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Abstract 

New radiotherapy treatment techniques involve complex equipment and procedures 

requiring the synchronisation of the treatment delivery with the patient breathing 

motion. To validate the effectiveness of these new radiation dose delivery techniques, 

new quality control and research equipment are required. Treatments are evaluated, 

before being delivered to actual patients, using devices referred to, as phantom.  

During the MAESTRO project, a phantom was developed to evaluate the 

motion compensation treatments prototype being developed. The phantom comprises 

four motors that have to be controlled synchronously.  The major part of this works 

aimed to investigate alternative control method to make the phantom follow required 

trajectories mimicking tumour and ribs motion. In addition, the sequence control and 

frequency control was implemented using LabVIEW and specialised drive system 

connected to one of the phantom motor. The resulting solution was proved accurate 

but suffered from high operating temperature. An alternative sequence control was 

also developed to attempt to improve the motor reliability and enable to change the 

motor velocity interactively. The latter resulted in the development of a new laboratory 

exercise for MSc teaching. 

The second type of contribution was to improve the design and tuning of video 

tracking systems to address issues associated with varying lighting in the different 

location used by the MAESTRO team to test the patient support motion compensation 

system. The re-tuned and modified software was used in the final MAESTRO 

demonstration.  

The third set of contributions was to propose mechanical based practical 

solutions to first simplify the set-up of video camera at each experiment, to improve 

the rigidity of the film holder used to mimic a cancerous tumour, and propose means 

to add a lateral rib motion without any additional motor. 

The culmination of the practical work was to take place in the ultimate 

verification of the proposed patient motion compensation system being responsible for 

the video tracking system.  
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Chapter 1  

Introduction 

1.1 Introduction to the cancer issue  

This Chapter presents a brief introduction to radiation oncology and in particular 

the planning, evaluation and most importantly for the scope of this work the 

verification of radiotherapy treatments and evaluation of new radiotherapy 

treatment techniques. 

 Cancer has an increasingly important impact on the UK population. 

According to Cancer Research in the UK (2011), 154,162 people died because of 

cancer in 2006. In 2007, it was estimated that around 43,000 deaths were caused by 

tobacco smoking, which states over a quarter of cancer deaths. The latest statistics 

from 2010 are showing that in the UK in 2008, there were 156,723 deaths caused by 

cancer which is 50% of the population of Coventry (Cancer Research in UK, 2011). 

 There are 200 recognisable types of cancer but four of them: breast, lung, large 

bowel and prostate cancer compose over 54% of all new cases. Mortality for those 

types equals 47% of all people with cancer diseases, where prostate accounts for 6%, 

breast 8%, bowel 10% and the lung cancer 23%. To save lives of people affected by 

cancer diseases it is necessary to look for new treatments and ways to modernise 

known treatments. Nowadays there are many cancer treatments including surgery, 

radiotherapy, chemotherapy, hormone therapy, immunotherapy, gene therapy or its 

combination. Unfortunately the knowledge gained to date is still not sufficient to 

win the battle against cancer. The focus of this work is in the evaluation of new 

radiotherapy procedure for lung cancer. 

  



Chapter 1 Introduction 

2 
 

1.2 The radiation therapy fundamentals 

Radiation Therapy (RT) or radiotherapy is the medical use of high energy X-ray 

ionizing radiation to treat cancerous cells. Since the beginning of X-radiation 

discovery, ionizing radiations, referred to as X-rays or Röentgen, have increasingly 

been used in medicine.  

 The X-rays radiations, discovered by German physicist Professor Wilhelm 

Conrad Röentgen, are electromagnetic waves. This phenomenon was recognised on 

28th of December, 1895 when it was published in Sitzungsberichte der Physikalisch-

Medizinischen Gesellschaft zu Wurzburg (French, 1968). After ten days was 

publicized article in the UK by the Daily Chronicle on 6th of January, 1896.  

 The X-rays are placed on the electromagnetic wave spectrum within a 

frequency range from        to        [Hz] and are emitted by braking electrons 

or induced atoms. The revolution of X-ray radiation in Europe resulted in many 

experiments. It was quickly suggested in the British Medical Journal Nature (1896) 

that application of Roentgen radiation in medicine allowed to diagnose bone 

structure injury.  

 Active research in radiotherapy resulted in the discovery of polonium and 

radium in 1898, which emits high-energy gamma rays naturally. The linear 

accelerator (Linac) of X-ray beam was invented in 1928 by Norwegian physicist Rolf 

Wideröe (Wideröe, 1928). This provided the means to increase energy of Roentgen 

generator significantly. A brief review of Linac development history shows that X-

ray radiation, emitted by late 1920s generators, only reached 200kV. Substantially 

developed Linac in the 1950s, provided the means to generate megavoltage [MV] 

energy around 8 [MV]. Currently Linacs are the most common type of radiotherapy 

treatment machines. Nowadays a typical Linac for medical applications uses a 

mono-energetic electron beam with energy range between 2 and 25 [MV] (Siemens, 

2010). Computed Tomography (CT) scanning was developed in 1967, magnetic 

resonance imaging (MRI) in the 1970s, and emission tomography (PET) in the 1980s. 

In the 1990s the three-dimensional conformal radiotherapy (3D-CRT) (Cancer 

Research in UK, 2011) was introduced in clinical practice followed by intensity 

modulated radiotherapy (IMRT) to optimise dose delivery to cancer tumour and 

minimises irradiation of surrounding healthy tissues. The latest achievement was 

adaptive radiotherapy (ART) (Cancer Research in UK, 2011). 
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 Adaptive radiotherapy is a novel approach that aims to further improve 

tumour motion control and protect surrounding healthy tissues. ART focuses on 

providing more accurate dose delivery to the tumour, through adaptation of the 

treatment delivery to the actual variations of cancer tumour displacement in patient 

anatomy. For this reason, ART offers the possibility of dose escalation, and 

consequently more accurate tumour control during RT treatment. 

 Nowadays, discoveries and technological developments allow oncologists to 

precisely target an X-ray beam to the target volume to destroy abnormal cells that 

grow up and replicate in an unpredictable way.  

 Unfortunately, it is not a trivial task to calculate the required radiation dose. 

The adoption of radiotherapy depends on numerous variables such as the shape, 

volume and depth of the tumour, its overall location in the body, the dose 

sensitivity of neighbouring organs and tumour displacement due to breathing. The 

challenge is to balance the negative effects of radiation on healthy tissues whilst 

maximising their therapeutic effects on cancerous cells. Therefore treatment 

efficiency is never 100%. Such issue associated with radiotherapy has still not been 

solved, however the detrimental effect of radiation for healthy tissues is taken into 

account by radiologist to determine the overall effectiveness of radiotherapy cancer 

treatment. New research focuses on decreasing the detrimental effect of radiation 

leading to healthy cells destruction. Radiotherapy can be used as an individual 

treatment to cure cancer, or to reduce  cancer before surgery. Nowadays it is often 

combined with other methods and their complements such as chemotherapy or 

hormone-therapy, or control symptoms and improves quality of life if the cancer is 

too advanced to cure.  

 Cancer treatment depends on its results and is controlled by radiologist with 

dose delivery and intensity. This treatment can be applied externally or internally, 

where external RT means cancer irradiation by use of an external X-ray beam, and 

internal RT or brachytherapy aims on placing the radioactive liquid or other 

radiation source into the treated cancerous tissue or onto it and located by orally or 

intravenously method. 

 Radiotherapy is generally delivered in small fractions over a period of weeks 

with a pause for regenerations of normal tissues. This fraction of therapy often 

comprise 30 sessions during more than 6 weeks. Brachytherapy is often used just 

once or for a very small number of times if needed (Demanes, 2005). 
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 Prior to deciding on a course of treatment it is necessary to identify the 

location of cancerous tissues and its shape and size by the use of three dimensional 

(3D) imaging and more recently 4D (3D + time) imaging to visualise tumour volume 

motion. Usually computed tomography (CT) is used to plan therapy. New 

radiotherapy treatment procedures that exploit this new 4D information are also 

being developed to overcome issues associated with patient motion during 

irradiation and help reduce side effects caused by the irradiation of healthy tissues. 

1.3 Aims and objectives 

The work described in this thesis was a part of the WP1 of the Framework 6 

European Priority Area 1 Life Sciences, Genomics and Biotechnology for Health 

integrated project on Methods and Advanced Equipment for Simulation and 

Treatment in Radiation Oncology (MAESTRO) project. This project involved 25 

partners, research institutes; oncology centres and manufacturers placed in 14 

European countries and began in May 2004 for a 5 years investigation period. The 

MAESTRO project (2010) aimed to reduce the amount of radiation dose delivered to 

surrounding areas of the tumour.  

 The work presented in this dissertation was carried out as a part of the 

MAESTRO project and oriented on contributing to the ART evaluation by 

development of a novel, dynamic three dimensional thorax phantom. In addition it 

involves the tuning and improvement to the LabVIEW based video tracking system, 

which measures the surrogates’ displacement during the experimental work. 

 The main focus of the work was to improve the phantom control system 

developed by a previous researcher. The MAESTRO objectives required producing 

smooth movement controlled by several different signals including ‚Sine Wave‛,‛ 

Lujan Model‛,‛ Irregular Model‛, ‛Real Patient Data‛ with high precision and as 

close to real time as possible. At the start of the project the phantom was capable of 

generating all these motion, however some drift and lack of repeatability were 

observed. It was believed to be due to the LabVIEW implementation of the stepper 

motors control. To achieve this first aim the following objectives were considered: 

 Review existing LabVIEW code 

 Investigate open loop stepper motor control strategies 

 Implement alternative stepper motor control systems in LabVIEW 
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 Evaluate the performance of the phantom 

 Support the MAESTRO researchers by setting up and operating the phantom 

during clinical testing of the PSS motion control system at UHCW 

 

 The second area of research was to investigate alternative LabVIEW solutions 

for on-line video tracking with an IEEE1394 camera. This system was applied to 

measure position and displacement of the markers placed on the thorax phantom. 

At the start of the project the camera was capable of tracking one target at frame 

rates between 15 and 25 frames per seconds. In some circumstances loss of tracking 

occurred or the frame rate decreased. The aim of this part of the work was to 

support a team of placement students and contribute to developing alternative 

implementation of the vision tracking system. To achieve this aim the following 

objectives were investigated: 

 Review existing code based on pattern matching 

 Investigate alternative video tracking algorithms 

 Implement and evaluate video tracking solutions 

 Adapt the previously developed method to track two targets simultaneously 

without slowing down the frame rate too much. 

 Support the MAESTRO research team by setting up and operating the vision 

tracking system during tests at UHCW. 

 

 The third area of work was in the field of mechanical design. It arose from the 

needs identified during the experimental work as well as planned phantom 

improvements.  The planned improvements were to identify a cost effective 

modification to the rib motion to enable them to move in three dimensions. 

Unplanned modifications were: 

 New camera support design to be used with a standard tripod; 

 New target attachment design to hold sensors inserted in the lungs. 

 A significant part of the work was involved with practical work associated 

with the experiments carried out at UHCW, where the complex system for image 

guided radiation therapy was tested, and where the duties were to set up, care and 

control of the camera video tracking system, and the phantom motion control.  

 The next Section describes the content of each Chapter which reports on the 

approach adopted to meet the aims and objectives of the work. 
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1.4 Deliverables 

The work carried out in this project led to the following software deliverables in 

order of importance: 

 Sequence based stepper motor motion control software  

 Frequency based stepper motor motion control software 

 Improved video tracking software able to detect two targets with different 

characteristics. 

 Identification of Lujan model from measured patient motion 

 

In addition some mechanical components were designed with the first one realised: 

 Camera support (realised and used during experiments) 

 Target attachment for lung insert 

 Three alternative designs to enable 3D rib cage motion 

 

The last type of deliverable was a scientific publication and a web based publication:  

 Augusciak M, Haas OCL and Land I, LabVIEW Motion of Radiotherapy 

Phantom, XII International Conference on Systems Engineering, ICSE2009’, 8-10 

September 2009, Coventry, UK, pp 151-156 

 Haas, Olivier C.L., (2010). Fighting Cancer with Control Theory - Control 

Theory Applications Centre (CTAC), CUTV, YouTube, uploaded, 15 Mar 

2010: http://www.youtube.com/watch?v=aUVmGoLEpCI  

 

The recording of the video reported the last set of tests of the overall couch based 

motion management system developed in Coventry. These tests took several 

sessions during which I was either in charge of the phantom software or the image 

tracking software. The most important session, from the MAESTRO project 

perspective, was the demonstration of the MAESTRO phantom, tracking and 

motion compensation system to all the MAESTRO partners on the 15 Sept 2009. 

 

http://www.youtube.com/watch?v=aUVmGoLEpCI
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1.5 Outline of approach 

This thesis comprises six chapters and is organised as follows: 

 Chapter 2 reviews existing literature involving research and commercial 

products to evaluate radiotherapy treatment delivery, and describes the general 

background of the research. It starts with a review of information about tumour 

motion behaviour along the lungs volume and resultant measurements based on 

average patients. It is followed by a review of relevant scientific and commercial 

thorax phantoms used in radiotherapy cancer treatment. Alternative solutions for 

the control of the stepper motor are then presented. Finally, the dynamic thorax 

phantom in RT developed during the MAESTRO is described in terms of 

requirements, design operating principles, advantages and limitations.  

 Chapter 3 describes the Motion Control of Radiation Therapy Phantom 

programmed with NI LabVIEW software. It starts with an explanation of the aims of 

motion control and the hardware utilised. The chapter is divided into two main 

subsections: frequency motion control and sequence motion control. The developed 

programs are described and their principle of operation demonstrated. The chapter 

concludes with a discussion on the relative advantages and disadvantages of the 

proposed control schemes.  

 Chapter 4 describes the use of the phantom and the video tracking program 

during experiments at UHCW. 

 Chapter 5 describes and suggests some ideas to modify and improve the 

thorax phantom including proposals that have been realised. 

 Chapter 6 presents the overall conclusions and further work related to the 

thorax phantom design and video tracking system.  

 



 

8 
 

Chapter 2 Dynamic thorax phantom  

Having introduced issues related to current cancer treatments, this Chapter will 

focus on the means to evaluate radiotherapy treatment in the context of motion 

management.  

 The Chapter starts with a presentation of typical surrogate motion in the lung 

and shows how existing models can be tuned to fit the data. Having evaluated the 

different types of motion, which should be replicated by a phantom, the next stage 

reviews existing phantoms designs. An in depth description of the MAESTRO 

phantom developed is then given as it forms the basis of this work.  

 The initial requirements for the MAESTRO phantom are reviewed and specific 

requirements to this work are identified in subsection 2.3.2 below. It includes a 

description of the MAESTRO thorax phantom and its operating principles. 

 

2.1 Lung tumour motion in radiotherapy 

 

Organ motion in RT needs to be known prior to planning treatment where organ 

and target motion are significant such as in the lungs. To treat lung cancer using 

radiotherapy it is necessary to know the range and variations of the tumour position 

that has a significant impact on radiotherapy effectiveness. Taking motion into 

account enables to increase the amount of irradiation delivered to cancer cells, 

accelerate cure and decrease X-ray beam influence on nearby healthy tissues. 

 Many investigations of internal organ motion have been done, where 

researchers have used different imaging or tracking methods to measure the object 

displacement inside the lungs, e.g. CT scanning, optical tracking system for external 

chest motion, spirometry, four dimensional CT scan (Wilbert et al., 2008). The 
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motion observations have increased the amount of knowledge about tumour 

volume and its displacement, lung correlation to other organs e.g. diaphragm or 

heart, and its influence on internal tumour movement. 

 The thorax phantom was developed to replicate observed target motion within 

the lungs as well as the ribs motion. The Figure 2.1 indicates the organ movement 

directions and describes the Cartesian coordinate system, used for the MAESTRO 

thorax phantom construction.  

 

 

Figure 2.1 The layout of motion direction of the thorax and internal organs, and 

related Cartesian coordinate system. 

2.1.1 Tumour motion – range 

Cancerous tumour displacements inside the lungs volume have patient specific 

pattern.  However, research on lung motion and cancer tissues behaviour has 

enabled researchers to identify typical characteristics. Such information has been 

exploited to design a device such as the MAESTRO phantom to assess motion 

management techniques in radiotherapy. 

 Many tests carried out were notably different. The range of tumour motion 

identified by Land (2009) was: superior-inferior (SI) direction equals to 31.9[mm], 

anterior-posterior (AP) equals 28.4[mm] and lateral (LR) direction equals 24.6[mm]. 

The average and observed period of respiratory cycle was 3.5[s].  

These findings were based on a review of respiratory motion and research carried 

out mainly by Shirato et al. (2006) and Shimizu et al. (2001). Both studies used 

internal fiducial markers and fluoroscopy technique for tracking displacement and 

measuring velocity of lung tumour motion on 21 patient samples. Based on these 

 X 

Z y 
 

X – superior/inferior  

Y – lateral  

Z – anterior/posterior 

LATERAL ANTERIOR POSTERIOR 

INFERIOR 
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investigations, it was assumed that tumour displacements in SI direction of 

respiratory motion cause the most significant movement with amplitude up to 

32[mm]. The other directions displacement, were in general lower than max SI, and 

for the AP the maximum distance was 28.4[mm], and the LR tumour dislocation 

was respectively up to 24.6[mm]. It is worthy to notice, that some cancerous 

tumours can have changes even 5[mm] between cycles, which depends on 

hysteresis inspiration and expiration trajectories (Shirato et al., 2006).  

