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Abstract

A system of highly entangled ring polymers embedded in a gel was studied
using Monte Carlo simulation and analytic approaches using the techniques
of statistical mechanics. The rings are assumed to be flexible, unlinked and
unknotted at synthesis. The gel confines the ring polymers to adopt “du-
plex” structures in which any mesh volume of the gel occupied by the polymer
contains both an outgoing and returning segment of the ring. These duplex
structures are further assumed to be unbranched for simplicity. The emergence
of effective “ends” on these linear duplex configurations offers the possibility
of utilising the standard tube model and reptation dynamics, developed for
linear polymers. This helps to simplify the dynamics of the rings, that can
then be treated as reptating linear chains. Inter-ring threadings have been
confirmed to exist in recent molecular dynamics (MD) simulations. These can
be incorporated in the present work by the process of one end of a duplex
chain threading through (between the two strands of) a second duplex ring.
This generates a pair of threadings, an “active” one on the threading ring and
a partner “passive” threading on the threaded ring. Threadings are included in
our Monte Carlo simulations and are shown to have very different properties.
The main advantage of this approach is that we can access a regime in which
there are many threadings per ring, a regime that remains inaccessible to brute
force MD or, indeed, any other technique. The simulation results suggests that

threadings play a vital role in reducing the ring polymer mobilities, resulting



in an increase in the stress relaxation time that is exponential in the number of
threadings per polymer. Several other novel features are identified, including a
heavy tailed distribution of stress relaxation times and a sub-diffusive plateau
in the mean squared curvilinear displacement of the polymers as a function
of time. The data presented in this thesis supports the hypothesis that the
fundamental mechanism behind the slowing down of ring dynamics is pinning
provided by passive threadings. The distribution of the active penetrations re-
veals the previously unexplored role of an entropy associated with the network
of inter-ring threadings. Some threading configurations are topologically inac-
cessible and bias the positions of the active threadings on their corresponding
chain contours, enriching them near the chain ends. We explore an analytic
approach to understand the driven diffusion of polymers relative to the active
threading sites. In one limit, where the network entropy is small, we recover
threading lifetimes consistent with Doi-Edwards theory of linear polymer. In
the limit where the network entropy plays an important role the agreement is
less good. This may indicate that mean-field approaches are fundamentally
inadequate to study this problem and motivates possible future studies, e.g.

based on retaining information at the level of distribution functions.
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Chapter 1
Introduction

Polymers are macromolecules composed of repeating subunits called
“monomers". These substances are abundant in nature and play an impor-
tant role in human society. They are found in the DNA of living cells, a very
long molecule containing genetic code, to other biological constituents, such
as proteins and carbohydrates |Lodish et al., 2008]. In fact, humans were fa-
miliar with polymeric materials a long time ago, without knowing about their
microscopic structure. Many of these were in the forms of naturally occur-
ring materials, such as cotton, silk fibres, leather and natural rubber (Hevea
brasiliensis). The development of Polymer Chemistry in the early 20th-century
improved our microscopic knowledge and triggered a huge amount of research.
Polymer Physics emerged in order to study the mechanical, statistical and
dynamical properties of polymers. Many of these are unique and cannot be
found in other materials, for example, a polymeric liquid can behave like a lig-
uid by changing its shape to fill containers, however, it still has a rubber-like
property as it performs temporary contraction after a small strain is applied.
This property is called “viscoelasticity".

Polymers can appear in various architectures, such as linear, ring and
branched, depending on the molecular arrangement |Flory, 1953, Rubinstein
and Colby, 2003, Carraher, 2017]. The simplest type is arguably the linear
chains - with monomeric units formed in a linear sequence from start to finish.
Due to this simplicity, understanding linear polymers is a sensible starting
point for those who want to study polymers. Some aspects of the physics of

other polymer architectures are mirrored in the behaviour of linear chains,
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Figure 1.1: Polymers in various architectures: (a) linear, (b) ring, (c) star, (d) H-
shaped, (e) comb and (f) random branched

which is not surprising as they are made up of linear chains joined to each
other. To investigate the statistical properties of flexible polymers, one might
start with so-called “ideal chain” conformations in which the interactions of
the polymer with itself are neglected and the solvent is correspondingly neu-
tral. Due to the lack of self-interactions the polymer configurations then adopt
the statistics of a random walk, this maximising the configurational entropy.
Models corresponding to this limit include the “freely joined chain” model in
which monomers are treated as inextensible (rods) connected by freely-jointed
connections (hinges) [Kuhn, 1934, Kuhn, 1936,[Kuhn, 1939|. A related model
is the “freely rotating chain” in which the hinges cannot bend but can freely
rotate while preserving a fixed angle between neighbouring segments. In both
cases it has been shown that the size of the polymer R, measured as the root
mean square of the end-to-end vector, written \/W depends on the degree
of polymerisation M as R ~ M'? [Volkenstein, 1958, Birshtein and Ptitsyn,
1966} [Flory, 1969 in the limit where M is very large. The exponent 1/2 is
characteristic of random walks and diffusive processes in general. The distri-
bution of the end-to-end vector in this large M limit is Gaussian. The size of
polymers is also often measured by using the radius of gyration R,, defined by
analogy with the rotational inertia of the corresponding chain configurations.
A similar scaling holds for this measure of chain size |Berne and Pecora, 2000].
The bead-and-spring model for a polymer chain has monomeric “beads” con-
nected by harmonic “springs” [Flory, 1953, Rubinstein and Colby, 2003|. In the
ideal limit this model also recovers the same exponent of 1/2.

The behaviour of real polymers can diverge from that of ideal chains
in the presence of interactions such as steric effects, van der Waals attraction

or the effect of solvents. Flory approached the problem in the presence of



good solvents for the polymer (where chain repulsion is most apparent) by
constructing a crude mean-field theory [Flory, 1949/Flory, 1953]. This balanced
two effects that control the coil size: the size of the random chain configuration,
related to the entropy of those configurations, and a repulsive excluded volume
interaction. The result suggested that the good-solvent, or excluded volume,
corresponding to the size of the linear polymer r ~ M, approaches v ~
3/5 |Flory, 1953, Bhattacharjee et al., 2013|, i.e. the polymer coil swells in
size. In spite of the crude approximations used, this value is very close to that
found in experiments [Wall et al., 1963}|Cotton, 1980, and is reasonably close
to simulation results [Domb et al., 1965|.

There are also a number of models for the dynamical properties of poly-
mers, many based on a model by Rouse [Zimm, 1956, Edwards, 1967,de Gennes,
1971}, Edwards, 1977|. Here the dynamics of the bead-spring chain in dilute
solution is approached by treating the motion of each bead as overdamped,
such as might arise from friction with a viscous solvent, but stopping short of
including a more faithful description of the system hydrodynamics, in which
the motion of one bead sets up flows that influence the motion of others.

This approach provided a prediction for the correlation time of the end-
to-end vector 7y, scaling with M as 7, oc M? |Rouse, 1953|. This finding
is only partially consistent with experiments in which the stress relaxation
time is proportional to M3 |[King et al., 1974, Nose and Chu, 1979]. A more
accurate treatment of hydrodynamic effects was later provided by the Zimm
model |Zimm, 1956|, resolving this discrepancy.

The study of polymer physics has not been limited to the case of single
(dilute) linear polymers, but has also been extended to systems containing
many chains in close proximity. The mutually entangled systems that result
include the melt (no solvent) and concentrated solutions, as well as cross-linked
states, such as the gel phase. The dynamics of these systems are all rather
different from isolated linear chains. In particular, topological constraints
arise due to the presence of inaccessible configurations. These seriously af-
fect the dynamical properties of polymers. One example of how topological
constraints can affect the dynamics of linear polymers is the case of a linear
polymer embedded in a fixed network in which it can move freely subject to the

constraint that no chain crossings are allowed, see Fig. [I.2 An extremely sim-
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Figure 1.2: A sketch showing a forbidden dynamical transition. The red polymer
cannot cut through the middle section of the blue chain and interchange the or-
der from state (a) to state (b). This is the essential nature of an “entanglement”.
Many such entanglements results in the emergence of an entanglement “tube” in
concentrated systems.

ilar situation occurs in concentrated polymer solutions, well above the overlap
concentration ¢*. In this regime the polymers are in a highly mutually en-
tangled state. The lateral motion of one polymer is therefore substantially
impeded by the presence of its neighbours, in a similar way to that which oc-
curs in the gel (although the entanglements are not strictly permanent). The
dynamics in both of these situations have been understood in terms of two
concepts: the tube model and reptation. This framework assumes that the
motion of the polymer chain is primarily directed (symmetrically) by its two
ends and occurs inside a tube-like region confined by the surrounding chains.
This model involves the concept of the primitive chain, which connects the
terminal segments of the polymer along the tube mid-line, and ignores the
precise configuration, or configurational rearrangements, occurring inside the
tube |de Gennes, 1971, Doi and Edwards, 1986}[Doi, 1996|. By solving an effec-
tive diffusion equation for the motion of the polymer along the primitive path
an understanding of the polymer dynamics can be derived. The solution to
this shows that the reptation time 7, is larger than the correlation time from
the Rouse model, roughly depending on M? rather than M?2.

A natural modification of linear polymers is to join their ends together
to form rings. This seemingly minor alteration significantly changes both the

dynamic and static properties of the polymers. Essentially, linear polymers
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Figure 1.3: Ring polymer embedded in a gel. The moose-like conformation in (a)
is formed by double folded segments of ring polymer which are confined by uncross-
able obstacles shown in dots. (b) The ring can be mapped onto a “lattice animal”
structure. The images are taken from ﬂKapnistos et al., 2008||.

protrude and retract their ends to explore their surrounding environment.
Unlike their linear counterpart, ring polymers do not contain such terminal
end segments. Rings spatially relocate themselves by generating temporary
double folded segments. An example of such a configuration is shown in Fig.
[1.3] Such conformations are sometimes called “lattice animals”, analogous to
annealed branched polymers. As well as being of interest for the profound
role that their topology has on the physical properties, ring polymers are
also ubiquitous in most prokaryotic cells, where they are found as Bacterial
plasmids, formed from rings of DNA |[Drew et al., 2004, Bates and Maxwell,|

2005], see Fig[1.4]

In the past few decades, understanding the static and dynamic proper-

ties of long, unlinked ring polymers in the concentrated regime remains per-
haps the most challenging open problem in polymer physics. As such it has

attracted significant contemporary research interest. For instance, studies on

how entangled ring polymers relax corresponding stress [Kapnistos et al., 2008|

and the static and dynamic properties of nonconcatenated ring polymers in
a melt [Halverson et al., 2011alHalverson et al., 2011b,[Rosa and Everaers,|
2014]. If rings are synthesised in a state in which they are mutually unknotted

and unlinked then they are uncrossable. These systems are difficult to analyse
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Figure 1.4: Examples of ring polymers in biological systems. Electron micrographs of
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(a) circular DNA from Escherichia alcalescens MMCA 96 (Ref. |[Christiansen et al.,|
1973|) and (b) a network of topoisomerase II-decatenated circular DNAs. The images
are taken from [Shapiro et al., 1999].

theoretically due to the essentially non-local nature of these topological con-
straints. To our knowledge no practical method to incorporate this exists, short

of exhaustive molecular dynamics simulations that are necessarily restricted in

the polymer lengths that can be explored. Simulation studies [Halverson et al.,|

2011al|Grosberg, 2014] confirm that the statistics of ring polymers in concen-

trated solutions are different from those of linear chains. Ring polymers have
a spatial size as measured by the radius of gyration R, , showing asymptotic
scaling close to R, ~ M'/3, even further from the ideal scaling of R, ~ M?/?
for linear polymers than was proposed in earlier scaling estimates
et al., 1988]. Ring polymers have many intra-chain contacts and are thought to
collapse spatially as a result of topological constraints with their neighbours.
The dynamics is also quite unusual, with evidence for the onset of a slowed
state for the longest chains that is sometimes referred to as a “topological
glass” |[Lo and Turner, 2013 Michieletto and Turner, 2016, Michieletto et al.,|
2017al|Smrek et al., 2020]. The lack of analytic theory is a major conceptual

roadblock in deeper understanding of these systems and this motivates us to
analyse a highly simplified model for the chain statistics. We adopt a model
of ring polymers in the concentrated state in which the polymers are assumed
to collapse, extending into a linear “duplex” structure, in which each outgoing

chain segment has a returning chain segment in the same tube segment, and



further assume, purely for simplicity, that this state has no branches. The
model is clearly an idealisation, although a similar collapsed state is thought
to arise when rings are embedded in a polymer gel, leading to configurations
reminiscent of a lattice animal [Rubinstein, 1986}[Kapnistos et al., 2008, Smrek
and Grosberg, 2015] with branches that arise with a rate that is controlled by
the chain stiffness and gel mesh size. It may well be that we neglect important
features of the chain configurations in the concentrated state when we adopt
this strong assumption. However, several considerable advantages follow from
it. Firstly, we adopt a set of chain configurations that have a reference state
that is naturally unlinked: one can take (any) microstate of concentrated lin-
ear polymers and swell the chains locally to a duplex structure (preserving
uncrossability) without changing the system topology. Quasi-topological in-
teractions can be supported in this system by permitting the duplex rings
to “thread” through each other. This does not change the system topology
provided no chain crossing occurs. Such threadings are thought to play a
role in the emergence of any topological glass. Networks of mutual threadings
must be (un)done in specific sequences, leading to dramatically slowed dynam-
ics [Michieletto et al., 2014, Lo and Turner, 2013|. This construction allows us
to apply the considerable technical tools developed for linear polymers to the
analysis of systems of mutually threaded ring polymers. Our model therefore
represents at least a candidate for a framework within which we might hope to
make analytic progress. We are further encouraged by the fact that polymer
physics has many success stories involving models based on extremely crude
approximations that have nonetheless proved to be highly informative.

This thesis aims to contribute to our understanding of systems of entan-
gled ring polymers in several ways. We investigate the system by conducting
extensive Monte Carlo simulations. To do so, we consider double folded, un-
branched duplex rings, such as previously studied in [Lo and Turner, 2013].
By treating rings as linear (duplex) chains, the ring architecture resembles a
linear polymer residing in a confined tube-like region formed by the entangle-
ments with surrounding polymers or any gel into which the polymers may be
embedded.

Several methods have now been developed to study the role of thread-

ings in simulations. One approach is to employ fully 3D molecular dynam-



ics (MD) simulations and employ a minimal surface, constructed on the ring

contour as a threshold for threading by other rings |[Smrek and Grosberg,|
2016,[Smrek et al., 2019]. This provides a surface through which other rings

might penetrate, then being recorded as threadings (under this definition) see

Fig[T.5l Another involves examining the effect of artificially “freezing” poly-
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Figure 1.5: Minimal surfaces of two neighbouring ring polymers. The bottom cartoon
pictures shows a ring coloured in grey and black threads into the minimal surface of
another ring painted in orange. The visible labels present the relative contour length
fraction @. The image is taken from [Smrek et al., 2019].

mers to infer the presence of threadings via the “caging” effect on the dynamics
of other chains, thereby inferred to be threaded by the frozen chain [Michieletto

land Turner, 2016]. Yet another approach is to perform molecular dynamics

of ring polymers in a gel, as shown in Fig[l.6] and to exploit a cutting-and-
pasting approach that exploits the gel architecture to construct a topological
test of threading [Michieletto et al., 2014].

In this thesis, we choose to adopt a method that incorporates inter-ring

threading within a model of linear duplex chains, in which the ring is folded
back on itself, as previously described. More detail on this mechanism will be
provided in Chapter 3 but, briefly, we make the assumption that duplex rings
can thread each other (while remaining otherwise duplex). The threading rate
is assumed to be extensive in the length of the target polymer (all segments
are equally likely to be threaded) and otherwise depends on non-universal
microscopic parameters which we do not attempt to model, rather we postulate
a rate p per end-move of a single tube segment. We only incorporate space in
the sense that each polymer moves along its own primitive path. Otherwise,

all chains are assumed to occupy the same coarse-grained volume. Alternative



Figure 1.6: Ring polymers in a gel studied by using Molecular dynamics (MD). The
image is taken from |[Michieletto et al., 2014]. The above 3D picture in (a) represents
a condensed system of 50 rings while the bottom sketch (b) shows the method of
identifying the threading by counting the possible close loops.

approaches that assign a probabilistic weight to inter-ring threadings based on
their physical locations are also possible but are not the focus of this work.
This kind of setting is comparatively efficient in terms of computational run-
time and, most importantly, can generate equilibrated systems with a large
number of threadings: microscopically faithful MD simulations are limited to
system sizes that correspond to only 1-2 threadings, insufficient to access any

kind of universal regime that may exist for large numbers of threadings per

chain [Michieletto et al., 2014]. By adopting this approach we can measure the

stress relaxation function corresponding to the threaded network. We use this
to construct a tube disengagement time and a disengagement rate, effectively
probing opposite ends of the stress relaxation function and use these to attempt

to build a better understanding of the mechanism of stress relaxation. We



can also study the rate and lifetime of threadings and the distribution of
threadings, and their ages, along the primitive path. A significant new result
in the present work is the identification of entropy associated with the network
of threadings that has not previously been studied. We believe that this plays
a central role in breaking the mean-field equivalence of the loss of stress per
tube segment and the loss of threadings per tube segment. Motivated by
this we seek to understand the system by constructing an analytic theory
that incorporates the effect of the network entropy. This involves solving a
Fokker-Planck equation for the motion of threading chains in the presence of
a potential that arises due to the entropy of the threading network.

