
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/153753                                                                               
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/429951797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/153753
mailto:wrap@warwick.ac.uk


Improved Deterministic (Δ + 1)-Coloring in Low-Space MPC
Artur Czumaj

University of Warwick

Coventry, United Kingdom

A.Czumaj@warwick.ac.uk

Peter Davies

IST Austria

Klosterneuburg, Austria

Peter.Davies@ist.ac.at

Merav Parter

Weizmann Institute of Science

Rehovot, Israel

Merav.Parter@weizmann.ac.il

ABSTRACT

We present a deterministic 𝑂 (log log log𝑛)-round low-space Mas-

sively Parallel Computation (MPC) algorithm for the classical prob-

lem of (Δ + 1)-coloring on 𝑛-vertex graphs. In this model, every

machine has sublinear local space of size 𝑛𝜙 for any arbitrary con-

stant 𝜙 ∈ (0, 1). Our algorithm works under the relaxed setting

where each machine is allowed to perform exponential local compu-

tations, while respecting the 𝑛𝜙 space and bandwidth limitations.

Our key technical contribution is a novel derandomization of

the ingenious (Δ + 1)-coloring local algorithm by Chang-Li-Pettie

(STOC 2018, SIAM J. Comput. 2020). The Chang-Li-Pettie algorithm

runs in 𝑇𝑙𝑜𝑐𝑎𝑙 = 𝑝𝑜𝑙𝑦 (log log𝑛) rounds, which sets the state-of-

the-art randomized round complexity for the problem in the local

model. Our derandomization employs a combination of tools, no-

tably pseudorandom generators (PRG) and bounded-independence

hash functions.

The achieved round complexity of𝑂 (log log log𝑛) roundsmatches

the bound of log(𝑇𝑙𝑜𝑐𝑎𝑙 ), which currently serves an upper bound

barrier for all known randomized algorithms for locally-checkable

problems in this model. Furthermore, no deterministic sublogarith-

mic low-space MPC algorithms for the (Δ + 1)-coloring problem

have been known before.

CCS CONCEPTS

•Computingmethodologies→Distributed algorithms; •Math-

ematics of computing→Graph algorithms; •Theory of com-

putation → Pseudorandomness and derandomization.

KEYWORDS

Massively Parallel Computation; Coloring; Derandomization

ACM Reference Format:

Artur Czumaj, Peter Davies, and Merav Parter. 2021. Improved Determin-

istic (Δ + 1)-Coloring in Low-SpaceMPC. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing (PODC ’21), July 26–
30, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3465084.3467937

Due to space constraints, some proofs and results are deferred to

the full version of this paper, available on the authors’ web pages,

e.g., at https://www.dcs.warwick.ac.uk/~czumaj/Publications.html.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’21, July 26–30, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8548-0/21/07. . . $15.00

https://doi.org/10.1145/3465084.3467937

ACKNOWLEDGMENTS

This work is partially supported by a Weizmann-UK Making Con-

nections Grant, the Centre for Discrete Mathematics and its Appli-

cations (DIMAP), IBM Faculty Award, EPSRC award EP/V01305X/1,

European Research Council (ERC) Grant No. 949083, the Minerva

foundation with funding from the Federal German Ministry for

Education and Research No. 713238, and the European Union’s

Horizon 2020 programme under the Marie Skłodowska-Curie grant

agreement No 754411.

1 INTRODUCTION

In this paper, we study the deterministic complexity of the (Δ + 1)
(list) coloring problem in the low-spaceMPC setting. TheMassively
Parallel Computation (MPC) model, introduced by Karloff, Suri

and Vassilvitskii [27], is a nowadays standard theoretical model

for parallel algorithms. This model shares many similarities to

earlier models of parallel computation (e.g., PRAM), and is also

closely related to various distributed models, such as the LOCAL
and the CONGESTED CLIQUE models. We focus on the low-space
MPC regime in which machines have space 𝑛𝜙 for some constant

𝜙 ∈ (0, 1), where 𝑛 is the number of nodes in the graph. This

model has attracted a lot of attention recently [3, 5, 11, 13, 14, 17–

19, 21, 23, 24, 28], especially in the context of local graph problems.

Recent works have provided many randomized algorithms with sub-

logarithmic round complexities, for fundamental graph problems

such as maximal matching, maximal independent set and (Δ +
1) coloring. However, much less is known on the corresponding

deterministic complexity of these problems. In particular, to this

date no sublogarithmic deterministic algorithm is known, in the

low-spaceMPCmodel, for any of the canonical symmetry breaking

problems.

We study deterministic low-spaceMPC algorithms for the (Δ+1)
(list) coloring problem, which is arguably among the most funda-

mental graph problems in parallel and distributed computing with

numerous implications. In this problem, we are given an input

graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ, for which every vertex

has a palette (list) of Δ + 1 colors. The goal is to compute a legal

vertex coloring, namely, where no two neighbors have the same

color, in which each node is assigned a color from its own palette.

A sequence of recent exciting breakthrough results have led to a

dramatic improvement in the randomized and the deterministic

complexity of the problem, in the classical distributed models, as

we highlight next.

(Δ+1) Coloring in the LOCALModel: The LOCALmodel has been

introduced by Linial [30] with the purpose of developing symmetry

breaking methodologies in decentralized networks. In this model,

each node in the communication graph is occupied by a proces-

sor. The processors communicate in synchronous message passing

https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1145/3465084.3467937
https://www.dcs.warwick.ac.uk/~czumaj/Publications.html
https://doi.org/10.1145/3465084.3467937


rounds where per round each processor can send one message to

each of its neighbors in the network. Since its introduction, the

model has focused on four canonical problems and their variants:

maximal independent sets, (Δ + 1) coloring, and their edge analogs,
namely, maximal matching and edge coloring. As this model ab-

stracts away congestion issues, it provides the most convenient

platform for studying the locality aspects of symmetry breaking.

The study of the (Δ + 1) coloring problem in this model has

quite a long history with several important milestones. We first

focus on randomized algorithms, and then address the deterministic

aspects of the problem. Logarithmic solutions for (Δ + 1) coloring
are known since the 80’s, e.g., by the classical Luby-MIS algorithm

[33]. Barenboim et al. [4] presented the shattering technique, which

in the context of coloring, reduces the problem, within 𝑂 (logΔ)
randomized rounds, into independent subproblems of poly log𝑛

size, which can be then solved deterministically. Harris, Schnei-

der and Su [26] presented a new graph decomposition technique

that provided the first sublogarithmic solution for the problem. Fi-

nally, in a subsequent remarkable breakthrough result, Chang, Li

and Pettie (CLP) [10, 12] presented an 𝑂 (𝐷𝑒𝑡𝑑 (poly log𝑛))-round
solution for the problem, where 𝐷𝑒𝑡𝑑 (𝑛′) is the deterministic com-

plexity of the (deg+1)-list coloring problem on an 𝑛′-vertex graph.
In the latter problem, every vertex 𝑣 has a palette of only deg(𝑣) + 1
colors. Their upper bound morally matches the lower bound of

Ω(𝐷𝑒𝑡 (poly log𝑛)) rounds shown by Chang, Kopelowitz and Pettie
[9] with the only distinction being that 𝐷𝑒𝑡 (𝑛′) is the deterministic

complexity of the (Δ+1)-list coloring problem. Combining the CLP

algorithm with the recent deterministic network decomposition

result of Rozhoň and Ghaffari [40], yields an poly(log log𝑛)-round
algorithm for the (Δ+ 1) list coloring problem, which sets the state-

of-the-art bound for the problem. The randomized complexity for

the related (deg+1) coloring is𝑂 (logΔ) +poly(log log𝑛) by [4, 40].
Obtaining deterministic coloring solutions of polylogarithmic-

time has been one of the most major open problems in the area. This

was resolved recently by the groundbreaking network decomposi-

tion result of Rozhoň and Ghaffari [40]. Even more recently, Ghaf-

fari and Kuhn [20] improved the time bounds into 𝑂 (log2 Δ log𝑛)
rounds, by using the more direct approach of rounding fractional

color assignments. Due to the shattering-based structure of the CLP

solution, any deterministic algorithm for the problem immediately

improves also the (randomized) CLP bound.

(Δ+1) Coloring in the CONGESTED CLIQUEModel: In the CON-
GESTED CLIQUE model, introduced by Lotker, Pavlov and Patt-

Shamir [31, 32], the network is represented as a fully connected

graph, where each node is occupied by a machine which stores the

node’ edges. The machines communicate in an all-to-all fashion,

where in each round, every pair of machines can exchange𝑂 (log𝑛)
bits of information. The local memory and computation power are

assumed to be unlimited. As we will see, this model is considerably

more relaxed than the low-spaceMPC model that we consider in

this paper.

There has been a sequence of recent results concerning the ran-

domized complexity of the (Δ+1) coloring in this model. Parter [38]

presented an 𝑂 (log logΔ)-round algorithm for the problem that

is based on combining the CLP algorithm with a recursive degree

reduction. By employing a palette sparsification technique, Parter

and Su [39] improved the complexity into𝑂 (log∗ Δ) rounds. Finally,
the randomized complexity of the problem has been settled into

𝑂 (1) rounds, by Chang et al. [11]. Their algorithm also supports

the list variant of the problem, by employing a new randomized

partitioning of both the nodes and their colors. Recently, Czumaj,

Davies and Parter [14] provided a simplified 𝑂 (1)-round determin-

istic algorithm for the problem. In contrast to prior works, their

algorithm is not based on the CLP algorithm. Prior deterministic

(logarithmic) bounds were also given by Parter [39] and Bamberger,

Kuhn and Maus [3].

(Δ+1) Coloring in the Low-SpaceMPCModel: In theMPCmodel,

there are 𝑀 machines and each of them has 𝑆 words of space.

Initially, each machine receives its share of the input. In our case,

the input is a collection𝑉 of nodes and 𝐸 of edges and each machine

receives approximately
𝑛+𝑚
𝑀

of them (divided arbitrarily), where

|𝑉 | = 𝑛 and |𝐸 | = 𝑚. The computation proceeds in synchronous

rounds in which each machine processes its local data and performs

an arbitrary local computation on its data without communicating

with other machines. At the end of each round, machines exchange

messages. Each message is sent only to a single machine specified

by the machine that is sending the message. All messages sent

and received by each machine in each round have to fit into the

machine’s local space. Hence, their total length is bounded by 𝑆 .