These displacements were rounded up such that superior-inferior, anterior-

posterior and lateral directions became 32[mm], 29[mm] and 25[mm] respectively.  

 In Land (2009), the minimal significant displacement ∆ was identified to be 

not lower than ± 1.8 [mm] to allow an adaptive system to track and deliver an 

effective treatment. This condition was formulated by the International 

Electrotechnical Commission (IEC) definition for dose variation at the edge of a 

field, and the International Commission on Radiation Units and Measurements 

(ICRU) specifications for the dose variation across a target. 

2.1.2 Tumour motion – speed 

Respiratory speed depends on age and many other determinants such as breathing 

by nose or by mouth, weight, physical condition, type of work, nervousness, cough 

etc. Typical respiratory rates classified by age, are for newborns, 44 breaths per 

minute (bpm); infants: 40-60 bpm; preschool children: 20–30 bpm; older children: 

16–25 bpm; adults: 12–20 bpm; adults during strenuous exercise 35–45 bpm; 

athletes' peak 60–70 bpm. Note that patients receiving treatments are normally lying 

down; hence their respiration rate is normally lower than 20 bpm.  

 Data review of the patient respiratory motion and analysis of the findings 

with respect to time has identified that typical tumour velocity is 8.7 millimetres per 

second with maximum speed of 36.4 [mm/s].  

 Shirato et al. (2006) have reached similar conclusions for a series of 21 patients with 

median respiratory speed equals to 9.9 ±5.4 [mm/s] with a minimum speed of 

6.6 ±3.6 [mm/s] and a maximum speed of 21.1 ±18.9 [mm/s]. 

 According to Benchetrit (2000), breathing speed was determined to be in the 

range 6 to 31 respiration cycles per minute. Skworcow (2006) computation by use 

Fourier analysis, based on 350 lung tumour trajectories, achieved following results 

for breathing period, where mean 4.4 ±2.8 second (13.3 bpm ± 21 bpm , median 3.8 
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second (15 bpm), minimum 2.6 second and maximum 8.5 second. Shirato et al. 

(2006) reported that the average of the median speed was 9.9 ± 5.4 [mm/s], while the 

minimal speed was 6.6 ± 3.6 [mm/s], and the average maximal noticed speed was 

21.1 ±18.9 [mm/s]. The period of the breathing cycles was around 3.5 sec meaning 

that the respiration frequency was approximately 0.28 Hertz. 

2.1.3 Tumour motion – simulation patterns 

 The first type of signal used for motion simulation can be a patient respiratory 

data collected in the column of a text or spreadsheet e.g. excel file. The trajectory 

replicated by the MAESTRO phantom were mostly taken from the experimental 

data collected by George et al., (2006) and analysed in Skworcow (2006). 

 Currently, the most widely used test signal is based on the Lujan et al. (1999) 

sinusoidal model with flat bottoms.  

The general mathematical equation describing respiratory pattern by sinusoidal 

wave is:  

 

           ( )        (
   

 
  )          

Equation 2.1 Sinusoidal waveform. 

Where    is the amplitude in mm, t is the time in second,  is the period in second, 

 is the starting phase angle in degree and          is the offset in mm. Sinusoidal 

patterns of motion are similar to patient breathing motion. Moreover, it is helpful to 

have such fluent, symmetric and periodic motion for the phantom testing and 

development, and it provides good benchmarks for research observations.  

 However, respiratory motion is not symmetrical. Therefore, Lujan et al. (1999) 

implemented more adequate pattern modelling lung tumour motion by a 

mathematical expression including a power term: 

  

          ( )       
  (

   

 
  )          

Equation 2.2 Lujan breathing pattern. 

where         is the offset in mm,    is the amplitude in mm, t is the time in second, 

 is the period in second,  is the starting phase angle in degree, n is a coefficient of 

breath in/out ratio and an integer parameter nN. The crucial advantage, compared 
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to a sinusoidal signal, is the ability to control of the inhalation-exhalation ratio by n 

and achieving a pause while exhalation. Typically the n parameter can be between 1 

and 3 with an average value of 2 for patients’ respiratory motion. Lujan model can 

be used to simulated realistic rib-cage movement of calm patient with regular 

breathing.  

 Because there is a large amount of patients with irregular respiratory pattern, 

the Lujan formula was modified, to replicate this motion. Thus the breathing pattern 

was modified according to Equation 2.3, 

 

           ( )  (    )     
   (

   

   
  )          

Equation 2.3 Irregular respiratory pattern. 

where:       are randomly chosen variables  R from 0 to 1 for each cycle,         is 

offset in mm,    is amplitude in mm, t is the time in second,  is the period in 

second,  is the starting phase angle in degree, n is a coefficient of breath in/out ratio 

and an integer parameter nN.  

 Taking into account irregularities in the breathing cycles can improve the 

realism of the trajectory produced. To evaluate the ability of Lujan model to 

replicate measured motion, the following trajectory from Shirato et al. (2006), see 

Figure 2.2, was adopted.  

 

 

Figure 2.2 The breathing measurement from Shirato real patient data. 

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University. 
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The estimation of the best parameters that would match the model given by 

Equation 2.2 was computed and outcomes were plotted below.  

Figure 2.3 First 4 cycles of breathing measurement from Shirato (2006) data and estimated 

Lujan wave. 

The Figure 2.3 shows fitting of the average model over 4 cycles using Lujan 

respiration model. The criterion used to identify the model was the minimum of the 

sum of the absolute values of the error. The error computed was the difference 

between real patient data and simulated Lujan waveform.  

The method adopted to find the model parameters was a form of exhaustive search 

where each parameter was changed in small step increment and the solution 

corresponding to the best (according to the absolute value of the error) set of 

parameter was selected. 

The parameters found for the Lujan model were: amplitude AO = 12.1 [mm], 

coefficient n = 2, and cycle period τ = 6.4 [s]. These parameters are specific to these 

four cycles and identifying models for other cycles would result in different model 

parameters. In this work, one of the aims was to obtain a single average model. The 

typical average and representative pattern of lung tumour movement, based on the 

Lujan model, was obtained and found to be: amplitude AO=10 [mm], coefficient n=2, 

and cycle period τ=4 [s].  

These parameters, describing the breathing model, were used to control the 

quality assurance device for radiotherapy treatment which is the MAESTRO thorax 

phantom, described in the next chapter.  

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University. 
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In summary, based mainly on average patient data, the following parameters 

were used for the thorax phantom control: 

 Respiratory cycle 3.5 [s].  

 Range of the movement through SI, AP, and LR direction are the 

maximal obtained values, and equals to 31.9 [mm], 28.4 [mm] and 

24.6 [mm] respectively.  

 The phantom is aimed to be used as a reference device to evaluate a method of 

radiation dose delivery or to adjust X-ray treatment equipment. Motion accuracy is 

therefore one of the most important criteria. It is strongly recommended that motion 

needs to be repeatable, highly precise and similar to real patient breathing. Ideally a 

phantom should replicate typical motion along superior-inferior direction (SI) – the 

largest motion generated by diaphragm, anterior-posterior (AP) and lateral (see 

Figure 2.1).  

 Notice that in reality no one general breathing motion pattern should be 

adopted as a particular patient breathing pattern prior to making suitable 

observations. All patients have unique tumour motion characteristics in terms of 

displacement, direction and phase.  

2.2 Review of phantoms for RT 

 The MAESTRO phantom described in the next section is only one of many 

existing phantoms aimed to evaluate lung cancer treatment in the presence of 

motion. This section reviews the advantage and limitations of current research and 

commercial phantoms. 

2.2.1 Review of existing phantoms for lung cancer treatment. 

 Phantoms have long been used in medical physics to evaluate the effect of 

radiation and compare the dose delivered to that calculated by various software 

systems. Phantoms have two main roles; the most important is that of quality 

assurance and control to ensure that the machine delivering treatment is working as 

expected and within tolerances. These phantoms are normally non 

anthropomorphic designed to be easy to handle and provide a straightforward 

means to evaluate the equipment dosimetric as well as mechanical errors. 
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 The second type of phantoms is aimed at research. These are generally more 

complex and aimed to push equipment to their limits as well as provide realistic 

clinical conditions without endangering patients.  

 Many current commercial and research phantom can simulate motion in only 

one direction (see Table 2.2) and do not contain any anatomical body parts. Platform 

based phantom apply the motion to the whole phantom body instead of separating 

the tumour motion to that of the rest of the body. Some phantoms that can simulate 

lung tumour motion have already been developed but they still have some 

limitations such as restriction to sinusoidal or periodic motion with limited 

amplitude and period, while patient’s breathing is mainly irregular. The review 

presented below consists of the relative merits of the existing phantoms. 

 Designed by Duan et al. (2003), the platform’s phantom model has respiratory 

motion along 1 DOF – a superior-inferior direction. That system generates a 

sinusoidal motion with a changeable frequency from 0 up to 1.6 cycles per second 

and an adjustable amplitude range of 0 – 2.5 [cm]. The phantom could be placed 

onto platform for dosimetric tests.  

 The phantom built by Dietrich et al. (2003) comprised a moving platform onto 

which a lung phantom was placed. The motion was replicated by platform able to 

simulate various periodic movements along one direction. 

 Similarly, Jiang et al. (2003) have created a motor-driven platform that 

simulates tumour motion along the SI direction. The motion was limited to 

sinusoidal traction with a peak-to-peak amplitude of 2 centimetres and a period of 4 

seconds.  

Figure 2.4 Phantom built up by Jiang et al. (2003). 

This item has been removed due to third party copyright. The 
unabridged version of this thesis can be viewed at the Lanchester 

library, Coventry University. 
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 The phantom constructed by Alasti et al. (2006) was also platform driven and 

was able to move periodically in one direction. Its amplitude range was limited 

from 1 to 3 cm with a period of 3 to 8 seconds. 

 Keall et al. (2004) placed a thorax phantom onto a moving platform that 

moved with sinusoidal action toward SI direction.  

 Schaefer et al. (2004) developed a phantom where the moving platform 

simulates respiratory motion toward SI direction with a cylindrical phantom 

mounted onto the platform. This was used to investigate the influence of breathing 

motion in step-and-shot IMRT.  

 The phantom developed by Fitzpatrick et al. (2005) was a moving platform 

able to simulate motion along superior-inferior direction. The displacement range 

was up to 5[cm]. Depending on the needs, the phantom could be placed on the 

platform driven using a stepper motor controller. Most types of respiratory motion 

could be simulated, including patient respiratory data.  

Figure 2.5 The movable irregular breathing platform. Phantom developed by Fitzpatrick 

et al. (2005). 

 Hugo et al. (2002) developed phantom placed onto a 2D drive system with high 

precision stepper motors. A complex motion function could be used to drive the 

motion of the stages. The phantom was a water-filled acrylic cylinder with Teflon 

spheres’ markers of radius 1 cm mounted on acrylic posts. 

 

This item has been removed due to third party copyright. The 
unabridged version of this thesis can be viewed at the Lanchester 

library, Coventry University. 
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Figure 2.6 In-house quality assurance phantom by Hugo et al. (2002). 

 

 A 3D motion simulator was developed by Zhou et al. (2004). The device 

consists of two platforms that can be programmed independently and simulate the 

motion of skin and an internal tumour in three directions. The simulator was 

designed to test the effect of internal-external motion relationship. The system was 

able to simulate sinusoidal motion or reproduce human respiratory skin and 

tumour motion with precision better than ±0.1 [mm].  

Figure 2.7 The phantom expanded by Zhou et al. (2004). 

 Recently Nioutsikou et al. (2006) developed an anthropomorphic, tissue-

equivalent breathing phantom with deforming lungs. A tumour with the lung can 

be driven on any arbitrary 3D trajectory. The maximum speed of the drive system 

was limited so that the cycle duration of the simulated motion is larger than 

commonly found for patient’s breathing. For example, during their experiments an 

experimental cycle of 20 seconds simulated a real cycle of 5 seconds.  

This item has been removed due to third party copyright. 
The unabridged version of this thesis can be viewed at the 

Lanchester library, Coventry University. 

This item has been removed due to third party copyright. The unabridged version of 
this thesis can be viewed at the Lanchester library, Coventry University. 
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Figure 2.8 The breathing phantom, PULMONE. Treatment setup. 

 The Radiological Physics Centre’s (RPC) developed a thoracic phantom 

(Radiological Physics Center, 2010)  used in dose distribution measurement (Figure 

2.9). The motion range was up to 15cm maximum, with the range of respiratory 

motions typically 0-2 cm. The reciprocal motion is superior-inferior (SI) direction. 

The RPC thoracic phantom has an ellipsoidal tumour insertion inside the left lung 

where Thermo-Luminescent Dosimetry (TLD) and film can be inserted for dose 

measurement. The phantom is filled with water when scanned or treated, to 

simulate surrounding tissue. The Figure 2.9.B) shows the 4D CT imaging setup.  

  

Figure 2.9 A) The RPC thorax phantom with insertions includes the lungs, heart, and 

spinal cord, B) example of experimental set up made by researcher of the 

University of Texas Southwestern Medical Center at Dallas. 

 

A 

B 

This item has been removed due to third 
party copyright. The unabridged version 

of this thesis can be viewed at the 
Lanchester library, Coventry University. 
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 Other examples may be given by commercial phantoms which are usually 

more advanced and complex or alternatively designed to be simple and easy to use. 

The dynamic thorax phantom developed by Computerized Imaging Reference 

Systems Inc. (CIRS, 2010) was used for simulating lung tumour motion (Figure 

2.10). Tumours of various size and shape can be positioned within the thorax. This 

model was manufactured from tissue equivalent materials and looks like a 

simplified human thorax.  

 

Figure 2.10 The IMRT dynamic thorax phantom built by CIRS - Model 008 . 

Various shapes of tumours can be positioned inside the thorax phantom. It can 

move along three-dimensions with sinusoidal and other complex motions (based on 

piecewise linear motion), with sub-millimetre accuracy. The ranges of motion were 

limited up to 40mm in superior-inferior direction, up to 7mm in anterior-posterior 

direction and up to 7mm in lateral direction with a period of 4 to 7 seconds. The 

CIRS Model 008 phantom disadvantage is that it is very expensive, with a price in 

the order of $30000. 

 The next commercial phantom is a thorax model by Modus Medical Devices 

Inc. (2009), which developed a respiratory motion phantom called "Quasar", see 

Figure 2.11.  

This item has been removed due to third party copyright. The 
unabridged version of this thesis can be viewed at the Lanchester 

library, Coventry University. 



Chapter 2 Dynamic thorax phantom 

 

20 
 

Figure 2.11 A) The respiratory motion phantom QUASAR, B) optional insert with film and 

marker(Modus Medical Devices Inc., 2009). 

 

The phantom consist a body shaped part in which a moving cylindrical insert with a 

diameter of 2cm can be placed. Respiratory motion can be simulated in the superior-

inferior direction with variable speed, variable amplitude and 4 to 50 respirations 

per minute with a sinusoidal motion profile with approximately 20kg weight.  

 The dynamic breathing torso phantom was made by the The Radiology 

Support Device Inc. (2008). The RSD based on the Alderson Radiation Therapy 

phantom. The phantom construction is anthropomorphic including lungs, ribcage 

bones, skin and sub-dermis, and an independently movable tumour within one of 

the lung volume.  

Figure 2.12 The RPC thoracic phantom (The Radiology Support Device Inc., 2008).  

 

 The programmed application is increasing and decreasing air pressure, so the 

phantom lungs fill and empty air to replicate humanoid lung function. Chest 

movement of one centimetre or more can be programmed, and controlled by several 

sinusoidal signals with respiratory intensity 5-20 breath/min. The obvious 

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University. 

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University. 
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disadvantage is cost of the torso model which is $29500 and more if optional 

components are used. For the price $30000 customers will receive the phantom 

model, external control hardware and control software that are based on industry 

standard LabVIEW™ software. 

 The properties of the existing phantoms reviewed are summarised in the 

Table 2.2.  
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Phantom name / 

Authors 
DOF 

Chest & 

Tumour 

Independent 

Motion 

Bone/Tissue 

equivalent/ 

Skeletal structure 

Motion Pattern 

Motion 

Range 

SI/AP/LH 

[mm] 

Respiratory 

Frequency 
Comments 

Assumption data 

(see section 2.1) 
3-D yes Yes/yes/yes 

sinusoidal, 

Lujan, from 

patient data 

32/29/25 0-4Hz 

Average parameters base on 

research of patients respiratory 

motion  

MAESTRO (2009) 

A) thorax 

B) tumour 

 

3-D 

2-D 

yes Yes/yes/yes 

Sinusoidal, 

Lujan, Irregular, 

patient data 

20/35/5 

40/40/30 

breathing 

frequency 

from 0 to 4 

Hz 

 

Saracen (2005) 3-D no Yes/yes/yes - - -  

Varchena et al. (2010) 3-D no Yes/yes/no - - -  

Duan et al. (2003) 1-D no Yes/yes/yes - 25 0 to 1.6 Hz  

Dietrich et al. (2003) 1-D no - - - -  

Jiang et al. (2003) 1-D no - Sinusoidal 20 0.25 Hz  

Alasti (2006) 1-D no - - 30 -  

Schaefer et al. (2004) 1-D No - - - - 

Able to investigate the influence of 

breathing motion in step-and-shot 

IMRT 

Table 2.1.a) Review of phantom for IMRT research. 
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Phantom name / 

Authors 
DOF 

Chest & 

Tumour 

Independent 

Motion 

Bone/Tissue 

equivalent/ 

Skeletal structure 

Motion Pattern 

Motion 

Range 

SI/AP/LH 

[mm] 

Respiratory 

Frequency 
Comments 

Keall et al. (2004) 1-D no - sinusoidal - -  

Fitzpatrick et al. 

