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ABSTRACT 

 

Background: 

Cancer is the leading cause of death in the developed countries and is also believed to be 

the second leading cause of death in the developing countries. Unfortunately many of 

the current chemotherapeutic agents are beset with limited efficacy, adverse side effects 

including unfavourable pharmacokinetics with some treatments known to induce 

secondary neoplasm and the agents are also expensive, all of which call for the 

discovery and development of new chemotherapeutic agents with improved profiles 

over existing ones. To this end some of the current research is focused on harnessing 

the chemotherapeutic potential of natural products. The antimalarial artemisinins have 

shown promising in vitro and in vivo activity against various types of cancer cells. In the 

current study we investigated the cytotoxicity and the underlying mechanism of action 

of novel derivatives of dihydroartemisinin JC3-39 and LLP271 and some tetraoxane 

dimers (RKA138, RKA149, RKA150, RKA151, RKA152, RKA155, RKA158 and RKA160) 

against HT29-AK (colon cancer) and HL60 (leukaemia) cell lines. 

Methods used in the study: 

The cytotoxicity of the test compounds against the cells were evaluated by MTT assay; 

ELISA assay was performed to determine the cellular levels of sTfR, survivin, IL-6 and 

TNF-α upon different drug treatment following the manufacture’s 
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(www.rndsystems.com) protocol. Flow cytometric analysis was used to measure the 

expression of catalytically active cleaved caspase-3 and P-AKT upon drug treatment. 

The effect of test agents on DNA fragmentation was investigated using agarose gel 

electrophoresis and a model of wound healing (i.e. the scratch assay, backed by trypan 

blue dye exclusion assay) was used to determine the effects of the test agents on cell 

migration. 

Key findings: 

All of the agents were cytotoxic against both the cancer cell lines. The novel agents JC3-

39 (IC50 of 14.20±0.22µM) and LLP271 (IC50 of 17.60±0.21µM) were more potent than 

DHA (IC50 of 61.40±0.45µM) against HT29-AK cells. Of the tetraoxane dimmers RKA150 

was the most potent as compared to DHA (IC50 of 3.75±0.37µM vs. 61.40±0.45µM) 

against HT29-AK cell line. Unfortunately all the test agents showed less cytotoxicity 

against HL60 cells as compared to DHA (IC50 of 0.39±0.11µM). Artesunate was cytotoxic 

as well against HT29-AK and HL60 cell lines but the cytotoxicity was less than DHA. 

There were detectable levels of sTfR, survivin, IL-6 and TNF-α in HT29-AK cells, but the 

agents had variable effects on the cells. However there was increased activity of cleaved 

caspase-3 and P-AKT upon drug treatments in HT29-AK cell line and drug treatments 

also caused DNA fragmentation as evidenced by DNA smearing/laddering. All of the test 

agents caused a concentration-dependent inhibition of wound healing with a 

corresponding increase in dead cell number, with artesunate having the greatest effects 

on the inability of the wound to close. 

Conclusion and implications: 
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The test agents were cytotoxic against both HT29-AK and HL60 cell lines. There is 

evidence that the agents mediated their cytotoxicity by apoptosis which stems from the 

observation that they cause an increase in catalytically active cleaved caspase-3 and P-

AKT, decreased cellular survivin levels and caused DNA fragmentation. The drugs also 

showed potent inhibitory activity against the capacity of the wound to heal. Repeat 

studies are warranted to decipher the other cellular effects of the agents against the 

cells. 

INTRODUCTION 

Cancer is a large heterogeneous class of diseases in which a group of cells display 

unregulated growth ("What Is Cancer?"National Cancer Institute Retrieved 2009-08-

17). Three properties of cancer cells are uncontrolled growth, local invasion and the 

ability to metastasize in regional lymph nodes or distant body sites and these properties 

differentiate malignant tumours from benign tumours. The tissue of origin gives the 

distinguishing characteristics of cancers and over 100 types of cancers have been 

identified including breast, liver etc. (World Health Organization, February 2006, 

Retrieved 2011-01-05). Cancers derived from epithelial cells (prostate, lung, colon etc.) 

are called carcinoma, cancers derived from connective tissues (bone, cartilage etc.) are 

called sarcoma; lymphoma and leukemia are two types of cancers that arise from 

hematopoietic (blood-forming) cells. Cancers derived from pluripotent cells (refers to a 

stem cell that has the potential to differentiate into any of the three germ layers: 

endoderm, mesoderm and ectoderm) are called germ cell tumour. 