The content of this thesis is divided into five main chapters. Chapter 2
will provide the background theories and a review of the prior studies of rings
in various conditions, mainly in gel and concentrated solution. Chapter 3 will
be focused on the Monte Carlo simulation of duplex rings. The simulation
procedure and measurement techniques are described in detail. The fourth
chapter will describe how we analyse the results of the simulation, including
the use of an analytic approach. Finally, in Chapter 5, I will draw some

conclusions and summarise the main findings from this thesis.
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Chapter 2

Static Conformation and

Dynamics of Rings

2.1 Static conformation of rings and universal

exponent

In polymer solutions the molecules begin to overlap and engage with
others for concentrations above the overlap concentration ¢* oc N'=3 where
N is the number of polymer segments. In the universal regime of large N
polymers can be in entangled states, even at very low concentrations. In what
follows we assume that our ring polymers are at concentrations well above ¢*
and are highly overlapping, with N, chains occupying the same coil volume.
MD simulations reveal that even when the exponent is close to 1/3 many chains
can occupy the same coil volume, with single-chain volume fractions as small
as ~ 1% |[Halverson et al., 2011a,Michieletto and Turner, 2016|. In linear
polymer melts it is well understood that entanglement plays no part when
N is lower than the entanglement length N, |[de Gennes, 1979,Rubinstein
and Colby, 2003|. For ring melts, a mean-field theory [Sakaue, 2012| predicts
an intermediate regime N; < N < N, with the chains approximately ideal
(exponent 1/2) for N < N; and compactified (exponent 1/3) for N 2 No.
These work suggests that N; and N, depend on the coordination number
Ng, which can be thought of as the number of neighbouring rings |Kavassalis
and Noolandi, 1987|. The simulation results found in [Vettorel et al., 2009,

11



Halverson et al., 2011b| suggest that Nr(N;) ~ 6 chains and Ng(N2) is about
15 — 17 chains. In the crossover regime the apparent exponent is around 2/5
although identifying an unambiguous scaling regime in such a small window
of N is challenging.

Microscopically faithful models of polymers can exhibit jamming. For
example, the jammed packings of freely jointed chains made up of chains of
hard spheres in contact with one another has been studied as a function of
concentration [Karayiannis et al., 2009]. These result showed that the or-
ganisation was similar to that found in packings of single (monomeric) hard
spheres. The jamming transition in macroscopic chains of granular particles
(metal spheres) has also been studied [Lopatina et al., 2011]. They found that
the jamming density decreased with chain length and was reduced in mixtures

of granular chains and rings.

2.2 Reptation dynamics in melts, concentrated

solutions and polymers embedded in gels

Polymer chains can be chemically conjugated to cross-link with one
another, forming a three-dimensional network called a polymer gel. This gel
does not dissolve in dilute solvent due to the permanent bonds connected the
polymers. The gel itself can be formed at arbitrarily low volume fraction
in a solvent, this fraction depending on the length of polymer between each
cross-link. As a result additional polymers can be introduced into the gel.
These can be linear polymers or rings - our interest lies in ring polymers
embedded in a gel. The gel has a relatively small effect if linear polymers
are embedded in it. They must live in a tube made up, at least in part, of
entanglements with the gel polymer but are otherwise free to move to adopt
any spatial configuration. However, the gel has a much more profound effect
on embedded ring polymers. This is because ring polymers synthesised as
unlinks are, and must remain, unlinked with the gel. This means that no
“open” spatial configurations are allowed that would break this topological
protection by encircling (any) covalently closed contours that can be traced
through the gel. As shown in Fig[I.3] this results in the polymer adopting a

12



“duplex” configuration in which each gel mesh volume contains two strands and
the polymer remains unlinked with the gel. Such duplex configurations are only
rigorously preserved in this ensemble (ring + gel) and while this is therefore
arguably the most relevant for our work we hope that our results may also have
some relevance for ring melts in which any parts of the duplex pair form loops
that mostly small, although large excursions do sometimes occur |[Michieletto,
2016]. Edwards originally introduced the tube model |[Edwards, 1967, Edwards,
1977|, which is the tube-like region formed by entanglements with neighbouring
polymeric strands, to describe the dynamics of polymers in rubbers. Using
a similar idea, we can schematically draw a tube-like region to include fixed
obstacles, see Fig.. This tube is formed by the surrounding polymers and /or
gel segments. De Gennes proposed the term reptation to describe the end-
directed motion of polymers in this environment [de Gennes, 1971], see Fig..

In polymer melts or concentrated solutions all polymers are moving
simultaneously. We imagine choosing one polymer arbitrarily from the system.
If we try to drag this polymer in the direction perpendicular to its contour,
we will find that this polymer meets resistance due to its entanglements with
other polymers. However, if we attempt a move along the polymer contour,
the situation will be completely different. Therefore, we picture the polymer
as moving in a confining tube made up of surrounding polymers. This is the
concept of reptation. To understand reptation dynamics one typically studies
the dynamics of a polymer in a fixed array of obstacles.

Duplex rings also undergo a form of reptation (in what follows we ne-
glect branches of the duplex chain for simplicity): They are assumed to move
by duplex-end directed curvilinear diffusion, much like linear polymers. In
what follows we neglect all relaxation mechanisms faster than reptation, fo-

cussing on long time behaviour.

Following the approach in [Doi and Edwards, 1986] we consider a linear
polymer chain consisting of N segments with bond length b. The chain is
moving in a fixed tube, formed by entanglements with its neighbours (and/or
any gel present). A primitive path connects two ends of the polymer and
represents the average contour, relevant for the dynamics of the chain on the

longest time-scales. The primitive path/chain is characterised by the length

13



(a) (b)

Figure 2.1: A linear polymer in a fixed network formed by entanglements with
surrounding polymers (a) can be represented by a chain in an entanglement tube
(b), where the dashed line represents the primitive path.

L, the diffusion constant D, and the correlation length of the primitive chain
a, of the order of the tube radius.

_NB?
N a

L (2.1)

According to the Einstein relation [Einstein, 1905|, the diffusion constant D,
can be expressed as
D.= — (2.2)

in which the friction constant is the product of a friction per segment ( and
the number of segments NN, i.e. is assumed to be extensive in the polymer
length.

Let us consider an entanglement tube segment at position s (fixed),
with the polymer diffusing within it. The stress associated with this tube
segment is lost if either end of the primitive chain passes through it. The
probability of finding this segment surviving at time t is defined as (s, t).
This is therefore the probability that neither end of the polymer chain have
reached this segment at that time. We now define W(¢, s,t) as the probability
that a primitive chain has moved a distance £ while neither end has reached

the segment of the original tube at position s, see Fig[2.3] Clearly,
vt = [ s (23)
s—L

The stress is associated with the remaining length o(t) of the origi-
nal tube. Therefore, the average length of unrelaxed tube remaining can be

estimated using

(ot)) = /0 b(s, t)ds. (2.4)

14



primitive tube

<77 primitive chain

Figure 2.2: A diagram showing a linear polymer diffusing in a network of entangle-
ments (not shown). Here the primitive tube is formed by the surrounding obstacles.
The contour shown in black that we imagine diffusing along the tube is called the
primitive chain. The motion of this chain can be parameterised by the curvilinear
coordinate s, measured along its path. If the system is perturbed, e.g. by applying
a strain, stress is associated with unrelaxed tube segments, and is therefore propor-
tional to the fraction of the original tube remaining, shown in orange. The top panel
shows the situation just after the application of a small step strain - the entire tube is
stressed. Shown in the middle panel is the result of a move a distance s to the right.
Whenever the chain moves out of the original tube segment the stress associated
with that segment relaxes. The orange section shows the original tube remaining.
The tube is lost when the chain leaves it and new, equilibrium (zero stress) tube is
created at the leading end. The bottom panel shows a later move to the left, further
reducing the stress.

As we are considering the diffusion of the primitive chain, W(&, s,t) satisfies
the one dimensional diffusion equation
ov 0*
— =D.—. 2.5
ot 0&? (25)

The primitive chain is located at £ = 0 with certainty when ¢t = 0, therefore

the initial condition is

V(¢ s,0) =4d(8). (2.6)

To relax the primitive tube segment locating at position s, either ends of the

primitive chain must reach that segment imposing the boundary conditions

U, s,t)=0 at {=s and £ =s— L. (2.7)
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Figure 2.3: Illustration to show the analytical set-up of the primitive chain diffusion.
The segment coloured in red is an original tube segment, locating at position s. The
primitive chain position is now specified by the variable £&. The stress related to that
segment relaxes when either ends of the polymer reaches it at £ = s and £ = s — L.

The solution of equation together with the preceding conditions is

T(E,s,t) = ilsm (?) sin (@) exp <—"—2t> (2.8)

TDE

where

TDE — D 5" (29)

is the Doi-Edwards time.
The probability that the primitive tube segment remains at time ¢ is

defined by

4 nms n2t
_ N ). 2.10
— nm sm( L )exp( TDE> (2.10)

Figure shows the plot between the probability ¥ (s,t) and the curvilinear
position s and suggests that the segments distributing around the middle of the
chain remain longer than those who reside at the ends of the primitive tube.
To calculate the fraction of stress remaining we define the stress relaxation
function G(t) (scaled by the initial stress so that G(0) = 1) by integrating this
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Figure 2.4: The probability ¢ (s,t) that the original tube segment at s survives to
later time: t = 755, 0.57pg, 0.17pr and 0.017,.

probability over the contour length to obtain

1 [E
G(t)=— [ (s, t)ds
L Jo
8 n’t
= —exp (——> . (2.11)
n;odd e DE

The first moment of the stress relaxation function is defined as

Td :N OOtG(t)dt

0

(2.12)
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where A is a normalising factor and can be written as

_ /OOG(t)dt
- ZW ()

n;odd

= dt
-Y [ (1)

n;odd

. Z (TDE>
n27r2 n?

n;odd
8TDE 1
>
;odd

4

8TDE7T

2 96

(2.13)

Therefore, the stress relaxation time can be written in terms of the number of

polymer segments /N such that

71.2

Td = 1_OTDE
1 ¢N3p?
= —— 2.14
w2 kyTa?’ ( )

recovering 74 ~ N®. On the other hand, the Rouse stress relaxation time is

given by
C N2 b2

32T (2.15)

TR —

clearly indicating that 7, ~ N2. Therefore, 7, is essentially bigger than 7,
in the limit of large N signifying the crucial role of entanglements in the

dynamics.
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2.3 Dynamics of ring polymers

2.3.1 Stress relaxation in entangled melts of unlinked

ring polymers

Experiments on polystyrene (PS) ring melts [Kapnistos et al., 2008] have
been carried out on samples of unlinked and highly entangled ring polymers
and show a power-law dependence of stress relaxation G(t) ~ t~'/2) rather
different from the mixed exponential decay of eq In order to try to un-
derstand these results [Milner and Newhall, 2010| proposed a model based on
ring configurations resembling a lattice animal, combined with a version of
Edwards tube model to investigate the characteristic stress relaxation func-
tion G(t). Generally, stress relaxation in entangled polymer systems can be
measured via the probability of tube segments surviving to time ¢. This can
be applied to various entangled polymers, whether linear or branched. In the
linear case, this can be understood to be a result of reptation while in the
branched case, it is determined by the retraction and extension of branches.
The model developed by [Milner and Newhall, 2010] is a system of branched
ring polymers living in a fixed network formed by background. Moreover, each
bond of the ring has its own mass and is allowed to subtract or move to it
nearby. Then, they perform Monte Carlo simulations of ring dynamics and
specify its position by considering centrality ¢ of the ring. Let us consider
the definition of centrality. From Fig[2.5] each polymer bond divides the ring
polymer into left and right parts. The right part has mass m, and the left part
has mass N —m, where N is the total mass of this animal. Then, the centrality
of a segment of the animal is defined by ¢ = Min(m, N —m). These researchers
investigated the diffusion of segments with different centralities through time
and how this relates to the relaxation time. They predict that the maximum
relaxation time obeys a power-law behaviour and, as a consequence, the vari-
ance of centrality increases in time as t3/4 which is characteristic of non-Fickian
diffusion. They conclude that their theory for stress relaxation in a melt of
unlinked polymer are in good agreement with the experimental result because
of the existence of power-law diffusion of centrality ¢ and finally claim that

the stress relaxation function corresponding to the dynamics of lattice animal
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has the form of the power law, G(t) ~ t~/2, consistent with the experimen-
tal results. It is important to realise that this study completely neglected
the possible role of inter-ring threadings, the primary motivation for the work

reported in this thesis.
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Figure 2.5: An illustration of a lattice animal formed by a ring polymer moving
among fixed obstacles, e.g. provided by a gel. Shown is the dynamic scheme in
which excursions can retract and extend elsewhere. The image is taken from [Milner
and Newhall, 2010].

2.3.2 A speculative topological glass in entangled rings

The glass transition in Physics is still not yet well understood. 25
years ago P. W. Anderson famously wrote the following about it, “The deep-
est and most interesting unsolved problem in solid state theory is probably
the theory of the nature of glass and the glass transition” [Anderson, 1995|.
In the glass transition the microscopic mobilities of liquids are exponentially
reduced as the temperature decreases towards a glass transition temperature
T,. Although their broad characteristics, such as the absence of signatures of
thermodynamic phase transitions and the lack of crystalline structures, have
long been known, there is no quantitative theory describing the microscopic
behaviour. We speculate that a similar transition may occur in ring poly-
mers, well above the classical glass transition temperature for the polymer
itself. [Lo and Turner, 2013| studied rings that are long, semi-flexible, un-
linked and unknotted with concentration well above an overlap concentration

that are embedded in gel (although some arguments may carry over to ring
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melts, as mentioned previously). Although the ring configurations correspond
to a coil that is substantially compacted, they are still mobile, and the hypoth-
esis of this work is that the significant slowing down of ring dynamics may be
associated with interpenetration between each ring.

The model investigated here is constructed by using Edward’s Tube
model for a polymer (here a duplex ring) diffusing along a tube formed by sur-
rounding polymers and/or gel segments. This is combined with de Gennes’s
idea of reptation - a kind of motion in which a polymer wriggles out of its
primitive tube to a new equilibrium region, leaving the tube segment empty
to be replaced by a new equilibrium tube at the leading end. This represents
a model that allows us to measure relaxation time or disengagement time.
For the sake of simplicity, a duplex structure is introduced by reducing the
structure of rings to one that mimics linear polymer chains. These duplex
chains are assumed to be able to open enough to be threaded or penetrated
by the end of another duplex chain. The dynamics of the system of rings
is then investigated by considering the simultaneous curvilinear diffusion of
each chain within the tube. In order to include the inter-ring threadings they
introduce the probability p that a duplex chain end threads through a neigh-
bouring duplex chain on moving a single tube diameter. This then acts as a
parameter controlling how often rings thread through each other. They nei-
ther seek to study the threading process in microscopic detail nor relate p to
such physics. The parameter p essentially ends up setting a distance between
threadings (large when p is small, smaller when p is large) and, for chains of
fixed length, it thereby controls how many threadings are present on any ring
on average, written m in what follows. They then perform collective Monte
Carlo simulations by choosing random diffusive movements for all chains and
then updating the polymers positions to either the left or the right in the
curvilinear coordinates. Each move is assumed to result in a mean-squared
curvilinear displacement of a duplex chain by one tube diameter, this being
the length scale on which all dynamics are coarse-grained. Each successful
trial move may create a new penetration, with probability p, or may be re-
jected if the trailing segment of the duplex ring is pinned by being threaded
by another ring. There are thus two kinds of threading, one that is assigned

to the chain that provides the threading (an “active” threading) and the other
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that lives on the chain that is threaded (a “passive” threading). Threadings
always exist in pairs like this and are created and annihilated together. If there
are many threadings then the system can reach a transiently jammed state,
in which the threadings must be undone in a specific order to fully relax the
stress. This can take a very long time and, as we will see, can result in stress
relaxation times that are exponential in m (and hence N) due to the increas-
ing number of penetrations in the system |Lo and Turner, 2013, Michieletto
et al., 2014, Michieletto and Turner, 2016|. In this picture m plays a stronger
role than N and it will sometimes be computationally convenient to choose
a very large value of p, so as to reach larger values of m. Ultimately their
interest is in the physics of the network of inter-ring threadings that emerges
and the distance between the threadings in terms of absolute contour length
is relatively unimportant. A glass-like transition, characterised by exponential
slowing down (in m or N, rather than T'—T,) can therefore emerge in a system
of concentrated ring polymers.