This, in particular, implies that the total communication of the

MPC model is bounded by 𝑀 · 𝑆 in each round. The messages

are processed by recipients in the next round. At the end of the

computation, machines collectively output the solution. The data

output by each machine has to fit in its local space of 𝑆 words.

We focus on the low-space regime where 𝑆 = 𝑛𝜙 for any given

constant 𝜙 ∈ (0, 1). A major challenge underlying this setting is

that the local space of each machine might be too small to store

all the edges incident to a single node. This poses a considerable

obstacle for simulating LOCAL algorithms compared to the linear

space regime. To overcome this barrier, both randomized and deter-

ministic algorithms in this model are based on graph sparsification

techniques.

Chang et al. [11] presented the first randomized algorithm for

(Δ + 1) coloring in this model, which as described before
1
, employs

a random node and palette partitioning which breaks the problem

into independent coloring instances. A sparsified variant of the

CLP algorithm is then applied on each of the instances, in parallel.

This approach when combined with the network decomposition

result of [40] provides an 𝑂 (log log log𝑛) round algorithm, which

is currently the state-of-the-art bound for the problem.

The deterministic complexity of the (Δ + 1) coloring in low-

spaceMPC has been studied independently by Bamberger, Kuhn

and Maus [3] and by Czumaj, Davies and Parter [14]: [3] presented

an 𝑂 (log2 Δ + log𝑛) round solution for the (deg+1) list coloring
problem; [14] presented an 𝑂 (logΔ + log log𝑛)-round algorithm

for the (Δ + 1) list coloring problem. No sublogarithmic bounds are

currently known. To the best of our knowledge, the only sublog-

arithmic deterministic solutions in this model are given for the

ruling set problem
2
by Kothapalli, Pai and Pemmaraju [28].

1
TheirMPC algorithm is similar to their CONGESTED CLIQUE algorithm.

2
In the 𝛽 ruling set problem, it is required to compute an independent set 𝑆 such that

every vertex as a 𝛽-hop neighbor in 𝑆 .



On the connection between low-space MPC and LOCAL models.
Many of the existing algorithms for local problems in the low-space

MPC model are based on LOCAL algorithms for the corresponding

problems, e.g., [5, 11, 17, 37]. Specifically, using the graph expo-

nentiation technique,𝑇 -round LOCAL algorithms can be simulated

within 𝑂 (log𝑇 ) MPC rounds, provided that the 𝑇 -balls of each

node fits the space of the machine. Since in many cases the balls

are too large, this technique is combined with other round com-

pression approaches, such as graph sparsification, that are aimed

at simulating many LOCAL rounds using few MPC rounds. The

upper bound limit of all current approaches is𝑂 (log𝑇LOCAL) MPC
rounds, where 𝑇𝑙𝑜𝑐𝑎𝑙 is the LOCAL complexity of the problem.

In a recent inspiring paper, Ghaffari, Kuhn and Uitto [21] es-

tablished a connection between these two models in the reverse

direction (see also a revised framework in [15]). They presented

a general technique that allows one to lift lower bound results in

the LOCAL model into lower bounds in the low-space MPC model,

conditioned on the connectivity conjecture. Using this approach

they provided conditional lower bounds of Ω(log(𝑇LOCAL)) MPC
rounds given an Ω(𝑇LOCAL)-round LOCAL lower bound for the

corresponding problem. While the original framework from [21]

holds only for randomized algorithms, the revised framework in

[15] applies also to deterministic algorithms. One caveat of these

results is that they hold only for the class of component-stable MPC
algorithms. Roughly speaking, in this class of algorithms the output

of a node depends only on its connected component. We note that

the deterministic algorithms presented in this paper are not compo-

nent stable. Our algorithmmatches the logarithm of the randomized

LOCAL complexity of the (Δ + 1) list coloring problem, which is

currently an upper bound limit even for randomized algorithms,

for most of the canonical local graph problems.

1.1 Our Results

Our key result is an 𝑂 (log log log𝑛)-time deterministic algorithm

for the (Δ + 1) (list) coloring problem in the low-space MPC model.

Our algorithm employs exponential (in 𝑛𝜙 ) local computation at

each machine, while respecting its (sublinear) space requirement.

Theorem 1. There exists a deterministic algorithm that, for
every 𝑛-vertex graph𝐺 = (𝑉 , 𝐸) with maximum degree Δ, com-
putes a (Δ+1) (list) coloring for𝐺 using𝑂 (log log log𝑛) rounds,
in the low-spaceMPC model with global space 𝑂 ( |𝐸 | + 𝑛1+𝜙 ).
The algorithm employs exponential (in 𝑛𝜙 ) local computation
at each machine while respecting the space and bandwidth lim-
itations.

Alternatively, we can also state the result as a non-explicit, non-

uniform, polynomial-computation deterministic low-spaceMPC al-

gorithm, if one is allowed to hardcode𝑛𝜙 bits of information to each

machine (which do not depend on the input graph 𝐺). Our result

improves over the state-of-the-art deterministic𝑂 (logΔ+log log𝑛)-
round algorithm for this problem by [14] which works in standard

low-space MPC model (i.e., with polynomial local computation).

This also matches the randomized complexity of the problem as

given by Chang et al. [11].

Low-Space MPC with exponential local computation. As noted
in previous works, e.g., Andoni et al. [1], the main focus of the

low-spaceMPC model is on the information-theoretic question of

understanding the round complexity within sublinear space restric-

tions (i.e., even with unbounded computation per machine). This point
of view might provide an explanation for the inconsistency and

ambiguity concerning the explicit restrictions on local computation

in the low-space MPC model. Many of the prior work explicitly

allow for an unlimited local computation, e.g., [1, 2, 5, 6, 22]. Other
works only recommend having a polynomial time computation

[21, 23], and some explicitly restrict the local computation to be

polynomial [11, 19]. In this work we take the distributed perspective

on the MPC model by adopting the standard assumption in which

local computation comes for free, as assumed in all the classical

distributed models, LOCAL, CONGEST and CONGESTED CLIQUE.
The main motivation for such an assumption is that it decouples

communication from computation. Our results may indicate that al-

lowing exponential local computation might provide an advantage

in the context of distributed and parallel derandomization.

1.2 Key Techniques

Our approach is based on a derandomization of the CLP algorithm

using pseudorandom generator [41]. As a starting point, we assume

that themaximumdegreeΔ is in the rangeΔ ∈ [poly log𝑛, 𝑛𝜙/𝑐 ] for
a sufficiently large constant 𝑐 . The upper bound degree assumption

is made possible by employing first a recursive graph partitioning,

inspired by [14], that uses bounded independence hash functions

to break the problem into several independent instances with lower

degree of at most 𝑛𝜙/𝑐 . This allows us to allocate a machine 𝑀𝑣

for every node 𝑣 in the graph, and store on that machine the 𝑂 (1)-
radius ball of 𝑣 in 𝐺 . Since most of the CLP procedures are based

inspecting the𝑂 (1)-radius balls, that would be very useful. To han-

dle small (polylogarithmic) degrees, we employ a derandomization

of the state-of-the-art (𝑑𝑒𝑔 + 1)-coloring algorithm of Barenboim

et al. [4]. Assuming that Δ = Ω(poly log𝑛) provides us a more

convenient start point for the CLP derandomization, since in this

degree regime, all the local randomized CLP procedures succeed

with high probability, of 1 − 1/𝑛𝑐′ , for any desired constant 𝑐 ′.
The common derandomization approach in all-to-all commu-

nication models is based on a combination of obtaining a small

search space (i.e., using short random seed) and the method of con-

ditional expectations [8, 34]. The main obstacle in derandomizing

the CLP algorithm is that it applies local
3
randomized procedures

that seem to require almost full independence. It is thus unclear

how derandomize them using the standard bounded independence

tools of e.g., hash functions. For example, one of the key procedures

for coloring dense regions in the graph (denoted as almost-cliques)
is based on a randomized permutation of the clique’ nodes. It is

unclear how simulate such a permutation using a small seed and

in polynomial time computation. We therefore sacrifice the latter

requirement, by allowing exponential local computation.

A pseudorandom generator [36, 41] is a function that gets a short

random seed and expands it to into a long one which is indistin-
guishable from a random seed of the same length for a given class

of algorithms. Informally, a PRG function G : {0, 1}𝑎 → {0, 1}𝑏 ,

3
By local we mean that these procedures are part of the local computation of the

nodes.



where 𝑎 ≪ 𝑏, is said to 𝜖-fool a given class of randomized algo-

rithms C that uses 𝑏 random coins as part of their input, if the

following holds for every algorithm 𝐶 ∈ C: the success probability
of 𝐶 under 𝑏 pseudorandom coins G(𝑋 ), where 𝑋 is a vector of 𝑎

random coins, is within ±𝜖 of the success probability of 𝐶 when

using 𝑏 truly random coins. Explicit PRG constructions with small

seed length have been provided for a collection of Boolean formulas

[25], branching program with bounded widths [7, 35], and small

depth circuits [16, 36]. Unfortunately none of these computational

settings fits the local randomized computation of the CLP proce-

dures that we wish to derandomize. A useful property, however, of

the CLP procedures is that they run (locally) in polynomial time in

the maximum degree of the graph.

Our derandomization is based on a brute-force construction of

PRG functions that can 𝜖-fool the family of all polynomial time

computation using a seed length of 𝑂 (log𝑛) bits, for 𝜖 = 1/𝑛𝑐 . The
drawback of these PRGs is that they are non-explicit (though can be

found by an expensive brute-force computation), and require space

which is exponential in the seed length to specify. This, in particular,

implies that even if we relax the local computation constraint, in

order to fit the space limitations of the low-spaceMPC model, we

must introduce an additive sublinear error of 1/𝑛𝛼 for some small

constant 𝛼 that depends on the low-space exponent 𝜙 . In other

words, one can simulate the CLP procedures using a PRG which fits

in machines’ local space, but this PRG requires (i) local computation

which is exponential in the local space bound, and (ii) a weakened

success guarantee to 1 − 1/𝑛𝛼 for a small constant 𝛼 ∈ (0, 1). We

next explain how to handle this larger probability of errors.

Handing sublinear errors. The increase in the error using small

seeds creates complications in several CLP procedures, for the

following reason. The CLP procedures are highly sensitive to the

order in which the nodes get colored. In particular for certain classes
of nodes, the analysis is based on showing the each coloring step

did not color too many neighbors of a given node, while at the

same time, colored a sufficiently many neighbors of that node. In

other words, a given node (or a cluster of nodes) is happy at the

end of a given randomized procedure if its coloring status satisfies

a given (in many cases delicate and non-monotone) invariant that

also depends on the coloring status of its neighbors.