Colon cancer and blood cancer: 
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Our present study is focused on two types of cancer cells; HT29-AK (colon cancer) and 

HL60 (leukaemia) cells. Colon cancer is the third most commonly diagnosed cancer in 

the world (Jemal et al., 2007). It starts in the lining of the bowel frequently as a result of 

mutations (L Ricci-Vitiani et al., 2006). The most commonly mutated gene in all 

colorectal cancer is the Adenomatous Polyposis Coli/ APC gene which produce the APC 

protein (M Tsujii et al., 1997). APC is classified as tumour suppressor gene (CA O'Brien 

et al., 2006). The APC protein acts as a brake on the accumulation of β-catenin protein. 

In the absence of APC, β-catenin accumulates to high levels and translocates into the 

nucleus. There it binds to DNA, and activates the transcription of genes that are 

normally important for stem cell renewal and differentiation (H Tazawa et al., 2007). 

The inappropriate expression of APC to high levels is a predisposing factor to cancer (H 

Tazawa et al., 2007). Leukaemia is a type of cancer of the blood or bone marrow which 

is characterized by an abnormal increase of immature white blood cells called "blasts" 

(RH Grimm et al., 1995). Leukaemia is a broad term covering a spectrum of diseases. In 

turn, it is part of the even broader group of diseases affecting the blood, bone marrow, 

and lymphoid system which are all known as hematological neoplasms (S Bonassi et al., 

2006). 

      

Figure 1: The lining of bowel with a malignant tumour and a cancerous blood cell 

respectively. 
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Cancer epidemiology: 

Cancer is the leading cause of death in the developed countries and is also believed to be 

the second leading cause of death in the developing countries (Ferlay et al., 2010). It 

accounts for approximately 13% of all deaths each year worldwide with the most 

common being lung cancer (1.3 million deaths), stomach cancer (803000 deaths), 

colorectal cancer (639000 deaths), liver cancer (610000 deaths) and breast cancer 

(519000 deaths). In 2008 approximately 12.7 million cancers were diagnosed and 7.6 

million people died of cancer worldwide. Deaths from cancer worldwide are projected 

to continue to rise to over 11 million by 2030 (Globocon 2010, I.A.R.C, 2010). In 2000, 

approximately 256,000 children and adults around the world developed some form of 

leukemia, and 209,000 died from it. About 90% of all leukemia is diagnosed in adults. 
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Figure 2: The 2010 distribution of primary diagnosis of various types of cancer. 

Cancer rates in middle-aged men and women in Great Britain have gone up by nearly 

20% in a generation and this represents an increase of 17,000 cases a year. Cases of 

cancer in men have risen from almost 20,000 in 1979 to almost 24,000 in 2008, while in 

women cases have increased from more than 24,000 to more than 36,500. 

Unfortunately, current chemotherapeutic agents have adverse side effects including 

unfavourable pharmacokinetics (Efferth, 2006; Brown et al., 2007; Shahrokni et al., 

2009; Raschi et al., 2010; Cheung et al., 2010; Lee et al., 2010; Liu et al., 2010) and are 

expensive with some treatments known to induce secondary neoplasm (Pawelec et al., 

2010). Therefore, there is an urgent demand for developing novel anti-cancer agents 

with improved activity that circumvents the limitations of some of the current agents. In 

order to identify chemotherapeutic agents with improved profiles over existing ones, 

some of the current research is focused on harnessing the chemotherapeutic potential 

of natural products. 

Natural products in cancer chemotherapy: 

There is a large body of evidence on the potential utility of natural products as 

chemotherapeutic agents (Efferth, 2005; Cheung et al., 2010; Lee et al., 2010; Hussain 

et al., 2011). Especially the traditional Chinese medicines has benefitted one fifth of the 

world’s population in treating many diseases and its potentiality as a real healing option 

by the west is increasingly being recognized. Furthermore the rationale for combining 

conventional agents with modern biotechnological approaches to the delivery of 

traditional Chinese medicine is an avenue set to revolutionize the future treatment of 

cancer patients. For example, Scutellaria baicalensis commonly referred as ‘Golden root’, 

comprising of 12 herbs in various proportions have shown promising activities against 
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various cancer cell lines, such as PC-3 and DU145 (prostate cancer cell line), HL60 

(leukaemia), KML562 (chronic myeloid leukaemia cell line), HeLa (cervical cencer cell 

line) and HO-8910 (ovarian cancer cell line) cell lines. All these herbs contain flavonoid-

rich elements which are thought to impart anti-inflammatory, antibacterial, anti-

neoplastic, pro-apoptotic, anti-proliferative and anti-angiogenic effects (Igney and 

Krammer, 2002; Po et al., 2002;Nelson and Montgomery, 2003; Powell et al., 2003; 

Parekh et al., 2009; Gravett et al., 2011; Soomro et al., 2011). 