(2005) 
1-D no no/yes/no 

sinusoidal, 

patient data 
50 

developed 

a moving 

platform 

Cylindrical phantom placed on 

platform 

Hugo et al. (2002) 2-D no no/yes/no no - - No pattern; active breathing control  

Zhou et al. (2004) 3-D yes No/no/no 
sinusoidal, 

patient data 
170 0,2 Hz 

Respiratory motion simulator; 

accuracy better than ±0,1 

Nioutsikou et al. 

(2006) 
3-D no no/yes/yes sinusoidal - 5 Hz 

motion precision better than 

±0.1mm 

RPC (2010) 3-D no Yes/yes/no 
sinusoidal, 

irregular 
150   

CIRS Inc. (2010) 3-D - Yes/yes/no 
sinusoidal, 

irregular 
40/7/7 

0,14-0,25 

Hz 
Commercial-cost $28500 

Modus Medical 

Devices Inc. (2009) 
1-D no Yes/yes/no sinusoidal - 

0,07-0,84 

Hz 

QUASAR 

SI movement direction 

RSD Inc. (2008) 3-D yes Yes/yes/yes sinusoidal - 
0,083-0,33 

Hz 

Commercial-cost $30000 

LabVIEW software 

Table 2.2.b) Review of phantom for IMRT research 
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2.2.2 Limitations of the existing phantoms 

 

At the start of the MAESTRO project many of the existing phantoms did not cover 

all the expectations associated with a representative phantom for ART.  

 Most of the existing phantoms can simulate motion in only one direction, and 

mostly within SI. However, AP and/or LR direction of the tumour movement has 

been observed and should therefore be implemented as it influences ART 

treatments. Ideally 3D tumour motion should be able to be programmed into a 

phantom’s ribcage. 

 Most phantoms are static and make use of a moving platform to generate 

motion. This means that the whole torso is moved instead of the tumour. Ribs 

motion are traditionally ignored when planning and delivering treatment. This can 

however significantly impact dose distribution if proton therapy is used. At the start 

of the MAESTRO work, most phantoms were only able to simulate sinusoidal or 

periodic motion with limited amplitude and period, whereas patient breathing 

pattern is mostly irregular. Nowadays, however, many phantoms are able to follow 

similar trajectories like real measured motion of the patient or cancerous tumour. 

 In relation to the needs of expanding ART techniques it was decided to create 

a new thorax phantom as a part of the MAESTRO project. The new dynamic thorax 

phantom was supposed to:  

a) be similar to real human body so its parts should to be heterogeneous, 

anthropomorphic and tissue equivalent, 

b) be easy to manufacture and assemble with low productions costs, 

c) have precise motion control of the tumour along 3D and ribcage wall motion 

separately, 

d) have a motion control which use various patterns of movement: regular (like 

sinusoidal or Lujan) and irregular (modified Lujan or real patient respiratory 

measurements), 

e) be easy to use in clinical practice. 

 The next Section reviews the MAESTRO phantom at the start of this project 

and summarises the issues addressed by this work. 
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2.3 The MAESTRO phantom 

This following Section summarises the required features of a phantom to be used for 

ART. Afterward, it illustrates the development of dynamic thorax phantom and 

describes the thorax phantom built for the MAESTRO project. The phantom design, 

operating principle and finally material characteristics are now summarised. 

2.3.1 Desirable attributes for and ART phantom  

An ART phantom should replicate realistic treatment conditions, and therefore 

move similarly to human body. The most important criteria for the phantom are 

repeatable, dynamic and highly accurate motion. Ideally a phantom should replicate 

typical motion along three dimensions. The superior–inferior (SI) displacement 

should to be the largest motion and is mainly caused by the diaphragm. The 

anterior–posterior (AP) and a lesser extent lateral (LR) motion also should to be 

included. Phantoms could to be used as a reference to quality assurance of RT 

machine, to adjust RT equipment or evaluate methods of dose delivery. To evaluate 

realistic treatment plans it is beneficial for a phantom to be manufactured with 

heterogeneous body parts and be of an anthropomorphic nature. Ideally, the 

creation of the phantom components and parts should be easy to manufacture. 

Moreover, the overall phantom design should be easy to exploit in a clinical 

practice. 

2.3.2 The RT thorax phantom design of the MAESTRO project  

The thorax phantom was mainly developed by the PhD student Imke Land together 

with technicians at the University Hospitals Coventry and Warwickshire, as part of 

work package No.1 (WP1) of the MAESTRO project, which was coordinated by Dr 

O. Haas. This Section is based on Imke Land’s PhD (Land, 2009). The entire 

phantom was created from tissue equivalent materials. Its internal structures were 

modelled to be heterogeneous and anthropomorphic, including spine, lungs, ribs, 

see Figure 2.13. 

 The thorax phantom comprises two main parts: an x-ray sensitive sensor fixed 

to a 3D drive system and a ribcage. Both parts are able to mimic motion separately 
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or together. The simulated tumour is replaced by an X-ray sensor which is inserted 

into the lungs volume of the ribcage. 

 The phantom’s ribcage was assembled from precisely formed static spine, 

positioned between two separately modelled stationary lungs. This unit was then 

placed into a rib-cage construction, where ribs were able to move along two 

directions: SI and AP above immobile lungs. The expansion along the LR direction 

for the ribcage was not implemented originally due to the limited amount of motion 

observed in reality. Such motion could however be implemented, see section 5.1 

which describes the author’s proposal.  

Figure 2.13 The anthropomorphic MAESTRO thorax phantom and major parts 

(Land, 2009). 

  

In relation to the phantom dynamic motion, the ribs motion were synchronised, but 

each rib motion was adjusted using mechanical means to mimic the motion of the 

different ribs. The skin was adjusted onto the ribs. To make the phantom lighter 

during transport, it was decided to use water as a tissue equivalent material. The 

space between skin and lungs was therefore filled in with water. 

 All the parts, soft tissues and hard bones, were moulded from casts taken 

from representative body structures. Different types of bones were designed to have 

similar atomic structure as well as material composition to actual bones resulting in 

equivalent mass density as well as Hounsfield units. The substitute materials  were 

This item has been removed due to third party copyright. The unabridged version of this thesis can 
be viewed at the Lanchester library, Coventry University. 
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a mixture of epoxy resin and calcium carbonate (CaCO3) based on the work of 

Bolton (1974) and Schneider et al. (1996) resulting in the material presented in Land 

(2009) and reproduced here. 

 

Table 2.3 The listing of the parameters of substitute materials for specified body parts 

(Land, 2009). 

For more details on the phantom construction please refer to Land (2009).    

 The most important part of the thorax phantom from a dosimetric assessment 

of the dose delivered is the three dimensional (3D) motion drive unit. It is able to 

carry at the end of a set of rods a target that can be inserted into the lungs. Sensors 

and devices of various size and shape can be fixed onto the rod to evaluate the dose 

delivered or visualise the motion. The rods can be moved within either lung. In this 

work X-ray film e.g. Gafchromic film were inserted into a cylindrical disk holder to 

measure the dose irradiation using a circular field in the presence of motion.   

 The tumour motion along three dimensions was realised by using three 

stepper motors capable of doing 200 steps per turn (see Appendix 3). This allows 

generating high precision motion with 0.9O per step together with the required 

torque. The stepper motor characteristics together with the motion requirements 

were used to derive gearbox ratio in view to achieve both the required velocity and 

movement patterns (Section 2.1.3), see Table 2.4. 

  

This item has been removed due to third party copyright. The unabridged version of this 
thesis can be viewed at the Lanchester library, Coventry University. 
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Table 2.4 Mechanical properties of thorax phantom movement. 

 

The gearboxes ensure that the appropriate torque can be delivered for the required 

resolution and accuracy. The Table 2.4 contains the screws parameters, which are 

important for motion programming. The ‘screw pitch’ converts rotational into linear 

displacement. The ’maximal screw length’ is used as boundary conditions, and the 

’used screw length’ describes the typical range employed during testing.  

 

2.3.3 Thorax phantom operating principles 

One of the major MAESTRO phantom’s aims was to support the MAESTRO project 

which focused on image guided radiotherapy (IGRT) development with the aim to 

increase the cancer treatment efficiency. One of the other thorax phantom purposes 

was to be a quality control tool of the X-ray machines used at the hospitals for 

radiotherapy. 

 This Section briefly describes the part of MAESTRO project, which was aimed 

at increasing the X-ray beam targeting accuracy during radiotherapy.  

 There exist several companies that produce treatment systems for RT such as 

Elekta, Siemens, Varian or Philips. Most of these RT treatment machines were 

routinely used to deliver treatment using fixed gantry position. The X-ray particles 

emitted by RT Linear accelerator (Linac) are focused onto patients and their 

cancerous cell. Regularly treated patient have to be positioned on a couch and set 

under high energy X-ray beam (typically from 6 [MeV] to 20 [MeV]). Considering 
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lung cancer treatment, it is known, that the lungs motion due to breathing 

significantly affect the tumour location during the treatment. Methods to overcome 

this problem include increasing treatment margin, holding respiration and stopping 

the beam if the target is outside a predefined location. The Figure 2.14 visualises 

tumour displacement, caused by lungs movement during respiratory phases, and X-

ray radiation margin of affected normal tissue. 

 

Figure 2.14 Tumour movement phases during RT treatment without displacement’s 

compensation by patient support system (PSS). 

 Another solution was initiated to shorten therapy time without holding 

breathing. It involves compensation of the tumour, lungs and/or chest motion by 

PSS reposition in real time. To achieve such treatment, the PSS positioning system 

was automated and extended by a tracking system, a motion predictor as well as a 

motion controller. The overall idea of motion compensation using a PSS was to track 

two external markers, located on the thorax phantom (alternatively patient’s chest). 

The first marker, which served as a reference, was usually placed on the PSS table 

while the second was either fixed to the rib with the largest displacement or to the 

moving arm holding the lung insert target. All the motion measurements were 

made using a camera video tracking system, using a FOculus FO124TB CCD digital 

industrial camera with IEEE 1394 interface (see Appendix 9) and where 

programmed using the NI LabVIEW software environment, see Figure 2.15 and 

Figure 2.16.   

 The measured positions were sent to the predictor module in real time. The 

predictor applied was a Kalman filter (KF) algorithm, which is an optimal estimator 

dedicated for linear signals. Next, the data of predicted trajectory were sent to a 

model predictive controller (MPC).  

 The controller collected information from the PSS sensors about the actual PSS 

location and the distance between two markers placed on the phantom model 

measured by the camera video tracking system. The controller calculates on-line the 
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optimal control action using current as well as predicted positions. It results in 

compensation of the PSS motion in the opposite direction to the measured target 

displacement at the same time. These cancelling most of the observed delays in the 

position video tracking, the control loop, the dynamics of PSS to move the PSS table 

and to compensate its movement for the measured location at the right time. The 

Figure 2.15 and Figure 2.16 illustrate the set-up used during motion compensation 

experiments. This approach was found to be able to cancel most of the observable 

delays resulting in significantly reduced observable target motion with respect to 

the treatment beam. 

 

Figure 2.15 Experimental set-up illustration. The machine for radiotherapy treatment and 

PSS, phantom, camera video tracking and used coordinate system. 
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Figure 2.16 Set up of the thorax phantom model placed on the PSS couch. Preparation to 

the tests of the complex compensation system. 

 

 The new MAESTRO thorax phantom replaces a real patient affected by lung 

cancer with an anthropomorphic robotic patient with adequate bone structure, (see  

Section 2.3.2) and relevant respiratory action. The MAESTRO phantom can 

reproduce motion trajectory along SI, AP and LR direction and replicate several 

different tumour patterns of movement, presented by Figure 2.17 and specified by 

the user control panel.  
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Figure 2.17 Patterns of phantom respiratory motion simulated alternatively by: a) 

Sinusoidal wave, b) Lujan model, c) Irregular model, d) Data from patients 

measurements. 

 As mentioned, the thorax phantom prototype of MAESTRO project, can 

simulates real patient respiratory data (see (d) of Figure 2.17) previously saved in 

excel or text file. Patterns described by mathematical formula such as sinusoidal, 

Lujan or irregular motion’s model (Figure 2.17 (a), (b), (c)) can also be generated. 

However, more signals could be produced. The phantom motion control could also 

be adapted to any periodic or irregular pattern of simulation. The only limits are 

maximum range of the displacement and maximum speed, which are specified by 

the hardware.   

 

2.3.4 Limitations 

The common side-effects during designing any prototype are compromises. The 

development of the MAESTRO thorax phantom exhibits the following limitations.  

 There are only two degrees of freedom for the phantom’s rib-cage motion (not 

3D). The rib-cage expansion along the third-lateral direction would be beneficial for 

ART treatment and more adequate while simulating treatment. However, such 

motion previously was not included as it is not essential and because of fairly small 

movement amplitude (about  5 [mm] with peaks up to 10 [mm] during coughing).  

 The second restriction is the use of static lungs fixed inside the phantom. 

Therefore simulated respiratory motion have no influence on lungs expansion. This 

a)             b) 

 

 

 

 

c)             d) 
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phantom structure can limits in some cases a dose measurements. However, the 

compromise was caused by the need for the lungs to have an easily accessible 

opened structure to insert X-ray sensor fixed to the external motion drive.  

 Finally, the thorax phantom restraint is not representative of body dimensions 

for all range of patients’ anatomy. The rib-cage is based on an average torso build. 

Thus the phantom is not appropriate to simulate the treatment of ‘small’ or ‘large’ 

patients. 

2.4 Conclusions 

The review of all above information provides a better understanding of cancer 

treatment issues. There are a number of radiotherapy cancer treatment methods, 

however no one is effective to cure all patients. It is therefore necessary to take 

action against cancer, and improve existing treatment by refining them as well as 

exploring new methods of cancer treatment methodology. Adaptive radiotherapy is 

one of such new methods which require new quality assurance and new treatment 

validation procedures. 

 The brief review of the organ motion and existing thorax phantoms has 

highlighted advantages as well as limitations associated with the current phantom 

including the MAESTRO thorax phantom prototype. The dynamic MAESTRO 

thorax phantom has been described with a level of detail sufficient to prepare the 

reader for the programming work involved in controlling the phantom. The 

phantom has the ability to realise 3D (longitudinal, lateral, vertical) tumour motion 

within the lungs volume at the same time as 2D (longitudinal, vertical) rib-cage 

motion. The tumour is represented by X-ray sensor is an observed target fixed to a 

3D linear slider unit.  The motion control is separated for each part: the tumour is 

moved by a 3D linear motion drive and the rib-cage with a single stepper motor. 

The phantom motion control can be simulated by varied patterns based on results of 

measurements or described by mathematical formula. The representatives and used 

motion patterns were: sinusoidal, Lujan, irregular wave or real patients breathing 

observation and measurements, which reproduces breathing amplitude and 

frequency. The motion control is very precise with the use of a stepper motor 

capable of 200 steps per turn and a gear transmission. 
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 The construction of the phantom was made using anthropomorphic ‘body 

parts’. All parts were made with tissue and bone equivalent materials with a 

substitute material capable to absorb, scatter and ionise the X-ray radiation, and 

where their density was identical to human body structures.  

 The phantom can be used with X-ray radiation to compensate the tumour 

displacement effect within a lung while simulating patient breathing. This was one 

of the aims of the MAESTRO project, which required a phantom for the evaluation 

of the PSS compensation system of the RT cancer treatment machine.  

 Moreover, the hospital that exploits RT treatment machine for lungs cancer 

treatment can take advantage of the developed thorax phantom. By phantom 

connection to the respiratory compensation system of the RT machine it is possible 

to check the treatment quality and help calibrate RT machine. It needs to be 

highlighted, that the thorax phantom can also be used for ART evaluation. 

 The phantom design has separated tumour and rib-cage motion. This enables 

phantom usage with various methods of adaptive delivery system. External 

markers affixed onto the ribs can be used to simulate the chest expansion during 

inhalation. The relationships of the external chest movement and the internal target 

displacement can also be tested. 

 Some of the ‘imperfection’ could be considered and improved in future work 

and several suggestions will be presented in the following chapters. However, the 

present phantom model is a practical and usable tool for researchers in motion 

management in cancer treatment by radiotherapy. The developed dynamic thorax 

phantom is one of the most advanced and multifunctional tool and therefore is very 

helpful and fully functional instrument for ART treatment development.
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Chapter 3  

LabVIEW Motion Control of Radiation Therapy 

Phantom  

The motion control of the phantom depends on materials and assembly. Thus 

hardware has a crucial influence on programming, irrespective of the software used. 