An approximate relationship between the number of penetrations and
the threading probability p can be constructed by using a mean-field approx-
imation that neglects correlations. This gives the change in number of pene-

trations as shown in the following equation

d(;vza> gp(l ~ %) (1 _ %) - <T”T> (2.16)

where m,, and m, are the numbers of passive and active penetrations per ring,
respectively |[Lo and Turner, 2013|. Globally, across the whole system the
numbers of active and passive threadings are equal and they are approximately
equal on any chain so we can set m, = m, here. m is a total number of
threading and so m = m, + m,. Let us consider the right-hand side of this
equation in detail. The term 1 — (m,)/N represents the probability that a
polymer successfully diffuses without blocking where the term 1 — (m)/N is
the probability of finding unoccupied segments. Combining these two terms
with p, one obtains the chance of introducing a new active penetration. On the
other hand, an active penetration is lost with probability (m,)/N. At steady
state, the left-hand side vanishes, and from the fact that (m,) = (m,) = (m)/2
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the solution for the average number of penetrations is

(m)  3p+1—+/p*+6p+1 (2.17)

N 2p

Another research study that focussed on the role of threading between
rings is [Michieletto et al., 2014]. In this research, large-scale three-dimensional
molecular dynamics simulations were performed to study a system of ring
polymers diffusing through a background gel which is formed by a three-
dimensional lattice. The polymers are unlinked and unknotted and are at
concentrations above the overlap concentration. A molecular dynamics engine
(LAMMPS) is employed to model the Langevin dynamics at constant temper-
ature and volume. There is a different notational convention in this work - the
number of rings is labelled by N (in our work N, is the equivalent) and the
length of each chain is defined by M (here N). All rings are moving simul-
taneously within a three-dimensional cubic lattice of total linear size L and
lattice spacing [ shown in Fig[2.6] In order to study threadings which are local
properties of rings conformation, a cubic lattice labelled by ¢ was considered.
If there is a threading of polymer ¢ by polymer j within this cell a closed-loop
i. and strands j. will be created, see Fig2.6] The liking numbers, defined as
Lo(ie, jest), is counted from the number of closed loops created from j. with

i.. Then, the local number of threadings is defined by

Le(ic, jest
Tho(i,jit) =Y M (2.18)
Je

representing a penetration of ring ¢ by ring j at time ¢. The total possible

threading can be calculated using the summation over every cubics,
- | Le(ic jes t)|
Th(i,j;t) = —_— 2.19
i) = L (219)

For a passive penetration of ring i by ring j, Th.(i, j;t) = 1 and Th.(j,4;t) = 0
while an active penetration is identified when Th.(i, j;t) = 0 and Th.(j,i;t) =
1. From the simulation, the result shows that the average number of pene-
trations per chain (th)/N extensively increase with M as shown in Figl2.7]
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Figure 2.6: (a) A snapshot of the system with NV = 50 and M = 256. (b) Procedure
to identify threadings residing in a given unit cell ¢. (¢) Mean squared curvilinear
displacement of the rings increases in time according to an approximate power law.
The presented images are taken from ref. [Michieletto et al., 2014].

[Michieletto et al., 2014]. Segmental mean squared displacements were also
measured in [Michieletto et al., 2014, as reproduced in Fig[2.6] These were

found to have a power-law character.

The system rearranges itself due to the relaxation of threading and
then freely diffuses at late enough times. To understand inter-ring threading,
a time correlation function is constructed with the claim that the existence of

penetrations influences the dynamics of the rings by pinning a chain segment.

( ) i <Z] Th(Z,], tO)Th(inj; lo + t>> (220)

P,(t) = —
ZjTh<Z?J;tO>

P
A stress relaxation associated with rings can be calculated as follows

G(t) _ <ch(i7c; tO)g(i7C; t0+t)> (221)

Zc g(Z7 G, tO)

where ¢(i, ¢; ) is equal to 1 if ring ¢ is in cell ¢ at time ¢ and vanishes otherwise.
After comparing this these two quantities, the result shows that the spatial
stress relaxes faster than the threadings. This infers that the penetrations still

exist after the time that the stress completely relaxes.
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Figure 2.7: The number of threading per chain (T'h) /N grows up with the length of
the chain M. The simulation data presented here is taken form [Michieletto et al.,
2014].

A major advance in [Michieletto et al., 2014] was the development of
a technique to use the gel architecture to construct abstract test contours
on polymer configurations that can be analysed to establish the existence of
threadings. The stress relaxation can also be qualitatively measured by observ-
ing the diffusion of the polymers through a primitive tube. The existence of the
interpenetration between polymer rings fundamentally change the stress relax-
ation process. Unfortunately, these simulations can only marginally reach the
regime in which rings are inter-threaded — the limit of computational resources
allows only 1-3 threadings per chain. As we will see below, the crossover value,
after which the network becomes fully developed, is closer to m = 10 at least in
our study of duplex rings. This provides a central motivation for the present
work. If MD simulations cannot access the most interesting regime when
m > 1, probably the only candidate for any universal regime in the problem,
then other approaches must be explored. The Monte Carlo approach outlined
in the next chapter provides a possible candidate with which we can access

this regime.
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Chapter 3

Monte Carlo Simulations of Ring

Polymers in a Gel

In this chapter, I will introduce the underlying concepts of how Monte
Carlo sampling can be applied to study the dynamics of ring polymers in a gel.
Here, before we move to the more detailed description, it is worth mentioning
that the system that we are interested in is the system of duplex ring poly-
mers. Such a conformation has been useful in preceding research [Cates and
Deutsch, 1986,/Lo and Turner, 2013, Rosa and Everaers, 2019| and also offers
us a few advantages. First of all, the duplex ring segments all resemble “linear”
polymers and therefore can be said to have “ends” in this picture. The ring
polymers can now navigate space using their terminal segments. Secondly,
in a particular situation, such as when the chain are unbranched. It can be
treated in a similar way as linear polymer and allow us to implement the tools
developed for linear polymers, as discussed in Chapter 2, to the problem of
rings. Last but not least, it provides the possibility of introducing threadings
between rings with the benefit that we can now specify precisely the position
at which the threading resides at the level of a tube segment (see Fig..
This approach has the major advantage that it is the only technique that we
are aware of that can be used to study highly interpenetrating (duplex) ring
networks. The computational limitations of more microscopically faithful sim-
ulations, e.g. Brownian dynamics, mean that the regime where the number of
threadings m > 1 is inaccessible. In the present work we are able to generate

fully equilibrated systems up to m = 20.
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Figure 3.1: (a) A test (duplex) chain, coloured in red, is shown moving in a gel (not
shown). The configurations are assumed to be unbranched for simplicity. (b) This
can be depicted as a polymer chain reptating in a tube. The tube is the effect of the
quasi-topological entanglement constraints provided by the surrounding obstacles
(not shown). The strict uncrossability constraints provided by the gel segments
confines the rings to adopt these duplex structures.

There are several ways to simulate the dynamics of ring polymer so-
lutions. The popular approach is to perform Molecular dynamics simula-
tions |[Halverson et al., 2011b, Rosa and Everaers, 2014, Michieletto et al.,
2014],Smrek and Grosberg, 2016, Michieletto, 2016l Michieletto and Turner,
2016, Michieletto et al., 2017a,Michieletto et al., 2017b|Smrek et al., 2019].
Another method, which is relatively straightforward, is to utilise Monte Carlo
simulation. It can be done by sampling ring motion. In each simulation time
step, for each ring, there is a controlled chance of introducing a new pair of
penetrations to the system, as well as of losing a pre-existed threading. We
will utilise a similar methodology as was discussed in [Lo and Turner, 2013]
by considering rings as duplex polymers shown in Fig[3.1] As can be seen
in the figure, a test ring coloured in red moves in a gel together with other
ring polymers. The gel, which we assume to be present here, is treated as
static with zero fluctuations and plays no part in the computer simulation.
However, it provides a constraint that confines the polymer motion and allows
them to move restrictedly along their own contours without cutting through

the surrounding gel meshwork. Therefore, we can picture the test polymer as
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moving inside a tube-like region (see Fig)3.1bf). The threading between rings
is simply replaced by a special (pair of) segment(s) as will be explained in the

next section.

3.1 Simulation procedures

3
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Figure 3.2: (a) A schematic diagram showing three mutually threaded ring polymers
(solid lines), residing in entanglement tubes (dashed lines) formed by surrounding
rings or gel segments (not shown). The ring polymers are shown as idealised, “du-
plex” structures in which an outgoing segment of any ring polymer always has a
returning segment as a neighbour within the same entanglement tube. Polymer 1
actively threads through the contour of polymer 2 (green circle), creating an active
threading on polymer 1 and a partner passive threading on polymer 2 at the
same site. Threadings are always created or lost in such active-passive pairs. The
nearby cartoon emphasises that this threading places no restrictions on the move-
ment of polymer 1; it remains free to slide through a loop of polymer 2. The pair
is lost if the end of the active chain, here polymer 1, ever passes beyond the tube
segment containing the site of the threading. New threadings are formed when-
ever a reptation-like end move of one tube diameter threads a neighbouring polymer
loop. Elsewhere, polymer 3 actively threads through polymer 1 (red circle) forming
a passive threading through polymer 1. (b) These threadings can be shown
as active-passive pairs with termini at the appropriate curvilinear coordinate on the
threaded chains. Our simulation does not record spatial information in the form of
panel (a), rather it merely records the curvilinear position of the polymers and the
threadings that live on them.

Our framework is limited to the problem of ring polymers that have
double folded conformations with no branches. The extension of this approach

to branched polymers is reserved for future work. The concentration of the
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polymers is assumed to be above the overlap concentration ¢*. Due to the high
concentration of the system, the rings polymers interact with each other in each
simulation time step, chosen so that they diffuse a root mean squared distance
equal to a tube diameter (entanglement length). For the purposes of our
simulation the only relevant interactions in this model are therefore provided
by the inter-ring threadings. Moreover, the temperature of the system is set
at above the glass transition temperature 7, to guarantee that the rings still
retain their motilities. Furthermore, we consider the ring polymers that are
flexible, unlinked and unknotted.

We explored this type of entangled system by performing a series of
computer simulations. Throughout the thesis, the following notation will be
used for the simulation parameters. The number of ring polymer chains in
the system is defined to N.. Each of these chains is identical and has equal
length, corresponding to N tube segments. Furthermore, in order to simplify
the complexity of the system, the rings are considered as linear duplex chains.
To understand threadings between rings, let us focus on Fig[3.2l The figure
illustrates the mutual threading between three duplex polymer rings called
Polymer 1, Polymer 2 and Polymer 3, respectively. These polymers live in
their own primitive tubes made by entanglements with the surrounding rings
and gel. If we carefully look into the entire system, we will notice that there
are two kinds of penetrations in the system. One is an “active" penetration (on
the penetrating chain). This kind of threading does not limit the moves of the
active, threading polymer. Conversely, another type of penetration can block
moves by the penetrated polymer and is only removed when its active partner is
annihilated (slides off the end of the active polymer). This is called a “passive”
penetration (on the penetrated chain). In the figure, Polymer 1 threads into
Polymer 2 and forms an active penetration on Polymer 1, and at the same
site its passive pair is created on Polymer 2. On the other hand, Polymer 1 is
threaded by Polymer 3 creating a passive penetration on Polymer 1 and also
the active partner penetration on Polymer 3. In terms of stress relaxation,
Polymer 1 cannot completely relax its corresponding stress as long as the
passive penetration on the chain still persists (remains “alive”). If there is only
a single passive penetration, then end moves in both directions can remove

all stress except that carried by the passively threaded tube segment. If there
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are multiple segments then only the tube segments outside the region between
the left-most and right-most passive threadings can relax, unless and until
these passive threadings are lost. Therefore, we form a hypothesis that the
passive penetration will play a significant role in slowing down the dynamics
of the system. A cartoon picture presenting in Figf3.2h] shows a mapping
of the entangled rings on the left panel into a curvilinear representation of
the three linear chains containing threading segments in which the curvilinear
coordinate is shown on a straight linear axis for simplicity. The red squared
blocks represent the passive penetrations while the green circles symbolise the
active penetrations. This representation underlies the computer simulation
discussed below.

We define a simulation time step ¢, as a time it takes to diffuse the

distance equal to a unit of polymer segment. Therefore,

a2

t, =
"7 9D,

(3.1)

where D, is a curvilinear diffusion constant, equivalent to the diffusion constant
appearing in the Doi-Edwards model for linear polymers reviewed in chapter 2.
In the simulation we measure all lengths in units of the tube diameter, setting

a = 1. Thus,
1

" 2D,
Time is then often shown in units of ¢/, with ¢, defined in
At some t = 0, the positions of each polymer i, i = {1,2,3,..., N.} are

th (3.2)

located at an (arbitrary) origin in their respective curvilinear coordinates. In
each simulation time step, the position of the polymer will be sequentially
updated. Let x be the curvilinear position along the polymer contour. As

discrete time progresses in t; units, the following update rule apply:

1. The direction of motion for a diffusive displacement attempt by chain ¢
is sampled by selecting either —x or +x with equal probability for each
chain. The chains then generally move in a mixture of negative and

positive x directions at each timestep.

2. If a right move is chosen, meaning the polymer attempts a move in the

positive direction, we check whether its tail (here the leftmost segment) is
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occupied by a penetration or not. If there is no threading at the tail, the
chain move is successful and the chain position is updated one unit in the
positive direction. However, if there is a penetration present in the tail
segment, we proceed to test the type of the penetration. If it is a passive
penetration the move will be rejected as this threading is blocking the
polymer movement. However, if the penetration is active the polymer
move is accepted but it will lose that threading. Thus the threading
pair is annihilated and, simultaneously, its partner passive penetration
on another chain is removed. We will apply the similar update (in the

opposite direction) if a left move was first selected.

. If the displacement attempt succeeds, there is a chance that the leading
end will have randomly threaded through other polymer during this dis-
placement. Consequently, with probability p, a new pair of penetrations
will be introduced, inserted as follows. The active penetration will be
generated at the leading (terminal) tube segment on chain i, that has
undergone this move. The passive partner penetration will be created on
a randomly chosen chain j # i. The creation of the new threading will
be rejected if the chosen segment at which it is to be injected is already

occupied by another threading.

. The polymer i update is complete. The same procedure is applied to all

polymer chains.

There are effectively no boundaries in our simulations as the polymers

curvilinear coordinates are unbounded. Our simulation therefore represents a

mean-field approach in which space is only represented through these curvi-

linear coordinates and all polymers are assumed to share the same physical

space.

3.2 Stress relaxation

According to the Doi-Edwards theory of linear polymers, the stress

relaxation function is proportional to the remaining primitive tube segment of
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Polymer motion is generated stochastically with equal probabilities.
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. . . Suppose the polymer
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the move is blocked. .
A right.
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If it is an active penetration the move 0 acti trati
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A successful attempt can generate a new pair of threading with probability p.
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An active penetration is created at the leading segment while
its partner passive penetration is inserted randomly on any other chains.