Artemisinins as anti malarial and their mode of action: 

Another such example is the Chinese medicinal herb qing-hao (Artemisia annua L or 

commonly referred to as sweet worm wood). It has been used in China for centuries for 

afflictions such as fevers, hemorrhoids and malaria (Parekh et al., 2009). In 1972, 

artemisinin was discovered to be the active ingredient responsible for the anti-malarial 

action of qing-hao (Singh and Lai, 2001). Artemisinin (Figure 3) is a sesquiterpene 

lactone peroxide containing an endoperoxide moiety or 1, 2, 4 trioxane (-C-O-O-C-) 

(Efferth et al., 2004; Mercer et al., 2007; Nakase et al., 2008; O’Neill, Barton and 

Ward,2010; Alessandro et al., 2011). Several semi-synthetic derivatives of artemisinin 

have been produced including dihydroartemisnin (DHA), artesunate, artemether etc 

(Efferth et al., 2001; Efferth et al., 2002; Chen et al., 2004; Parekh et al., 2009). These 

drugs show exquisite activity against drug-resistant and sensitive forms of Plasmodium 

falciparum, the causative agent of malaria. The drugs mediate their anti-malarial action 

upon activation by intraparasitic haem, leading to the formation of carbon-centred free 

radicals (Singh and Lai, 2001). These carbon-centred radicals then cause cell death by 

interacting with cellular macromolecules such as proteins and membrane lipids 

(Efferth et al., 2004; Mercer et al.,2007; Hommel, 2008; Nakase et al.,2008; Jones et 
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al.,2009; Raghavamenon et al., 2011). Interestingly, due to their rapid rate of division 

most cancer cells take up a large amount of iron as it plays a vital role in cell physiology 

and growth (Kwok and Richardson, 2002). Given that artemisinins require iron for 

activation, it has been shown some 18 years ago that the artemisinins have cytotoxicity 

effect both in vitro and in vivo against various types of cancer cells (Moore et al., 1995; 

Posner et al., 1997; Beekman et al., 1997; Beekman et al., 1998; Efferth et al., 2001; 

Jeyadevan et al., 2004; Mercer et al., 2007; Parekh et al., 2009). 

 

Figure 3: Chemical structure of artemisinin with the endoperoxide bridge. 

Artemisinins as antitumour agents and their mode of action: 

Since the early 1990s subsequent studies have observed artemisinin and its analogues 

showing antitumor activity towards many cancer cell lines; the highest activity being 

reported against leukaemia and colon cancer cell lines (Disbrow et al., 2005). Recent 

studies using rationally designed and synthesized lead compounds, based on the 

DHA backbone, have shown cytotoxic activity against a range of tumour cell lines 

including colorectal (HT29-AK, HCT-116 and SW-480), leukaemia (HL-60), 

hepatoma (HEP-G2 and HUH-7), lung (SPC-A1), prostate (C4-2 and LNCaP), breast 

(MDA-MB-231 and MCF-7), endothelial (HMEC-1), osteosarcoma and pancreatic 
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(BxPc3-RFP) cancer cells (Li and Zhou, 2007; Mercer et al., 2007; Mu et al., 2007; 

HOU et al., 2008; Shao et al., 2008; Zhou et al., 2008; Jones et al., 2009; Riganti et al., 

2009; Lu et al., 2008 and 2010; Morrissey et al., 2010; Aung et al., 2011; Noori and 

Hassan, 2011; Alessandro et al., 2011; Ji et al., 2011). 

The well accepted antitumor mechanism of action is similar to the anti-malarial 

mechanism. Rapid proliferation is the basic feature of malignant cells, where high 

intracellular iron content is needed as a cofactor of DNA metabolism and continued cell 

proliferation (Li and Zhou, 2007). Many examples of increased requirement and 

dependency on iron by cancer cells to proliferate can be found in the research 

literatures. For example, breast cancer cells have 5-15 times more transferrin receptor 

(transferrins are iron-binding blood plasma glycoproteins that control the level of free 

iron in biological fluids) than normal breast cells (Beguin, 1992; Harford, 1994). 