It is non-trivial to derandomize such procedures when suffering

from a sublinear error. To see this, assume that the machines can

compute a PRG that 𝜖-fools the CLP local procedures with 𝜖 = 1/
√
𝑛

with a random seed of ℓ = 𝑜 (log𝑛) bits. Using standard voting on

the 2
ℓ
possible seeds, the machines can compute the seed 𝑍 ∗ which

maximizes the number of happy nodes. Due to the error of 𝜖 , this

implies that all but

√
𝑛 of the nodes are happy. This appears to

be quite a large amount of progress. Indeed, at first glance it may

seem that one can complete the computation with only one more

recursive step over the remaining

√
𝑛 unhappy nodes. The key

complication of this approach is that it might now be impossible

to make the remaining

√
𝑛 nodes happy under the current color

selection to their happy neighbors, since this may have destroyed

some necessary properties for the coloring algorithm. Furthermore,

if one now starts canceling the colors already assigned to happy

neighbors, it might create long cancellation chains, ending up with

uncoloring all the nodes.

We overcome this impasse using several different approaches,

depending on the precise properties of the CLP procedure and of the

node class on which it is applied. For example, for one derandom-

ization procedure (Section 4.2), we combine PRGs with bounded

independence hash functions. Informally, the latter are used to par-

tition nodes into groups, to which we apply our PRG in turn, in such

a way that error from the PRG can only cause damage within each

group, and any of the remaining groups still have the necessary

properties to make all nodes happy. In another procedure (Section

4.4), where we apply the PRG to clusters of nodes, we extend the

happiness property of a cluster 𝑆 to also include conditions on

neighboring clusters as well as well as 𝑆 itself. By carefully choos-

ing these conditions, we will then see that we can safely uncolor

clusters that do not satisfy their self-related conditions, without

violating the necessary conditions of their neighbors. In this way

we avoid causing chains of cancellations.

In Sec. 2.3, we provide the formal PRG definitions, and describe

the general (partial) derandomization in more details.

2 ALGORITHM DESCRIPTIONS

2.1 Terminology and a Quick Exposition of the

CLP Algorithm

In the description below, we focus on the main randomized part

(a.k.a the pre-shattering part) of the CLP algorithm [12], that runs

in 𝑂 (log∗ Δ) rounds. We start by providing useful definitions, orig-

inally introduced by Harris, Schneider and Su [26].

Definition 2. For an 𝜖 ∈ (0, 1), an edge 𝑒 = (𝑢, 𝑣) is called an 𝜖-
friend if |𝑁 (𝑢) ∩𝑁 (𝑣) | ≥ (1−𝜖)Δ. The endpoints of an 𝜖-friend edge
are called 𝜖-friends. A node 𝑣 is denoted as 𝜖-dense if 𝑣 has at least
(1 − 𝜖)Δ many 𝜖-friends, otherwise it is 𝜖-sparse. An 𝜖-almost clique

is a connected component of the subgraph induced by the 𝜖-dense
nodes and their incident 𝜖-friend edges.

The next lemma (Lemma 3.1 of [12]) summarizes the key prop-

erties of the almost-cliques. Throughout, assume that 𝜖 < 1/5 and
let 𝑉𝑑

𝜖 ,𝑉
𝑠
𝜖 be the subsets of 𝜖-dense (𝜖-sparse) nodes.

Lemma 3. For every 𝜖-almost clique 𝐶 and every 𝑣 ∈ 𝐶 it holds:

• |(𝑁 (𝑣)∩𝑉𝑑
𝜖 ) \𝐶 | ≤ 𝜖Δ (i.e., small external degree w.r.t 𝜖-dense

nodes).
• |𝐶 \ (𝑁 (𝑣) ∪ {𝑣}) | < 3𝜖Δ (small antidegree).
• |𝐶 | ≤ (1 + 3𝜖)Δ (small size).
• dist𝐺 (𝑢, 𝑣) ≤ 2 for each 𝑢, 𝑣 ∈ 𝐶 .

The CLP algorithm starts by applying a𝑂 (1)-round randomized

procedure that colors a subset of the nodes in a way that generates

for the remaining uncolored nodes a slack in their number colors.

Formally the slack of a node is measured by the difference between

the number of colors available in its palette and its uncolored degree.

Our focus will be coloring on the uncolored nodes, denoted by

𝑉 ∗. The procedure is based on computing a hierarchy of 𝜖-almost

cliques for a sequence of increasing 𝜖 values 𝜖1 < . . . < 𝜖ℓ . The

hierarchy partitions 𝑉 ∗ into ℓ = 𝑂 (log logΔ) layers as follows.
Layer 1 is defined by 𝑉1 = 𝑉 ∗ ∩ 𝑉𝑑

𝜖1
and 𝑉𝑖 = 𝑉 ∗ ∩ (𝑉𝑑

𝜖𝑖
\ 𝑉𝑑

𝜖𝑖−1 )
for every 𝑖 ∈ {2, . . . , ℓ}. Letting 𝑉𝑠𝑝 = 𝑉 ∗ ∩ 𝑉 𝑠

ℓ
, we have that

(𝑉1, . . . ,𝑉ℓ ,𝑉𝑠𝑝 ) is a partition of𝑉 ∗. The nodes of𝑉𝑖 are denoted as



layer-𝑖 nodes, these nodes are both 𝜖𝑖 -dense and also 𝜖𝑖−1-sparse.
The nodes of 𝑉𝑠𝑝 are denoted as sparse nodes.
Blocks: The layer-𝑖 nodes 𝑉𝑖 are further partitioned into blocks,
which refer to a set of layer-𝑖 nodes in a given almost-clique. Letting

(𝐶1, . . . ,𝐶𝑘 ) be the list of 𝜖𝑖 -almost cliques, define the block 𝐵 𝑗 =

𝐶 𝑗 ∩ 𝑉𝑖 . The block-list (𝐵1, . . . , 𝐵𝑘 ) is a partition of 𝑉𝑖 . A block

𝐵 𝑗 ⊆ 𝑉𝑖 is called a layer-𝑖 block. The blocks are classified into

three types based on their size: small, medium and large. A layer-𝑖

block 𝐵 is large-eligible if |𝐵 | ≥ Δ/log(1/𝜖𝑖 ). The division into the

three types depends on the relations between the blocks which can

be captured by a rooted tree T . For 𝑖 < 𝑖 ′, a layer-𝑖 block 𝐵 is a

descendant of a layer-𝑖 ′ block 𝐵′ if both are subsets of the same

𝜖𝑖′-almost clique. The root of the tree T is the set 𝑉𝑠𝑝 of the sparse

nodes. The set of large blocks is a maximal set of large-eligible and

independent blocks (i.e., which are not ancestors or descendants

of each other) which prioritizes by size and breaking ties by layer.

Medium blocks are large-eligible blocks which are not large, and

the remaining blocks are small. Let 𝑉 𝑆
𝑖
,𝑉𝑀

𝑖
and 𝑉 𝐿

𝑖
be the set of

layer-𝑖 nodes in a layer-𝑖 small (medium and large, resp.) blocks.

For each 𝑋 ∈ {𝑆,𝑀, 𝐿}, let 𝑉𝑋
2+ =

⋃ℓ
𝑖=2𝑉

𝑋
𝑖
. The nodes 𝑉 ∗ \𝑉𝑠𝑝 are

colored in six stages according to the order

(𝑉 𝑆
2+,𝑉

𝑆
1
,𝑉𝑀

2+ ,𝑉
𝑀
1
,𝑉 𝐿

2+,𝑉
𝐿
1
) .

This ordering ensures that when a given node is considered to be

colored, it has sufficiently many remaining colors in its palette.

At the end of these six stages, there will be a small subset 𝑈 ⊂
𝑉 ∗ \𝑉𝑠𝑝 of uncolored nodes. The sets 𝑉𝑠𝑝 ∪𝑈 will be colored later

on efficiently within𝑂 (log∗ Δ) rounds. The main benefit of defining

the six classes is in providing a sufficient amount of slack when

considering a given node for coloring.

Lemma 4. [Lemma 3.3 of [12]] For each layer 𝑖 ∈ [1, ℓ], the fol-
lowing are true:

• ∀𝑣 ∈ 𝑉 𝑆
𝑖
with |𝑁 (𝑣) ∩ 𝑉 ∗ | ≥ Δ/3, we have |𝑁 (𝑣) ∩ (𝑉𝑀

2+ ∪
𝑉𝑀
1
∪𝑉 𝐿

2+ ∪𝑉
𝐿
1
∪𝑉𝑠𝑝 ) | ≥ Δ/4 .

• For each 𝑣 ∈ 𝑉𝑀
𝑖

, we have |𝑁 (𝑣) ∩ (𝑉 𝐿
2+ ∪ 𝑉

1

𝐿
∪ 𝑉𝑠𝑝 ) | ≥

Δ/(2 log(1/𝜖𝑖 )).

Since the nodes in small and medium blocks have many neigh-

bors in the other sets, when coloring these nodes we enjoy their

excess in the number of colors (restricted to their neighbors in

the given class). In what follows, we provide a derandomization

scheme for each of the randomized procedures applied in the CLP

algorithm. We adhere, in general, to the same notation used by the

CLP algorithms in [12].

2.2 High-Level Description of our Algorithm

Throughout, a degree bound Δ′ is said to be medium if Δ′ = 𝑂 (𝑛𝛽 )
for some constant 𝛽 sufficiently smaller than 𝜙 . In addition, Δ′ is
low if it is polylogarithmic. Low-degree graphs can be handled by

derandomizing the (deg+1) coloring algorithm of Barenboim et al.

[4]. The main algorithm for Δ ≥ log
𝑐 𝑛, for some constant 𝑐 , has

two main steps.

Step 1: In the first step, we reduce the problem to graphs with max-

imum degree 𝑛𝛽 for any desired constant 𝛽 ∈ (0, 1). This step takes

𝑂 (1) number of rounds, using bounded independent hash functions.

Our deterministic graph partitioning has the same properties as

the randomized partitioning of Chang et al. [11].