In this project NI LabVIEW software versions 8.6 and 2009 were used to control the 

thorax phantom.  

 The chapter starts with a description of the hardware involved in the Motion 

Controller implementation for the MAESTRO Phantom. It starts with a brief 

explanation of motion control using step sequences and then by frequency together 

with the hardware used. Each method of control is then expanded in separate 

Sections to include the LabVIEW implementation and the demonstration of its 

operation. The chapter concludes with a discussion on the relative advantages and 

disadvantages of the proposed control methods. 

3.1 Resources for stepper motor control – electrical 

design and LabVIEW implementation 

The motion generation and control of the MAESTRO thorax phantom was realised 

through the systems presented in Figure 3.1. The implementation adopted for the 

hospital trials of the phantom was based on sequence control. 

 

 



Chapter 3 LabVIEW Motion Control of Radiation Therapy Phantom 

36 
 

 

Figure 3.1 Diagram of electrical motion systems: sequence motion control and motion 

control by frequency modulation. 

Figure 3.1 presents an overview of the approaches adopted within this work to 

control the phantom stepper motors. The control software is common to both 

approaches. It enables communication with the hardware via different types of NI 

cards and electronic interfaces. The signals are sent to a coder/decoder within the 

electronic interface built at the University Hospital, Coventry. Depending on the 

motor drives adopted the phantom motion can be controlled using either sequence 

motion control (Stepper Motor Drive and a Current Limiter units) or secondly 

motion control by frequency modulation (Bi-polar Stepper Motor Drive). The 

signals from the motor drives are then sent to the phantom’s stepper motors.  

3.1.1 LabVIEW software environment 

The National Instrument LabVIEW software environment was used to program the 

MAESTRO phantom. Laboratory Virtual Instrumentation Engineering Workbench 

(LabVIEW) software was developed by National Instruments and introduced in 

1986 (National Instruments, 2011). According to NI, the LabVIEW  platform is  

highly advanced, graphical ‘G‘ programming language, developed for engineers, 

students and researchers as many advantages like clear understanding about 

programming, program structure and data flow are especially helpful. National 
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Instruments software is aimed to create code that works with any sophisticated 

measurement, test, and control system by drawing a diagram using intuitive 

graphical icons and wires that are resembles a flowchart. The LabVIEW software 

can realise almost any task and control of any one real device or system, e.g. nuclear 

power plant by use one of the dozens of external or internal cards and sensors  

(National Instruments Corporation, 2011). 

 LabVIEW provides high-level functions to make the program more flexible 

and easy to understand. Because of that high-level language, it is easy and simple 

for researchers or students, to acquire or send data from computer to other objects. 

Low-level functions can be used especially when efficient code is required. The 

latter, however requires more experience from the programmer. In this work both 

high level and low level programming methods were employed e.g. DAQ assistant 

vs. DAQmx.  

 It is worth noting that the LabVIEW code for the same stepper motor can be 

completely different because of the software capabilities. NI argues that the 

graphical representation of the program gives the user a good understanding about 

its structure and data flow.  

 Based on experience, it was observed, that the graphical structure of the code 

is helpful for non- programmers. However, LabVIEW can become complicated 

when the code size increases and advanced constructs are employed. The data flow 

becomes difficult to track and understand when local variables are used. Good 

structured programming should employ subVI, however it is the experience of the 

writer that a large number of subVI may make it harder to track the various code 

functionalities. 

 Two different versions of LabVIEW were used, however the VI developed 

were available on both versions and thus no issues arose from the upgrading from 

8.6 to LabVIEW 2009.  

3.1.2 Data acquisition hardware 

The communication between LabVIEW programs and the controlled device was 

realised initially with NI I/O card – SC-2075 (Appendix 8) and computer supported 

by PCI-6024E Data Acquisition board,  

Figure 3.2. The laptop used either the NI DAQ Card 6024E for PCMCIA (see 

Appendix 7) or the NI USB-6229 DAQ module (see Appendix 5). 
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Figure 3.2 I/O card: NI PCI-6024E and NI SC-2075 data acquisition module (National 

Instruments Corporation, 2011). 

 At the beginning this card was found to provide sufficient capabilities for a 

relatively low cost system. The card included 8 DIO, however 16 DIO were required 

to control 4 stepper motors using sequence control. To resolve this problem, 

technicians at the University Hospitals Coventry and Warwickshire, realised a 

signal coder / decoder. The coding was realised programmatically using LabVIEW 

and the decoding of the sequences was executed by an electronic circuit. The 

diagram of the decoder representation is shown in Figure 3.3. 

a)  

b)  

Figure 3.3 Decoder of the control signal for full stepper sequence: a) with NAND and NOT 

gates, b) alternative decoder based on EX-OR, NOT  and AND  gates. 

This item has been removed due to third party copyright. The unabridged 
version of this thesis can be viewed at the Lanchester library, Coventry 

University. 
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 The Table 3.1 below summarises the logic implemented using the LabVIEW 

code shown in Error! Reference source not found.Figure 3.3. 

 

Card DO Stepper Motor Sequences  

x y I 1 I 2 I 3 I 4 

0 0 1 0 0 0 

1 0 0 1 0 1 

0 1 0 1 1 0 

1 1 1 0 0 1 

Realised function 

f(x,y) 

    

 ̅ ̅     

    

  ̅   ̅  

    

 ̅  

    

  

Table 3.1 Table of logical states to reduce number of the digital outputs (DO). 

 The coding unit was combined with a current limiter box for the power 

supply module. The University Hospital interface used an NI SC-68 interface unit to 

control stepper motor drive instead of the SC 2075 which was used for 

development. 

 To prevent damages to the phantom and motor drives, safety ‘end switches’ 

indicating the range of possible motion for each axes were implemented. An 

additional switch per axis was added to indicate the centre or ‘zero’ position. Such 

increase in the number of digital inputs together with the need for an independent 

clock signal to time the motor sequence did require new hardware to drive the 

phantom. This led to the use of the NI USB-6229 DAQ module, see Figure 3.4. This 

M series USB unit comprises 32 inputs and works with 250kS/s, and has 

multifunction I/O data acquisition with 48 digital I/O channels with clock rate 1MHz 

frequency (see Appendix 5). This unit was used in the latest tests using the 

phantom. 

Figure 3.4 I/O card: NI USB-6229 data acquisition module (National Instruments 

Corporation, 2011). 

This item has been removed due to third party copyright. The 
unabridged version of this thesis can be viewed at the Lanchester 

library, Coventry University. 
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During the testing phase a desktop computer equipped with the NI DAQ PCI-6229 

data acquisition board (Appendix 6) combined with NI I/O interface cards such as 

SC-2075 (Appendix 8), NI BNC-2111 or NI SCC-68 was also used. 

3.1.3 Stepper motor drives 

The stepper motors were selected by the technicians at the University Hospital, 

Coventry. Their selection was guided by the need for high torque with sufficient 

power to move the phantom mechanisms, together with small motor dimensions. 

To provide drive motion with sufficient accuracy, stepper motors with a resolution 

of 200 steps per turn were combined with gear box to drive either a linear drive or a 

belt drive. 

 One stepper motor model 23HSX-306, by (McLennan Servo Suppliers Ltd, 

2009)  (see Appendix 3) with high holding torque of 1630 [mNm] was used to move 

the phantoms ribs, and three stepper motors model 23HSX-102, with sufficient 

holding torque 470 [mNm] were used to move the tumour along 3 directions on the 

linear slider. The step resolution gives angle of 1.8 [O/step] and consequently 1 turn 

equals to 200 steps in full step mode or 400 steps in half step drive mode. The Figure 

3.5 presents the electrical connection of the motor.  

Figure 3.5 Electrical cable connection (McLennan Servo Suppliers Ltd, 2009). 

 The torque characterising the stepper motors is shown on Figure 3.6. The 

initial slope increase is caused by static friction. Then the torque decreases with the 

rotational velocity. This means that to make sure that steps are not missed due to a 

torque demand higher than possible; the velocity of the motor should be kept below 

an upper limit. 

This item has been removed due to third party copyright. 
The unabridged version of this thesis can be viewed at the 

Lanchester library, Coventry University. 
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Figure 3.6 Typical performance – torque in function of angular speed (McLennan Servo 

Suppliers Ltd, 2009). 

Both stepper motors have 4 phases and are supplied with U=5[V] DC voltage and 

current I=1[A] if in unipolar mode, or 1.4[A] if phase parallel and bi-polar operation. 

Note that the four phases of the stepper motor need a control signal from the 

stepper motor driver. In full step mode 4 sequences were used while in half step 

mode there were 8 sequences in use to move the motor. Half step mode exploits 8 

steps combination of power supply switching between stepper motor solenoids, 

where every second step the energy is supplied into two adjacent coils.  

3.1.4 Sequence control 

The step sequences order required to make the motor turn in clockwise direction is 

given in Table 3.2.  

Lead identity 1 1’2’ 23 3’4’   

Phase No. “1” “2” “3” “4” Step No. Direction 

FULL-STEP 1 0 1 0 step 1  

 
 0 1 1 0 step 2 

 0 1 0 1 step 3 

 1 0 0 1 step 4 

HALF-STEP 1 0 0 0 ½ step 

 1 0 1 0 1 step 

 0 0 1 0 1½ step 

 0 1 1 0 2 step 

 0 1 0 0 2½ step 

 0 1 0 1 3 step 

 0 0 0 1 3½ step 

 1 0 0 1 4 step 

Table 3.2 Table of stepper motor sequences. 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University. 
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To turn the stepper motor shaft in the reverse direction the sequences are required 

to be sent in opposite order, from the current step to the previous one and so on (e.g. 

step 3, step 2, step 1 then step 4, and again step3 (for full-step). Any inappropriately 

usage will cause problematic start of the motor, it overheating, motor buzzing, low 

torque value or not working mode. 

 Note, that the limitation of the initial I/O card to 8 digital inputs/outputs 

meant that it was not possible to use the half step mode. The optimal coding of the 

half step sequences would result in 3 digital outputs to represent 8 different 

sequences. However, there were only 2 DI/O so the sequence control was limited to 

full-step mode. Table 3.1 and Table 3.2 present the coded/non coded sequences 

order. Having selected the step sequence method of control, the next activity was to 

design gear boxes to provide sufficient velocity assuming full step mode. 

 Table 3.3 contains the mechanical characteristic of the phantom which is 

required to be considered whilst programming its motion. Note that if half steps 

were used, then the velocity would only be half of that required. This means that the 

gear box would have to be redesigned to provide sufficient accuracy. 

 

Table 3.3 Mechanical properties of the thorax phantom design. 
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3.1.5 Bi-polar stepper motor control 

An alternative to the sequence control was the use of the bi-polar stepper motor 

drive model MSE570 Evo2, see Figure 3.7. 

a) b)  

Figure 3.7 MSE570 Evo2 bi-polar stepper motor drive: a) card, b) experimental set-up 

during tests. 

 The MSE570 Evo 2 card is a bi-polar drive, with pre-set drive currents up to 

3.5 Amps per phase with an operating voltage up to 48 [V]. This card was selected 

by the technicians at the University Hospital to fulfil the requirement for the 

phantom operation. It is capable of half-step drive option for improved damping, it 

does not require heat sink has an increased efficiency and operates from external 

clock and direction signals. This low cost drive unit of £142 (RS Components Ltd., 

2011) is smaller than the previously mentioned unit. Other advantages are described 

in the technical specification (see Appendix 4). 

 As can be observed on Figure 3.1, the motor control was implemented in two 

ways. The hardware most widely used was a ‘Stepper Motor Drive’ combined with 

the ‘Current Limiter’. The alternative approach making use of the ‘Amp Bi-polar 

stepper motor drive’ was investigated to reduce the weight and volume of the 

electronic associated with the current limiter and drive system. This bi-polar drive 

was recommended by stepper motor manufacturer. Each set of the hardware 

components required different control software. The software developed for this 

purpose is described in Section 3.2 and Section 3.3. 
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Table 3.4 Organisation of the thorax phantom control as a function of the type of control and hardware used.  
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3.2 Sequence motion control 

3.2.1 Hardware components 

The Stepper Motor Drive unit was used to realise the de-coding of stepper motors 

sequences according to Table 3.1 and Table 3.2. The motion control of the thorax 

phantom uses the Stepper Motor Drive Unit combined with Current Limiter, shown 

on Figure 3.8. 

 

Figure 3.8 Set of the Current Limiter unit (upper) with Stepper Motor Drive (below). 

 The hardware built for the digital inputs/ outputs motors interface was 

realised at the University Hospital to accommodate the high power motor 

requirements. It included the DIO decoding from two to four digital signals 

implemented using the combination of TTL nand gates (UCY 7400) with not logical 

gates (UCY7404) shown by Figure 3.3Error! Reference source not found..  

3.2.2 Program description – diagram, explanation of program 

 In this project, the part of my work was aimed to modernise the existing code 

for motion control by sequences signal, which was initially created by PhD student 

Imke Land. The reason was to investigate the drift observed in the phantom 

mechanism caused by some limitations of the existing program.  
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 Analysis of the code and also time spent on improvements, it led to the 

decision to create an entirely new program with a new code structure. The program 

should be able to realise the following: 

A. Generate control signal for 4 stepper motors and assure smooth motion. 

B. Generate Sinusoidal/ Lujan/ Irregular wave to replicate breathing pattern. 

C. Tune wave parameters such as amplitude, frequency, offset or phase for every 

single motor separately and n parameter of the mathematical representation of 

the Lujan or Irregular pattern. 

D. Read real data measurements to mimic patient’s respiratory motion. 

Additionally the planned improvements included improvements such as: 

E. Speed up and simplification of the motion start; reduce the number of 

operations. 

F. Enable to calibrate the phantom’s position. 

G. Assume the same start/ stop position to avoid necessary calibration. 

H. Work interactively to enable the user to make changes while the program is 

running like tune the motion model or turn ON/OFF specified stepper motor. 

I. Improve the user interface to make it more user ‚friendly‛. 

3.2.2.1 Existing motion control program 

 The code, written by Imke Land (2009) had advantages and limitations. It was 

the most advanced working program from the existing and therefore was used for 

the thorax phantom motion control. Figure 3.9 presents the user interface. The user 

interface presents eight tabs. First the GENERATE ARRAY tab shows the controllers 

with a choice of mathematically generated motion models such as 

Sinusoidal/ Lujan/ Irregular Model, as well as a choice of Amplitude, Offset, Phase 

for individual stepper motor and respiratory frequency. The generated signal was 

saved into an array as a set of sequences. Usually, the first operation during the 

phantom motion generation is to either generate or load a previously calculated 

data set such as an expected respiratory pattern. The OPEN ARRAY tab is the 

second step of the process, when it opens and then loads to the memory the array 

containing the motion as a global variable. Once these two operations have been 

selected the step 3 is: SAVE ARRAY where sequences are saved into file or 

GENERATE MOTION. Because saving array was normally used with the first 

Generate Array tab, the third Tab is a repetition and not a necessary function. The 
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motion generation by the forth tab allows to turn ON/ OFF each motor separately. 

These first four tabs allow to control the thorax phantom. 

Figure 3.9 Front panel of the existing program designed by PHD student (Land, 2009). 

 It is the view of the author that the operations of the software and its GUI are 

not sufficiently intuitive and need re-ordering. The last tab was HOME POSITION. 

It is taking too long to realise the initialisation of the phantom as it requires the 

phantom to move to each of the end switches of the slide. The initialisation could 

not be fully tested with the card used at the University Hospital due to the lack of 

digital I/O. The 3rd tab and tabs from 5th to 7th are normally not necessary during 

regular test procedure and are only used to move the phantom manually to a given 

position using forward and reverse motion of the stepper motors. Despite the 

author’s reservation, such interface provided the required functionality and was 

used throughout the MAESTRO project to be replaced afterwards by another 

interface and software based on the DAQmx approach implemented by the author.  

The decision to realise a new program for the phantom motion was caused by the 

last four assumptions described in Section 3.2.2. 

 The major undertaking of this work was to realise a routine to enable 

calibrating of the phantom ‘home’ position and provide the means to change the 

trajectory on-line, by contrast to pre-calculating the whole trajectory and then 

sending it to the motors. The ability to modify the trajectory on-line would enable 

the use of signals from patient’s motion measurements e.g. by combining phantom 

with spirometer, or other device.  

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University. 
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 Writing the program was not a trivial task. The challenge was to 

accommodate the required increase in complexity and the issues with phantom 

availability. The LabVIEW programming became increasingly challenging and 

difficulties as the code became more complex. The work on the phantom motion 

took up several months due to the limited phantom availability. Some of the 

problematic issues were not solved so the code was not fully working when the 

testing were made with the thorax phantom. The final program (see Appendix 2) 

meets almost all the specified statement with the exception, however, of obtaining a 

fluent motion generated for chosen patterns. Pattern motion generation or stepper 

motor control by linear loop incrementing works properly. The detailed code 

description is presented in the following sub-sections (see section 3.2.2.3). 