Transferrin receptors are over expressed only on the cell surface of breast carcinoma 

cells but not on benign breast tumor cells (Singh and Lai, 2001). Artemisinin has been 

shown to be selectively toxic to human breast cancer cells (Singh and Lai, 2001). In 

another study artemisinin was tested on two breast cell lines, HTB 125, a normal human 

breast cell line and HTB 27, a radiation-resistant human breast cancer cell line (Hsieh et 

al., 1996). It has been found that only 2% of breast cancer cells were still alive after a 16 

hour treatment with both DHA and holotransferrin (iron bounded transferrin) On the 

other hand, treatment with DHA alone or DHA+holotransferrin had little effect on 

normal human breast cells. These data indicates that artemisinin is selectively toxic to 

the radiation resistant human breast cancer cell line but not to normal breast cells 

(Hsieh et al., 1996). Furthermore it was found that holotransferrin significantly 

enhanced the cytotoxicity of artemisinin on breast cancer cells (Mercer et al., 2007; Oh 
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et al., 2009; Zhang et al., 2010; O’Neill, Barton and Ward, 2010). In chronic 

myelogenous leukemia (CML) cells also express more transferrin receptors on their cell 

surface than normal cells. In addition, the dependence of CML cells on iron intake via 

the transferrin mechanism is suggested by the finding that antibody to transferrin 

receptors retards the growth or kills CML cells (Calzolaria et al., 2004). Leukemia cells 

have been shown to be the most sensitive to artesunate, an artemisinin analogue, 

among various other cancer cell lines such as breast cancer cell line and prostate cancer 

cell lines (Kawabata et al., 2001). Interestingly, elevated iron levels allow the selective 

toxicity of artemisinins towards the cancer cells (Lazarus et al., 1995). Given that iron is 

central to the activity of artemisinin; various manipulators have been attempted with 

the view to enhance the cytotoxic effects of the drugs. For example, conjugation of 

artemisinin or DHA to transferrin has been shown to increase their targeted 

delivery and cytotoxic activity against tumouric cells (Lai et al., 2005; Nakase et al., 

2008; Oh et al., 2009; Xie et al., 2010). The selective toxicity of the artemisinins 

have also been demonstrated by studies showing that they are approximately 100 

times more potent in killing human leukemia cells than normal lymphocytes, with 

the selectivity stemming from the differential levels of iron in the two cell types 

(Singh and Lai, 2006). In vitro studies have verified the potent activity of 

artemisinin-transferrin conjugate against Molt-4 leukaemia cell line, while DHA-

transferrin conjugate showing even up to 172 times cytotoxic activity in MCF-7 

human breast neoplastic cell line (Oh et al., 2009; Xie et al., 2010). Furthermore, a 

recent study found that the oral co-administration of artesunate and ferrous sulphate 

induced apoptosis in cancer cells as compared to artesunate alone (Fafowora et al., 

2011). 
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The primary mechanism of 1, 2, 4-trioxanes by which they exert their anti-tumour 

activities has been hypothesized to be through the induction of caspase-dependent 

apoptotic cell death (Efferth et al., 2004; Singh and Lai, 2006). The caspase-3 protein 

is a member of the cysteine-aspartic acid protease (caspase) family (NA Thornberry et 

al., 1997). Sequential activation of caspases plays a central role in the execution-phase 

of cell apoptosis (GS Salvesen et al., 1999). 

 

Figure 4: Both the intrinsic and extrinsic pathways lead to the activation of caspases in 

a stepwise fashion. 

It has been accompanied with mitochondrial endoplasmic reticulum stress, release of 

cytochrome c, activation of effectors caspases-3 and-7, induction of cell cycle arrest at 

go/g1 phase (Parekh et al., 2009). Moreover, studies in human leukaemia, colon and 

prostate tumour cells demonstrated that the compounds-induced apoptosis is highly 

correlated with loss or significant decrease of the anti-apoptotic protein survivin, down-
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regulation of anti-apoptotic Bcl-2 and over-expression of pro-apoptotic Bax proteins 

(Jiao et al., 2007; Zhou, Wang and Li, 2008; Aung et al., 2011). B-cell lymphoma 2 (Bcl-2) 

is an apoptosis regulator protein encoded by the BCL2 gene whereas Bcl-2–associated X 

protein, or Bax is a protein of the Bcl-2 gene family. It promotes apoptosis by competing 

with Bcl-2 (Ji et al., 2011; Liang et al., 2011). 

Additionally, it has been reported that 1, 2, 4-trioxanes are known to block the signaling 

pathway NF-κb (nuclear factor kappa beta) and may therefore induce apoptosis 

(Efferth, 2005, Gao et al., 2011). Indeed, it has been demonstrated that artesunate in 

human rheumatoid arthritis inhibits tumour necrosis factor (TNF)-α-induced 

production of pro-inflammatory cytokines such as Interleukin-1 (IL-1), Interleukin-6 

(IL-6) and Interleukin-8 (IL-8) through suppression of signaling pathway NF-κb 

(Alessandro et al., 2011). Therefore, it can be hypothesized that 1, 2, 4-trioxanes may 

exert similar anti-inflammatory activities in malignancy cells. 