Step 2: The second step of the algorithm assumes that Δ = 𝑂 (𝑛𝛽 ).
This allows one to store a constant-radius ball of a node on a

given machine. Similarly to the CLP algorithm, the derandomiza-

tion has three main parts: (i) initial coloring (which generates the

initial excess in colors) (ii) dense coloring (e.g., coloring nodes with

almost-clique neighborhoods) and (iii) coloring bidding which col-

ors nodes with excess colors. Parts (i) and (ii) are derandomized

within 𝑂 (1) number of rounds, and part (iii) is derandomized in

𝑂 (log∗ Δ) rounds. In our algorithm, we apply only a partial imple-

mentation of procedure (ii), as our goal is to reduce the uncolored

degree to a polylogarithmic bound. The coloring of the dense nodes

is completed within 𝑂 (log log log𝑛) rounds by derandomizing the

(deg+1) list coloring algorithm by Barenboim et al. [4].

Road-map. In Sec. 2.3 and 2.4 we present our derandomization

tools of PRG and bounded-independence hash functions. Note that

Sec. 2.3 introduces notations that will be used throughout our algo-

rithms. In Sec. 4.1, we first provide a deterministic (deg+1) coloring
algorithm for graphs with polylogarithmic degrees. We therefore

assume from now on that Δ ≥ log
𝑐 𝑛 for a sufficiently large con-

stant 𝑐 . In Sec. 3 we describe the first step of our coloring algorithm,

where we apply a recursive partitioning which results in medium

degree coloring instances. The derandomization of CLP of Step

2 spans over Sec. 4.2,4.3 and 4.4. In Sec. 4.2 we provide a deran-

domization of the OneShotColoring procedure for generating the
initial color excess for every node as a function its neighborhood

sparsity. Then we turn to consider the coloring of the dense ver-

tices𝑉 \𝑉𝑠𝑝 . Recall that these nodes are partitioned into the classes
(𝑉 𝑆

2+,𝑉
𝑆
1
,𝑉𝑀

2+ ,𝑉
𝑀
1
,𝑉 𝐿

2+,𝑉
𝐿
1
). In Sec. 4.3, we provide a derandomiza-

tion of the CLP procedures for coloring the dense nodes in small

and medium blocks𝑉 𝑆
2+,𝑉

𝑆
1
,𝑉𝑀

2+ ,𝑉
𝑀
1

. Sec. 4.4 considers the remain-

ing dense nodes in the large blocks 𝑉 𝐿
2+,𝑉

𝐿
1
. Our derandomization

reduces the uncolored degrees of the nodes in 𝑉 𝐿
2+ as a function of

their sparsity. In addition, it reduces the degrees of the uncolored

nodes in 𝑉 𝐿
1
to polylogarithmic. The coloring of the remaining 𝑉 𝐿

1

can be then completed in 𝑂 (log log log𝑛) rounds. Sec. 4.5 handles
the remaining uncolored vertices in layer ≥ 2, as well as the sparse

vertices 𝑉𝑠𝑝 .

2.3 Pseudorandom Generators and

Derandomization

We will now formally define pseudorandom generators (PRGs). A

PRG is a function that gets a short random seed and expands it

to a long one which is indistinguishable from a random seed of

the same length for a given class of algorithms. We will use the

following definitions from [41]: in the latter,𝑈𝑘 denotes the uniform

distribution on {0, 1}𝑘 .

Definition 5 (Computational Indistinguishability, Def.

7.1 in [41]). Random variables 𝑋 and 𝑌 taking values in {0, 1}𝑚 are
(𝑡, 𝜖) indistinguishable if for every nonuniform algorithm 𝑇 running
in time at most 𝑡 , we have | Pr[𝑇 (𝑋 ) = 1] − Pr[𝑇 (𝑌 ) = 1] | ≤ 𝜖 .

Definition 6 (PRG, Definition 7.3 in [41]). A deterministic
function G : {0, 1}𝑑 → {0, 1}𝑚 is an (𝑡, 𝜖) pseudorandom generator
(PRG) if: (1) 𝑑 ≤ 𝑚 and (2) G(𝑈𝑑 ) and𝑈𝑚 are (𝑡, 𝜖) indistinguishable.



A simple counting argument (given in, e.g., [41]) shows that

there must exist PRGs with short seeds:

Proposition 7 (Proposition 7.8 in [41]). For all 𝑚 ∈ N and
𝜖 > 0, there exists a (non-explicit) (𝑚, 𝜖) PRG G : {0, 1}𝑑 → {0, 1}𝑚
with seed length 𝑑 = 𝑂 (log𝑚 + log 1/𝜖).

The next lemma follows by a brute-force PRG construction

from [15].

Lemma 8. For all 𝑚 ∈ N and 𝜖 > 0, there exists an algorithm
for computing the (𝑚, 𝜖) PRG of Proposition 7 with seed length 𝑑 =

𝑂 (log𝑚 + log 1/𝜖), in time exp(poly(𝑚/𝜖)) and space poly(𝑚/𝜖).

Derandomization with PRG. A randomized LOCAL algorithm A
is said to be nice if the local computation, per round, performed at

each node is polynomial in Δ. All the randomized LOCAL proce-

dures that we derandomize with the PRG framework in this paper,

will indeed be nice. We will also have the property that poly(Δ)
bits fit the local space of each machine. To illustrate the technique,

assume that A is a two round randomized algorithm such that

after applying A, each node satisfies a given desired property that

depends only on its 1-radius ball, with high probability of 1 − 1/𝑛𝑐 .
It is convenient to view this two-round LOCAL algorithm in a way

that decouples the randomness from the computation. Specifically,

we assume that each node a priori generates its own pool of random

coins, and we simulateA in the LOCALmodel by letting each node

𝑣 first collects its two-hop ball 𝑣∪𝑁𝐺2 (𝑣), as well as, the initial states
and the private coins of each of its 2-hop neighbors. Then, each

node 𝑣 locally applies an algorithm A𝑣 on this information. In this

view, every algorithm A consists of 𝑛 sub-algorithms {A𝑣, 𝑣 ∈ 𝑉 }
where each A𝑣 is a randomized poly(Δ)-time algorithm, the ran-

domized decisions made by each node 𝑢 are consistent with all the

algorithms run by its 2-hop neighbors. We then say that a node 𝑣

is happy if a certain property holds for {𝑣}. Our goal is to show

that using the PRG framework, there is a low-space MPC determin-

istic algorithm that derandomizes A in a way that makes at least

1 − 1/𝑛𝛼 fraction of the nodes happy, for some constant 𝛼 ∈ (0, 1).
The first preprocessing step for the derandomization computes

𝑂 (logΔ)-bit identifiers for the nodes such that the identifiers are

distinct in each 2-radius ball. This can be done in 𝑂 (log∗ 𝑛) deter-
ministic MPC rounds [29, 30].

Claim 9. Given that all the nodes have 𝑂 (logΔ)-bit identifiers
(unique in each 2-radius ball), there exists a low-space MPC deter-
ministic algorithm that causes a collection of at least (1 − 1/𝑛𝛼 ) |𝑉 |
nodes to be happy, for some constant 𝛼 sufficiently smaller than 𝜙 .
The round complexity of the algorithm is 𝑂 (1), and it requires .

The derandomization is based on two parts. First, we show that

there is a weaker variant of algorithm A that uses only a shared

random seed of 𝑐 · 𝜙 · log𝑛 bits for a sufficiently small constant

𝑐 ∈ (0, 1]. This weaker variant suffers an additive error of ±2/𝑛𝛼
(for some constant 𝛼 sufficiently smaller than 𝜙), compared to the

fully-randomized algorithm. Then, we derandomize this weaker

variant in𝑂 (1)MPC rounds in such a way that at least (1−1/𝑛𝛼 ) |𝑉 |
nodes are happy.

We start with the first step, which is the part that exploits the

PRG machinery. Let 𝑡 = poly(Δ) be an upper bound on the local

time complexity of all {A𝑣, 𝑣 ∈ 𝑉 } algorithms, and let 𝑁 = Δ𝑐 be

an upper bound on the largest node identifier. The local randomized

algorithm A𝑣 applied locally at each node 𝑣 can be represented as

a deterministic algorithm that gets as input a vector of 𝑁 · 𝑡 random
coins interpreted as follows: the 𝑖𝑡ℎ chunk of 𝑡 coins specifies the

random coins for a node with ID 𝑖 for every 𝑖 ∈ {1, . . . , 𝑁 }. Since
the algorithm A𝑣 runs in time 𝑡 , it is sufficient to specify at most 𝑡

random bits for each node in {𝑣} ∪ 𝑁𝐺2 (𝑣). The weaker random-

ized algorithm, denoted by A ′𝑣 , will be given a collection of 𝑁 · 𝑡
pseudorandom coins obtained by applying a PRG function G∗ on a

shared random seed of only 𝑐𝜙 log𝑛 random coins, for a sufficiently

small constant 𝑐 ∈ (0, 1].
Specifically, by Prop. 7, there is an (𝑁 · 𝑡, 𝜖) pseudorandom gen-

erator G∗ : {0, 1}𝑑 → {0, 1}𝑁𝑡
with a seed length 𝑑 = 𝑂 (log(𝑁𝑡) +

log 1/𝜖). This G∗ function 𝜖-fools the collection of all 𝑡-time ran-

domized algorithms up to an additive error of 𝜖 . In particular, it

fools the collection of all {A𝑣 | 𝑣 ∈ 𝑉 } algorithms. We choose

the constant in the seed length to be small enough so that the

machines will be able to locally compute G∗ within their space lim-

itations. Since the PRG computation consumes 2
𝑑
poly(Δ) space,

we can support an additive error of 𝜖 = 1/(2𝑛𝛼 ) for some small

constant 𝛼 . This provides a seed of length 𝑑 = 𝑐𝜙 log𝑛 for a small

constant 𝑐 ∈ (0, 1]. Let 𝑍 ∈ {0, 1}𝑑 be a random seed of length 𝑑 .