3.2.2.2 Front panel and operating principle 

The user interface presented by Figure 3.10 visualises the code functionality. On the 

upper left quadrant, a knob control is used to select the breathing frequency (a) and 

a slider controls the motion amplitudes (b) for each X, Y, Z and rib stepper motor of 

the tumour drive, where X represents superior-inferior (SI), Y – lateral(LR) and Z – 

the anterior-posterior (AP) motion direction. The breathing frequency knob (a) can 

be tuned between 0.1[Hz] to 4[Hz] based on the range of breathing frequencies 

identified in the literature review. Note that these limits could be easily adapted if 

required e.g. to replicate breathing with higher frequency. The waveform 

reproduced represents real patient data with typical breathing action combining 

regular patterns together with irregular motion showing a significant baseline drift 

at the start. The slider controllers represent the global position where ‚0‛ means 

home position. The sliders (b) are scaled in millimetres, adequately bounded to 

accommodate for possible phantom displacements, see Table 3.3. The ‚0‛ value 

indicates that the program has to set up the initial/home position of the real device, 

calibrated previously. The phantom has fixed rulers so its displacement can be 

easily checked. Switchable between four tabs (c), the controllers allow the user to 

select different patterns of motion and modify their motion characteristic e.g. 

amplitude. It is possible to use pattern of Sine, Lujan, Irregular or Data of the Patient 

(read from Excel file). The segment (d) below the Amplitude slider controls consists 

of a set of constant parameters used to calculate the phantom’s displacement. The 

parameters are based on the phantom design such as screw length, screw pitch, 
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ratio of the gear-box transmission. Some of the constants were specified to 

correspond to breathing frequency for patient data collection (sampling), or 

sampling info of the main sine wave.  

The constant parameters used by the program which relate to the mechanical 

properties of the design and to the real phantom parts where typically: 

SP Screw Pitch equals 1[mm] for all: X, Y, Z (tumour) axis and for R (ribcage) 

axis as well, 

GB Gear-Box Ratio, corresponding to the X, Y, Z and R axis, where equal to 

GBX=0.3, GBY=1, GBZ=0.33(3), GBR=1 respectively, 

RDF Real Data Frequency of the patient respiratory measurements saved into 

file equals 30 [Hz], 

NoSPT Number of Steps Per 1 Turn of The Stepper Motor Sequences Table, 

computed for all axes and related to one turn where for X=60, Y=200, Z=67 

and R=62 respectively. 

 

 

Figure 3.10  Front panel of the in real time working program. 

 To reflect that depending on the use of the phantom not all the motion are 

required, the section contains 5 vertically positioned switches which allow turning 

on/off selected stepper motors. The Complex (e) button enables to turn on all axis of 

the phantom motion. 

(a) (b) (c) 

(d) 

(e) 

(g) 

(f) 
(h) (i) 
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 Once the program is running, a user can stop it using two options namely by 

pressing the STOP (f) or the EMERGENCY (g) button. The use STOP switch will stop 

the running code when the phantom is back to its ‘home’ position. With this 

solution, the phantom will remain at its home or initial position and will be ready to 

restart. The second ‘EMERGENCY’ button will stop the program immediately.  

 The program allows calibrating the phantom and setting it to its initial 

position automatically by pressing the Calibrate (h) button. The phantom position 

and direction are saved to file when it stops. Therefore restart should keep 

movement in the correct range of work unless there was observed discrepancy or 

the phantom sliders were moved manually.  

 Switch Reset (i) causes the reset of the data file which contains the saved 

position (steps number) and save zeros into it. It needs to be noticed that this button 

should be used carefully and only if necessary as it changes the zero position. 

3.2.2.3 Block diagram  

 The overall idea of the control method is, for each axis of motion (or stepper 

motor), to code stepper motors sequences into two binary values then to send them 

to the stepper motor drive module and afterward through the ‚Current limiter” 

module to the stepper motors. 

 This method of motion control involved using relatively large and 

complicated electronic units such as the ‚Stepper Motor Drive” and the ‚Current 

limiter”. The existing code written for controlling the motion of the thorax 

phantom was extensive thus difficult to understand and modernise for other 

programmers. The bulky construction of the existing code contains very developed 

case structure with dozens of case loops and many high and low-level functions and 

local variables.  

 To overcome the issues associated with the code complexity and the excessive 

use of local variable an alternative code for the thorax phantom motion controller, 

was developed and is illustrated in Figure 3.11. 

 The block diagram of the program could be illustrated by the LabVIEW block 

diagram itself as the LabVIEW graphical interface shows the program structurally. 

However understanding of LabVIEW programs requires training, hence the choice 

to illustrate it using a simplified block diagram.  
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Figure 3.11.a) Sequence motion control code – diagram. 

START 
Read constants and 
variables values 

Create Digital 
Channels 

Read patient data 
from the file 

Read last position 
and movement 
direction from the 
file 

Run code until 
stopped – open 
While loop 

Loop Initialisation:  

•read sift registers  

•read tunnels values  

Read constants and 
variables values 
settled for each axis 

Read loop iteration 
Compute loop 
frequency 
(frames/sec) 

turn ON/OFF the 
stepper motors of X, 
Y, Z (tumour drive), 
R (rib-cage) 

Sinusoidal 
waveform generator 
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Figure 3.11.b) Sequence motion control code – diagram. 

Type of movement mode – 
pattern choice 

•Sinusoidal 

•Lujan 

•Irregular 

•Data 

calculate steps number per 
millimetre  

multiply ‘Steps.No/max 
distance’ related to max 
amplitude of movement 

calculate velocity and time 
delay 

Change direction case 

•If yes – move backward 

•If no – move forward 

Calibrate case 

•If yes -  calibration 

•If no – transmit calculated 
sequence (default type of work as 
removed sensors form phantom) 

Stop While loop mode 

•Stop button – delayed stop, 
phantom moved back to home 
position 

•Emergency button – rapid stop 

•If not true – repeat the loop 

Save actual position and 
movement direction into file 

Save parameters into file 
Save trajectory pattern into 

file 

STOP 
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The diagram functions description: 

 

• Start 

 

Start LabVIEW program using the ‘Run’ button or combination of the ‘Crtl’ + ‘R’ 

keys. 

 

• Read constants and variables values 

 

Read all parameters of the constants and controls, outside the While loop. Usually all 

commands and parameters are executed in order from the left to the right hand site 

of the code. 

 

• Create Digital Channels 

 

Create Digital Channels to send the sequence of the stepper motors step. To ensure 

more stability to the program work and high frequency of the code execution, low-

level DAQmx functions were used. The program needs to control 4 stepper motors 

with resolution 200 steps per turn, therefore the minimal number of channels 

required is 8 (2 channels for 1 stepper motor).  

 This solution required to use coded signal, where 2 channels provide 4 

combinations of the digital signal sequence.  

 

Figure 3.12 The 8 channels DO task creation with low-level functions use. Block diagram. 

The channels were constructed from low-level DAQmx functions that comprise:  

DAQmx Create Channel – set to Digital Output (DO) Pulse Frequency;  

DAQmx Timing – set to Continuous Samples  

DAQmx Start Task 

 

• Read patient data from the file 

 

The file used for respiratory motion replication can contain the real patient 

breathing measurements or cumulates individually prepared movement pattern. In 

this case, all data should be saved in column vertically and contain double precision 

real values. The ‘Read From Spreadsheet File’ function, illustrated by Figure 3.13, can 

open and read file with *.xls extension (excel file).  
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Figure 3.13 Spreadsheet file use to read motion pattern data. Block diagram. 

 

• Read last position and movement direction from the file 

 

The parameters that describe position and direction of the thorax phantom motion, 

saved previously after program was stopped, were restored from the spreadsheet 

file. The file was formatted to *.csv extension and can be reset if needed.  

 

         

Figure 3.14 Restoring parameters of last one position. Block diagram. 

• Run code until stopped – open While loop 

 

The assurance of the on-line motion control requires to run the code continuously, 

where sub VIs inside are repeated until the stopping condition becomes ‘true’. Thus 

a ‘While loop’ was used. This function allows the continuous operation of the 

phantom where all operations are executed periodically with high frequency. 

 

• Loop Initialisation:  

• read sift registers  

• read tunnels values  

 

Previously computed parameters obtained from outside of the loop, they become 

the initial values for the tunnels and shift register inputs. All parameters have to be 

collected from shift registers and tunnels values. 

 

• Read constants and variables values for each axis 

 

The task realised by this part of the program was the collection of all values 

required (see Figure 3.15) to compute stepper motors needed steps number per cycle 

and then used for the future frequency computation and sequence sending. Notice 

that all the code functions are executed, in order, from the left to the right hand side.  
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Figure 3.15 Set of constants and controllers for all stepper motors. Block diagram.  

 

Figure 3.16 Arrays of coded sequences for Z-axis (other axes were set as zero); the lower 

array represents reverse rotation. 

The Figure 3.16 presents the sequences table for Z-axis only which is reflected by 5th 

and 6th column. The others were set as false (F).  

• Read loop iteration 

 

• Compute loop frequency (frames/sec) 

 

The loop frequency computation was very important parameter during the 

experimental work. The algorithm was shown on Figure 3.17 and includes a 

combination of the low-level functions.  

 

Figure 3.17 Frequency of the LabVIEW code execution. Block diagram. 

The VI used does not significantly affect the rest of the code and was used to 

calculate the frequency parameter. The function ‘get time’ returns the global time in 

seconds. By comparing the current time obtained during code execution with the 

time from the initial iteration, and then dividing the loop iteration by the computed 

time of the code execution, it was possible to calculate the elapsed time. 

 

• Turn ON/OFF the stepper motors of X, Y, Z (tumour drive), R (rib-cage) 
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Program was equipped with complex stepper motors activation switches. see Figure 

3.18 .These switches were found to be beneficial in the research work as they enable 

to activate the stepper motors and thorax phantom movement direction separately 

or use a ‘Complex’ switch for quick start. 

   

Figure 3.18 Turning ON/OFF of the stepper motors function. The users interface (LH) and 

block diagram (RH). 

 

• Sinusoidal waveform generator 

 

The basic function of sine waveform generator (Figure 3.19) was used for the 

computation and simulation of motion patterns. The only changeable parameter 

was patient breathing frequency from 0.1 to 4 Hz (the range can be easily extended). 

The maximum amplitude was set to unity value and phase and offset were set to 

zeros as this waveform was used as a pattern for mathematical representation of the 

first three breathing trajectories listed below.  

 

 

Figure 3.19 The sine waveform generator; block diagram. 

• Type of movement mode – pattern choice 

• Sinusoidal 

• Lujan 

• Irregular 

• Data 

 

The pattern choice, as was described before, serves three simulated movement 

modes and a patient respiratory motion acquire from data file.  

 

• Calculate steps number per millimetre  
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The steps number per millimetre was shown on Figure 3.15. The mathematical 

representation for the rib-cage shows Equation 3.1 and for the stepper motors of 

tumour drive shows Equation 3.2: 

                    
        

                                
  

Equation 3.1 Computation of the rib-cage steps number per millimetre. 

                   
        

                    
 

Equation 3.2 Steps number per millimetre computation for tumour X, Y, Z axis. 

 

• Multiply ‘Steps.No./max distance’ related to  max amplitude of movement 

 

This task returns the number of steps for adequate stepper motor in relation to 

distance set by the amplitude slider on the front panel. 

 

• Calculate velocity and time delay 

 

The maximum of steps number per distance computed before, it represents the 

phantom movement amplitude. Because some of the stepper motors use more steps 

per breathing cycle, there is a need to perform some synchronising. Next there were 

calculated synchronising motors ratios of max steps number to actual and needed 

steps number. Afterward the loop iteration divided by the achieved ratio returned 

the number of step used for sending the required sequences of motion. 

 

Figure 3.20 Steps synchronisation and sequence sending to DO.  
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Above part of the code and synchronisation with velocity computation needs to be 

improved. Currently this program allows to generate movement linearly only with 

loop increment and is not able to follow generated motion pattern thus is not fully 

working. Instead of loop executions number, an obtained pattern signal or real 

patient measurements data should be present. However, even with linear 

movement replication some shacking was noticed and the motion was not fluent. It 

is not known what was the cause of this phenomena but it was observed that some 

of the calculations were executed several times for one stepper motor while other 

computations were performed only once. 

 

• Change direction case 

• If yes – move backward 

• If no – move forward 

 

• Calibrate position case 

• If yes -  calibration 

• If no – transmit calculated sequence (default type of work as removed 

sensors form phantom) 

 

The positioning of the home position was completed as the construction of the 

phantom was modified and safety switches removed. Instead of these the 

initialisation was done by saving the latest position and direction into a file. The 

counter of the steps (shift register) was added to set up the home position indirectly 

when it equals zero. 

 

• Stop While loop mode 

• Stop button – delayed stop, phantom moved back to home position 

• Emergency button – rapid stop 

• If not true – repeat the loop 

 

Normally the phantom stops when it reaches the home position (stop button + 

counter set to logical ‘0’). The emergency button stops the code immediately and 

should be used if any incident happened.  

 

• Save actual position and movement direction into file. Saves the required code 

parameters and trajectory pattern into file. 

 

When the end of while loop has been reached then code saves all required 

parameters into file. 

 

• STOP 
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3.3 Frequency motion control 

3.3.1 Used hardware 

Depends on hardware or software used and also reliant on programmer, there are 

numerous solutions for stepper motors motion control. One of them is motion 

control by frequency modulation with use of a bi-polar stepper motor drive. 

 The search for alternative control solutions and motor control improvements 

led to the use of a dedicated driver to stepper motor named Amp Bi-polar stepper 

motor drive MSE570 Evo2. The key aim of using this new card was to simplify the 

electrical design and to test a new way of stepper motor control by controlling the 

frequency. 

   

Figure 3.21 Comparison sizes proportion of two drivers: set of the Current limiter (upper) 

with Stepper motor drive to the new Card MSE570 Evo 2. 

  

Figure 3.22 Laboratory version of extending electronic board for bi-polar card. 
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 The MSE570 Evo2 bi-polar drive unit provided the means to remove and 

considerably reduce a quantity of electrical devices. In addition the program done 

for motion control system was much smaller and as a result, much easier to 

understand.  

3.3.2 Program description - diagram, explanation of the program 

3.3.2.1 Front panel and operating principle 

 Several programs for motion control of the MAESTRO thorax phantom have 

been created using LabVIEW. Whilst the same hardware was used, each 

programmer implemented his own flavour of the required functionalities and 

associated graphical user interface. The examples in Figure 3.23 and 3.24 present 

two different front panels of the codes for motion control by frequency modulation. 

The user interface implemented in Figure 3.23 was created by my colleague and 

internship student Armel Tassot. Figure 3.24 shows the author’s implementation.  

Figure 3.23 Front panel of the program used to generate phantom motion (Tassot A.). 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University. 
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Figure 3.24 Front panel of the program used to generate phantom motion. 

 The first code presented on Figure 3.23 has a menu based interface structure. 

This presents a small amount of information to the user at any one time. The 

drawback is that it requires the user to switch between different tabs of the program 

to observe or have access to different functionalities. The first tab graphically 

describes the process to follow from the code initialisation and set up before 

running the program. The user should follow the arrows to first select the counter to 

use to provide the frequency control to the interface device, the time of simulation, 

and lastly to decide to check the simulation of the motion or save it to file for 

subsequent use.  The breathing frequency can be adjusted if it was found not to be 

acceptable during the visualisation of the results in simulation.  

 The second front panel, shown on Figure 3.24, was designed to have easier 

access to control functions instead of using an ordered configuration. In this case the 
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user has to know the order and number of steps to follow to be able to use the 

program.  

Choosing one of the tabs, on the left lower part of the interface screen, will generate 

a specific motion mode. It is suggested by the author to perform the calibration the 

first time the program is run (available through the Calibration of Position tab). Once 

the calibration is done the programs switches off. It is then possible to restart the 

program and select the required motion pattern.. Note that all the controls have 

default parameter values to generate an average motion. Whilst the phantom is 

operating through the program, it is possible to alter its motion type and its 

characteristic. The phantom and program stops when the STOP button is pushed.  

Such approach was adopted to save time during the experimentation when the 

software is used by qualified personnel and researchers where a direct access to the 

programs functionality is advantageous.  

 Note that before the program can start, it is required to select the counter to 

use in the upper right corner of the interface illustrated in Figure 3.24. That is the 

only condition to run the code. Such selection can be saved as a default parameter 

and requires to be changed only if a different device is used. The other parameters 

can be changed and tuned during the selection of the signal to send to the motor on-

line.  

 The overall functionality is almost the same as the code designed by A. Tassot.  

The motion control for the sine pattern gives fluent and expected movement of the 

rib-cage. In addition Lujan/ Irregular/ Patient Data File patterns and position 

calibration of the phantom functionalities were added to the code. Base on the 

tab/case function only one of the types for motion control had been implemented by 

A Tassot. In this work four tabs have the following functionalities: 
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Tab 

No 

Type of 

movement 

Movement 

Type/Pattern 
Description 

1 
Motion 

Control 

Manual/ 

Linear 

Manual motion control whilst within the range of 

possible motion limited by the emergency 

switches. Used mainly during research and tests. 

Can be used also to produce random movement 

pattern. 