Figure 3.3: A diagram showing how the motion of ring polymers is generated during
each Monte Carlo time step. In the first stage the polymer trial move direction is
chosen to be towards positive  and negative x with equal probabilities PT = P~ =
%. Suppose a polymer is moving in the positive direction by using its leading segment.
To perform the position update, the algorithm checks at the tailing segment the three
possible conditions: (i) no penetration present at this segment, (ii) occupied by a
passive penetration and (iii) hosting an active penetration. The attempt will fail
if the segment is passively threaded and will succeed if it is occupied by an active
threading or is unoccupied. In case (ii) the active penetration will then be lost, as
well as its partner passive penetration on another chain (not shown).

length L. We recall the relationship between L and N,

W
==

L (3.3)

In the simulation we set the polymer mesh size a = 1 and the bond length
b= 1. Thus, N and L are interchangeable and the stress relaxation function
G(t) can be calculated by counting the number of unrelaxed segments. At time

t = 0, the stress relaxation function is equal to the original tube length which
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is the polymer contour length and when ¢ — oo, the function has reached
zero and all stress has been lost. However, it is computationally inefficient
to relax one single chain over the entire runtime like this. So, we define ¢
as the time that the stress relaxation function reaches zero. To give an idea
of how G(t) is measured consider the example shown in [3.4] This diagram
shows how G(t) decreases with time for a system with eight segments N = 8.
Conventionally G(t) is normalised so that G(0) = 1. Here we instead show it
in terms of unrelaxed tube segments so that, at ¢ = 0, the stress relaxation
function G(0) = 8 as no segments have yet relaxed. It is reduced by one unit
whenever an original primitive tube segment is lost. It first vanishes at t = ¢
de. G(ty) = 0 with G(t < tf) > 0. The conventional (normalised) stress
relaxation function is simply the G(t) shown here divided by N.

ty
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3.4: An example of a stress relaxation function G(t), here measured as the
number of unrelaxed tube segments, from a simulation with N = 8. According to the
tube model, the length of the primitive tube is equal to the length of the primitive
chain N. G(t) decreases one step whenever the test polymer loses the original tube
segment and disappears at ¢t = ty. In this graph ¢y = 13.

In the simulation, stress relaxation functions of each chain relaxation
processes are recorded after the system has equilibrated. The method of equi-
librating the system will be presented in the next section. We use the index j
to specify the j* relaxation event of the total number of relaxation processes
Nyelaz- Lhe i € [1, N, chains fully relaxing its stress; chains that remain par-
tially unrelaxed at the end of the simulation run are not included in the data
set since their stress relaxation functions are not complete. Also, the num-

ber of unrelaxed is comparatively small compared with the number of entirely
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relaxed events. We usually managed to collect about 10? to 10° complete re-
laxation events on each simulation run. The number of unrelaxed chains at
the end of the simulation is exactly the number of rings in the system. This is
because the program always maintains N, (unrelaxed) chains in the simulation
process and so, by construction, these will remain unrelaxed at termination.
The ;' complete stress relaxation process contributes the normalised stress
relaxation function G;(t). We define the average relaxation time of the j™
process as

[yt Gy(t)at
Jo! Gj(t)dt

with an implied index j on ¢;. This gives an ensemble average value of the

J_
Td—

(3.4)

mean chain disengagement, or stress relaxation, time as

1 Nrelax )
Ta = Z 5. (3.5)

n
relax =1

A system with a higher number of penetrations m (equivalently a large value
of p) takes a longer time to relax. For example, in the case of m =~ 20, it
typically takes 10 hours to achieve 10* complete stress relaxation processes,

although the runtime would be different on other computer architectures.

3.3 Equilibrating the system

We are interested in the equilibrium properties of these entangled ring
polymer systems. Equilibrating the system within the simulation needs care
since we do not know the statistics of an equilibrium network of threadings a
priori, and hence how to initialise the system. In this section, I will explain how
we developed a criterion to measure the equilibration time ¢.,. This is the time
taken for the system to reach equilibrium. We know that in an equilibrium
system the principle of detailed balance means that there should be no changes
in any measurable quantities (on average, in the thermodynamic limit of many
rings). We use this to establish a criterion for equilibration, assuming that the
stress relaxation time is the slowest relaxing quantity. Thus when there are

no further changes in the stress relaxation time (on average) the system is
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assumed to have fully equilibrated. We initialise the system in a state with
zero threadings because the initial condition does not affect the equilibrium
development. Furthermore, one has to be careful introducing a (network of)
threadings at random as it is possible to initialise states that are not undo-
able (violate global unlinking of the rings). We then let the system evolve
until it reaches an equilibrium. To measure this period, we carried out parallel
simulations from the no-threading initial condition and estimate the ensemble
average of 7;. When the mean stress relaxation time has reached a steady
state the system will be equilibrated. Figure shows a sketch of In 7, versus
time. To identify t.,, we first create a moveable bin at time ¢;,, as shown in
grey. The bin is moved from ¢t = 0 to the end of the run. The centre of the

bin is used to identify its time-position. In each of these locations

Tpin = (10 (74))bin (3.6)

where (... ), is the average of datapoints within this bin of relaxation times.
The bin width is defined as At and satisfies the following condition.

At
— <1, (3.7)
(1)

where (74) refers to the stress relaxation time of the simulation, averaged over

all time bins. We further choose

At 1
—_— = (3.8)
(tq) 100
For later times than each bin, as shown in Figf3.5] the corresponding
late time average of the logarithm of the stress relaxation time is calculated

T = (In (7a)) (3.9)

where (...); is the average of time bins for times later than the current bin.

The standard deviation of this over the n; late time bins, with the average x
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in each bin labelled with its index ¢, is

(3.10)

To establish equilibration of the system at time t;;,, we carry out a test
of whether we can be sure that x;, is sampled from the stress relaxation time
data with mean equal to Z and standard deviation o; at the 90% confidence
level. According to the central limit theorem, if ny;, is large enough, the
sampling distribution of x; will be approximately Gaussian. In section [3.5
we report on the distribution of 7, and show that it shares some empirical
similarity with a log-normal distribution. This gives some justification for
using a normal distribution for In 7;. However, ours remains an approximate
approach and more sophisticated alternatives that e.g. attempt to bootstrap
the distribution itself as part of the test are possible.

To be 90% sure that the value of x from the current bin is drawn
from the late time distribution, assumed to be Normal, the relevant criterion
involves the usual z = 1.645 value for a one-sided Normal distribution at this

confidence value
o}

v Mbin .

The time t;;,, at which the above condition is met is used as the equilibration

Tpin > T + 1.645 (3.11)

time. If the measured value of a3, does not meet this criterion the test for
equilibration is not met and the subsequent bin is tested. This procedure is
repeated until a bin that satisfies the convergence criterion is identi-
fied (cases in which equilibration is not reach according to this definition are
reported by the algorithm). This criterion is designed to identify an equili-
bration time from simulation runs that are long enough to provide a good
estimate of the late time (fully equilibrated) relaxation times. It can fail if the
simulation run is not long enough. The signature that a reliable estimate of
the equlibration time has been obtained is that the equilibration time is much
less than the total runtime. This condition is satisfied for data points included
in all subsequent graphs, with data points corresponding to systems that may

not have fully equilibrated being shown in red.
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Figure 3.5: Outline of the method of estimating the equilibration time in our Monte
Carlo simulations. The graph shows a sketch of the approximate relationship between
a moving average of In7; and time ¢. The criterion for equilibration is established
as follows. First, we construct a moveable bin (shaded). The bin starts at ¢ = 0
and sequentially moves to later times. We calculate the average (InTty) over the
bin, defining x;,. The late time is defined between tp;, and the ending time of the
simulation. Over this time period, we calculate the average of the logarithm of the
stress relaxation time, defining T and its standard deviation o;. To establish the time
from which the system is equilibrated we identify the bin for which xy;, is drawn
from a distribution with mean T and its standard deviation o; with 90% confidence.

This corresponds to the first bin (smallest time) for which xy;,, > T + 1.645 \/7‘227

3.4 Stress relaxation of threaded ring polymer

networks

An instantaneous picture of the threading network can be obtained
from the simulations. Figure|3.6[shows such simulation data for a system with
N, = 4 ring polymers. The threadings are represented by arrows, connecting
the partner passive and active threadings.

Figure represents the stress relaxation functions for two different
cases, zero threadings (a) and m =~ 17 threadings (b). The time measured in
the diagram is dimensionless in units of ¢,. The first subfigure shows the Doi-
Edwards equivalent case with p = m = 0 while the second subfigure displays
the p = 0.288 equivalent to m = 17 penetration. The distinctive finding here

is the time taken to entirely relax stress of the penetrated network is much
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Figure 3.6: A snapshot of a network of four ring polymers showing the threadings
between them represented as abstract arrows. The duplex rings are the solid black
lines (the rings are co-aligned in curvilinear displacement for convenience here). The
passive penetrations are represented by the red arrowheads while the green circles
represent the partner active penetrations. Here m = 6 is the average number of the
sum of both active and passive threadings per chain.

longer than the p = 0 case, signifying that the presence of threadings has

strongly affected the stress relaxation.

3.5 Glassy behaviour

In classical linear polymers the stress relaxation time scales with a power
of the length of the rings, roughly 7, ~ N®. In the simulation time units #;
scales linearly with N (because D, scales inversely with N), see eq Thus,
for linear polymers the Doi-Edwards result here corresponds to 74/t;, ~ N2
Figure[3.8| presents the stress relaxation time for several p cases. The presence
of threadings results in a stress relaxation time that increases faster than a
power law, reflecting the slowing down of the ring dynamics. To be more
precise about the trend we examined the corresponding relaxation time on a
semilogarithmic scale and compare it with an exponential increase in N, see
Fig. 3.9 The comparison underlines the fact that the relaxation time appears
to vary more strongly than with a power law in N. This reflects the slowing
down due to the emergence of threadings.

We are conscious of the fact that the mean of the stress relaxation time
is only a single parameter and the distribution of times is also potentially signif-
icant. Figures and shows histograms constructed from the individual
stress relaxation times obtained for simulation. Figure shows the case
when p = 0, equivalent to Doi-Edwards, exhibiting approximately log-normal
statistics, while Figure [3.11| shows a similar histogram for m = 20 that has

a distinct “heavy tail” at large relaxation times. It seems as though thread-
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Figure 3.7: Threading significantly slows down the stress relaxation resulting in the
longer decay time of G(t) (again shown un-normalised, as number of stressed tube
segments remaining). The graph compares between two sets of parameters. The
first case (a) is N, = 40, N = 64 and p = 0 and the second case (b) is N, = 40, N =
64, p = 0.228 equivalently to m ~ 17.

ings significantly delay the stress relaxation but also result in a heavy-tailed
distribution.

|[Lo and Turner, 2013] proposed an estimate of the mean number of
threadings per chain m using a mean-field approximation We performed
simulations to establish the relationship between p and m with a new approach
developed by us that is based on imposing detailed balance, as should apply
at equilibrium.

Let P,, be the equilibrium probability of finding a ring with m pene-
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Figure 3.8: The mean stress relaxation time 74 of the ring polymers increases with
the probability p implying the significantly slowing down of ring dynamics due to
the increase of threading. The effect is greater for longer chains (large N). Several
values of p are shown (see key). The red-dashed line, labelled DE, represents the
Doi-Edwards result for linear polymers, for which 74/t; = 0.2N2.
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Figure 3.9: The mean stress relaxation time 74 of ring polymers increases with the
threading probability p (data shown on semilogarithmic axes). The data presented
here is the same as in Fig|3.8, The trend is closer to linear at large N (a linear
relationship indicating exponential dependence). We show 74/t) ~ eN/12 a5 a dashed
black line as a guide to the eye.
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Figure 3.10: A histogram of individual stress relaxation times for the case of N, = 40,
N =64 and p = 0 (a) in linear scale and (b) logarithmic scale. The distribution
shows log-normal characteristic.

trations and k;,, be the transition rate from state with [ threadings to state

with m threadings. Hence, we can write the master equation for P,, as

dP,,

7 = km—l,um—l + km—i—l,um—l—l - km,m+1pm+1 + km,m—lpm—L (312)

The detailed balanced condition corresponds to
km—l,um—l + km—i—l,um—l—l = km,m—i—lpm—l—l + km,m—lpm—l- (313)

The argument employed in [2.16] suggests that

m—1 m—1
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Figure 3.11: A histogram of individual stress relaxation times N, = 40, N = 64
and m = 20 (a) in linear scale and (b) logarithmic scale. The distribution shows a
heavy-tailed characteristic.

and
m

km m—1=— Sxr*
m TN
From the fact that P, = (ko1/k10) P, we can show that equation can be

rewritten as

(3.15)

- Fi1
e all - =L, (3.16)
i=1 i,0—1

The average number of penetrations per segment can then be calculated using

1Y, mPy
N Zum ’

m =

(3.17)
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The result of this new approach is shown by the dashed line in Fig. [3.12) where

it is seen to be in reasonable agreement with the simulation data.
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Figure 3.12: The average number of penetrations per segment m grows with the
probability of creating a new pair of threadings per move p. A solution obtained
using detailed balance shown by the grey-dashed line slightly deviates from |Lo and
Turner, 2013| prediction shown in red at small p. The simulation results are shown
as orange squares for a case of N, = 4, N = 32 and black dots for N, =4, N = 64.

A naive assumption about stress relaxation in the system of inter-
threaded duplex rings might be that the stress relaxation dynamics may follow
a rescaled form of Doi-Edwards stress relaxation, derived for linear polymers.
This assumption could be motivated on the basis that the rings have a double-
folded duplex structure that is essentially linear and they still undergo some
form of stochastic curvilinear motion, albeit one that is slowed by the pres-
ence of threadings. Could it be that the threadings merely renormalise D.
but that otherwise the relaxation remains essentially diffusive and therefore
Doi-Edwards like? To test this hypothesis, we examined the first few moments

of the stress relaxation function, using the definition
iy
n'"moment = (/ t"G(t)dt). (3.18)
0

The result is shown in Fig. [3.13| where we calculate the moment of the threaded

system with parameters N, = 4, N = 32 and p = 0.2 (up to fifth moment)
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and compare the result with the corresponding moments for the Doi-Edwards
case of linear polymers where we artificially rescale the 1st moments to have
the same relaxation time. If the relaxation of the rings was diffusive and
Doi-Edwards like the moments would align under this rescaling. From the
comparison it is apparent that the moments of the threaded network are de-
viating from the corresponding (rescaled) Doi-Edwards moments, indicating

that the relaxation does not involve a standard diffusive process.
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Figure 3.13: Normalised moments (black) measured in ¢}** unit from the simula-

tion deviate from the prediction from the standard diffusion (red). The illustration
presents the result for a system with N, =4, N =32,p =0.2.

To further understand this we measured the mean squared displacement

of the duplex rings, defined as

Ne
(s2)(t) = Ni ; si(t)? (3.19)
where s;(t) is the curvilinear position of the centre of mass of the i-th ring
polymer at time ¢. Figure shows the relationship between the average
mean squared displacement (s?) and time. To calibrate this behaviour, we
compare this result with the well-known result due to Doi-Edwards, presented
in red, that is purely diffusive (s?) ~ t. There is clearly a substantial departure
between the motion of classical linear polymers and duplex rings. m, = m/2,

the number of passive threadings, appears on this plot (both as a label for the
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Figure 3.14: Mean squared displacement of ring polymers for the case of N, = 3
rings, each of length N = 32 with a threading-per-move probability p = 0.7 (blue
data points). The dynamics can be divided into 3 different regimes: Early diffusion
(t/th < 7p), sub diffusive “plateau” (7, < t/t;, < 74) and late diffusion (t/t;, > 74).
Shown, for comparison, is the equivalent (Doi-Edwards) dynamics for rings with no
threadings presented (p = 0), shown by the red line.

Doi-Edwards case m, = 0 and in a displacement threshold (L/m,)?, roughly
the square of the distance between passive threadings A = L/m,,. The diffusion
can be divided into different regimes. The slope of the graph represents the
exponent of the diffusion, which is approximately equal to 1 at very late times
in both cases. For rings, this regime emerges for timescales longer than the
chain stress relaxation time 7;. At early times the system does not encounter
any threadings and behaves similarly to a linear polymer. This occurs for
times t < 7\ = (L/m,)? defined here as the time to diffuse the distance
between passive threadings. This corresponds to the time when the solid red
(freely diffusing) displacement intersects with the horizontal yellow dashed
displacement. This is the time the ring takes to encounter a blocking passive
penetration. In the simulation, 7, is measured to be the lifetime of the terminal
passive penetration, defined to be the passive threading nearest the ends of
any chain. This is measured by sampling the ages of such threadings across all
chains in the system after any relaxation process terminates (roughly the stress

relaxation time). The reason that we use the terminal passive penetrations is
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because they are the threadings that actually block the ring motion. Until the
terminal passive threading is removed from the moving duplex ring it is pinned
by these threadings and is unable to relax any more stress than that associated
with tube segments close to either end, “outside” the region between these
terminal passive threadings. The stress associated with these peripheral tube
segments will relax extremely fast, as this process is governed by unimpeded
diffusion, governed by the bare Doi-Edwards curvilinear diffusion constant
D.. In the next regime (t/t, > 7,), after the polymer has diffused further
than A\ the graph gradually flattens into a sub-diffusive plateau regime that
extends at least two order of magnitude in time, extending for more highly
threaded systems. To understand this slowing-down one must appreciate that
the system follows bare diffusion for short times but begins to experience
blocking threadings that hinder its progress, becoming sub-diffusive. At very
late times t/t;, > 74 the system becomes diffusive again, albeit with a diffusion
constant that is much smaller than the bare Doi-Edwards D,. This evidences
that the time before free diffusion is robustly recovered and the associated

memory remains even longer than 7.