We then have that when each node 𝑣 simulates A𝑣 using G∗ (𝑍 )
as the source of 𝑁𝑡 pseudorandom coins, the node 𝑣 is happy with

probability of 1− 1/𝑛𝑐 − 1/(2𝑛𝛼 ) ≤ 1− 1/𝑛𝛼 . It is important to note

that since all nodes use the shared random seed 𝑍 , and since the

pseudorandom coins assigned by each local algorithm A ′𝑣 to node

𝑢 ∈ {𝑣} ∪ 𝑁 (𝑣) are determined by the 𝑂 (logΔ)-bit identifier of 𝑢,
the output of 𝑢 is consistent by all the algorithms A𝑤 for every

𝑤 ∈ {𝑢} ∪ 𝑁𝐺2 (𝑢).
It remains to show that these weaker algorithms {A ′𝑣} can be

derandomized within 𝑂 (1) rounds. This is done by allocating a

machine 𝑀𝑣 for every node 𝑣 that stores also the 2-radius ball of

𝑣 in 𝐺 . Every machine 𝑀𝑣 simulates algorithm A ′𝑣 under each

𝑍 ∈ {0, 1}𝑑 . Specifically, for each 𝑍 ∈ {0, 1}𝑑 , it simulatesA𝑣 using

G∗ (𝑍 ) as the input of random coins. This allows each machine𝑀𝑣

to determine if 𝑣 is happy under each possible seed 𝑍 . As there

are 𝑜 (𝑛𝜙 ) seeds, this fits the local space. Using standard sorting

procedures, in constant rounds the machines can compute the seed

𝑍 ∗ that maximizes the number of happy nodes. Finally, all machines

simulate A ′𝑣 using the seed 𝑍 ∗, which defines the output of the

algorithm. Since the expected number of happy nodes with a ran-

dom seed 𝑍 ∈ {0, 1} is at least (1 − 1/𝑛𝛼 ) |𝑉 |, the number of happy

nodes under the best seed 𝑍 ∗ is at least (1 − 1/𝑛𝛼 ) |𝑉 | as well.
In Section 4.4, the procedure is slightly more complicated: there,

the definition of a happy cluster 𝑆 will contain both self-invariants
(properties about 𝑆) and neighbor-invariants (properties about neigh-
boring clusters to 𝑆). We use the PRG to show that the number of

happy clusters is at least a (1−1/𝑛𝛼 )-proportion of the total number

of clusters, as above. However, unhappy clusters are then uncolored.

By the choice of the happiness properties, we show that clusters

that were happy still satisfy their self-invariants, which will be suf-

ficient to allow unhappy uncolored neighbors the chance to become

happy even when running the coloring algorithm on the remain-

ing unhappy nodes. The analysis will show that within 𝑂 (1/𝛼)



iterations, all clusters become happy. These arguments involve in-

troducing some extra slack to the bounds of CLP: specifically, our

bounds (e.g., on the desired uncolored degrees) at the end of this

derandomization will be larger by a factor of (1/𝛼) = 𝑂 (1) than
those obtained by the randomized CLP procedures.

Throughout the paper we use the parameter 𝛼 to determine the

exponent of the additive error of the pseudorandom algorithms.

That is, we will only be considering LOCAL randomized algorithms

that succeeds at each node with high probability, and using the

space limitation of the machines, we will a get a pseudorandom

LOCAL algorithm that succeeds with probability of 1 − 1/𝑛𝛼 for

some sufficiently small 𝛼 . Consequently, the derandomization will

cause at least a (1 − 1/𝑛𝛼 ) fraction of the nodes to be happy.

Useful Observations for the CLP Algorithm. The above mentioned

general derandomization scheme fits well into our setting of deran-

domizing the CLP algorithm. Specifically, we observe the following

useful property for the CLP algorithm. This allows us to work,

throughout, with 𝑂 (logΔ)-bit identifiers, which is crucial for the

derandomization procedure. We show:

Observation 10. All the randomized procedures of the CLP algo-
rithm are nice and run in𝑂 (1) rounds4. In addition, these algorithms
can be simulated in an analogous manner in the following setting: all
nodes are given 𝑂 (logΔ)-bit identifiers that are unique within each
𝑂 (1)-radius ball (for any desired constant), and all nodes of the same
identifier are given the same set of poly(Δ) random coins to simulate
their random decisions. Provided the Δ is at least polylogarithmic,
the procedures satisfy some desired properties at each node with high

probability.

2.4 Bounded-Independence Hash Functions

Some of the local randomized procedures considered in this paper

requires a more light-weight derandomization scheme which based

on bounded-independence hash functions. Like PRGs, these func-

tions can approximate the effect of random choices using only a

small seed (which, additionally, can be computed efficiently in poly-

nomial time, rather than in exponential time as in the PRG setting).

The major benefit of bounded-independence hash functions over

PRGs is that they do not incur error, as the PRGs we use do. That
is, they provide exactly the same bounds as true randomness for

analysis that only requires independence between a bounded num-

ber of random choices. The families of hash functions we require

are specified as follows:

Definition 11. For 𝑁, 𝐿, 𝑘 ∈ N such that 𝑘 ≤ 𝑁 , a family of
functions H = {ℎ : [𝑁 ] → [𝐿]} is 𝑘-wise independent if for all
distinct 𝑥1, . . . , 𝑥𝑘 ∈ [𝑁 ], the random variables ℎ(𝑥1), . . . , ℎ(𝑥𝑘 )
are independent and uniformly distributed in [𝐿] when ℎ is chosen
uniformly at random fromH .

Wewill use the followingwell-known lemma (cf. [41, Corollary 3.34]).

Lemma 12. For every 𝑎,𝑏,𝑘 , there is a family of𝑘-wise independent
hash functions H = {ℎ : {0, 1}𝑎 → {0, 1}𝑏 } such that choosing
a random function from H takes 𝑘 · max{𝑎, 𝑏} random bits, and
evaluating a function fromH takes time 𝑝𝑜𝑙𝑦 (𝑎, 𝑏, 𝑘).
4
The sparse coloring procedure runs in ℓ = 𝑂 (log∗ Δ) rounds but it is based on ℓ

applications of a𝑂 (1)-round procedure, which we will derandomize with PRGs.

2.5 The Method of Conditional Expectations

To agree on seeds specifying a particular hash function, wemake use

of a distributed implementation of the classicalmethod of conditional
expectations, as employed in [13, 14]. The properties of this method

can be stated as follows:

Assume that, over the choice of a random hash function ℎ ∈
H , the expectation of some objective function (which is a sum of

functions 𝑞𝑥 calculable by individual machines) is at least some

value 𝑄 . That is,

Eℎ∈H
[
𝑞(ℎ) :=

∑
machines 𝑥

𝑞𝑥 (ℎ)
]
≥ 𝑄 .

Then, if |H | = 𝑝𝑜𝑙𝑦 (𝑛), i.e., hash functions fromH can be spec-

ified using 𝑂 (log𝑛) bits, there is an 𝑂 (1)-round deterministic low-

space MPC algorithm allowing all machines to agree on some

specific ℎ∗ ∈ H with 𝑞(ℎ∗) ≥ 𝑄 .
The method with which we fix seeds for our PRGs can also be

thought of as a special case of this implementation of the method

of conditional expectations; the difference is that the seeds for our

PRGs are short enough that the entire seed space fits in a machine’s

memory and can be searched at once, whereas our hash function

seeds are a constant-factor longer and the seed space must be

searched in 𝑂 (1) iterations.

3 REDUCING TO MEDIUM-DEGREE

INSTANCES

In this section, we provide a deterministic (recursive) degree reduc-

tion procedure, and show the following:

Lemma 13. Assume that for every 𝑛, there is an 𝑂 (log log log𝑛)-
round low-space MPC algorithm A for computing (Δ + 1) list col-
oring in a graph 𝐺 provided that (i) Δ = 𝑛𝑂 (Z ) for a constant Z
sufficiently smaller than 𝜙 , and (ii) each vertex has a palette of size
min{deg𝐺 (𝑣),Δ − Δ3/5}. Then there is an 𝑂 (log log log𝑛)-round
(Δ + 1) list coloring algorithm for any 𝑛-vertex graph 𝐺 .

We do so by using an extension of a method introduced in [14],

which deterministically reduces an instance of coloring with high

degree to a collection of instances of lower degree, of which many

can be solved in parallel. We run the following algorithm up to

a recursion depth of
log𝑛 Δ

Z
− 23 (note that we have control of Z ,

and set it so that this is an integer) - upon reaching that recur-

sion depth we apply algorithm A in place of the recursive call to

LowSpaceColorReduce. Throughout we use families of𝑂 (1)-wise
independent hash functions. See Sec. 2.4 for definitions.

Algorithm 1 LowSpaceColorReduce(𝐺)
𝐺1, . . . ,𝐺𝑛Z ← LowSpacePartition(𝐺).
For each 𝑖 = 1, . . . , 𝑛Z − 1, perform LowSpaceColorReduce(𝐺𝑖 )
in parallel.

Update color palettes of 𝐺𝑛Z , perform LowSpaceColorRe-

duce(𝐺𝑛Z ).

This algorithm employs a partitioning procedure to divide the

input instance into bins, which are then solved recursively:



Algorithm 2 LowSpacePartition(𝐺)

Let hash function ℎ1 : [𝑝𝑜𝑙𝑦 (𝑛)] → [𝑛Z ] map each node 𝑣 ∉ 𝑉0

to a bin ℎ1 (𝑣) ∈ [𝑛Z ].
Let hash function ℎ2 : [𝑝𝑜𝑙𝑦 (𝑛)] → [𝑛Z − 1] map colors 𝛾 to a

bin ℎ2 (𝛾) ∈ [𝑛Z − 1].
Let𝐺1, . . . ,𝐺𝑛Z be the graphs induced by bins 1, . . . , 𝑛Z respec-

tively.

Restrict palettes of nodes in 𝐺1, . . . ,𝐺𝑛Z −1 to colors assigned by

ℎ2 to corresponding bins.

Return 𝐺1, . . . ,𝐺𝑛Z .

(If the ranges of the hash functions are not powers of 2, we can

instead map to a sufficiently large (but 𝑝𝑜𝑙𝑦 (𝑛)) power of 2, and
then map intervals of this range to [𝑛Z ] or [𝑛Z − 1] as equally as

possible. As in [13, 14], we incur some error in the distributions

of random hash function outputs, but can easily ensure that it is

negligibly small, e.g. 𝑛−3.) The analysis of this procedure is similar

to [14], and deferred to the full version.

4 IMPROVED COLORING VIA

DERANDOMIZATION OF CLP

In this section, we show a deterministic coloring algorithm that

runs in 𝑂 (log log log𝑛) rounds, by derandomizing the (Δ + 1)-
list coloring algorithm of [12]. Throughout, we assume that Δ ∈
[log𝑐 𝑛, 𝑛𝜙/𝑐 ] for a sufficiently large constant 𝑐 . Due to Lemma

13, this can be assumed, almost without loss of generality. Specif-
ically, the guarantee of Lemma 13 is that each 𝑣 has a palette of

min{deg𝐺 (𝑣),Δ − Δ3/5} colors, instead of Δ + 1 colors. This was
obtained also for the randomized procedures of [11] and [38]. As

observed in [38], the CLP algorithm works exactly the same for that

setting, up to minor modifications in the constants of the lemma

statements. For simplicity of that section, we assume the standard

(Δ + 1) list coloring setting, and then in the full version explain the

minor adaptations to handle the palettes of Lemma 13.