Tuneable parameters are: the pulse train 

frequency(speed) and duty cycle, direction and 

motion acceleration 

2 
Calibration 

of Position 

Auto/ 

Linear 

Function to set up a home position before normal 

movement initialisation.  

Program works until it reaches the home initial 

position. Then the program is stopped 

automatically. 

3 
Generate 

And Save 

Auto/ 

Sine; 

Lujan; 

Irregular; 

Simulated mode with selectable and 

mathematically described movement pattern.  

Tuneable parameters are:  

The program works within the range of motion 

until the ‘STOP’ button is pushed. When 

stopped, the program saves the motion pattern 

into a spreadsheet file. 

4 Open File 

Auto/ 

Real Patient 

Data 

The motion pattern is read from a spreadsheet 

file. The file can contain real patient 

measurements or other data prepared for motion 

control.  

The program works within the range of motion 

until the data file is read or the ‘STOP’ button is 

pressed. When stopped, the code saves the 

motion pattern into a spreadsheet file 

Table 3.5 Movement types of the program for frequency motion control. 

 

 In contrast to the GUI illustrated in Figure 3.23 , the GUI from Figure 3.24 

enables the user to identify the allowable frequency range using the control knobs 

and associated indicators can be recognized. The program uses frequency with 

range up to 10 [kHz] for motor control. By implementing data file (real patient 

breathing measurements) or Sine/Lujan/Irregular waveform, the code is able to 

generate respiratory motion automatically.  

 The software implemented takes into account the limitations associated with 

the hardware selected. The MSE 570 Evo2 bi-polar driver card required the creation 

of a new program. It is the opinion of the author that this new software is easier to 
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operate compared to the motion control by sequence. The frequency control 

implementation required a smaller amount of code that makes it easier to 

understand. From a hardware perspective the use of bi-polar drive reduces the 

volume of electronic associated with the drive system which is a significant 

advantage when considering travelling with the phantom.   

3.3.3 Evaluation of motor drive implementations 

In order to decide on the solution to adopt a number of tests have been carried out 

in CTAC as well as at the hospital on the phantom and individual motors connected 

to the bi-polar drive. In addition to these tests other aspect involving the robustness 

of existing solutions and practical aspects such that the presence of existing code 

that had been shown to work were considered. 

The process followed to evaluate an approach was to initially develop the code 

without connecting it to the hardware but instead writing the code and signals to 

file. Once the information written to file was correct, the solutions were deployed 

and the actual stepper motors were used. In CTAC a test stepper motor and slider 

were used together with smaller stepper motors.  

 One contribution of this work was the adaption of programs realised for 

research to the classroom environments. These programs are currently used for 

m09mse laboratory on LabVIEW stepper motor control. 

 The program currently used to control the thorax phantom is based on 

sequence control. The bipolar control was only applied to a single motor (Figure 

3.9). This choice was based on the fact that the current software was acceptable for 

the purpose and whilst not ideal provided the required functionalities. As was 

shown on the front panel (Figure 3.9) of its LabVIEW code, the GUI can make a user 

feel a bit confused and its block diagram is complicated with its case in the case 

looped structure.  

 The program with frequency motion control (Appendix 1) has potential if the 

overheating observed can be resolved. The overheating was caused by the large 

currents sent from the Bi-polar drive to the stepper motor. As a consequence, the 

stepper motor became very hot and exhibited some vibration when operating at 

high frequency and in some occasion during changes of direction. Provided that a 

solution to these problems can be found then there is scope for frequency control to 

be used in the future.  



Chapter 3 LabVIEW Motion Control of Radiation Therapy Phantom 

65 
 

3.3.3.1 Block diagram  

 

Figure 3.25.a) Frequency motion control of the phantom – diagram. 

Start Read constants and variables values 

Create physical Counter Frequency 
channel 

Read patient data from the file 

Run commands until stopped – While loop 

Loop Initialisation:  

•read sift registers  

•read tunnels values  

Read constants’ and variables’ values 

Select movement mode 

•Motor Control - manual motion control  
set direction, frequency, duty cycle) 

•Calibration of  Position  

•Generate and Save - simulation of motion control  
with pattern: Sinusoidal, Lujan, Irregular.  
Saveing movement trajectory when code stopped. 

•Open File - replicates patient breathing pattern 

Turn ON/OFF stepper motor 
Acquire signal of limit switches from 

control card 
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Figure 3.25.b) Frequency motion control of the phantom – diagram. 

  

Compute frequency 
value 

Limit minima and 
maximal frequency 

Send frequency to P 
controller of the 

acceleration regulator 

Send frequency to 
output and control card 

Send movement 
direction to control card  

Check if task is done 

Stop While loop mode 

•Stop button – rapid stop 

•If motor position out of the 
range 

•If not true – repeat the loop 

Close and erase 
frequency channel 

Save trajectory pattern Stop 
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The diagram functions description: 

 

Note that this programs uses a counter to ensure that appropriate timing can be generated. 

The user should check the presence of a counter on the hardware used.  LabVIEW In this 

work the default value set was device Dev1 counter 0. 

 

• Start 

 

Run the LabVIEW program by pressing the ‘Run’ button or the ‘Ctrl’ + ’R’ key 

combination. 

 

• Read constants and variables values 

 

Read all parameters of the constants and controls, outside and on the left of the 

While loop as commands and parameters are executed by LabVIEW by following the 

wires connecting the VI normally from the left to the right hand site of the code. 

 

• Create physical Counter Frequency channel 

 

The Counter Output (CO) was created was and provided with the frequency value, 

to control stepper motor via bi-polar stepper motor drive MSE Evo2. To ensure 

more stability to the program work and high frequency of the code execution, low-

level DAQmx VIs were used for the physical channels creation. The bi-polar drive 

unit required much higher frequency than the control by step sequence 10 [kHz] by 

contrast to 1 kHz.  

 

 

Figure 3.26 The Counter Output creation with low-level functions use.  

The CO channel was constructed from low-level DAQmx functions and consists:  

DAQmx Create Channel – set as Counter Output (CO) Pulse Frequency;  

DAQmx Timing – set to Continuous Samples  

DAQmx Start Task 
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• Read patient data from the file 

 

The program reads the file saved e.g. real patient respiratory measurements or 

individually prepared data for motion generation in research use. In this case, all 

data should be saved in column vertically and contain double precision real values. 

The ‘Read From Spreadsheet File’ VI, illustrated by Figure 3.13, can open and read file 

with *.xls extension (excel file).  

 

Figure 3.27 Spreadsheet file used to read motion pattern data. Block diagram. 

 

• Run commands until stopped – While loop 

This function assures the continuous code execution until stopping condition 

becomes ‘true’. Program works periodically. Loop frames are iterated with high 

frequency which value depends on period of the sub VIs realisation inside the 

‘While loop’.  

 

• Loop Initialisation:  

• read sift registers  

• read tunnels values  

The parameters obtained from outside of the loop, they become the initial values for 

the tunnels and shift register inputs of while loop. All parameters need to be collected 

from shift registers and tunnels values. 

 

• Read constants’ and variables’ values 

The parameters were generally acquired from the left to the right hand side of the 

code. Most of the constants representing physical parameters such as dimensions or 

gear-box ratio (Figure 3.28) were boxed into subVI in the main code (see Appendix 

1). 
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Figure 3.28 Set of constants and controllers for all stepper motors. Block diagram. 

 

• Select movement mode 

The movement mode is selectable by a tab on the front panel. It allows the selection 

of one pattern at the time. 

There are 4 available possibilities:  

(1) ‘Motor Control’ - manual motion control (set direction, frequency, 

duty cycle) 

(2) ’Calibration of Position’ (adjustable frequency) 

(3) ‘Generate and Save’ - simulation of motion control with one of the following 

mathematical function:  

 ‘Sinusoidal’ 

 ‘Lujan’ 

 ‘Irregular’ 

(4) ‘Open File’ - replicates patient breathing pattern 

The generated signal waveforms were collected using parameters such as: 

amplitude (represents distance of the movement), frequency (state speed of motion), 

and time sample if amplitude = 0 (used for direction change).  

 

• Turn ON/OFF stepper motor 

This switch replaced the physical switch of the bi-polar card in an attempt to reduce 

the heat generated by the stepper motor.  The power supply of the stepper motor 

can be turned on/off using LabVIEW.  

 

• Acquire signal of limit switches from control card 

There are three switches on each axis, two of them limit the range of motion and the 

3rd indicates the middle position.  
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• Compute frequency value 

The motion is obtained by frequency modulation. The higher frequency, the faster 

turns the motor. The frequency f is sent out to stepper motor drive thru counter 

frequency output of the NI card and is calculated by using Equation 3.3: 

         
        

             
  

Equation 3.3 The frequency computation.  

where:  fb  is the breathing frequency [Hz]; yp the amplitude value of the sample 

taken from generated pattern (variable, in millimetres); LS the length of the screw; 

Sn the number of steps per revolution i.e. 200 [steps/revolution] for full step and 400 

[steps/revolution] for half step; GBR is the gearbox ratio for two of the axes of the 3D 

slide system, Rr is the ribs ratio, relating the largest rib movement to the maximum 

screw displacement and PS is the pitch step of the screw.  

The selected pattern of the motion gives a shaped waveform with a maximum 

amplitude equals 1. This allows normalising any pattern where the maximum 

amplitude, which represents the distance of the movement, can be equal to 100% of 

that distance.  

Such pattern of the movement is sampled with the loop iteration and gives an 

amplitude value, which is multiplied by the breathing frequency and then by a set 

of constant parameters that depends on the phantom design. The constant 

parameters LS, Sn, GBR, Rr, PS are given in Table 3.3 where i.e. for the ribcage are 

equal to 10[mm], 200[steps/rev], 1, 3.2 (which is relation of 35:11) and 2[mm] 

relatively. 

 

• Limit minimal and maximal frequency 

For safety reasons limits are imposed to checking if the signal is in range. 

 

• Send frequency to P controller of the acceleration regulator 

A PID controller working as a proportional (P) controller was used. The idea was to 

slow down the acceleration of the stepper motor by setting dt(s) input.  

 

• Send frequency to output and control card 

The computed and bounded frequency previously calculated was sent to the 

counter output and then to the NI interface card.  
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• Send movement direction to control card  

Direction uses a Boolean signal to switch between forward/ reverse movement.  

 

• Check if task is done 

This is a quality assurance task to avoid missing data. It checks if the signal was sent 

to the created counter channel. If an error occurs then a warning is displayed on the 

screen.  

 

• Stop While loop mode 

(1) If not true – repeat the loop 

(2) Stop button – rapidly stops the loop execution 

(3) Stop - If motor position out of the range 

 

• Close and erase frequency channel 

Clear memory: erase physical channel. 

 

• Save trajectory pattern 

Pattern of the movement can be saved into file (*.csv) where whole movement 

trajectory written.  

 

• Stop 

3.4 Video tracking of the thorax phantom motion  

 In addition to the thorax phantom and its motion control, a part of the author’s 

practical work was the camera video tracking system development. Existing code 

was analysed and tuned, to achieve the best performance during the experimental 

work.  
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3.4.1 Used hardware 

Different types of camera have been used in this work such as industrial cameras by 

FOculus model FO323TB and FO124TB, professional video camcorder by Canon 

model XL2, universal internet camera by Logitech.  

 The best available camera was FO124TB which was therefore used for the final 

set-up and tests of the video tracking system see Figure 3.29.  

 

 

Figure 3.29 The IEEE1394 camera and software for video tracking two targets. 

 The FOculus with model FO124TB offered has a fire-wire IEEE1394a interface, a 

monochrome image sensor and is capable of acquiring images with frequency up to 

60 frames per second and with maximal resolution 659(H) x 494(V) of effective 

pixels. The focal distance was f=50mm.  

  The data transfer of the measurements to external computer was realised via 

two analogue outputs (AO) of the LabVIEW cards: I/O card: NI PCI-6024E and NI 

SC-2075 data acquisition module Figure 3.2 (initially), and on Figure 3.4the I/O card: 

NI USB-6229 data acquisition module (finally). Both were presented in Section 3.1.2.   

 Different camera calibration grids have been used. One of the grids had dots 

with a diameter d=2.5[mm] and distance of 6.4x6.4 [mm] between the dots. This grid 

was used mainly for a short distance (1 metre and lower) between observed object 

and a camera. Another grid had dots of diameter d=4[mm] and were separated by 

12.7 x 12.7[mm]. During the experimental work the distance between camera and 

the markers tracked was about 2 metres. The grid that offered the best compromise 
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between the detection of the dots and the grid resolution for the distortion 

correction is presented overleaf (see Figure 3.30) with black dot diameter of 4[mm] 

separated by distance 9.5 x 9.5 [mm]. The image calibration was done automatically 

within the LabVIEW software, see Section 3.4.2 for details on the VI used to perform 

the calibration and then transform the target coordinates from pixels to mm. 

 

Figure 3.30 The calibration grid for the video tracking system with dot diameter equals 

4[mm] and distance =9.5[mm] between.  

 

 The imaging set up was used in different environments with various lighting 

conditions impacting on the brightness or grey level of the markers being tracked. 

Markers of different sizes and grey level were investigated, see Figure 3.31. It was 

found that the first three rows were acceptable and perform similarly. To extract 

two targets from the background circular elements were bounded by a square of : 

8[mm] diameter for a reference and 6[mm] diameter for the moving marker.  
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Figure 3.31 Marker samples of different size and contrast threshold.  

 To evaluate the video tracking system a small stepper motor was used and the 

position of a rotating arm was tracked together with that of a reference marker 

located in the corner of the frame, see Figure 3.33.   

3.4.2 The program description. 

The idea of the program was to track two markers with high accuracy and with 

frequency of 30 [Hz] or higher. The markers displacement was analysed from the 
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images and then measured, where lastly the result could be sent to the motion 

compensation system controlled by other computer.  

 

3.4.2.1 General operating principle on the image 

 

 

 

 

 

Figure 3.32 Block diagram of the image tacking code. 

The video tracking code can be generally described by block diagram shown on the 

Figure 3.32, where functions in the serial line shows the main operations made on 

the acquired images. 

 Initially, the created video channel starts  and the last acquired image is 

collected by get image block  configured to grey-scale image acquisition. The 

image is then calibrated . Next, program computes the optimal threshold value 

with AutoBThreshold2  function. Then, it applies this value for binary image 

conversion. This conversion means that pixels are changed to ‚0‛ dark object or ‛1‛ 

if bright object. The bright objects’ clustering method was used, because targets are 

normally white on a black background. It is worth to notice, that the grey-scale 

range is from 0 (black) to 255 (white). Markers with different level of contrast with 

respect to the background were investigated, see Figure 3.31. IMAQ Remove Particle 

 VI removes small particles with number of erosion set to x5. Furthermore, the 

other particle filter  was used to keep only circular elements meeting specified 

criteria such as measurements model of Heywood Circularity. If an insufficient 

number of circular shapes are removed, the IMAQ Particle Analysis Report    

returns the number of particles detected in a binary image and reports common 
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characteristic such as: Area, Centre of Mass, Bounding Rectangle, Orientation and 

Dimensions of each particle. The centre of the bounding rectangle surrounding the 

detected element was used. Ideally there should be two detected particles 

representing moving and not moving target. It was observed that the bounding box 

was not centrically positioned therefore IMAQ Centroid VI was used to 

improve the accuracy of the centroid measurements. All these operations were 

made on the acquired image before converting the parameters from pixels to Real 

Word . Lastly, all the parameters obtained were used mainly for distance 

calculation between markers or position moving target computation in relation to 

(0,0) image corner (left, upper).  

 The above VI form the core of the target tracing. Other VI was added to 

calculate distance, reduce the influence of the environment (bright sun light, 

fluorescent light, shadows, and light reflections), the number of lost target or the 

detection of too many detected targets.  

3.4.2.2 Modifications  

  A number of changes were implemented by the author to increase the efficiency 

of the program. The main aims of the practical work on a video tracking system was 

to reduce vents such as ‘lost target’ or ‘too many targets’, and speed up the code. 

These modifications came about from being in charge of the system operation 

during tests at the hospital.  

 Depending on the light condition, the program could lose target or acquired too 

many targets from the background (see for example on Figure 3.33 the straight line 

at amplitude 0 corresponding to loss of tracking at the start of the procedure). This 

error was indicated by LEDs.  
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Figure 3.33 User interface of the video tracking. Lost target visualisation. 

 The user interface (see Figure 3.33) comprises a set of controls in the upper left 

corner. The controls are limits for the targets detection. The template area and 

threshold for the brightness/contrast can be manually adjusted.  

To reduce the number of targets detected by the particle filter, the minimal and 

maximal sizes of the targets detected can be manually adjusted (see upper left 

corner of the Figure 3.33). The markers area depends on marker diameter, lighting 

and distance to the camera. In this work, considering markers of 6[mm] and 8[mm] 

diameter 2 m from the camera, the maximum and minimum areas were set to 550 

pixels and 330 pixels respectively.  

