, in: 1st iFM Workshop Formal Verification of
Autonomous Vehicles (FVAV), pp. 75–90. doi:10.4204/eptcs.257.8.

Gleirscher, M., 2020. YAP: Tool support for deriving safety controllers from haz-
ard analysis and risk assessments, in: Luckuck, M., Farrell, M. (Eds.), Formal
Methods for Autonomous Systems (FMAS), 2nd Workshop, Open Publishing
Association. pp. 31–47. doi:10.4204/EPTCS.329.4, arXiv:2012.01176.

Gleirscher, M., 2021. YAP Against Perils: Application Guide and User’s Man-
ual. University of York and Technical University of Munich. URL: https:

//yap.gleirscher.de/dl/yap-0.7-manual.pdf.
Gleirscher, M., Calinescu, R., 2020. Safety controller synthesis for collab-

orative robots, in: Engineering of Complex Computer Systems (ICECCS),
25th Int. Conf., Singapore, pp. 83–92. doi:10.1109/ICECCS51672.2020.00017,
arXiv:2007.03340.

Gleirscher, M., Calinescu, R., Woodcock, J., 2021. Risk structures: A design algebra
for risk-aware machines. Formal Aspects of Computing arXiv:1904.10386.

Gleirscher, M., Foster, S., Nemouchi, Y., 2019. Evolution of formal model-based
assurance cases for autonomous robots, in: 17th Int. Conf. SEFM, Springer. pp.
87–104. doi:10.1007/978-3-030-30446-1_5.

Griffin, D., Bate, I., Davis, R.I., 2020. Generating utilization vectors for the system-
atic evaluation of schedulability tests, in: IEEE Real-Time Systems Symposium,
RTSS 2020, Houston, Texas, USA, IEEE. pp. 76–88. URL: https://www-users.cs.

york.ac.uk/~robdavis/papers/DRSRTSS2020.pdf, doi:10.1109/RTSS49844.2020.00018.
Haddadin, S., Albu-Schäffer, A., Hirzinger, G., 2009. Requirements for safe robots:

Measurements, analysis and new insights. The Int. Journal of Robotics Research
28, 1507–1527. doi:10.1177/0278364909343970.

Hayes, B., Scassellati, B., 2013. Challenges in shared-environment human-robot
collaboration, in: Collab. Manipulation Workshop at HRI, pp. 1–6.

Gleirscher et al.: Preprint submitted to Elsevier Page 19 of 20

Verified Synthesis of Safety Controllers

Heinzmann, J., Zelinsky, A., 2003. Quantitative safety guarantees for physical
human-robot interaction. The Int. Journal of Robotics Research 22, 479–504.
doi:10.1177/02783649030227004.

Helms, E., Schraft, R.D., Hagele, M., 2002. rob@work: Robot assistant in industrial
environments, in: 11th IEEE Int. Workshop on Robot and Human Interactive
Communication, pp. 399–404. doi:10.1109/roman.2002.1045655.

ISO 10218, 2011. Robots and robotic devices – Safety requirements for industrial
robots. Standard. Robotic Industries Association (RIA). URL: https://www.iso.

org/standard/51330.html.
ISO/TS 15066, 2016. Robots and robotic devices – Collaborative robots. Standard.

Robotic Industries Association (RIA). URL: https://www.iso.org/standard/62996.

html.
Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A., 2007. Guided controller

synthesis for climate controller using UPPAAL tiga, in: Raskin, J.F., Thiagarajan,
P.S. (Eds.), Formal Modeling and Analysis of Timed Systems. Springer, Berlin,
Heidelberg. volume 4763, pp. 227–240. doi:10.1007/978-3-540-75454-1_17.

Jones, R.H., 1986. A Study of Safety and Production Problems and Safety Strate-
gies Associated with Industrial Robot Systems. Ph.D. thesis. Imperial College.

Kaiser, L., Schlotzhauer, A., Brandstötter, M., 2018. Safety-related risks and op-
portunities of key design-aspects for industrial human-robot collaboration, in:
LNCS. Springer, pp. 95–104. doi:10.1007/978-3-319-99582-3_11.

Kress-Gazit, H., Lahijanian, M., Raman, V., 2018. Synthesis for Robots: Guarantees
and Feedback for Robot Behavior. Annual Review of Control, Robotics, and
Autonomous Systems 1, 211–236. URL: https://www.annualreviews.org/doi/10.

1146/annurev-control-060117-104838, doi:10.1146/annurev-control-060117-104838.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W., 2018. Digital Twin

in manufacturing: A categorical literature review and classification. IFAC 51,
1016–1022. doi:10.1016/j.ifacol.2018.08.474.

Kshirsagar, A., Kress-Gazit, H., Hoffman, G., 2019. Specifying and Synthesizing
Human-Robot Handovers, in: 2019 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, Macau, China. pp. 5930–5936. URL:
https://ieeexplore.ieee.org/document/8967709/, doi:10.1109/IROS40897.2019.8967709.