Smaller IDs. Our approach is based on derandomizing 𝑡-round

local algorithms for some constant 𝑡 . The first preliminary step for

this derandomization is to assign the nodes unique identifiers of

𝑂 (logΔ) bits, that are unique in each 𝑡-radius ball. To do that, the

algorithm applies the well-known algorithm of Linial [30] to com-

pute Δ2𝑡
coloring in 𝐺 . This can be done in 𝑂 (log∗ 𝑛) rounds. This

part is important for the PRG based simulations as explained in Sec.

2.3. We next iterate over the key CLP procedures and derandomize

them using PRGs.

The key challenging part is in derandomizing the dense nodes in

the large blocks of Sec. 4.4. These nodes have excess of colors due

to neighbors in different classes, and thus the randomized coloring

procedure is highly sensitive to the order in which the nodes get

colored.

4.1 Low-Deg Coloring

We start by providing a 𝑂 (log log log𝑛)-round algorithm for com-

puting (𝑑𝑒𝑔 + 1)-coloring in graphs with maximum degree at most

log
𝑐 𝑛 for any constant 𝑐 . This allows us later on to focus on graphs

with maximum degree Δ ≥ log
𝑐 𝑛 for which we provide a deran-

domization of the CLP algorithm.

Lemma 14. For any 𝑛-node graph 𝐺 with maximum degree 𝑑 ≤
log

𝑐 𝑛, there exists an 𝑂 (log log log𝑛)-deterministic algorithm for
computing (deg+1) list coloring.

Proof. The algorithm derandomizes the state-of-the-art local

algorithm for the (deg+1) list coloring problem of [4] that runs in

𝑇 = 𝑂 (log𝑑) + poly(log log𝑛) rounds (when combined with the

network decomposition result of [40]). First, the MPC algorithm

allocates a machine 𝑀𝑣 for every node 𝑣 which collects the 3𝑇 -

radius ball of 𝑣 in 𝐺 . Since 𝑑𝑇 = 𝑛𝑜 (1) this fits the local space of
each machine. Via the standard graph exponentiation technique,

these balls can be collected in log𝑇 rounds.

Since the𝑇 -round randomized algorithm of [4] and [40] employs

a polynomial(in 𝑑) time computation at each node, we can again

use the PRG machinery as follows. In what follows we provide an

𝑂 (log log log𝑛)-roundMPC procedure to color (1 − 1/𝑛𝛼 ) of the
nodes. Repeating this procedure on the remaining uncolored graph

guarantees that within 𝑂 (1/𝛼) repetitions, all nodes are colored.
The algorithm of [4] has two steps. The first is a randomized

pre-shattering procedure that in 𝑂 (log𝑑) rounds guarantees that
the every going component has size at most poly(𝑑) log𝑛, w.h.p.
This holds even if the random decisions of nodes at distance 𝑐 for

some constant 𝑐 are adversarially correlated. That is, it sufficient to

have independence in each 𝑂 (1)-radius ball. This implies that we

can continue using our 𝑂 (logΔ)-bit identifiers that are unique in
each 𝑐-radius ball for the purposes of derandomization via PRG.

The second step completes the coloring by applying the poly(log𝑁 )
deterministic algorithm for coloring for 𝑁 = poly(log𝑛). Since we
have already collected the 𝑇 -radius ball around each node 𝑣 onto a

machine𝑀𝑣 , each machine𝑀𝑣 can now simulate this second step

immediately.

It remains to focus on the derandomization of the pre-shattering

step. Recall that each machine𝑀𝑣 stores the 2𝑇 -radius ball of 𝑣 , col-

lected in𝑂 (log𝑇 ) rounds. The machine𝑀𝑣 computes the PRG func-

tion G that 𝜖-fools every poly(𝑑) time computation for 𝜖 = 1/(2𝑛𝛼 )
for some small constant 𝛼 ∈ (0, 1). Specifically, the parameter 𝛼

is chosen using Lemma 8 in a way that guarantees that the com-

putation of the function G can be done in space of 𝑛𝜙 . This yields

a seed of length 𝑑 < log𝑛/𝜙 . Simulating the 𝑇 -round randomized

algorithm with a random 𝑑-length seed guarantees that each node

remains uncolored with probability of at most 1/𝑛𝛼 . The machines

can then compute a seed𝑍 ∗ that matches this expected value, and all

machines simulate the𝑇 -round randomized algorithm using𝑍 ∗. □

4.2 Initial Slack Generation

The CLP algorithm starts by applying a 𝑂 (1)-round randomized

procedure, called OneShotColoring, which translates the sparsity

in nodes’ neighborhoods into a slack (excess) in the number of

colors. In this procedure, each uncolored node participates with

probability 𝑝 , and each participating node 𝑣 randomly selects a

color 𝑐 (𝑣) from its palette Φ(𝑣). This color is selected for 𝑣 only if

none of its neighbors picked that color.

Lemma 15. [Lemma 2.5 from [12]] There is a𝑂 (1)-round random-
ized LOCAL algorithm that colors a subset of the nodes 𝑉 , such that
the following are true for every node 𝑣 with 𝑑𝑒𝑔(𝑣) ≥ 5

6
Δ:



• (P1) With probability 1− 1/𝑛𝑐 , the number of uncolored neigh-
bors of 𝑣 is at least Δ/2.
• (P2) With probability 1 − 1/𝑛𝑐 , 𝑣 has at least Ω(𝜖2Δ) excess
colors, where 𝜖 is the highest value such that 𝑣 is 𝜖-sparse for
𝜖 ≥ 1/Δ1/10.

We derandomize this procedure and sketch our method here.

We will partition nodes into Θ(1) groups using bounded-inde-
pendence hash functions, in such a way that we ensure that the

local sparsity property is maintained within each group. We will

then apply the PRG to directly derandomize Lemma 15 within

each group. The reason for the partitioning is that the error of the

PRG will cause some nodes to fail to meet the criteria. However,

since we have multiple groups, and any one group can provide a

node with sufficient slack, we will be able to show that the PRG will

succeed in at least one group for each node. For this reason our PRG

derandomization here is simpler than its applications to other parts

of the CLP algorithm: we need only ensure that, when coloring each

group, the number of nodes which have not yet received sufficient

slack decreases by an 𝑛𝛼 -factor. After coloring 1/𝛼 = 𝑂 (1) groups,
we ensure that all nodes have sufficient slack, reaching Theorem 16.

Theorem 16. [Derandomization of Lemma 2.5 from [12]] There is
a 𝑂 (1)-round deterministic low-space MPC algorithm that colors a
subset of the nodes 𝑉 , such that the following are true for every node
𝑣 with 𝑑𝑒𝑔(𝑣) ≥ (5/6)Δ:
• (P1) The number of uncolored neighbors of 𝑣 is at least Δ/2.
• (P2) 𝑣 has at least Ω(𝜖2Δ) excess colors, where 𝜖 is the highest
value such that 𝑣 is 𝜖-sparse for 𝜖 ≥ 1/Δ1/10.

4.3 Dense Coloring with Slack

This section handles the collection of the dense nodes in the small

and medium size clusters, namely, a set 𝑆 ∈ {𝑉 𝑆
1
,𝑉𝑀

1
,𝑉 𝑆

2+,𝑉
𝑀
2+ }.

Each of these nodes has sufficiently many neighbors not in the

current node set 𝑆 , which provides a slack in the number of available

colors (regardless of how we color 𝑆).

The set 𝑆 is a collection of clusters 𝑆1, . . . , 𝑆𝑔 of weak diameter 2.

It is assumed that the edges within 𝑆 are oriented from the sparser to

the denser endpoint, breaking ties by comparing IDs. For 𝑣 ∈ ⋃𝑗 𝑆 𝑗 ,

let 𝑁𝑜𝑢𝑡 (𝑣) be the outgoing5 neighbors of 𝑣 in 𝑆 . The dense coloring
CLP procedures for these sets are based on applying procedure

DenseColoringStep (version 1) which works as follows. For each

cluster 𝑆 𝑗 , a leader node 𝑢 ∈ 𝑆 𝑗 collects its cluster nodes and their

current palettes, and colors the nodes in 𝑆 𝑗 sequentially according

to some random permutation. For each node 𝑣 (in that ordering),

the leader picks a free color uniformly at random from the list of

available colors of 𝑣 . This color is set as permanent, if it does not

conflict with the colors of 𝑁𝑜𝑢𝑡 (𝑣). While it is not so clear how to

derandomize this procedure efficiently (i.e., in polynomial time)

using the common derandomization techniques (such as bounded-

independence hash functions), we show in this section that using

PRGs a derandomization is possible, but at the cost of exponential

local computation.

We start by describing the dynamics of the coloring procedure for

dense nodes under the randomized procedure DenseColoringStep

5
An edge 𝑒 = {𝑢,𝑢′ } is oriented as (𝑢,𝑢′) if 𝑢 is at layer 𝑖 , 𝑢′ at layer 𝑖′ and 𝑖 > 𝑖′,
or if 𝑖 = 𝑖′ and 𝐼𝐷 (𝑢) > 𝐼𝐷 (𝑣) .

of [12], and then explain how to derandomize it within𝑂 (1) number

of rounds. Every dense node is associated with two parameters

which governs its coloring probability in the DenseColoringStep
procedure when applied simultaneously by a given set 𝑆 = 𝑆1 ∪
. . . ∪ 𝑆𝑔 :
• Aparameter𝑍𝑣 which provides a lower bound on the number

of excess colors of 𝑣 w.r.t the nodes in 𝑆 . I.e., the palette size

of 𝑣 minus |𝑁𝑜𝑢𝑡 (𝑣) ∩ 𝑆 | is at least 𝑍𝑣 .
• A parameter 𝐷𝑣 which provides an upper bound on the

external degree of 𝑣 , i.e., |𝑁𝑜𝑢𝑡 (𝑣) \ 𝑆 𝑗 | ≤ 𝐷𝑣 where 𝑆 𝑗 is the

cluster of 𝑣 .