The threshold controls the grey value of the pixels that will be considered as the 

target (here between 230 and 255 - white). A number of indicators were 

implemented to facilitate the software operation and simplify the experimental set-

up. The view from the camera is displayed on the bottom left of the screen with the 

moving markers indicated by coloured squares. In this case the markers were fixed 

to the DC motor. The reference marker is fixed to the frame of the motor unit and 

the moving marker to the moving arm. The relative motion, along the X and Y 

coordinates and between the two markers are two sinewaves which frequency 

changes depending on the speed of the motor. The distance measured in pixel is 

converted to mm and displayed in the upper right corner of the screen. The 

constants used to perform the calibration and conversion from mm to Volt is 

displayed on the right top of the screen. Note that a signal in volt is sent to the PSS 
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which then perform the conversion from Volt to mm using the same scale. In the 

upper middle part of the screen, four boxed indicators visualize error occurrences: 

‘Lost Target 0’ is on when the reference marker is lost, ‘Lost Target 1’ is on when the  

moving target if lost ,‘Lost Frame’ indicate that an image frame has not been detected 

resulting in the loss of both targets. A scalar indicates the ‘number of targets’ 

detected. The mode of measurements ‘Distance’ or ‘Position’. ‘Distance’ is the default 

mode during the experimental set up as it gives the relative horizontal and vertical 

distance between the two markers. The ‘Position’ gives a position relative to the 

origin of the image which the upper left corner of the image.  

  It was observed that in some cases it was beneficial to set camera lens to 

provide a slightly blurred image. This reduced the effect of reflections and speed up 

the code (quicker particles filtering). Given that the code calculates the centre of 

mass, blurring the image should have a minimal impact on measurement errors. 

However, these improvements did not eliminate totally the above errors. The last 

modification was to send that last valid measurement in case where the target found 

is different than two.  

 

Figure 3.34 Elimination of the targets error. If false – send actual measurements, if true – 

send previous data. Block diagram. 

 The other aim was to obtain faster loop iteration during tests with different 

environmental conditions. To increase the frequency of the code iteration, the first 

step was to reduce unnecessary VI such as graph plotting or motion control of a 

small stepper motor included in the main program.  In addition converters (mostly 

to the Single Precisions numbers) to unify parameters representation were used 

resulting in a further increase of the tracking frequency.  It was found that the image 

processing functions consumed most of the time used for code execution and 

specially the IMAQ AutoBTreshold2 function. Thus this command was analysed in 
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detail. Having investigated different marker sizes and contrasts (Figure 3.31) and 

different light conditions, the contrast range was manually limited level of the 

contrast from 180 to 255.  

 The improvements to the code increased its average operating frequency to 

32 [Hz].  

3.5 Difficulties associated with LabVIEW programming 

 LabVIEW is a graphical language with a large amount of useful tools and is 

easy to understand compared to other programming language with similar 

possibilities. However, this software requires appropriate drivers to communicate 

with the hardware. Drivers from previous LabVIEW version are not always 

compatible. The disadvantage of this software is also the incompatibility of the *.vi 

programs from previous version and lack of compatibility between different 

versions even if the same VI are used. To make the software compatible it is 

necessary to save it ‘for previous version’. This means that several version of the 

same code have to be kept to accommodate for version changes.  

 Cost of the LabVIEW is important £4000 for 4 seats research licences. NI DAQ 

Devices and cables are also expensive. Note that alternative suppliers can also be 

used which offer driver supports for NI LabVIEW.  

 During my research work with LabVIEW the pseudo real time data 

acquisition implemented using windows was not a trivial task and required NI 

training and support, as information within the help was not sufficient.  

 This software performance depends on the computers used and the windows 

version. The same code tested on one computer returns code frequency execution of 

5000 frames/sec while on the other frequency was over 32000 frames/ second. Such 

differences impacted significantly on the accuracy of the timing of the sequence sent 

to the motors. 

 Another difficulty was associated with the flow of information and data 

execution in LabVIEW. To investigate these errors, ‘highlight execution’ tool was 

used. 

 To solve some of the issues, it was necessary use additional multimeters and 

oscilloscopes.  
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3.6 Conclusions 

This phantom has been successfully used for many hours over 3 years during the 

testing of the patient support control system at the university hospital. The thorax 

phantom mechanical, electronic and software design has continuously evolved over 

the course of its use within the MAESTRO project. It can still be improved using 

software or hardware solutions. For example, further code simplification can be 

carried out and its accuracy can be improved by using real time hardware as 

opposed to windows based solutions.   

 Through applying the MSE 570 Evo2 bi-polar drive unit, it was possible to 

remove and considerably reduce a quantity of electrical devices. In addition the 

program done for its motion control system became also much smaller and 

consequently easier to understand.  

 The main disadvantage was overheating of the stepper motor caused by large 

current sent from the bi-polar drive unit. This was the main reason for the staff at 

the University Hospital to reject the idea of motion control by frequency modulated 

signal and keep the existing sequence control approach. 

 Apart from this fact, it is the belief of the author that frequency control has 

potential through the use of bi-polar motion drives. Indeed the stepper motor 

motion was in most cases found to be reliable and accurate. Similarly to the 

sequence control approach, the addition of a current limiter seems to be warranted. 

Additionally in the MSE 570 driver specification, there were found possibility 

current reduction from 0.5[A] to 3.5[A].  

 As a second possibility, the phantom motion could be obtained by control 

sequence signal sent to the driver. The initial code had been created by PhD student 

I Land (2009). The program contained some limitations such as missing calibration 

mode or position drifting. The existing code was analysed, however improvements 

of the existing programme was found to be a challenging task due to the complexity 

of the code. Several trials have been undertaken to evaluate the proposed motion 

control sequence. However, not all the issues encountered could be resolved in the 

time allocated to this work.  

Having established that sequence control was the most convenient approach, the 

next Section presents the experimental evaluation of the code and the evaluation of 

motion compensation using the phantom. 
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Chapter 4  

Experimental evaluation 

The work presented in this chapter was carried out at the Control Theory and 

Application Centre (CTAC) of Coventry University and also at the University 

Hospital Coventry and Warwickshire, NHS Trust (UHCW), Coventry.  

 

 Several experiments were made in preparation of the testing of the software 

on the thorax phantom.  

 The initial tests were carried out at CTAC of Coventry University. The 

programs were initially evaluated on simulation and then using test set up 

involving a single stepper motor fixed to a slider and supplied with the same power 

supply and current limiter units than the phantom, see Figure 4.1.   

 

Figure 4.1 The stepper motor with current limiter and power supply units.  

 Due to the limited access to the phantom or bi-polar motor drive and because 

there were no model of the phantom  the required testing was performed using 

multimetres, oscilloscope and other data acquisition devices. This equipment was 

used to evaluate the timing of the signals sent to the stepper motors and diagnose 

issues, and analyse the results. The Figure 4.2 shows oscilloscope during one of the 

pulse frequency test used for motion control by frequency modulation. This test 

aimed to identify if the correct frequency was sent and if noise was an issue.   
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Figure 4.2 Testing of the frequency motion control code with GW oscilloscope use. 

Some of the errors to be observed, they required high frequency digital oscilloscope. 

The example below (Figure 4.3) presents print screen of the control signal of the 

pulse waveform in blue, together with shifting direction wave in orange. In this 

particular case the observation of ‘direction’ waveform (in yellow), it allows to 

highlight the noise on the edge periodically generated by stepper motor, and its 

shaking behaviour. The square waveform (in blue) exhibited some transient 

behaviour resulting in the addition of a bias to the square wave of  

amplitude (+/-1 [V]).  

 

  

Figure 4.3 The error identification with Tektronix oscilloscope use. 
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 Having carried out the initial testing of the code in CTAC the new and 

modernised code was then tested with the real thorax phantom at the University 

Hospital Coventry and Warwickshire, where the phantom was normally kept. Thus 

the most important tests were prepared at the hospital.   

 Most of the testing done at the UHCW was aimed at evaluating the software 

and methods developed to control the PSS. The author supported most of the test 

carried out during the last year of the MAESTRO project on the clinical Elekta 

Synergy machine. In addition to operating the phantom program the author also 

operated the motion tracking software that he contributed to develop and evaluate. 

 

Figure 4.4 Structure of the overall control system including the phantom with markers 

positioned onto it being tracked by a camera. A motion predictor anticipates 

the motion of the markers and is used by a controller to move the PSS. 

 

 The flowchart (see Figure 4.4) briefly visualise the combination of four systems. 

The first is a motion generating system which operates in open loop as the phantom 

does not use position feedback to adjust its motion. The camera is detecting the 

marker position at a frequency between 20 and 30 Hz. The patient support 

compensation system acquires input signals from camera tracking software to provide 

on-line target displacements and used the feedback signal from the PPS sensors to 

predict and compensates that measured motion.  

An illustration of the real experimental set-up at UHCW is presented in Figure 4.5.  
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Figure 4.5 Typical set-up for thorax phantom prototype tests.  

 The whole system contains: the RT treatment machine (clinical Elekta Synergy 

machine in this case) and its associated movable PSS, the thorax phantom model, an 

IEEE1394 camera and associated video tracking system as well as the PSS control 

system implemented in dSPACE software (dSPACE, 2011).  

 The idea of this set up was to predict and compensate the patient breathing 

during radiotherapy and to assure that the beam remained focused on the target 

irrespective of the target motion simulated using either the 3D sliders or the ribs.  

The PSS control system was designed to move the PSS in the opposite direction to 

the motion of the phantom.  

The thorax phantom generates motion with selected patterns of movement 

(see Figure 2.17). Two markers were fixed to the phantom surface and tracked by the 

camera. The measured distance between the markers was sent to the PC controlling 

the PSS. Afterward the tracked position was predicted to compensate for 

measurement delays and systems latency and finally a control signal calculated and 

sent to the PSS to move it with appropriate distance and velocity in opposite 

direction to the phantom movement. 

 Most of the testing was carried out without the use of radiation but solely with 

the use of an independent camera or the actual camera used for tracking.  

JOYSTICK 
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 One of the last series of tests performed involved the use of radiation. The x-

ray beam was focused onto a radiation sensitive film which was held by the 3D slide 

part of the phantom. The result shown in Figure 4.6 are the results of the following 

experiments (from the left) film was irradiated when phantom and PSS were 

stopped, the second was irradiated while the phantom moved with Lujan pattern 

but PSS was stopped. The last film on the right hand side visualises the effect of 

irradiation when the thorax phantom movement was compensated by the PSS 

system.  

 

Figure 4.6 Outcome of phantom and PSS controller tests.  

These results were very satisfying. It shows that the irradiation of normal tissues 

surrounding the tumour almost was not affected by the target motion. Additionally, 

the phantom can be used to support the research of the other areas of the 

MAESTRO project, e.g. to develop work on video tracking system and feedback 

control system as well.  

 It should be mentioned, that besides the thorax phantom and its motion control, 

a part of my practical work was also the camera video tracking system 

development. Previously created code was analysed and tuned. Several 

modifications of the code were also made. The main achievement was to accomplish 

the required frequency of program work in windows ‘real time’, and eliminated 

errors due to lost targets.  

 Since the end of MAESTRO the phantom has been used by Dr Haas in 

collaboration with Brussels University Hospital and BrainLab to evaluate the VERO 

tracking system and the use of fiducial markers with a realistic phantom, see Figure 

4.7. A new version of the program was used based on the work of the author and in 

particular the use of DAQmx low level VI. 
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Figure 4.7 VERO experimental set-up. 
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Chapter 5  

Propositions to the thorax phantom development 

Most of my research work was focused on practical issues. Some of them were 

focused on the MAESTRO thorax phantom and its design improvement. There were 

six modernisations proposed to the phantom construction.  

 The first one was to generate a third (lateral) direction of the movement for the 

phantom’s ribcage. Three proposals were designed and sketched. The second idea 

was to add a clutch for the phantom’s ribcage motor for safety reasons. The third 

idea was to re-design the rod for the x-ray sensor to avoid bending and re-design 

the IEEE 1394 camera holder to use it on a standard camcorder tripod. Fourth, the 

video camera holder was adapted to allow usage a universal camcorder’s tripod 

and consequently made the modernisation of the base plate for tripod holder. The 

use of a laser pointer to speed up the calibration and set up the camera video 

tracking was proposed. Finally it was suggested to implement a ‚hard‛ switch for 

the power supply of the logical card and controlled by LabVIEW to avoid 

overheating of the stepper motor if frequency or sequence motion control were 

used. 

 

5.1 Propositions of rib-cage lateral movement 

A few alternatives to implement the rib-cage lateral movement were proposed. 

 It should be noticed, that solutions should respects several conditions described 

below: 

1) The lateral motion should use the existing thorax phantom components or 

should not involve significant redesigns. 
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2) The amplitude displacement of the ribs is changing from the lowest rib (the 

smallest movement) to the highest rib (amplitude is the biggest). The value of 

the maximal amplitude of lung displacement is not more than 9.8[mm] when 

coughing therefore the considered displacement could be specified up to 

10[mm]. 

 

Figure 5.1 The rib-cage lateral expansion visualisation. 

 

3)  To keep lungs volumes without other additional elements that could affect X-

ray beam trajectories and interfere with the target insert. 

4)  Do not to use additional electrical/electronic devices i.e. motors. Focus on 

mechanical modification where pattern of movement could be modelled by 

shaped insertion like cam.  

 

The thorax phantom shown in Figure 5.2 represents the view from the back of 

the phantom with the spine visible under a transparent Perspex plate. The pulley of 

the stepper motor which drives the screw that moves the ribs through the opaque 

plastic component is on the left hand side. The idea was to transmit the rotary 

movement to linear motion by nut on the screw, fixed to white board with a 

trapezoidal cut out.  

 

Figure 5.2 The thorax phantom model – bottom view. 

(c) 

(d) 
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A few proposals for lateral movement with using the existing thorax phantom were 

briefly described below: 

Solution 1: 

The first idea bases on taking the advantage of existing moving board 

observed on Figure 5.2 and uses an additional beam shaped with teethes. With this 

design would be possible to set different character of movement for each separate 

rib by using different teeth shape for each rib (see Figure 5.3).  

 

Figure 5.3 Possible types of the pattern movement regulated by shaped slope. 

The proposal is to locate saw-tooth beam over the moving board but with very 

close distance about 5[mm], and on the internal side of ribs shown on Figure 5.5. In 

addition, instead of the existing screws is to use a mandrel or screw with longer 

pivot part. This allows to push easily the ribs outside and to achieve the third 

direction of the rib-cage motion at the same time see Figure 5.4.  

Polyamide (PA) or polytetrafluoroethylene (PTFE) known as a Teflon or other 

synthetic material, inter alia with low friction, low hygroscopic molecule’s structure 

or even hydrophobic polymer could be used.  
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Figure 5.4 The illustration of the mechanism operating principle. 

    

Figure 5.5 Top view of the rib-cage and marked by red lines the saw-tooth beam position. 

 

Solution 2: 

The second solution assumes the use of bars/beams that are pushing out the 

upper part of the ribs marked with red colour circle on Figure 5.6. The idea is to fix 

one side of these static previously beams to the orange beam (see Figure 5.7), and 

push it outside by rotation of green cam. The cam shape is reflecting the pattern of 

motion and can be formed at the user discretion, i.e. to obtain sinusoidal movement. 

We can easily change the amplitude of that movement and its character through the 

cam shape. The angle of that rotation ‚α‛ would have approximately 60 degree so 

there is a need to use a gear transmission with proper ratio. The ratio depends on 

rib-cage gear and the proportion would be about 36:1, if hypothetically the drive has 

a maximum of 6 rotations. Moreover it is proposed to place the wheel of a gearbox 

with a slightly bigger diameter d2≈10% and symmetrically with the ‘red cross’ 

position of the Figure 5.6.  It allows generating movement for the both side of the 

walls in parallel.  

 

Ribs 

(b) 
(e) Condition 1  

Lateral 
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Figure 5.6 The illustration of strategic change points location. 

 

 

Figure 5.7 The rib-cage side wall model. 

Considering the example presented on the Figure 5.7 above, if there is set angle 

α=90O, and the gear wheel (navy colour) have got the same size like a lower 

transmission wheel fixed in a hole below, and we know that the lower gear wheel is 

giving maximum 6 turns per cycle, then as a result from proportions we can found 

that ratio for gearbox should be equal 1:24. 
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Solution 3: 

 This solution is similar to the previous one. It assumes that the same two 

horizontal beams (RH an LH) are used and fixed to the top and not moving beam of 

the phantom (red circle on Figure 5.6).  

 However, the idea of the motion transmission is different: instead of pushing 

out the orange beams, they can be pulled. Therefore, inside the pocked could be 

placed a spring or elastic material that would normally push the beam (ribs) 

outside. A tape or steel ring can be fixed to the end of the orange beam and rolled 

onto a shaft. A shaft replaces the green element connected with the sprocket drive 

(in blue). The ratio of motion would be changed by the diameter of the shaft, where 

with bigger diameter would increase the lateral amplitude of motion. 

5.2 Improvement of mechanical phantom’s protection 

There were a number of discussions and suggestions to modify the design of the 

phantom to increase the phantom’s safety and efficiency.  

 Because the phantom was used during numerous tests there were possible 

situations where electrical or programme failure could not stop the motor rotation 

when required. For example, if a motor drive does not change direction in time and 

reaches the mechanical limit of the motion, then any further efforts from the motor 

to move the slider could result in motor damage or worse breaking the phantom 

shell, resulting in significant water leaks. 