3.6 Lifetime of penetrations

A network of threadings exists in our system of ring polymers that con-
tains active-passive threading pairs, as shown in Fig [3.6, One question that
we might naturally ask about this threaded network is how long do these pen-
etrations last? Indeed, this is a crucial question because we are now beginning
to understand that the chain dynamics is controlled at a very deep level by
the threadings. In section we will discuss the reflexive nature of this rela-
tionship - that the threadings are merely tube segments on secondary chains
that are lost by the same stress relaxation process that applies on the primary
chain.

There are some features we might expect of the threading lifetimes
(ages). First of all, we might expect their ages to vary, depending on where
they are located on the chain. Active threadings are, by definition, created at
the ends of the duplex chain, and those near an end are likely to be quickly

annihilated, compared with those far from the ends. This means that active
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threadings near the end of the active chain that created them are likely to be
younger (and less long-lived) than those who reside closer to the centre of the
chain contour, where they are likely to be older (and live longer). The reason
is that small diffusion steps easily remove the active penetrations at the ends.
The passive threadings are created (and lost) in a completely different way.
They are introduced at random positions on some secondary chain, with the
insertion position chosen from a uniform distribution along the (all) polymer
length(s). The lifetime of these threadings might therefore be expected to be
relatively insensitive to their position on the passive partner chain that hosts
them.

A crude model to test this idea can be constructed by using a renor-
malised version of Doi-Edwards theory. We assume that rings undergo a gen-
uine diffusion process (mean squared displacement is proportional to elapsed
time) and that the role of the threadings can be captured, on average, merely
by a renormalisation of the curvilinear diffusion constant, from the “bare” value
D, to a smaller effective value D.sy. We then construct a model describing
the lifetime of an active penetration segment, see Fig. Let ¢(x,t) be the

Figure 3.15: An active chain (not shown) moves in a tube of length L (equal to N
in dimensionless units). It carries an active threading at the green tube segment (as
usual, this generates a passive threading on some secondary chain). The lifetime of
the passive threading is merely the lifetime of the tube segment that carries it.

probability of finding an active threading segment alive at position x and time

t. ¥(x,t) must satisfy the one-dimensional diffusion equation

2bwt) Pt

o Pt (3:20)

New active penetrations are inserted into a system only at the end of the
polymer chain. Because active threadings can be created at both ends of

the chain the boundary condition and initial condition for this model can be
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written as follows.

¥(0,t) = 0,¢(L,t) =0 ,and (3.21)
P(z,0) =d(r —¢)+d(x — (L —¢)) (3.22)

where € is a small distance representing the location at which the threadings
are injected (equal to one tube segment in the simulations). What we are
therefore calculating is the (transient) motion of active threadings injected at
(near) the chain ends. Given that this injection is a continuous process, and
the equation is linear, we can use a single injection like this to infer the lifetime
of a tube segment at x by calculating the probability of finding a segment alive
at position z at later time and normalising appropriately.

Using boundary condition |3.21] we obtain
Y(z,t) = ZA” sin <?>€_(T) Desst (3.23)

where D.s; and A,, are an effective diffusion constant and the Fourier coeffi-
cient of the probability density, respectively. The A,, are calculated by using

the initial condition [3.220 The solution can be written as
4 nim 2
Y(z,t) = —sin (ﬂ) sin (@>6(L) Degst, (3.24)

The lifetime of active penetration a(x) at position x can be determined using

St (s, t)dt

alz) = I W(z, t)dt

(3.25)
Using the fact that the number of active and passive penetrations are equiva-
lent, we can derive the age of passively threading p(z) (assumed independent

of position x) as
1 oo
plz)=p= —/ a(x)dx. (3.26)
L Jo

In order to compare these calculations with simulation results, the lifetime of
both active and passive penetration are measured using the following proce-

dures. When any stress relaxation event occurs, a snapshot of the system is
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taken. This includes information on the creation time (and hence ages) of
all threadings that still remain alive in the system. By averaging over these
snapshots we are able to compute an estimate of the mean age, equivalent
to lifetime, of a threading at position x along the chain. The simulation re-

sults for the corresponding ages of active a(z) and passive p(z) threadings are

reported in ¢, units (hence dimensionless). Figures [3.16] and [3.17| show the

results for a system at very small p. By choosing such extremely small values
of p we are generating systems in which the chance that any chain bears more
than one threading at any time is extremely small. The results therefore map
to the Doi-Edwards limit in which tube segments (the rare active threadings)
relax by standard reptation. We therefore expect, and confirm, agreement be-
tween the simulations and the Doi-Edwards lifetimes, as shown in red on these
figures. The fit made in the illustrations is a least squared fit of the effective
diffusion constant. The results emphasise that the active threading located
around the middle of the chain are long-lived since they are more difficult to
remove. Symmetry around the centre of the chain v — L/2 — L/2 — x is also
apparent, as expected. In the case of passive threading, the picture here is
somehow giving a new perspective. The lifetime of them are uniformly dis-
tributed along the primitive chain. The underlying reason may be the way we
generate a passively penetrating is by random sampling the position. Increas-
ing the number of threadings makes the age of penetration longer because the
blocking of passive threading makes the network of rings slower to relax its
associated stress, see Fig. and [3.19)). Thus, they live longer. Data from
Fig. [3.18 and shows hints that we are moving away from the Doi-Edwards
limit, particularly in the fact that the lifetimes are now much longer than those

when threadings are rare.

3.7 Relaxation times and rates

One of the most interesting questions to arise at this stage of our study
is how the stress relaxation time 7, is related to the average time to remove
a terminal passive threading 7,. This question, and attempts to resolve it,
motivate much of the rest of this thesis.

The following thought experiment has been very revealing, even though
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Figure 3.16: The lifetime of active penetration in the middle of the chain live longer
than those near the ends. The simulation data presented in dots is taken from the

system with N, = 40, N = 64 and p = 0.0001. The red line represent the analytical
solution from the diffusion of the active segment from equation and3.25]
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Figure 3.17: The lifetime of passive penetration is uniformly distributed along the
polymer chain. The system parameters are N, = 40, N = 64 and p = 0.0001. The
red line indicates the theoretical calculation by applying the least squared fitting of
the effective diffusion constant.

it only leads to an apparently paradoxical result. We are interested in a system
in which the rings all have a significant number of threadings. If there is a
universal regime in this problem then it is the regime where m > 1. We seek to

understand the motion of a “primary” ring polymer in this regime, e.g. how the
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Figure 3.18: The lifetime of active penetrations increases when its position is closer
to the centre of the chain, even when there are many threadings present. The system

parameters are N, = 40, N = 64 and m =~ 13. The overall relaxation times are much
longer than in Fig|3.16}
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Figure 3.19: The lifetime of passive penetration is approximately uniformly dis-
tributed along the polymer chain, even when there are many threadings present.
The system parameters are N, = 40, N = 64 and m = 13. The overall relaxation
times are much longer than in Fig [3.17]

stress associated with it relaxes. The motion of this primary polymer depends
on the removal of passive threadings, each hosted by a “secondary” chain,
where they appear as the partner active threading to the passive threading
on the primary chain. The motion of the primary chain might be through to

proceed as follows. The chain is caged (or pinned) by the terminal passive
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threadings and has only limited freedom to move until one of the terminal
passive threadings is removed. When this occurs the chain can “hop” one inter-
threading length A = L/m,, with m, = m/2. This hopping might be imagined
to be approximately diffusive, with each hop occurring after a time 7,. Such an
argument leads to the following approximation for the stress relaxation time
for the primary chain in terms of the lifetime of passive threadings on that

chain

Tq ~ (%)2%, (3.27)

involving an unknown prefactor that is of order unity.

To incorporate the case where m = 0 as a limit, equation [3.27| might be
adapted to include an additional time that corresponds to the bare curvilinear
diffusion (in the absence of threadings). This involves 79, the stress relax-
ation time of the system with zero threadings. We could therefore rewrite the

equation as

2
Tq—To o~ (%) Tp, (3.28)

noting that, for large m, the additional correction is likely negligible and
eq [3.27 remains an adequate approximation.

The next stage of the argument involves thinking more carefully about
the lifetime of the passive threadings. Each passive threading on this primary
chain lives on a tube segment on a secondary chain, where it appears as an
active threading. The lifetime of this active threading is therefore identical
to that of the passive threading, by definition. The lifetime of the passive
threading can therefore be estimated by constructing an argument for the
lifetime of this active threading. We note that the active threading is lost
whenever the tube segment that carries it is lost. This is exactly the same as
saying it is lost when the stress associated with the tube segment hosting the
active threading is lost. We now take a further step to suggest that the segment
that carries the active threading is, on average, entirely typical. This argument
means that the stress relaxation time of this segment should therefore be
similar to the stress relaxation time of the typical chain that carries it. This

statement implies that 74 is of the same order as 7,

Ta 2 Tp. (3.29)
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However, these arguments, each seemingly plausible on its own, results
in a paradox: [3.28) and [3.29] are obviously incompatible, even at this scaling
level, for large m. This obviously reveals some flaw in the argument. A
likely candidate is the breakdown of the mean-field assumption in which all
threadings, and chains, are treated as “typical” (identical).

In order to explore these results we turned to our simulations. First,
we examine the role of m on the stress relaxation time 74, as presented in Fig.
[3.20] The result shows that the stress relaxation time scales exponentially with
m, with an exponent (fitted from the data) with numerical value here of about
0.336. These results underscore the existence of this exponential scaling which
has been described as analogous to a glass transition in which the divergence
of the relaxation times is not exponential in temperature but rather in the
number of threadings (equivalently the chain length N at fixed p). This can

be thought of as some emergent slowing-down of the network of threadings.
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Figure 3.20: The stress relaxation time 73 measured in ¢ unit exponentially increases
with the number of threading m with the exponent =~ 0.336. The two highest m
values (data points shown in red) are measured from systems that may not have
fully equilibrated. We use this convention of showing datapoints from simulations
that may not have fully equilibrated in red in all subsequent figures.

Next, we extend our investigation to the terminal passive penetration
lifetimes 7,,. There are several ways this can be measured in simulation and we
focussed on two methods. All the results shown in this chapter are obtained

with the first method. In this method we measure 7,, by monitoring the events
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when a chain undergoes a stress relaxation event, i.e. the time(s) when G;(t) =
0. Whenever this occurs we sample the lifetimes (ages) of all terminal passive
threadings across the entire network and calculate the average of those values.
According to Fig. [3.21] 7, measured in this way depends on m in a similar way
as 74 but with a different exponent ~ 0.515. A comparison of the exponents in
these two cases suggest that 7, becomes asymptotically longer than 74, indeed
it is already larger for the m values we show in Figs. [3.203.21] This suggests
that there may be some inconsistency in @ The underlying reason why 7,
is larger than 7, probably lies in the way we sample 7,. In each simulation,
there is a chance that a few very long-lived threadings arise. These threadings
live for a long time and might be expected to reside deep within the network
of threadings. This means that every time we sample we can include any
very long-lived threadings, resulting in a correspondingly large value of 7,,. In
Chapter 4 we discuss a second method of measuring 7, that involves monitoring
every threading. This provides an estimate that is much shorter with, 7, < 74,
because most threadings are indeed short lived.

Figure [3.22] represents an attempt to directly investigate [3.28] It shows
the relationship between values of 7; and values of (m/2)%7, obtained for each
simulation run, performed at a different p value. While this data is inconclusive
as to the existence of an asymptotic relationship that may be linear, it clearly
shows that the slope of any linear relationship that might exist is smaller than
the expected value (of order unity) by a factor of 10® or more.

Clearly there is some deep contradiction between [3.28 and but the
underlying philosophy of relating stress relaxation to the removal of passive
threadings (and vice versa) remains attractive and it is tempting to think that
such an argument could be reconciled by somehow thinking a bit differently
about the problem. In that spirit we consider the relaxation in terms of the
rates associated with the process, rather than the times. We define the average

rate of stress relaxation over n,.., simulated stress relaxation processes as

1 Nyrelax 1
ly (3.30)

n J
relax =1 Ta
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Figure 3.21: The average time taken to remove the terminal passive threading 7,
measured in t; units, grows exponentially with the number of threading m with the
exponent ~ 0.515.
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Figure 3.22: The stress relaxation time 74 at large m varies extremely slowly with
(m/2)?7, (note the factor of 1000 difference in the scales of the axes), revealing a
contradiction in equation @

In a similar way we define

Nrelaz

Z i] (3.31)

nrela:r

where Tg is the average lifetime of the terminal passive treading of the j**
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relaxation process. Using this definition will help us to mitigate the effect

of long-lived penetrations lying in the tail of the distribution (see Fig3.11)).
We now constructing the relationship between k; and £, by recalling and

rewrite in terms of rates
1 N <m>2 1 . 1
ke N2/ k, K

where kY is the stress relaxation rate of the system without threading. We

(3.32)

compare this prediction with simulation results, as presented in Fig[3.23] From
the graph, the data converges to a linear relationship with slope of order unity,
when m > 20, confirming the relationship with y-intercept 1/kY =~ 516.
There is an initial regime 0 < m < 10 in which there is a steeper linear
relationship than for larger m, with the trend appearing to revert back towards
the fitted line for m 2 10. This suggests that the value m a 10 may represent
some sort of crossover value between the “small m” and “large m” regimes.

Equation still seems to holds if we consider the average over all
passive threadings, rather than only the terminal threadings, see Fig. [3.24]
The data for the associated times and rates are shown in table [3.1]

m T4 kq Tp ky

0 690.14+0.9 (1.976 + 0.003) x 1073 65.4+ 1.8 0.571 +0.03

4 | (1.506 £ 0.002) x 10% | (1.196 & 0.002) x 10~ | (1.604 & 0.002) x 10* | (2.57 £0.01) x 102
8 | (4.124+0.01) x 103 (7.27£0.02) x 107* | (5.313 £0.009) x 10% | (2.479 & 0.009) x 102
10| (8.2840.04) x 103 | (6.1440.02) x 10~* | (1.405 £ 0.003) x 10* | (2.477 £ 0.009) x 1072
13] (3.1240.05) x 10* | (5.69+0.04) x 10~* | (9.99 +0.02) x 10* | (2.494 +0.009) x 102
16 | (1.2540.02) x 10° | (5.374+0.02) x 10~% | (6.78 £0.02) x 10° | (2.669 & 0.009) x 102
17 ] (2.0940.04) x 10° | (5.1340.03) x 10~* | (1.061 4+ 0.003) x 10° | (2.762 4+ 0.009) x 102
20 [ (4.6+£0.2) x 10° (478 £0.04) x 107* | (4.86 £0.01) x 10° (2.98 £0.01) x 1072
23| (8.6+£0.7) x 10° (4.09 £0.06) x 107* | (1.049 £ 0.005) x 107 | (3.24 4+ 0.02) x 1072
25 | (1.9+£0.2) x 10° (3.80 £ 0.05) x 10~% | (3.1240.01) x 10" | (3.35+0.02) x 1072
28 | (3.9+£0.5) x 10° (3.25+£0.08) x 107 | (3.95+£0.03) x 107 | (3.57£0.02) x 1072
29 | (1.8+0.2) x 10° (3.11£0.07) x 107 | (3.64+£0.01) x 107 | (3.67£0.01) x 1072

Table 3.1: Comparison between the mean stress relaxation time 74, the mean of the
inverse of the stress relaxation time (rate) kg, the average time of relaxing the termi-
nal passive penetration 7, and the rate of relaxing the terminal passive penetration
k.
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Figure 3.23: The inverse of the stress relaxation rate kg is shown plotted against
(m/2)?/ky, with 1/k, the inverse of the terminal passive threading relaxation rate.
The number next to each data point is the value of m for that simulation. All
simulations involve duplex chains of length N = 64 but have a different threading
probability p, giving rise to a mean number of threadings m as shown. The dashed
line with slope 0.462 is a fit to the largest three m values that we are confident have
fully converged, i.e. m = 20,23,25. The trend is initially a rapid increase up to
a crossover around m = 10; for larger values of m the data seems to approach an
asymptotically linear regime which may signify the emergence of a universal regime
for large m in which the scaling of the stress relaxation time (inverse stress rate kq)
is ~ m? and therefore diffusion-like. The y-intercept at 1/k; = 516.239 corresponds
roughly to the inverse of the bare (Doi-Edwards) stress relaxation time when m = 0
and the threadings play no role. Crucially, the slope here is of order unity, implying
semi-quantitative equivalence between 1/k; and (m/2)?/k, at large m.