The ratio between these bounds, denoted by 𝛿𝑣 = 𝐷𝑣/𝑍𝑣 , deter-
mines the probability that a node 𝑣 ∈ 𝑆 𝑗 remains uncolored after a

single application of the DenseColoringStep procedure. Two clus-

ters 𝑆𝑖 and 𝑆 𝑗 are neighbors if there exist 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆 𝑗 such
that (𝑢, 𝑣) ∈ 𝐸 (𝐺). For any positive integer 𝑟 ≥ 1, let 𝑁 𝑟 (𝑆 𝑗 ) be
the 𝑟 -hop neighboring clusters of 𝑆 𝑗 in 𝑆 . For 𝑟 = 1, we may omit

the index and simply write 𝑁 (𝑆 𝑗 ) to denote the immediate cluster

neighbors of 𝑆 𝑗 in 𝑆 .

Theorem 17. [Derandomization of Lemma 4.2 of [12]] Let 𝑆 ∈
{𝑉 𝑆

2+,𝑉
𝑀
2+ }. Suppose that each layer-𝑖 node 𝑣 ∈ 𝑆 has at least

Δ
2 log(1/𝜖𝑖 )

excess colors w.r.t 𝑆 . Then, there exists a 𝑂 (1)-round deterministic
algorithm that colors a subset of 𝑆 meeting the following condition.
For each node 𝑣 ∈ 𝑉 ∗, and for each 𝑖 ∈ [2, ℓ], the number of uncolored
𝑖-layer neighbors of 𝑣 in 𝑆 is at most 𝜖5

𝑖
Δ.

To handle the layer-1 nodes in small and medium clusters, we

derandomize Lemma 4.3 of [12]. The randomized procedure of that

lemma colors all the nodes in these clusters with high probability.

We next show that we can color all these nodes deterministically.

Theorem 18. [Derandomization of Lemma 4.3 of [12]] Let 𝑆 ∈
{𝑉 𝑆

1
,𝑉𝑀

1
}. Suppose that each node 𝑣 ∈ 𝑆 has at least Δ/(2 log(1/𝜖𝑖 ))

excess colors w.r.t 𝑆 . There exists a𝑂 (1)-round deterministic algorithm
that colors all the nodes of 𝑆 .

4.4 Dense Coloring without Slack

In this section we consider the more challenging subset of dense

nodes, in the large blocks 𝑉 𝐿
1
and 𝑉 𝐿

2+, that have no slack in their

colors due to neighbors in other subsets. The randomized CLP

procedure colors these nodes by employing a modified variant

of the dense coloring procedure, denoted as DenseColoringStep
(version 2).

Let 𝑆 ∈ {𝑉 𝐿
1
,𝑉 𝐿

2+}. For every node 𝑣 ∈ 𝑆 , let 𝑁 ∗ (𝑣) be the neigh-
bors of 𝑣 in 𝑆 of layer number smaller than or equal to the layer

number of 𝑣 . Let the clusters of 𝑆 = 𝑆1 ∪ . . . ∪ 𝑆𝑔 be ordered based

on nondecreasing order their layer number. Each cluster, and each

node in a cluster have an ID that is consistent with this ordering.

We use the term antidegree of 𝑣 ∈ 𝑆 𝑗 to the number of uncolored
nodes in 𝑆 𝑗 \ (𝑁 (𝑣) ∪ {𝑣}). The term external degree of 𝑣 ∈ 𝑆 𝑗 refers
to the number of uncolored nodes in 𝑁 ∗ (𝑣) \ 𝑆 𝑗 . The rate by which

a dense cluster 𝑆 𝑗 ∈ 𝑆 gets colored is determined by the following

parameters:

• A parameter 𝐷 𝑗 that provides an upper bound on the uncol-

ored external degree and antidegree
6
of each node 𝑣 ∈ 𝑆 𝑗 .

6
In contrast to Sec. 4.3, here the bounds depend on 𝑁 ∗ (𝑣) rather than on 𝑁𝑜𝑢𝑡 (𝑣) .



That is, |𝑁 ∗ (𝑣) \ 𝑆 𝑗 | ≤ 𝐷 𝑗 and |𝑆 𝑗 \ (𝑁 ∗ (𝑣) ∩ {𝑣}) | ≤ 𝐷 𝑗 ,

respectively.

• A lower bound 𝐿𝑗 on the size of the uncolored part of 𝑆 𝑗 .

• An upper bound𝑈 𝑗 on the size of the uncolored part of 𝑆 𝑗 .

• A shrinking rate 𝛿 𝑗 ≥ 𝐷 𝑗 log( |𝑈 𝑗 |/𝐷 𝑗 )/|𝐿𝑗 | that determines

the speed at which the cluster 𝑆 𝑗 shrinks (due to the coloring

of its nodes).

Version 2 of the DenseColoringStep procedure is again run by each

cluster leader and works as follows. First, the leader of cluster 𝑆 𝑗
picks a 1 − 𝛿 𝑗 fraction of the nodes in 𝑆 𝑗 uniformly at random, and

computes a permutation on the elected nodes. It then iterates over

these nodes according to the permutation order, picking a free color

uniformly at random for each such node. These colors are fixed

as the permanent colors, only if there are no collisions with their

outgoing external neighbors. The dense coloring CLP procedure is

based on having multiple applications of this DenseColoringStep
procedure. The key property that underlies the correctness of the

DenseColoringStep procedure is summarized in the next lemma.

Lemma 19. [Lemma 6.2 of [12]] Consider an execution of the
DenseColoringStep procedure (version 2). Let 𝑇 be any subset of 𝑆
and let𝛿 = max𝑗 :𝑆 𝑗∩𝑇≠∅ 𝛿 𝑗 . For any number 𝑡 , the probability that the

number of uncolored nodes in𝑇 is at least 𝑡 is at most
( |𝑇 |
𝑡

)
· (𝑂 (𝛿))𝑡 .

The invariants. We will have 𝑂 (1) iterations of applying the

DenseColoringStep procedure. At the beginning of each iteration

𝑖 , each cluster is required to satisfy certain desired properties con-

cerning the uncolored external and antidegrees of its nodes, and

the size of the uncolored cluster. Specifically, at the beginning of

iteration 𝑖 , each cluster 𝑆 𝑗 is required to satisfy that the antidegree

of 𝑆 𝑗 is at most 𝐷
(𝑖)
𝑗

, and that the number of uncolored nodes in 𝑆 𝑗

is in the range [𝐿 (𝑖)
𝑗
,𝑈
(𝑖)
𝑗
]. Both in the procedures of coloring 𝑉 𝐿

1

and 𝑉 𝐿
2+, the invariants regarding the bounds 𝐿

(𝑖)
𝑗
,𝑈
(𝑖)
𝑗
, 𝐷
(𝑖)
𝑗

hold

with high probability (since Δ ≥ log
𝑐 𝑛). Specifically, for Δ > log

𝑐 𝑛,

the CLP analysis shows that after the 𝑘𝑡ℎ application of Procedure

DenseColoringStep all blocks satisfy the (𝑘 + 1)𝑡ℎ invariant with

probability of 1 − 1/𝑛𝑐 . Due to the sublinear space limitation of

our machines, we will satisfy these properties with probability

of 1 − 1/𝑛𝛼 using a seed of length 𝑜 (log𝑛), for some constant 𝛼 .

To handle this error, we provide a more careful derandomization,

which is based on the following terminology.

We classify the invariants of the CLP algorithm into two types:

self-invariant and neighbor-invariant. Roughly speaking, the self-

invariant property of a cluster 𝑆 𝑗 depends only on the coloring

status of the nodes of the cluster (e.g., all nodes in 𝑆 𝑗 should have

an antidegree at most 𝑥). In contrast, the neighbor-invariant of 𝑆

depends only on the coloring status of the neighboring clusters

𝑁 (𝑆 𝑗 ) of 𝑆 𝑗 (e.g., all nodes in 𝑆 𝑗 should have an external degree

at most 𝑥), where 𝑁 (𝑆 𝑗 ) are all the clusters that have at least one
neighbor of 𝑆 𝑗 in the current collection of clusters considered. The

algorithm defines 𝐾 = 𝑂 (1) invariants where the 𝑘𝑡ℎ phase of the

algorithm assumes that all nodes satisfy the 𝑘𝑡ℎ invariant. The 𝑘𝑡ℎ

invariant provides lower bound value 𝐿
(𝑘)
𝑗

and an upper bound

𝐿
(𝑘)
𝑗

on the current uncolored size of the cluster 𝑆 𝑗 . In addition, it

provides an upper bound on the (i) external uncolored degree of

a node in a cluster, (ii) uncolored antidegree of a node in a cluster,

and possibly also on (iii) number of layer-𝑖 uncolored neighbors of

each node in a cluster.

Definition 20. A cluster 𝑆 𝑗 𝛾-satisfies the 𝑘𝑡ℎ invariant if it
satisfies the neighbor-invariant up to a factor of 𝛾 (e.g., the number
of uncolored neighbors in different clusters is increased by a factor of
𝛾 than the required invariant bounds).

In our derandomization scheme, we assume that there exists a

randomized algorithm with the following properties. As shown in

the main paper such an algorithm exists for coloring 𝑉 𝐿
1
and 𝑉 𝐿

2+.

Lemma 21. Let S′ ⊆ S be a subset of clusters such that all clusters
in S \ S′ 𝑟 -satisfies the (𝑘 + 1)𝑡ℎ invariant, and in addition, each
cluster 𝑆 𝑗 ∈ S′ satisfies:
• (P1) the (𝑘 + 1)𝑡ℎ neighbor-invariant, up to a multiplicative
factor of 𝑟 , w.r.t its neighbors in S \ S′ (if such exist).
• (P2) the 𝑘𝑡ℎ neighbor-invariant w.r.t its neighbors in S′, and
• (P3) the 𝑘𝑡ℎ self-invariant.

By applying procedure DenseColoringStep only to the nodes in S′,
w.h.p. it holds that:
• (P4) every 𝑆 𝑗 ∈ S′ (𝑟 +1)-satisfies the (𝑘 +1)𝑡ℎ invariant; and
• (P5) every neighboring cluster 𝑆 𝑗 ′ ∈

⋃
𝑆 𝑗 ∈S′ 𝑁 (𝑆 𝑗 ) (where 𝑆 𝑗 ′

is possibly in S \ S′) (𝑟 + 1)-satisfies the (𝑘 + 1)𝑡ℎ (neighbor)
invariant.

Lemma 22. Let S′ ⊆ S be a collection of clusters that satisfy
the properties of Lemma 21. Then, given the randomized LOCAL
algorithm of Lemma 21, one can provide a 𝑂 (1)-round deterministic
MPC procedure that extends the coloring (of nodes in S′), resulting
in a subset S′′ ⊆ S′ such that (i) |S′′ | ≥ (1 − 1/𝑛𝛼 ) |S′ | and in
addition (ii) the clusters of S′′ satisfy (P4,P5).