 Therefore, the idea was to improve the thorax phantom safety by attaching a 

clutch for the new ribcage stepper motor. A shaft mounted clutch Type FO/FL or 

Type SO, made by HUCO and supplied by RS website were suggested. The 

important thing is to choose and attach the clutch with a lower torque than the 

stepper motor and sufficiently high to move the ribcage mechanism but not break 

the phantom.  

 The Unipolar Hybrid Stepper Motor Type No. 23HSX-306 with Holding 

Torque 1630mNm and manufactured by McLennan Servo Supplies can have 

attached clutch suited for 8mm shaft diameter. The suggestion could be Shaft 

Mounted Clutch model FO15 by HUCO (see attached link) that have proper 

diameter and is characterised by 1.13 Nm of torque, so lower than 1.63 Nm 

produced by the stepper motor and enough high to drive the phantom’s rib-cage.  
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 The above proposal is one of the many other and existing options. On the 

market, there are many clutches available, so particular choice can be modified.  

 However, the main idea to insert clutch between the stepper motor and the 

ribcage of the phantom is reasonable and therefore is strongly recommended.  

5.3 Suggestion of the rod redesigning and X-ray 

sensor’s shaking reduction. 

One of the suggestions was re-designing the rod to hold the X-ray sensor attached to 

mimic the tumour.  

 The previous element had a diameter of 10 mm which was too small for the 

tube. As a consequence the rod was bending by over 7mm, after attaching the X-ray 

sensor and heavy holder. Moving such rod resulted in 5mm amplitude oscillation of 

the target during normal motion. These unwanted oscillation had to be reduced. 

  

Figure 5.8 Initially designed rod and X-ray sensor’s holder. 

 Two solutions were proposed to resolve this issue. Firstly, it was proposed to 

replace the rod with ‘I’ shape beam. There were prepared several simulations with 

RDM Le Mans software and then with HyperWorks. It was found, that beam with 

‘I’ shape 10*mm+ x 10[mm], assured the highest stiffness with the lowest dimensions 

and weight at the same time and had a nearly 50% lower bending. 

 However, for aesthetic reason it would be beneficial to have a rod with 

circular section. Thus, the second idea was to increase diameter of the tube from 

10[mm] to 15[mm], as there was not necessary to keep such low rod diameter. It is 
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worth to note that the rod material was chosen to be Plexiglas as it needs to be 

manufactured with isotropic, homogeneous and transparent matter for X-ray 

radiation.  

a) b)  

Figure 5.9 The moment of inertia    determination: a) general beam model; b) the beam 

section. 

Considering the Figure 5.9 can be determined the moment of bending Jz: 

   ∫  
   

 

 

Equation 5.1 Moment of bending 

Base on the figure above and the Equation 5.1, can be calculated the moment of 

inertia shown in table below: 

Section     
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Table 5.1 The moment of inertia equation examples in relation to shape of the section. 

 Base only on Table 5.1 it is visible that the section’s shape influence the moment 

of inertia, and in general the bending of the rod or beam. The presented equations 

were shown with the intention to explain the beam shape dependence on the 

stiffness. The other parameters such as Young module, material density or existing 

tensions were omitted as the material choice was imposed. 

All of the above show how significant is the influence of the rod diameter on 

the bending. Thus it would be recommended to increase the beam section size to 

improve its stiffness of the element. 

However, instead of above and to avoid bending, another prototype was 

implemented using two rods instead of one, see Figure 5.10, contain two φ 10*mm+ 

rods instead of a single rod. 
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Figure 5.10 Changed and actual sensor holder of the tumour drive unit. 

5.4 Proposal of the unification stand for CCD camera  

The fourth recommendation was to adapt the video camera stand holder. The 

existing and previously used stand, presented in Figure 5.11, had several 

disadvantages. It was bulky and heavy as well as difficult to operate and set-up. It 

was not required as the IEEE1394a CCD camera was very light and small size.  

 

 

Figure 5.11 Previously used tripod for CCD camera holding. 

 Instead of using the described adaptor, a universal tripod for camera or 

camcorder stand was considered and lastly used during several tests. Notice that 

the camera body size is: 29 (W) x 29 (H) x 39(D) [mm], and its weight approximately 

63 gram so almost every tripod is accurate to carry the camera used. It was 

beneficial as with cranks, screws and quick locks combinations it was very easy to 
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set-up in any place, and reposition in the hospital room during experiments. The 

example of the stand and some of its properties are presented by Figure 5.12. 

 

Figure 5.12 The example of the camera stand manufactured by Manfrotto (36).  

 

 This proposal required a plate redesign; with a unified thread 1/4‛ used for all 

current camera devices (older camera devices have a standard 3/8‛ thread).  

 A new camera base plate was modelled and manufactured from aluminium. 

Both, the FOculus camera and holder plate assembled, see Figure 5.13, weight not 

more than 0.2[kg] while tripod load weight is usually over 2.5[kg].  

 

 

Figure 5.13 The CCD camera mounted to base plate.  

 Redesigned the FOculus CCD camera’s plate for the use with a standard 

camcorder’s tripod was successfully implemented and used during the course of 

this research.  
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5.5 Facility calibration of the camera for video tracking 

system 

One of the ideas to simplify the set-up of the camera and video tracking system was 

use the laser pointer.  

 The laser pointer could be fixed onto the camera’s holder and as close to the 

centre of focal length as possible. Then the unit have to be calibrated with observed 

view by camera and then blocked repositioning. 

 This solution could allow to speed-up the camera set-up by one person. The 

camera repositioning and focussing lens onto the calibration grid centre do not 

require monitoring the camera’s view at all. Thus, the video tracking system could 

be turned off during set-up. This facility formulated suggestion of laser pointer will 

speed up calibration and setting up of the camera video tracking system. This idea 

was not implemented but is believed to be beneficial.  

5.6 Safety implementation against stepper motors 

overheating 

The final modernisation suggested was the ‚hard‛ switch implementation to the 

power supply of the logical card.  

 This idea was caused by a state of the stepper motor when it was stopped. To 

stop the motor the last sequence was sent continuously, so in fact the motor worked 

constantly (current flow through inductor) just without movement. As a result the 

motor temperature increased. It was therefore required to turn off the unit power 

supply manually when the movement was not in use.  

 This model of control was required by the electronic construction of the 

phantom drive and particularly by the signal coding and decoder built into power 

supply unit. However, it was found that switching off the voltage of the logical card 

gives no power to the motor.  

 Thus the idea of the ‚hard‛ switch implementation to the logical card seems to 

be necessary. As a ‚hard‛ switch is suggested a transistor key use. It could be 

controlled by DO of LabVIEW program and stop action in the code could cut off 
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source of the current. There is believed that in this case ratio of the gearbox and 

static friction will block the rotation of the motor. Hence the stepper motor 

overheating could be eliminated.  
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Chapter 6  

Conclusions and future work 

Motion management for cancer located in the thorax e.g. lung cancer, is still an area 

of active research. It is possible to use phantoms to evaluate the effectiveness of new 

research procedures without harming patients.  

There were a number of aims, objectives and requirement set in this project. Most of 

these were achieved and are indicated in the following paragraph as Section 

number followed by p and a letter e.g. (Section 1.4 point 1 would correspond to the 

deliverable 1 presented in Section 1.4).  

 A review of existing phantoms was carried out in Chapter 2 highlighting the 

drawback and advantages of current solutions, including the MAESTRO phantom, 

which is the object of this research work.  

 The main focus of the work was to evaluate and propose alternative 

implementation of the control system to control the stepper motors in open loop 

using LabVIEW. Two alternative methods of control have been investigated. The 

first is based on the methods implemented at the start of the project involving the 

sending of step sequences in the correct order to drive the phases of the motors 

(Section 1.4 p.1). The second approach involved the use of bi-polar drive to control 

the motor velocity using frequency and motor direction (Section 1.4 p.2). 

 The complexity and performance issues of the existing code developed by PhD 

student Imke Land led to the development of a new set of programs. The new code 

provided the user with the means to change parameters on-line (Section 3.2.2 p.H) 

as opposed to pre-calculating all the motion in advance. A calibration mode was 

programmed (Section 3.2.2 p.F). The new program was simplified and made more 

efficient by removing unnecessary operations and automating the process to reduce 

the amount of user intervention. The phantom position parameter was saved each 

time the program was stopped programmatically to avoid performing a re-
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calibration. A new improved and more user–friendly interface was designed 

(Section 3.2.2 p.I). However, the code is not fully working and still needs 

modifications. Its parts work separately but the complex code resulted in shaking 

and buzzing of the stepper motors (Section 3.2.2 p.A) if the motion trajectory 

replicates any of Data File/ Sinusoidal/ Lujan/ Irregular breathing pattern (Section 

3.2.2 p.B). The undertaken trials for sequence motion replication in a pseudo real 

time met several difficulties not solved up to now. A basic code (Appendix 1) that 

was shown to work was to generate linear movement with a step interval 

depending on the program frequency.  

 The other idea of the phantom motion control was to use a bi-polar drive and in 

consequence there had to be a new control software that worked using frequency 

modulation. The code (Appendix 2) was able to produce any previously listed 

breathing pattern with fluent movement and acceleration regulator. Moreover the 

program was equipped with position calibration mode. This motion control by 

frequency modulation code met all the aims for proper and fluent motion. The only 

drawback was caused by hardware and large current flow. The observed side effect 

was motor overheating leading to the rejection of this solution.  

 LabVIEW programming was not a trivial task and became more difficult as the 

project progressed. Constant access to the real device to test code was found to be 

necessary as simulation does not reflect actual issues that may be faced when using 

the actual hardware.  

 The second area of work was to become familiar with existing image tracking 

software developed by Mathieu Leibel, an ENIM placement student, and improve 

its characteristic by increasing the frequency of the measurements to 30 frames per 

second (Section 1.4 p.3). In reality, depending on environmental conditions the 

program was able to run mostly with 22 up to 30 [frames/s]. The research of the 

code allows identifying the most time consuming VI and simplification of the 

program by the reducing or replacing VI. The outcome of the work was a speed up 

of the frame rate able to be processed between 31 to 40 frames per second. 

 Other duties were to assist other members of the research team when 

performing tests requiring the use of the phantom and or operate the camera video 

tracking system.  

 Finally the last part of the work was to participate at ICSE 2009 conference 

(Section 1.4 p.8) where the paper entitled ‘LabVIEW Motion of Radiotherapy 

Phantom’ (Appendix 10) was presented also as a poster (Appendix 11).  
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 The aim for future work should to be looking for innovations and 

modernisations with existing thorax phantom. 

  This phantoms project involved a multitude of tests at UHCW culminating with 

a final positive result (Section 1.4 p.9) recorded in a YouTube video produced by 

Coventry University and entitled: Fighting Cancer with Control Theory - Control 

Theory Applications Centre (CTAC). I appear in this video in my role as the person 

in charge of the image tracking system.  

 My main contribution in terms of effort has been the development of LabVIEW 

code to control the stepper motors. The tuning of the image tracking system was 

also difficult as it was not possible to reproduce the conditions encountered inside 

the radiotherapy bunker at the University. I made several suggestions to improve 

the experimental set up and two of these were adopted: the simplified camera 

support and the new rod design. Other suggestions regarding the expansion of the 

rib motion require further development before being realised. 

 In terms of further work, the LabVIEW program for motion control could be 

further developed. Ideally the code should be simplified and the function for home 

position should be implemented. In addition, synchronising the phantom with 

signals from the spirometer in real time could be beneficial 

 Whilst the control by frequency encountered technical difficulty it is believed 

that it has potential, being limited only by the number of counters available on the 

data acquisition interface.  

 It is considered that this Thesis represents a valuable resource for a person 

attempting to work with LabVIEW programming in engineering field, and for 

someone interested in novel issue in radiotherapy and undertaken action against 

cancer.  
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Chapter 8  

Appendices  

The majority of the practical work involved the participation to parts of the 

MAESTRO project development. The tasks carried out were to set-up the systems 

during the experimental tests and programming, with NI LabVIEW, the stepper 

motors of the thorax phantom, and the camera video tracking system.  

 Because the LabVIEW software, for data acquisition were basically exploited 

the National Instruments devices. Presented and mostly used hardware for latest 

experimental set-up, it was: 

 for the motion control of the MAESTRO thorax phantom : Appendix 3, 

Appendix 4, Appendix 5, Appendix 6, Appendix 7, Appendix 8, 

 for video tracking system : Appendix 9, Appendix 5, Appendix 7,  

Appendix 8 

The particular specifications were attached as appendices below: 

Appendix 3 High performance size 23 hybrid stepper motors of the HSX series: 

23HSX 102 

23HSX 312 

www.mclennan.co.uk/datasheets/european/stepper/hsxsteppermotors.pdf 

Appendix 4 MSE570 Evo2; Bi-polar 3.5 [A] stepper motor drive 

www.mclennan.co.uk/datasheets/european/stepper/mse570evo2iss002.pdf  

Appendix 5 NI M Series multifunction DAQ for USB 6229 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/203482 

Appendix 6 NI DAQ Card PCI-6229 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/14136 

Appendix 7 NI DAQ Card 6024E (for PCMCIA)  

http://sine.ni.com/nips/cds/view/p/lang/en/nid/10969  

Appendix 8 NI SC 2075 Connector Card 

http://sine.ni.com/nips/cds/print/p/lang/en/nid/10806  

Appendix 9 IEEE1394a Digital CCD Camera FOculus FO124TB 

www.net-usa-inc.com/attachments/FOculus_IEEE1394_2010.pdf  

http://www.mclennan.co.uk/datasheets/european/stepper/hsxsteppermotors.pdf
http://www.mclennan.co.uk/datasheets/european/stepper/mse570evo2iss002.pdf
http://sine.ni.com/nips/cds/view/p/lang/en/nid/203482
http://sine.ni.com/nips/cds/view/p/lang/en/nid/14136
http://sine.ni.com/nips/cds/view/p/lang/en/nid/10969
http://sine.ni.com/nips/cds/print/p/lang/en/nid/10806
http://www.net-usa-inc.com/attachments/FOculus_IEEE1394_2010.pdf
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 There were also several other devices used for the tests and MAESTRO project 

development. The hardware model and its specifications source where shown by 

website addresses below: 

 NI DAQ Card PCIe-6259  

http://sine.ni.com/nips/cds/view/p/lang/en/nid/201814 

 NI BNC-2111 Connector Block 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/201731 

 NI SCC-68 Connector Block 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/202603  

 IEEE1394a Digital CCD Camera FOculus FO323TB 

www.net-usa-inc.com/attachments/FOculus_IEEE1394_2010.pdfwww.net-

usa-inc.com/attachments/FOculus_IEEE1394_2010.pdf  

 Canon XL2 Professional Camcorder  

www.canon.co.uk/For_Home/Product_Finder/Camcorders/professional/XL2/  

 Panasonic Security CCD Camera 

 Logitech Quickcam Express - Digital video camera – USB 

http://www.amazon.co.uk/Logitech-Quickcam-Express-Digital-

camera/dp/tech-data/B000225K5G/ref=de_a_smtd/275-9189272-0781604 

 HUCO model FO15.Shaft Mounted Clutch. 

http://docs-

europe.electrocomponents.com/webdocs/0080/0900766b800802ae.pdf  

 

 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/201814
http://sine.ni.com/nips/cds/view/p/lang/en/nid/201731
http://sine.ni.com/nips/cds/view/p/lang/en/nid/202603
http://www.net-usa-inc.com/attachments/FOculus_IEEE1394_2010.pdf
http://www.net-usa-inc.com/attachments/FOculus_IEEE1394_2010.pdf
http://www.net-usa-inc.com/attachments/FOculus_IEEE1394_2010.pdf
http://www.canon.co.uk/For_Home/Product_Finder/Camcorders/professional/XL2/
http://www.amazon.co.uk/Logitech-Quickcam-Express-Digital-camera/dp/tech-data/B000225K5G/ref=de_a_smtd/275-9189272-0781604
http://www.amazon.co.uk/Logitech-Quickcam-Express-Digital-camera/dp/tech-data/B000225K5G/ref=de_a_smtd/275-9189272-0781604
http://docs-europe.electrocomponents.com/webdocs/0080/0900766b800802ae.pdf
http://docs-europe.electrocomponents.com/webdocs/0080/0900766b800802ae.pdf
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Appendix 1. Program code – motion control by frequency modulated signal 

Front panel  
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Block diagram 
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Appendix 2. Program code – motion control by sequence signal 

Front panel 
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Block diagram 
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Appendix 3.  

High performance size 23 hybrid stepper motors of the 

HSX series 
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Appendix 4.  

MSE570 Evo2; Bi-polar 3.5 [A] stepper motor drive 
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Appendix 5.  

NI M Series multifunction DAQ for USB 6229 
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Appendix 6. NI DAQ Card PCI-6229 
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Appendix 7.  

NI DAQ Card 6024E (for PCMCIA)  
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Appendix 8.  

NI SC 2075 Connector Card 
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Appendix 9.  

IEEE1394a Digital CCD Camera FOculus FO124TB 
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Appendix 10.  

ICSE 2009 conference paper.  

 

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University. 
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Appendix 11.  

ICSE 2009 conference – poster 

This item has been removed due to third party copyright. The unabridged version of this thesis can 
be viewed at the Lanchester library, Coventry University. 
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