Kwiatkowska, M., Norman, G., Parker, D., 2007. Stochastic model checking, in:
Bernardo, M., Hillston, J. (Eds.), Formal Methods for the Design of Comp.,
Comm. and Soft. Sys.: Performance Evaluation (SFM). Springer. volume 4486
of LNCS, pp. 220–70. doi:10.1007/978-3-540-72522-0_6.

Kwiatkowska, M., Norman, G., Parker, D., 2011. PRISM 4.0: Verification of prob-
abilistic real-time systems, in: 23rd CAV, Springer. pp. 585–591. doi:10.1007/
978-3-642-22110-1_47.

Lahijanian, M., Andersson, S.B., Belta, C., 2012. Temporal Logic Motion Plan-
ning and Control With Probabilistic Satisfaction Guarantees. IEEE Transactions
on Robotics 28, 396–409. doi:10.1109/TRO.2011.2172150. conference Name: IEEE
Transactions on Robotics.

Leveson, N.G., 1995. Safeware: System Safety and Computers. Addison-Wesley.
Leveson, N.G., 2012. Engineering a Safer World: Systems Thinking Applied to

Safety. Engineering Systems, MIT P. doi:10.7551/mitpress/8179.001.0001.
Long, P., Chevallereau, C., Chablat, D., Girin, A., 2018. An industrial security

system for human-robot coexistence. Industrial Robot: An Int. Journal 45, 220–
226. doi:10.1108/ir-09-2017-0165.

Marvel, J.A., Falco, J., Marstio, I., 2015. Characterizing task-based human-robot
collaboration safety in manufacturing. IEEE Tran. on Systems, Man, and Cyber-
netics: Systems 45, 260–275. doi:10.1109/tsmc.2014.2337275.

Matthias, B., Kock, S., Jerregard, H., Kallman, M., Lundberg, I., 2011. Safety of
collaborative industrial robots: Certification possibilities for a collaborative as-
sembly robot concept, in: IEEE Int. Symposium on Assembly and Manufacturing
(ISAM), pp. 1–6. doi:10.1109/isam.2011.5942307.

Negri, E., Fumagalli, L., Macchi, M., 2017. A Review of the Roles of Digital Twin in
CPS-based Production Systems. Procedia Manufacturing 11, 939–948. doi:10.
1016/j.promfg.2017.07.198.

Nicolaisen, P., 1985. Occupational safety and industrial robots, in: Bonney, Yong
(Eds.), Robot Safety. IFS, pp. 33–48. doi:10.1007/978-3-662-02440-9_9.

Orlandini, A., Suriano, M., Cesta, A., Finzi, A., 2013. Controller synthesis for safety
critical planning, in: Tools with Artificial Intelligence (ICTAI), 25th Int. Conf.,
IEEE. pp. 1–8. doi:10.1109/ictai.2013.54.

Parnas, D., Madey, J., 1995. Functional documentation for computer systems.
Science of Computer Programming 25, 41–61. doi:10.1016/0167-6423(95)96871-J.

Santis, A.D., Siciliano, B., Luca, A.D., Bicchi, A., 2008. An atlas of physi-
cal human–robot interaction. Mechanism and Machine Theory 43, 253–270.
doi:10.1016/j.mechmachtheory.2007.03.003.

Stanton, N.A., 2006. Hierarchical task analysis: Developments, applications, and
extensions. Applied Ergonomics 37, 55–79. doi:10.1016/j.apergo.2005.06.003.

Sugimoto, N., 1977. Safety engineering on industrial robots and their draft stan-
dards for safety requirements, in: 7th Int. Symposium on Industrial Robots, pp.
461–470.

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F., 2018. Digital twin-driven
product design, manufacturing and service with big data. The International
Journal of Advanced Manufacturing Technology 94, 3563–3576.

Vazquez-Chanlatte, M., 2019. mvcisback/py-metric-temporal-logic: v0.1.1. URL:
https://doi.org/10.5281/zenodo.2548862, doi:10.5281/zenodo.2548862.

Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D., 2020. Safety Assessment
of Collaborative Robotics Through Automated Formal Verification. IEEE Trans-
actions on Robotics 36, 42–61. doi:10.1109/TRO.2019.2937471. conference Name:
IEEE Transactions on Robotics.

Villani, V., Pini, F., Leali, F., Secchi, C., 2018. Survey on human-robot collaboration
in industrial settings: Safety, intuitive interfaces and applications. Mechatronics

55, 248–266. doi:10.1016/j.mechatronics.2018.02.009.
Wang, X.V., Kemény, Z., Váncza, J., Wang, L., 2017. Human-robot collaborative as-

sembly in cyber-physical production: Classification framework and implemen-
tation. CIRP Annals 66, 5–8. doi:10.1016/j.cirp.2017.04.101.

Gleirscher et al.: Preprint submitted to Elsevier Page 20 of 20