3.8 Chapter conclusion

Before moving to the next chapter, it is worth to review the information
provided in this chapter. Some of the simulation results here will pave a way
to an analysis in the next chapter. This chapter was dedicated mainly to
the Monte Carlo simulation of dynamics of ring polymer in a gel. In the
first part of the chapter I introduced the framework of our computational
research. The structure of the ring polymer, which is duplex, unbranched,
unlinked and unknotted, was carefully described, since our model relies on

this kind of structure. The model preserves the topological constraints between
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Figure 3.24: For all passive penetrations case, the relationship 1/kq ~ (m/2)?/k,
remains consistent in m > 20. The slope presented here is 0.361 and the y-intercept
happens at 1/k; = 628.528.

the engagement gel and polymers. The gel in the model has no fluctuation
and does not contribute directly to the simulation. Next, I established the
definition of threading, both active and passive penetrations and clarified the
role of them. I devoted the next part to describe the simulation procedures.
Even though the simulation is performed by Monte Carlo sampling, it requires
the proper update rules to perform the process. In this section, the role of the
terminal passive penetration became significant due to the fact that it underlies
rejection of certain polymer moves. The stress relaxation function G(t) and
average time 7; played a central role in our research since they provided the
information of the threaded rings system. Therefore, I dedicated a section to
describe in detail their measurement.

Our system must be in an equilibrium to allow us to measured the
properties mentioned above. In the simulation equilibrating the system is a
significant issue as it affects the reliability of the simulations. The section 3.3
proposed a method of measuring the equilibration time by considering (the
logarithm of) the mean stress relaxation time, as found in [3.5 The condition
[3.11] ensured that we measured the equilibration time with 90% confidence.

The most important part of this chapter is where I presented the sim-

ulation results. One finding was the topological glass-like behaviour, in which
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the dynamics of the ring polymers is slowed down by threading resulting
in the growth of the stress relaxation time with the number of segments
T4/tn ~ exp(aN). The same behaviour was found later in the case of 74
versus m. This is not surprising as m o« N with a proportionality constant
that depends on the control parameter p. Moreover, the distribution of the
mean stress relaxation time was studied and showed heavy-tailed statistics.
The penetration significantly slowed down the dynamics of rings. The result
also suggested that the motion of rings may not follow standard Fickian dif-
fusion due to the difference of the moments of the stress relaxation function
between the two cases. The mean squared displacement and time study added
further evidence for this by showing a large sub-diffusive regime (plateau). In
this region, the rings were slowed because they encountered the penetrations.

A study of the lifetime of threadings offered a new perspective regard-
ing the stress relaxation. The active penetrations that are very close to the
polymer ends are short-lived threading because they can be easily removed in
a few time steps. Unlike the ones in the middle that remains longer. This is a
stepping stone to an analysis of any thermodynamics of the threading network
that we undertake in the next chapter. Also, the study also highlighted the
role of the terminal passive penetration since it actually blocked the relaxation
event.

Finally, I investigated the relationship between time 7; and 7,. To relax
stress, the occupied passive threading needs to be successively removed. One
can proposed that 7, ~ (m/2)?7,. However, the results presented in section
revealed an inconsistency in this statement and suggested that there was
some deep problem with the arguments, perhaps related to a breakdown of
the mean-field assumptions that I used to understand the system of rings. On
the other hand, considering rates kq and k, might be a more promising way
of understanding the problem because the scaling 1/kg ~ (m/2)?/k, seems to

instead be consistent in the large m limit.
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Chapter 4

Mean-field Theory of Duplex
Rings with Threading

The simulation results presented in Chapter 3 told a story of how the
stress relaxation is slowed down by the presence of inter-ring threadings. The
study of threading lifetimes was important given that the age, and type, of
penetration is relevant to the relaxation process. The threadings that signifi-
cantly slow down the relaxation process of the ring polymers network are the
passive penetrations, especially, the “terminal” passive threadings, nearest to
the polymer ends. We are interested in the terminal passive threadings be-
cause they provide the main mechanism that delays stress relaxation — in other
words, they actually block the movement of other duplex rings, see Figld.1]

In order to relax the stress that might be associated with any polymer
tube, these terminal threadings need to be removed. To do so the system
must first remove their partner active threadings. Due to their central roles in
the dynamics, we therefore investigate the properties of the active threadings
paired with partner terminal passive threadings. We refer to these as “terminal-
associated”, rather than terminal, active threadings, to distinguish them from
active threadings located closest to the ends of the polymers on which they
live. These are unrelated.

We find that these terminal-associated threadings are not uniformly
distributed along the primitive path of the active polymer that provides them
but rather are statistically, and therefore thermodynamically, biased towards
the ends, see Fig[i.2]
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Figure 4.1: Threading networks across two rings, with passive threadings shown in
red and active in green. The lines connecting them identify pairs of threadings. (a)
The polymer at the top contains a passive threading next to each polymer end. In
order to relax the stress associated with this chain at least one of the two-terminal
passive threadings, limiting the movement of its ends, need to first be removed.
Its immediate prospects for substantial motion are therefore entirely “slave” to the
motion of the other ring. In the case of the polymer shown on the bottom there
are sequence(s) of moves that can achieve this stress relaxation: The bottom chain
can move to the left, thereby losing its rightmost active threading and annihilating
the rightmost passive-active pair. From that point additional moves allow the sys-
tem to completely relax the stress on both chains. This configuration is therefore
ergodically accessible: it can be undone and so it can be “done” (created). It is
therefore topologically accessible for two ring unknots, with which it is topologically
equivalent. (b) An example of an inaccessible arrangement of threadings, i.e. one
that has a different topology to the initial state of two unknots. Here a “corona” of
passive threadings on the outside of some part of the ring network (here the entire
ring network) screens all active partner threadings in the interior, and so this con-
figuration can never be (un)done. It cannot therefore be created. These microstates
are inaccessible, breaking ergodicity. We propose that an entropy corresponding to
limitations on accessible microstates is responsible for the emergence of an effective
free energy F'(x) experienced by active threadings discussed in the text.

We analyse the positions of the active threadings on the primitive chain
contour. While the threadings themselves are fixed in space, they move along
the primitive path as the polymer undergoes random thermal moves along its
tube. We consider only terminal-associated active threadings that connect to
terminal passive penetrations. Figld.3|reveals that these active segments reside

in a potential well roughly quadratic in nature that we approximate by
N2
F(a:'):—é<x——) , 0<z<L. (4.1)

Here, and in what follows, all energies are measured in units in which kg7 = 1.
The parameter [ is a parameter that controls the strength of the thermody-
namic potential. Such a quadratic form corresponds to an equilibrium posi-

tional distribution that is in surprisingly close agreement with the results of
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Figure 4.2: A histogram showing the equilibrium curvilinear positions of active pen-
etrations s, along the host chain that connect to terminal passive threadings at
positions s, on their partner polymers. Data acquired from Monte Carlo simula-
tions of a system of N. = 40 rings each containing N = 64 tube segments. Active
threadings are created with a fixed probability following each successful chain move,
here chosen to generate m =~ 17 threadings on each chain (including both passive
and active). The simulation results reveal a bias in both distributions towards the
end of their primitive contours. The bias in the position of the terminal passive
threadings is trivial - we sample only the passive threadings closest to the end, and
the distribution is approximately Poisson, as expected. The bias in the position
of active threadings paired with the terminal passive threadings is non-trivial and
becomes more pronounced as m increases (see below).

the kinetic Monte Carlo simulation in Fig[.3l By fitting to results like this
from simulations carried out over a range of values of m we can establish the
depth of the free-energy potential, see Fig[4.4]

We are first interested in the lifetimes of the terminal-associated active
threadings. Their mean lifetime can also be written 7, to indicate that it
is the same as the mean lifetime of a (terminal) passive threading (they are
created and removed on a one-to-one basis with each other). This is therefore
a fundamental microscopic timescale for the motion of polymers on length
scales longer than the mean distance between threadings A ~ L/m: polymers
move diffusively when (z?) < A2 according to (z?) ~ D.t involving a “bare”
Doi-Edwards curvilinear diffusion constant D.. On longer timescales polymer
motion involves random hops of mean squared distance ~ A\? on the timescale
on which terminal passive threading are lost (or added). If this motion was

purely diffusive this would obey (x?)/A\? ~ t/7,, corresponding to a diffusion
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Figure 4.3: Active threadings paired with the terminal passive threadings are biased
towards the ends of the polymer in a way that reflects an underlying entropic free
energy that is quadratic about the polymer midpoint. Shown are the distribution of
the curvilinear positions of the terminal-associated active threadings (blue points)
for parameters N, = 40, N = 64 and m ~ 17 as found by Monte Carlo simulation.
This distribution is well fitted by a Boltzmann distribution involving a repulsive,
rather than confining, quadratic potential F(x) ~ —(z — L/2)? (itself a free energy
- it is entirely entropic in origin). This potential is inferred to arise from topological
constraints associated with the network of threadings, see Fig
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Figure 4.4: Free energy difference in kg7 units, between a terminal-associated active
threading located at « ~ L/2 and z ~ 0, AF = F(L/2) — F(0). The origin of this
free energy difference is in an entropy associated with the ring network topology.
The large m scaling is linear AF/kgT = ~v(m. — m) with v ~ 1/20. The same
crossover value of m, ~ 10 as previously identified in Fig [3.23] appears here: this
characterises the crossover to the large m regime.
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constant D ~ #[P /7, and a stress relaxation time 7 ~ m?7,. However,

the loss of each passive threading occurs when the stress associated with the
tube segment that hosts its partner active threading on another chain is lost.
Assuming that this is a “typical” tube segment then it should be lost on the
(same) stress relaxation timescale and hence 7 ~ 7,. Clearly, these last two
equations for the stress relaxation time are completely inconsistent in their
scaling with m. We believe that the resolution to this apparent paradox lies in
the non-mean field distribution of active threadings along their host primitive
path and the corresponding non-diffusive nature of the underlying dynamics
of all ring polymers. There is an emergent free energy F'(x) associated with
the position of active threadings, arising from the network topology, that acts
to bias this motion by providing an advective component to the dynamics
that moves the active threadings towards their nearest ends. We believe this
non-uniformity to be behind the failure of the above mean-field argument and
understanding this is a primary motivation in what follows.

To attempt to understand better the dynamics we compute the lifetimes
of the terminal-associated active threadings. To do this we first consider the
probability, at time ¢, that such a threading resides at curvilinear position z
along the primitive path of the active chain that provides it. The generalisation
of the diffusion equation for its movement can then be written as a Fokker-

Planck equation that incorporates the free energy F(z)

2
oV _ 1a<a_qu) 43

P — - 4+ =

ot Jx?  (0x \ Ox
where W = U(z,t) is the probability of finding the active penetration at posi-
tion x at time ¢ and D is here some emergent curvlinear diffusion constant that
we later hope to estimate self-consistently. We choose initial conditions that

introduce newly born active threadings a (small) distance € from the polymer

ends and use this to compute its lifetime.

U(z,0) =6(x —€)+(x — L+e). (4.3)

Much like the classical theory of reptation, the tube segment carrying the

active threading, and therefore the threading itself, is lost when the end of the
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diffusing chain reaches its position. Equivalently, the active threading can be
seen to be diffusing along a chain contour in the frame of the polymer itself. It
is lost when it reaches either polymer end. Therefore, the absorbing boundary

conditions for this problem are
U(0,t) =¥(L,t) = 0. (4.4)

In order to more conveniently solve this problem, we extend the domain of our
problem from x € [0, L] to x € [—L, L] with ¥(z, t) extended to be odd in = and
F(z) to be even in x. This is convenient for analysis using a Fourier transform
of the diffusion equation and the method of images. We need to redefine the
initial condition to exploit the method of images to naturally satisfy
for all time.

U(x,0)==0(r—€)+d(x—L+e)—d(x+e)—d(x+L—¢). (4.5

N | —

The Fokker-Planck equation then read]

ov v B0 L
WZDw_Z%((ij?)\D) (—L <z<0) (4.6)

and ov P B L
—=D— —-=-—= ——= |V 0<z<L). 4.7
ot Ox? C@x((x 2) ) (Osesi) (4.7)
The preceding domain of the problem contains a symmetry around =z = L/2.
To satisfy that condition, the added domain must have symmetries around
x = —L/2. The characteristic of the potential with the extended domain

implies the Fourier sine series solution

U(z,t) = iwn(t) sin (?) (4.8)

IThis equation also supports equilibrium solutions ¥ =0 corresponding to a Boltzmann
distribution ¥ ~ exp[—F/kpT] with the diffusion constant D = kgT/(, as can be checked
by substitution.

65



with the time-dependent coefficient

Pn(t) = %/L U(z,t)sin (?) dzx. (4.9)

L

The symmetric properties mentioned above suggest that the case of n even

does not contribute to the solution 4.8 Therefore, we can rewrite

o0
nmx
Uz t) = (¢ (—) 410
(@)= 3 vnlt)sin (2 (4.10
n;odd
We then apply the Fourier sine transform [4.9) to the diffusion equation [4.6] and
[4.7. The Fokker-Planck equation reduces to a partial differential equation of

the coefficient 1), (t) with respect to n and time ¢ as follows

On
ot

n\ 2 L. 0y,
— D <T> Yo+ Bt (4.11)

with f* = /(. The partial differential equation can be solved analytically
for the coefficient 1,,(t) by using the method of characteristics. Choosing the

appropriate characteristic curve leads to

p(t) = Asin (ne[’:ﬂe) exp (Z;ﬂ% (1- e25*t)) (4.12)

where A is a constant. 1,,(0) can be estimated using the definition |4.9(and the
modified initial condition [4.5]

4
¥n(0) = — sin (ﬂ) . (4.13)
By substituting this condition to [4.12 we find that
4 B*t 2 2D )
Un(t) = Zsin <neL WE) exp (ZBWW (1—e* t)) , (4.14)

We recall that our motivation here was to derive an expression for the re-

laxation of the terminal-associated active threadings and we have achieved
this in equation [£.14] It represents an expression for the relaxation of these

terminal-associated active threadings through the n'® mode of the correspond-
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ing real-space relaxation function defined by equation [4.8]
Reassuringly, this has the correct (diffusive) limit as * — 0 [Doi and
Edwards, 1986|

4 nme nm\ 2
lim 5,(t) = 7 sin ("7 ) exp (= (°7) Dt ). 41
i (1) = 7 sin (7 exp( " (4.15)
The solution is somehow reminiscent of equation since the case 8* = 0
recovers the physics of a Doi-Edwards linear chain, with D.¢; the same as the

diffusion constant D here. For the sake of simplicity, we define the timescale

that appears in equations and as

L2

The time 7p is the time taken to diffuse a distance ~ L? under a purely
diffusive process with diffusion constant D.

To review: the dynamics of our system of threaded rings is controlled
by the terminal passive threadings - substantial displacement moves can only
occur when they are removed/renewed. In order to calculate the lifetime
of these terminal passive threadings we can instead examine the lifetime of
the terminal-associated active threadings, according to equation This is
because these two threadings always and identically appear in pairs and the
lifetime of one is equal to the lifetime of the other by definition. This means
that we can use equation [£.14] and equation [4.8] in order to compute the
lifetime of the terminal passive threadings.

In order to make contact with equation we can examine the cor-
responding lifetime of terminal-associated active threadings as a function of

their position along the duplex chain contour, defined according to

dta(x):/oot\lf(x,t)dt//oo U(z,t)dt (4.17)

by analogy with a(z) appearing in equation [3.25] The quantity d,(z) repre-
sents the mean lifetime of a terminal-associated active threading located at
x. As such it can be compared with the corresponding lifetime of an active
threading in the absence of any advection a(z) equation : the two results
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should converge for small 8* (or ), the parameter that controls the strength

of the advection of the terminal-associated active threadings in equation [.17]

([ and 7).

a(z)/7p

a(x)/Tp

Figure 4.5: Lifetimes of active penetrations measured in 7p unit from two different
cases: (a) the result of the Fokker /Planck equation[d.14 with the approximation that
(* small (equivalent to p = 10~%) shown in blue and (b) the standard diffusion of
the active penetration [3:24] The result from both cases are consistent under this
limit.