The deterministic coloring procedures of the subsets 𝑉 𝐿
1

and

𝑉 𝐿
2+ follow by the following theorem (upon specifying the precise

invariants for each of these subsets).

Theorem 23. Given the randomized algorithm of Lemma 21 and
assuming that the given collection of clustersS satisfies the 𝑘𝑡ℎ invari-
ant, there exists a𝑂 (1)-round deterministic algorithm that extends the
current coloring such that all S clusters (⌈1/𝛼⌉)-satisfy the (𝑘 + 1)𝑡ℎ
invariant.

4.5 Sparse Coloring

Let𝑈 be the remaining uncolored dense nodes, and recall that𝑉𝑠𝑝 is

the collection of sparse nodes. The sets𝑈 and𝑉𝑠𝑝 are colored in [12]

by applying an 𝑂 (log∗ Δ)-round randomized algorithm that w.h.p.

colors all nodes in 𝑉𝑠𝑝 and 𝑈 . The coloring of these two subsets

is obtained by derandomizing the corresponding CLP procedure

while maintaining the same order of the number of rounds.

Theorem 24 (Derandomization of Lemma 2.1 of [12]). Con-
sider a directed acyclic graph𝐺 ′, where each node 𝑣 is associated with
a parameter 𝑝𝑣 ≤ |Φ(𝑣) |−deg(𝑣). Let 𝑑∗ be the maximum out-degree
of the graph, let 𝑝∗ = min𝑣∈𝑉 𝑝𝑣 . Suppose that 𝑑∗, 𝑝∗ ≥ log

𝑐 𝑛, and
that there is a number 𝐶 = Ω(1) such that every node 𝑣 satisfies∑
𝑢∈𝑁𝑜𝑢𝑡 (𝑣) 1/𝑝𝑢 ≤ 1/𝐶 . Then, there is a deterministic algorithm for

coloring 𝐺 ′ within 𝑂 (log∗ (𝑝∗) − log∗𝐶 + 1) rounds.



REFERENCES

[1] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.

2014. Parallel Algorithms for Geometric Graph Problems. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing (STOC). 574–583.

[2] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. 2019. Massively Parallel Algo-

rithms for Finding Well-Connected Components in Sparse Graphs. In Proceedings
of the 38th ACM Symposium on Principles of Distributed Computing (PODC). 461–
470.

[3] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. 2020. Efficient Deterministic

Distributed Coloring with Small Bandwidth. In Proceedings of the 39th ACM
Symposium on Principles of Distributed Computing (PODC). 243–252.

[4] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The

Locality of Distributed Symmetry Breaking. 63, 3 (2016), 20:1–20:45.

[5] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-

hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. 2019. Massively

Parallel Computation of Matching and MIS in Sparse Graphs. In Proceedings of
the 38th ACM Symposium on Principles of Distributed Computing (PODC). 481–
490. A preliminary version of a merge of CoRR abs/1807.06701 and CoRR

abs/1807.05374.

[6] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Ła̧cki, and Va-

hab S. Mirrokni. 2019. Near-Optimal Massively Parallel Graph Connectivity.

In Proceedings of the 60th IEEE Symposium on Foundations of Computer Science
(FOCS). 1615–1636.

[7] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. 2014. Pseudorandom

generators for regular branching programs. SIAM J. Comput. 43, 3 (2014), 973–
986.

[8] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. 2017. Derandom-

izing Local Distributed Algorithms under Bandwidth Restrictions. In Proceedings
of the 31st International Symposium on Distributed Computing (DISC). 11:1–11:16.

[9] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2019. An Exponential Separation

between Randomized and Deterministic Complexity in the LOCAL Model. 48, 1

(2019), 122–143.

[10] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. 2018. An Optimal Distributed

(Δ + 1)-Coloring Algorithm?. In Proceedings of the 50th Annual ACM Symposium
on Theory of Computing (STOC). 445–456.

[11] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.

2019. The Complexity of (Δ+1) Coloring in Congested Clique, Massively Parallel

Computation, and Centralized Local Computation. In Proceedings of the 38th ACM
Symposium on Principles of Distributed Computing (PODC). 471–480.

[12] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. 2020. Distributed (Δ+1)-Coloring
via Ultrafast Graph Shattering. 49, 3 (2020), 497–539.

[13] Artur Czumaj, Peter Davies, and Merav Parter. 2020. Graph Sparsification for

Derandomizing Massively Parallel Computation with Low Space. In Proceedings
of the 32nd Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 175–185.

[14] Artur Czumaj, Peter Davies, and Merav Parter. 2020. Simple, Deterministic,

Constant-Round Coloring in the Congested Clique. In Proceedings of the 39th
ACM Symposium on Principles of Distributed Computing (PODC). 309–318.

[15] Artur Czumaj, Peter Davies, and Merav Parter. 2021. Component Stability in Low-

Space Massively Parallel Computation. In Proceedings of the 40th ACM Symposium
on Principles of Distributed Computing (PODC).

[16] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. 2010. Improved

Pseudorandom Generators for Depth 2 Circuits. In Proceedings of the 13th Inter-
national Conference on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX) and of the 10th the International Conference on Randomization
and Computation (RANDOM). 504–517.

[17] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and

Ronitt Rubinfeld. 2018. Improved Massively Parallel Computation Algorithms

for MIS, Matching, and Vertex Cover. In Proceedings of the 37th ACM Symposium
on Principles of Distributed Computing (PODC). 129–138.

[18] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. 2020. ImprovedMPCAlgorithms

for MIS, Matching, and Coloring on Trees and Beyond. In Proceedings of the 34th
International Symposium on Distributed Computing (DISC), Vol. 179. 34:1–34:18.

[19] Mohsen Ghaffari, Ce Jin, and Daan Nilis. 2020. A Massively Parallel Algorithm

for Minimum Weight Vertex Cover. In Proceedings of the 32nd Annual ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA). 259–268.
[20] Mohsen Ghaffari and Fabian Kuhn. 2020. Deterministic Distributed Vertex Color-

ing: Simpler, Faster, and without Network Decomposition. CoRR abs/2011.04511

(2020).

[21] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. 2019. Conditional Hardness

Results for Massively Parallel Computation from Distributed Lower Bounds.

In Proceedings of the 60th IEEE Symposium on Foundations of Computer Science
(FOCS). 1650–1663.

[22] Mohsen Ghaffari, Krzysztof Nowicki, andMikkel Thorup. 2020. Faster Algorithms

for Edge Connectivity via Random 2-Out Contractions. In Proceedings of the 2020
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1260–1279.

[23] Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying Distributed Algorithms with

Ramifications in Massively Parallel Computation and Centralized Local Com-

putation. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 1636–1653.

[24] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Search-

ing, and Simulation in the MapReduce Framework. In Proceedings of the 22nd
International Symposium on Algorithms and Computation (ISAAC). 374–383.

[25] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P.

Vadhan. 2012. Better Pseudorandom Generators from Milder Pseudorandom Re-

strictions. In Proceedings of the 53rd IEEE Symposium on Foundations of Computer
Science (FOCS). 120–129.

[26] David G. Harris, Johannes Schneider, and Hsin-Hao Su. 2016. Distributed (Δ+1)-
Coloring in Sublogarithmic Rounds. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing (STOC). 465–478.

[27] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of Com-

putation for MapReduce. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 938–948.

[28] Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju. 2020. Sample-And-

Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model. In Proceed-
ings of the 40th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). 28:1–28:18.

[29] Fabian Kuhn. 2009. Weak Graph Colorings: Distributed Algorithms and Ap-

plications. In Proceedings of the 21st Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 138–144.

[30] Nathan Linial. 1992. Locality in Distributed Graph Algorithms. 21, 1 (Feb. 1992),

193–201.

[31] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. 2005. Minimum-

Weight Spanning Tree Construction in 𝑂 (log log𝑛) Communication Rounds.

35, 1 (2005), 120–131.

[32] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. 2003. MST Construc-

tion in𝑂 (log log𝑛) Communication Rounds. In Proceedings of the 15th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 94–100.

[33] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. 15, 4 (1986), 1036–1053.

[34] Michael Luby. 1993. Removing Randomness in Parallel Computation without a

Processor Penalty. Journal of Computer and System Sciences 47, 2 (1993), 250–286.
[35] Raghu Meka, Omer Reingold, and Avishay Tal. 2019. Pseudorandom genera-

tors for width-3 branching programs. In Proceedings of the 51st Annual ACM
Symposium on Theory of Computing (STOC). 626–637.

[36] Noam Nisan and Avi Wigderson. 1988. Hardness vs. Randomness (Extended

Abstract). In Proceedings of the 29th IEEE Symposium on Foundations of Computer
Science (FOCS). 2–11.

[37] Krzysztof Onak. 2018. Round Compression for Parallel Graph Algorithms in

Strongly Sublinear Space. CoRR abs/1807.08745 (2018). arXiv:1807.08745
[38] Merav Parter. 2018. (Δ + 1) Coloring in the Congested Clique Model. In Proceed-

ings of the 45th Annual International Colloquium on Automata, Languages and
Programming (ICALP). 160:1–160:14.

[39] Merav Parter and Hsin-Hao Su. 2018. Randomized (Δ+1)-Coloring in𝑂 (log∗ Δ)
Congested Clique Rounds. In Proceedings of the 32nd International Symposium on
Distributed Computing (DISC). 39:1–39:18.

[40] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-time Deterministic

Network Decomposition and Distributed Derandomization. In Proceedings of
the 52nd Annual ACM Symposium on Theory of Computing (STOC). 350–363.

[41] Salil P. Vadhan. 2012. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science 7, 1-3 (2012), 1–336.

http://arxiv.org/abs/1807.08745

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Our Results
	1.2 Key Techniques

	2 Algorithm Descriptions
	2.1 Terminology and a Quick Exposition of the CLP Algorithm
	2.2 High-Level Description of our Algorithm
	2.3 Pseudorandom Generators and Derandomization
	2.4 Bounded-Independence Hash Functions
	2.5 The Method of Conditional Expectations

	3 Reducing to Medium-Degree Instances
	4 Improved Coloring via Derandomization of CLP
	4.1 Low-Deg Coloring
	4.2 Initial Slack Generation
	4.3 Dense Coloring with Slack
	4.4 Dense Coloring without Slack
	4.5 Sparse Coloring

	References