Equation is difficult to solve exactly. However, we can compare the
simulation result in the limit of small 5*. Figure [4.5 shows the measurement
of the lifetimes of active penetration a(x) and a.(x) are in good agreement
with each other in this limit. The lifetime in Fig. was calculated from
the active threadings that connects with the terminal passive partners and is
compared with ag,(x) from equation [4.17] Figure shows the lifetime of

all active threadings for the entire system and is compared with a(z) from
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equation [3.25]
Because direct solution of equation [£.17] is difficult we introduce an

approach based on the use of a Laplace transform defined as

e}
P (w) :/ e i, (t) dt. (4.18)
0

This can help us to reduce the complexity of the PDE by transforming it
to a first order differential equation. We further note that moments of the
relaxation function are related to the w = 0 value of the Laplace transformed
function, as usual. This provides us with a short-cut to access these moments.
By applying the transform to the differential equation [£.11], it becomes

~ nmw\?2 _ ~ O
wn—vﬂ):—«—>Dn e 4.19
n = ¥n(0) 7 ) Dint B (4.19)

Rearranging equation and introducing dimensionless variables according
to a = w/B* and b = 72D /23*L? we find that
D
on

~ (& am) = -2 (4.20)

The parameter b is an important control parameter and can be thought of as

quantifying the strength of advection compared with diffusion - the effect of
advection is weak for all modes when b > 1, becoming significant for some
large n modes when b < 1.

To compare with simulations we must account for the fact that the
advective strength, reflected in the parameter b, itself depends on the number
of threadings and should strictly be written b(m). Broadly speaking, b is
large when there are few threadings and small when there are many. This, in
turn reflects the increasing strength of the network entropy as the number of
threadings is increased, i.e. an increase in N (or p). We can use the definition
of the quadratic potential , evaluated at © = 0 and x = L/2, to relate

AF to (8 as
AF:%B. (4.21)
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This then gives a relationship for b = 72D /23*L? as a function of AF

7]_2

TN

(4.22)
We will later use this expression to empirically approximate b from the data
shown in Fig This approach will be necessary when m is small, i.e.

m < m,. For larger m values one could reasonably approximate

AF

T —vy(m —me), (4.23)

where v &~ 1/20, and hence

2 1

= ﬁm (4.24)
This expression tells us how the parameter controlling advection of the
terminal-associated active threadings depends on m in the universal regime
when there are many threadings. It is significant that b ~ 1/m for m > m..
This means that the advection strength increases without bound in the limit
of many threadings (long rings).
We can re-state equation to see that it can then be solved analyt-

ically using an integrating factor u(n)

p(n) = exp[— (alnn + bn?)). (4.25)
As usual %(,u@/;n) = _“%9 can now be integrated to find a solution to
equation [£.20]
~ Ir [™ ¥,(0 C
B = ——[ ol )dn} + 2, (4.26)
I np* It

where C' is a constant of integration that must vanish to recover physical

solutions in the large n limit. Thus,

~ 2 a—1 1-—
n(a) = 5*—726271“61’”% = I ( 5 a,bn2> , (4.27)

where I' is the incomplete gamma function.

To recap, this result corresponds to a (second) solution to the time-
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evolution of the probability density of unrelaxed terminal-associated active
threadings, complementing equation [£.14] The solution [£.27] is a description
in terms of mode numbers n, conjugate to position x on the primitive chain,
and a = w/[*, a rescaled variable conjugate to time. This result allows us to
compute the time taken to relax the terminal passive penetration paired with
this active threading, i.e. the time for the terminal-associated active threading

to be lost. We write this as 7, and define it in two ways.

1. One way, equivalent to taking the zeroth moment is

L o)
T;:// U(z,t)dtdx
o Jo
L 00

zlim/ / U(z,t)e “dtde

w—=0 fq 0

. L nmo o ot
:}Jg%;/o sm<T>dx/0 P (t)e " dt

. 2L, (w
=l > e (4.28)
where zzn(w) = fooo e~ “tdt. This measure of the passive threading lifetime is
defined as 7, to distinguish it from the second definition defined below. We
did measure a quantity that we believe to be analogous to this quantity in
simulations by measuring the average lifetime of all passive threadings, rather
than sampling these lifetimes after stress relaxation events. We believe that the
first sampling method corresponds more closely to the zeroth moment while
the second corresponds more closely to the first moment introduced below. We
further find that 7 estimated in this way from the simulations corresponds
to an extremely small lifetime 77, < 100¢), because it is dominated by the
(many) extremely short-lived active threadings, many of which don’t even live
long enough to hop past the terminal passive threading when it is lost /renewed.
Such relaxation events are not consistent with coarse-graining the dynamics on
lengthscales 2 A\, where the renormalised D is appropriate, rather they often
never encounter passive threadings beyond the terminal one that limits their
motion to the terminal regions of size x ~ A and so they move with the bare

diffusion constant D..
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2. The second method used in what follows is equivalent to taking the first

moment (divided by the zeroth moment)

- St (a, t)dtde
fo fo (x,t)dtdx
fo I3t (z, t)e “dtda
Pt fo IS Wz, t)etdtd
D nsodd fo sin(nra/L)dx [ thpe™dt
a0 D niodd fo sin(nma/L)dx [ ppe~wtdt
~ lim Zn oda(L/n) fo tappe™ " dt
0 > noaa(L/n) [i7 pemtdt

(4.29)

7, can be rewritten in terms of w

e[S S 4

n;odd n;odd

and also in terms of the newly defined variable a = w/3*
L 9, Un
a—>0[ ﬁ*naa/z n}

s 1 awn wn
_‘llli%nzo;d_ﬁ*n o HOZ (4.31)

We believe that this 7, better reflects the time it takes to relax the termi-
nal passive threadings and is approximately equivalent to the simulation TS””
which measures the average lifetime of the terminal threading sampled after
each stress relaxation processes in the simulation. This, relatively rare, sam-
pling convention corresponds more closely to the first moment and effectively
down-weights the numerous short lived active threadings. The notation 7'3””
is introduced here because I would like to distinguish between the theoretical
and simulation values.

In the next part of this thesis I will analyse our finding in two
different limits, corresponding to limits in which the advection of the terminal-

associated active threading due to the network entropy is (in)significant. The
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first limit is where the parameter b > 1, which is believed to be an asymptote
in which the active threadings move diffusively and where advection is weak,
broadly when m < m, according to Fig[4.4l The second case is where b < 1.

This is anticipated to be the advective regime and corresponds to m > m..

4.0.1 The weak-advection limit b > 1 (sparse threadings)

We first recall the solution [4.27] corresponding to the transform of the
probability distribution for terminal-associated active threadings. We take this
result and define z = (1 — a)/2, the first argument of the gamma function, for
notational simplicity to rewrite ¢, in terms of z as

~ 2me

¢n(Z) = Wn(1_2z)b_z€bn2r (Z, bn2) . (432)

In order to more conveniently take a limit of b, we define a function G =
G(z,bn?) as
G =e"'T (z, bn2)

= / et gt (4.33)
b

n2

By a change of variables to u =t — bn? we obtain
G = / (u + bn?)* e “du. (4.34)
0

The integral over u extends over two regimes in which u < bn? and u > bn?.
In order to make progress with an analytic approximation to this integral, we
divide the integral into two domains accordingly.

*

G = / (u +bn?)" e “du + / (u + bn?)* e “du (4.35)
0 u

*

where u* = bn?. We first note that the integral over u > u* becomes negligible

when bn? > 1. We then approximate the integral over u < u* by using a
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Taylor expansion as follows

_ v 2\z—1 i =1 —u
G—/O (bn*) (1+bn2) e “du

— /w(zm?)z-1 (14 (= 1)y -+ ) e (4.36)

bn?

Solving the integral term by term and truncatingﬂ gives an approximation for
G of the form

G = (bn?)*! (1 +e™ + (= 1) (1—e ™ —ue ™) +-. ) : (4.37)

bn?
To first subleading order this gives
G = (bn*)* '+ (z — 1)(bn?)*2 (4.38)

We then substitute this result back into to obtain the approximate solution

and first leading order correction, neglecting all higher order terms.

~ 2me 1 1

In order to calculate 77, we consider the summation appearing in equation @

under the limit a — 0

3= D) _ 5 D)
fy >, == 2 T

n;odd n;odd

- L2 = \n* 20

_ 2me 2 m

L2\ 8 192

e 2
= 1——]. 4.40
45*L2b ( 24b) ( )

2This truncation is possible because both (i) bn? > 1 in the limit b > 1 with n > 1,

and (ii) we are interested in the limit w — 0, hence a — 0 in which case z = 1/2 and the
expansion involves terms with increasing inverse powers of bn?.
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The definition of 7, from involves the sum calculated above. We therefore
find

. 2L 73 w2
T = — 1——
P 4p*L2D 24b

Le 2
=—(1——]). 4.41
5 (1 35) )
The preceding expression can be measured in 7p unit and can be expressed as
€ 2
=1p—|1—— 4.42
T =TnT ( 5 4b> , (4.42)

giving the behaviour of the terminal threading lifetime in the diffusive limit
where threadings are sparse and entropic advection of terminal-associated ac-
tive threadings is weak.

Next, we will estimate the time 7, using the second definition. To do
so, we start by considering the partial derivative of zﬁn with respect to a. It

can be determined using the following expression

O, Oy, Oz
da 0z da

104y,
2 02

T

Equation provides an approximation for G in the b > 1 limit. From this
we can show that

oG _ / (u +bn*)* P n(u + bn?)e “du
0z 0

* %)

= / (uw+ bn?)* P n(u + bn?)e “du + / (u + bon?)* tn(u + bn?)e “du.
0 U

*

(4.44)

The second integral over u > u* is negligible and the first integral over u < u*
can be determined using a similar approach to the one used previously. Using

a truncated Taylor expansion for the integrand, as before, the integral becomes
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3= [ (i) (1) (14 )

~ (bn?)*~! /0 " (1 4(z— 1)bi) <ln(bn2) + #) e~Udu.  (4.45)

"2

We only keep the linear approximated terms since the higher order terms

become smaller and can be ignored. The integral becomes

(?)_Cj = (bn*)*! (ln(an) + Zb;l In(bn?) + b_7112 + %) : (4.46)

Substitute this expression back to (4.43]), we obtain

Iy, e 1 2(z—1)
da  pBrL2 (n3b2 + b3ns ) (4.47)

In calculating 7,, the numerator of equation is calculated from

1 104, Te 1 1
~ e i D e = 52 > <—b2n4 - —bsnﬁ)

n;odd n;odd
2
TE o T
= 1—-—]. 4.48
2412 P ( 10b) (4.48)

Finally, we evaluate 7, according to equation by dividing the above equa-
tion for the numerator of [£.31] with the denominator {41l Thus we obtain
our second estimate (4.31)) 7, for the time taking to relax the terminal passive

penetration (equal to the time taken to relax the terminal-associated active

threading) as

1— = 7
=L -1 by [T (4.49)
12 1-2 12 1200

In the next subsection, I will perform an analysis of the lifetime of the
terminal passive threading in the other limit. This is the strongly advective

regime in which the parameter b < 1.
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4.0.2 The strong advection limit b < 1 (numerous thread-
ings)

We again seek to calculate the lifetime of the terminal passive threading
from the corresponding lifetime of the terminal-associated active threading but
now in the regime where advection of the terminal-associated active threading
due to the threading network entropy is strong. This corresponds to the case
m > m. and b < 1. As before our analysis is based on our solution for the
probability distribution for terminal-associated active threadings, through its
transformed version equation [£.27]

We consider the function G in its integral form and again divide it

into two regimes u < u* and u > u* with v* = bn? as before according to

equation to obtain

u* 0o 2\ 21
G = / (0027 (14 w/bn®) ™" e "du + / w! (1 + bi) e “du.
0 u* u
(4.50)

We now Taylor expand and truncating the integrand in each regime, as before.

After some algebra we obtain

G=u"" (1 —e v 4 Zu_* ! (1 —e (1 + u*)))
+ 0 (z,u")+u(z— 1D (z—1,u"). (4.51)
Using the fact that
u*(z — DI (2 — 1,u*) = w'T (2,u*) —ue™™. (4.52)

We rewrite the expression as

G=u"" (1 ey 2 (1—e™(1+ u*)))

*

+ (1 +u)l(z,u) + (2 — e )u*. (4.53)

u*

In order to make further progress in obtaining an approximation for
(G, and hence the probability distribution for the terminal-associated active

threadings, we examine v* and ask when it is large u* > 1 or small v* < 1.
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Recalling u* = bn? and b < 1 we see that there is a characteristic n value,
written n*, that separates these two regimes, defined according to bn** = 1.
This mode number is significant. The regime b < 1 should more properly be
defined as the regime in which some n-modes are strongly advected and others
are not. The modes n < n* arse strongly advected while higher n-modes are
weakly advected (approximately diffusive). This has a physical interpretation.
The longer wavelength, slowly relaxing modes n < n* feel the effect of the
entropy from the threading network more strongly and respond to it as a
result. The shorter wavelength, rapidly relaxing modes n > n* do not live
long enough to experience significant advection.

For the specific case of n < n*, corresponding to the strongly advected
modes, we have u* < 1. For these modes we can show that equation .53
becomes

(bn2)*  (bn2)*+'  (bn2)=+2

G=(z-1)(bn**+T(2)— . + o —2(2+2>+---. (4.54)

We thereby obtain an approximation for equation .32 in this limit

~ 2T€ (| o, _ 1 (bn?)=t1
— (1-22)1,—2 I . 2\z *
n(2) —ﬁ*LQn b (F (z) + (z 1 z) (bn)* + a1 forn < n*.
(4.55)

We now seek the corresponding expression for the diffusive modes n > n*,
corresponding to «* > 1. In this case we again expand, truncate and integrate

to show
G=u"""4(z — Du*2 (4.56)

Hence
G = (an)Z_1 + (2 — 1)(bn2)2_2. (4.57)

Reassuringly, this is exactly the same as equation This is because they
both represent the same expression in the case of diffusive modes. In the
previous section the advection of active threadings was assumed to be
sufficiently weak that all modes were diffusive while in the present section it

is only the modes n > n* that are diffusive in character. This leads to the
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approximate result

~ 2me

Yn(2) = Wn(l’zz)b’Z (bn*)* ' + (z = 1)(n*)*7?) . (4.58)
Hence 5 . )
Un(2) = BZTLZn (W + (2 — 1)W> for n>n”. (4.59)

Reassuringly, this is identical to equation [4.39|for the same reasons as described
above.

In summary, we have now calculated the transform of the probabil-
ity distribution for the terminal-associated active threadings when threadings
are numerous and (some) modes are advected by the entropy associated with
the network of threadings. The corresponding solution is the combination of
equations [£.55] and [4.59]

We are interested in the lifetime of the terminal active threading in
this regime. This is related to the lifetime of the terminal-associated active
threading, as previously described. We will examine the expressions for this
lifetime using both definitions and ([(£.31)). We focus first on definition
1, according to (4.28)).

In order to compute we need to evaluate the summation that
appears in its definition in the limit a — 0, corresponding to z — 1/2. This

summation takes the form

hm Z @/Jn = i lirq@

Z_>§n 1;0dd n= 1oddz_>7
5 2 3
DY 3 s —b2n3)
i S (0(3) 3
2me T 1 1
_ . 4.60
T nz;odd (bn2 2b2n4> (4.60)

Here we have first identified that the largest mode consistent with our coarse
graining at the scale of the threadings is the n = m mode. Modes with n > m
would correspond to diffusion on length scales less than the distance between
threadings. They would therefore proceed with the bare curvilinear diffusion

constant D,, rather than the renormalised diffusion that takes into account
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the “hopping” process corresponding to the loss/renewal of terminal passive
threadings. We further split the summation into two domains, one for n < n*
(the second line) and the other for n* < n < m (the third line). The summands
in each of these terms come from the approximations given in equations
and respectively. Thus equation @ gives us an approximation to 7.
Using integral approximations to calculate the summations and setting
the upper limit as a number of threadings m. Here, we are using the fact that

the number of penetrations limits the number of possible modes.
wn e 7 1 /1 1 1 1 1
li R~ —lnn*+-| ——— — | —= - —
ZI_IE Z n B*L2 p " * b\n* m + 6b2 \ n**  m?3

27pbe T lan 4+ 1/1 1 . 1 1 1
= —lnn*+= ——— Eay E————
w2 b b\n* m 602 \ n*3  m3

(4.61)

The above result allows us to derive an expression for [£.28] giving the first

definition of the removal time of the terminal passive threadings

75_4:)(6) (\/_\/—lnb 2+(bz——)+$(b3—$>)- (4.62)

The limit of small b implies high values of n* =1/ Vb and also a high number

of penetrations m. The leading order scaling can be shown to be

*

-
L2~ b2lnb, (4.63)
™D

or writing in terms of m,
™ 1
v 20 (4.64)
) m2

We apply the same of approach as we did in case of 7, to the case of 7, by
separating the summation into two regimes where n < n* and n* <n < m.

We then determine 7, by considering the numerator
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1 10y,  me o (0G
5*72;5171 da _5*2L2Z(bn) (02’ In(br )G)

n;odd

Te [ oG
- 7 [Z(an)’z (5 — ln(bn2)G)

+ Z (bn?) <6—G—ln(bn )G)]. (4.65)

n=n*;odd

Using the integral approximation, we can express the numerator in terms of b

as follows

1 1 9%, e 1
5 5 n e~ g [y 5 (008 Gnnr) + g (v -

273 b%€ 1 s 1
= Inb Inb — (b2 —— ]|
i [V (om0 55 (425

We only consider the dominant terms and ignore the parts involving the high

Nl

|

=
~—
|

value of m as well as small b. By combining the preceding numerator with the

denominator £.61] Finally, we achieve 7, in the form of the parameter b
Ty~ —2b(1.96 +0.51nb), (4.67)
7

or scales with the number of penetrations

T, m (4.68)

™ m
It is always a good idea to compare the analysis with the simulation
results. So far, we already acquired the expressions for the lifetime of the ter-
minal passive threading with two different definitions. The first definition is
defined using the zeroth moment [4.28 and the second definition implementing
the first-moment [£.31] It is possible to construct some numerical results re-
garding these two solutions. Moreover, as we did the analysis on the possible
asymptotic limits of the solution, which are the advective limit (small b) and
the diffusive limit (large b), we can also check the validity of our analysis. The

detailed description will be discussed in the next section.
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4.1 Comparison between the analytical result

and the simulation

The first definition of 7, is not what we measured in the present simu-
lations. Therefore, what we can do with this value is to compare its numerical
solution with the asymptotic analysis. Figure [1.6] shows the plot between the
normalised 7,7 and the parameter b. The result reveals the analytic solution of
7, converges to the numerical results in the diffusive limit. This is not surpris-
ing since in that limit the number of threading is converging to zero, leaving
the ring follows the standard reptation. It also implies the scaling 7, ~ 7p.
On the other hands, the advective region (small b) presents the lifetime of the
terminal passive penetration depending on the stress relaxation time in such

a way that 77 /7p ~ m~2 Inm.

0.001 0.010 0.100 1 10
b

Figure 4.6: Full numerical results for the dimensionless lifetime of passive threadings

7, (shown in blue) converges to two asymptotic limits: b < 1 (green dashed line)
indicating an advective regime and b > 1 (red dashed line) showing a diffusive

regime. The black-dashed line shows the crude approximation 7, ~ VbInb.

Next, we compare the second definition of 7, with the simulation result
T;im, see Fig. . This requires us to adopt some form of b(m). Because
we would also like to include the regime m < m, in our results we need a
way of estimating b(m) in this regime and we would like to avoid the overly
crude approximation AF' = 0, corresponding to b — oco. We therefore utilise

equation to directly interpolate b from the simulation results shown in
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Fig. . This has the advantage that we recover for large m but also
a smoothly increasing b for m < m, that only diverges in the limit m — 0. In
Fig. [4.7, the simulation data is presented in red with error bars and is also
normalised by the average stress relaxation time of ring polymer 7, while the
analytical result is shown on a different axis and is normalised by 7p. It is
worth to clarify here that 7, is not the same as 7p defined by equation [4.16]
From the graph, the two cases agree in the diffusive regime (7,/7p = 75" /7p).
However, decreasing of b reveals the simulation data falling much faster than
the numerical results. This gives us the idea that we might not measure the
same relaxation time. The minimum value of the threading time from the
simulation data, around b ~ 0.5, is most different to the numerical result

when normalised in this way, involving a large factor of about O(10?).

4.2 Chapter conclusion

Throughout this chapter, I provided an alternative analysis of the stress
relaxation process of the threaded ring network. In the previous chapter, we
introduced the scaling 74, ~ (m/2)?7,, which was shown to be self-contradictory
with the age of the threadings 7, >~ 74. To reconcile this, we seek to analyse
the relaxation of rings differently by considering the distribution of terminal-
associated active penetrations. The result reported in Figld.3| revealed a ther-
modynamic bias of the active threading towards the ends of the duplex ring.
The proposal in this thesis is that the active penetrations experience the repul-
sive force pushing them away from the centre and this fundamentally affects
the decay process of terminal-associated active threadings. The identification
of an entropy, arising from the network topology, is a new discovery. We believe
that it may play an important role here by providing a force that biases the
decay of the terminal-associated active threadings. The approximation that
we used for the thermodynamic potential arising from the network topology,
as used in the analysis, was chosen to have the most simple form - a harmonic
potential with symmetry around the middle of the chain. The harmonic po-
tential tends to drive the active threadings towards the ends and thus has the
opposite sign compared to what we usually think of as a harmonic (confining)

potential in Physics. The potential should really be thought of as a free energy;,
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Figure 4.7: The characteristic lifetime of the terminal passive threadings 7, is impor-
tant in setting the rate for stress relaxation and evolution of the threading network.
7p is related to b, a parameter that controls the strength of advection of terminal-
associated active threadings towards the chain end due to the effect of the threading
network entropy. When b < 1 there are many threadings and the advection is strong,
while b > 1 corresponds to the case in which there are few threadings and the motion
of the terminal-associated active threading is nearly diffusive. The solid black line
represents the approximation for the lifetime of the terminal passive threadings 7,
given by with , together with an interpolation for b from equation m
and the data shown in Fig[£.4] This time appears in units of 7p. The simulation re-
sults for the lifetime of the terminal passive threadings are shown by red data points
and are normalised by the stress relaxation time 7. Both results shows consistency
in the limit that the value of b is large as the motion is diffusive and 7p = 7.
However, the simulation result deviates from the analytic results for smaller b as the
number of penetrations increases. This may be related to the fact that 7p and 74
may represent rather different times in this regime. The blue and green dashed lines
refer to the analytic approximations in the two limits given by equations and

[.67] respectively.

since it can be traced purely to the network entropy.

The diffusion of the active penetration was studied using the Fokker-
Planck equation incorporating the free energy difference as a driving term.
This problem could be approached using the initial condition that the active
threading segment is inserted to the system at either end together with the
absorbing boundaries. The modified condition with the extended domain
reduced the problem to the partial differential equation of the time-dependent
coefficient 1,,(t). The PDE could be solved analytically using the method of
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characteristics. A Laplace transform approach allowed us to solve for the trans-
formed coefficient (w) and hence to calculate the lifetime of a terminal passive
penetration. We defined two simple definitions, e.g., the zeroth-moment
(7,) and the first-moment {4.31f (7,,). They were analysed in two asymptotes,
small b (advective) and large b (diffusive). The parameter b is related to the
strength of the potential and scales with the number of penetrations such
that b ~ 1/m. As a consequence, 7y and 7, ~ 7p in the diffusive limit. The
advective regime suggested that 7y /7p ~ m~2 Inm and 7/Tp ~m~ Inm. Ul-
timately the agreement with the simulation data had right trend but a much
stronger dependence on b than predicted by the theory. One interpretation of
this is that it further reflects the non mean-field character of the problem in
which an approach based on a Fokker-Plank equation for a (representative)
active threading is inadequate. While this is an essentially negative result it
may be significant in informing future studies. It suggests that an approach
based on retaining information at the level of, e.g. distribution functions over
the network, rather than only mean quantities may be more promising. Ulti-
mately, it may be that analytic approaches simply remain very difficult and
we need to rely primarily on simulation results, either of the sort presented
in this thesis or using full MD. The former has the approach that it is easier
to access large values of m but has drawbacks, including the use of a rather

restrictive duplex assumption.
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Chapter 5
Conclusion

Understanding the physics of highly entangled ring polymers has be-
come a primary interest of a growing number of polymer physicists. A proper
understanding of this topic remains unresolved. One of the most challenging
problems is to understand the role of threading between ring polymers, the
existence of which has only recently been unambiguously established in MD
simulations. One finding reported in this literature is that threadings slow
down the dynamics of rings. This motivated us to study a system of threading
ring polymers by re-purposing well-established conceptual tools, such as Tube
model and reptation dynamics. The main objective of this research was to
study a system of ring polymers embedded in a gel and to understand the role
of threading in controlling the dynamics of ring polymers. While the pres-
ence of a gel is required to ensure a duplex character for the rings, in which
each gel mesh volume contains both an outgoing and a returning ring polymer
segment, it may be that these results could also bring some understanding to
the canonical problem of ring melts. Our investigation involved performing
computer simulations using Monte Carlo sampling to simulate the motion of
the polymers. Inter-ring penetration, or threadings, are introduced in a simple
manner by postulating the existence of some probability to insert a new (pair
of) threading(s) after each successful microscopic move. Our study also ex-
tended to theoretical work taking inspiration from the simulations. Our goal
was to build an analytical model that helped us to understand more about the
dynamics of rings.

The new results from this work were mainly presented in chapter 3 and
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4. In chapter 3 Monte Carlo dynamics of identical ring polymers in a non-
fluctuating gel were studied using computer simulations. The framework of
this study is limited to the problem of flexible, unlinked and unknotted ring
polymers. Above all, rings are assumed to retain the duplex structure, allowing
them to explore space by a reptation-like motion, reminiscent of linear poly-
mers. The existence of terminal segments in the duplex configuration means
that the motion is end-directed and, as a result, it is only the motion of these
ends that can (sometimes) thread through the contour of another duplex chain
to create a threading. These threadings generate the only inter-ring interac-
tions in the simulations: ring polymers can now protrude into or be threaded
by other chains. We measured the variation of the stress relaxation time with
increasing polymer length and the number of threadings. The concentration
of the system was considered above the overlap concentration to ensure that
rings were in close proximity to other rings. Increasing the polymer concentra-
tion could change two of our parameters. Firstly, its reasonable to expect that
the threading probability p could depend on the local polymer concentration.
Calibrating this is beyond the scope of this work but could be achieved, e.g.
by running microscopically realistic (3D) polymer simulations, noting that the
rate depends on the local environment of a duplex end and so these simulations
could be performed at modest chain lengths. Secondly, changing the concen-
tration changes the tube diameter. Within our model this has the effect of
renormalising N, defined as the number of tube-sized segments, or “blobs” in
the chain. For ideal chains the approximate scaling is N ~ ¢?, corresponding
to blobs containing g ~ 1/c* monomers |de Gennes, 1979).

We believe that it is primarily the number of threadings that controls
the complexity of the network of inter-ring threadings, and hence the relaxation
time. In this work, we extended our simulations into an extreme regime in
which a new pair of threading is formed with probability p = 1 following
every successful microscopic chain displacement move. Although this regime
is likely unphysical, in a strict sense, what it allows us to do is reach the
largest possible number of threadings m at fixed length N. Our simulations
are then most efficiently focussed on exploring the role of threadings, rather
than expending the computing time moving longer inter-threading sections of

polymer. Our simulation results reveal that the mean stress relaxation time
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increases exponentially with polymer length 7; ~ exp (o). This is in contrast
to the more usual power-law behaviour for unthreaded polymers, here 74 ~ N?
(an additional power of N is absorbed into the microscopic “hop” time, by
which all dimensionless times are scaled). This exponential stress relaxation,
with an origin in the topology of the ring polymers, has been referred to as a
topological glass.

We also examined the statistics of the stress relaxation process and
found that it exhibits heavy-tailed statistics with a long late-time tail. These
rare, extremely slow, relaxation events are likely due to correspondingly rare
network topologies that can be undone in only a few different long and “ob-
scure” move sequences. We tested the conjecture that the dynamics of the
rings might follow the Doi-Edwards behaviour of linear polymers, but with
a renormalised (much slower) diffusion constant. This was shown not to be
the case by comparing the moments of the stress relaxation function obtained
by simulation with the Doi-Edwards theory. The slowing of ring polymers
is also reflected in the polymers mean square displacement in time, with the
emergence of a long, sub-diffusive regime for intermediate times. This finding
also underlines that the dynamics of threaded ring polymers cannot as simple
as Fickian diffusion with an effective diffusion constant. We anticipated that
the stress relaxation time 7; might depend on the time taken to relax termi-
nal passive penetrations 7, such that 74 ~ (m/2)?7,. This was shown to be
inconsistent with another seemingly natural assumption that the relaxation of
active (and hence passive) threadings and the relaxation of stress have similar
timescales. It was also shown to be inconsistent with the simulation results.
On the other hand, an equivalent scaling argument based on the rates rather
than the times of these relaxation processes is compatible with the simulations.
Here the relationship 1/k; ~ (m/2)?/k, was preserved, even in the limit of a
large number of threadings. This indicates that some simple understanding
may be associated with these rates.

In chapter 4 we studied the statistics of the threadings and worked to
construct a better analytical understanding of the dynamics controlling the
lifetime of threadings. We confirmed that active threadings residing near the
ends of the active polymer that carries them are shorter-lived in contrast to the

ones located near the middle of the chain. Our study of threading lifetimes was
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motivated by the significance of terminal passive penetrations, since they are
the mechanism that blocks the motion of double-folded rings. Significantly, we
discovered a non-uniform distribution of terminal-associated active threadings
- the partners to the terminal passive threadings on another chain. A naive
view of active threadings is that they should be uniformly distributed (if rare,
and hence non-interacting) because they are injected at, and removed from,
the chain ends. Like any (featureless) equilibrium system with this character
they might be expected to adopt a uniform distribution, e.g. a tube of water
open to a reservoir of dye at each end or a conducting rod with its ends at con-
stant temperature: at equilibrium the distribution of dye, or heat, will become
uniform. The breakdown of uniformity in the distribution of active threadings
therefore has thermodynamic significance. We associate this with an entropy
associated with the (accessible) configurations of the threading network: There
are more topologically accessible threading networks with terminal-associated
active threadings near the chain ends than the middle, a somewhat non-trivial
result. One can relate a potential, or free energy, with this non-uniform dis-
tribution. This drives terminal-associated active threadings to the chain ends.
We find evidence that the free energy difference between such a threading at
the end and near the middle increases linearly with m. While the regime of
m accessible to us was limited, resulting in a free energy difference of order
kT, the linear scaling of free energy with the number of penetrations suggests
that for longer rings with more threadings this energy could become arbitrarily
large. Even k,T is enough to quantitatively bias the distribution. The diffu-
sion of the terminal-associated active penetration (actually the chain moves,
the tube segment associated with the threading remains stationary) was stud-
ied using a Fokker-Planck equation with appropriate (absorbing) boundaries.
The potential arising from the network entropy was chosen to be harmonic,
with symmetry around the middle of the chain. This gave a good fit to the
distribution of positions of terminal-associated active threadings. This allowed
us to calculate the time 7, which is the lifetime of the terminal passive thread-
ings and an (unknown) renormalised diffusion constant. In the analysis, we
defined this relaxation time in two ways, first as the zeroth and then the first
moment of the relaxation function. These were analysed in two asymptotic

limits. The first of these is a “diffusive” regime, in which the entropy difference
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of the network is negligible, and the dynamics of the duplex rings reduces to
Doi-Edward curvilinear diffusion, as for linear polymers (unthreaded duplex
rings can be treated as linear polymers). The other asymptote is the “ad-
vective” regime in which the force due to the network entropy becomes large
enough to dominate diffusion. Here the simulation results are rather different
from the numerical calculation. In the simulation, we measured the lifetime of
the terminal passive penetration at the end of any relaxation processes. The
discrepancy may signify that any attempt at a mean-field analysis may fail,
signifying that the system is inherently non mean-field (the use of a Fokker
Plank equation represents a mean field approach). In spite of the fact that
this might be viewed as a negative result it may prove extremely useful in
informing the construction of future theories. These may have to be based on
a full distribution function, rather than average quantities alone.

The simulation model implemented in our research is promising for the
study of the dynamics of ring polymers in a gel due to the ability to access
the highly threaded regime. This will remain inaccessible to brute-force MD
approaches for the foreseeable future and so any progress relies on the develop-
ment of simplified models, such as the Monte Carlo approach employed here.
A possible extension of our work would be to integrate its results into a more
traditional MD simulation. Our simulations are very efficient at creating equi-
librated networks of threadings that are far larger than can be accessed using
existing MD simulations, indeed this is the main advantage of our approach.
It may then be possible to transplant the duplex networks that we can gener-
ate into MD simulations. This would be in the spirit of an initial condition -
the MD simulations would be initialised to resemble a network of duplex rings
with the specified threading network. This approach would allow us to inves-
tigate the properties of such equilibrated networks on shorter timescales but
using more microscopically faithful techniques and may be advantageous, both
for efficiently pre-equilibrating MD simulations but also verifying the results
of our work, e.g. in the way the network changes. Other possible extensions
include introducing gel imperfections, such as dangling ends, that would be
present in any real gel and potentially protrude through the ring polymers,
generating passive gel-ring threadings. Another possible extension would be

to include the possibility of self-threaded rings. However, the most pressing
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extension would be to understand a system of double-folded ring polymers
that are permitted to extend branches, forming lattice animals. It would be
fascinating to study the effect of this on threading and stress lifetimes, and

dynamics in general.
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