Moreover, extensive studies has been done aiming at pharmacoenhancing the 

activity of 1, 2, 4-trioxanes especially the main active compound DHA against cancer 

cells (Jones et al., 2009). Studies aimed at pharmacoenhancing the antitumour effects 

of artemisinin have generated artemisinin-based hybrids with the view to enhancing 

the DNA-targeting property of artemisinin (Jones et al., 2009). These derivatives are 

referred to as dihydroartemisinin-acridine hybrids. Acridine is a potent DNA-

intercalating agent and there is also some evidence that the carbon-centred radicals of 

artemisinins cause DNA damage. The rationally designed artemisinin-acridine hybrids 

displayed promising anti-tumour activity in a variety of cancer cells types including 

leukemia, colon and breast cancer cells and they induced cell death by apoptosis (Li and 

Zhou, 2007, Jones et al., 2009, Noori and Hassan, 2011). 
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Effects of artemisinins on apoptosis: 

There are evidences that artemisinin induces apoptosis in the presence of iron in 

vitro and is lethal towards human leukemia and breast cancer cells (Efferth et al., 

2004; Singh and Lai, 2006). Clearly, apoptosis is guided by a range of complex 

multi-step, multi pathway programmes that consequently lead to the breakdown of 

cellular DNA leading to cell death (Parekh et al., 2009). One of these multi-steps 

includes the induction of caspase-dependent apoptotic cell death (Rathmell and 

Thompson, 1999; Mercer et al., 2007; Parekh et al., 2009; Ji et al., 2011; 

Raghavamenon et al., 2011). It is postulated that the activation of the endoperoxide 

bridge leads to apoptosis via caspase-dependent pathways, in which ‘initiator’ 

caspases (caspases 8, 9 and 10) have the primary role of processing and activation 

of both pro-enzymes (procaspases-8,-9 and-10) and ‘executioner’ caspases 

(caspases-3,-6 and -7), which ultimately cause cell death (Rathmell and Thompson, 

1999; Mercer et al., 2007; Parekh et al., 2009; Ji et al., 2011; Raghavamenon et al., 

2011). Some of the remaining apoptotic programs include induction of cell cycle 

arrest at go/g1 phase, induction of mitochondrial endoplasmic reticulum stress, 

release of cytochrome-c and subsequent DNA fragmentation and the artemisinins 

have been shown to affect all these important processes required for cell survival 

(Parekh et al., 2009). DHA also induce apoptosis in vitro and in vivo through a 

process that involves inactivation of MEK (mitogen-activated protein kinase)/ERK 

(extracellular signal-regulated protein kinase), Mcl-1 (myeloid cell leukaemia 

protein) down-regulation, culminating in cytochrome-c release and caspase 

activation (Gao et al., 2011). DHA is well documented to cause apoptosis in micro 
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vascular endothelial cells (HMEC-1) via caspase 3 and 7 activation, phosphatidylserine 

exposure and G2 cell cycle arrest with high doses of drug in combination of oxygen 

(Alessandro et al 2011). 

 

 

 

DHA 

 

 

Induction of 

apoptosis 

1. By inactivation of MEK/ERK. 

2. By the down-regulation of Mcl-1 in leukemia cells 

(Gao et al., 2011). 

3. Via caspase 3 and 7 activation in micro vascular 

endothelial cells (HMEC-1) (Alessandro et al 2011). 

 

There are a series of key receptors, genes and enzymes whose activation and 

suppression lead to a cascade of intracellular events which ultimately result in cell 

death. For example, the mitochondrion plays a central role in cell survival and many 

of the triggers of apoptosis are known to act in a mitochondria-dependent manner. 

DHA has been shown to cause apoptosis via mitochondrial pathway, by reducing 

cellular iron influx, which results as a consequence of decreased expression of 

transferrin receptors. these effects are believed to be mediated via the down regulation 

of proliferating cell nuclear antigen (PCNA), a key regulator of DNA synthesis and 

repair; anti-apoptotic protein Bcl-2, VEGF (vascular endothelial growth factor) and up-

regulating pro-apoptotic protein Bax in pancreatic cancer cells under normoxic but not 

hypoxic conditions (Ji et al., 2011). It has been reported that the effects of the 

artemisinins on these important molecules ultimately cause apoptosis following the 

downstream activation of caspase-3 (Green and Evan, 2002). 
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Recently, it has been reported that DHA up-regulates the expression of Bax, FAS and 

cyclin D1 by activation of caspase-3,-8,-9; down-regulated the expression of Bcl2, 

Cdc25b and cyclin B1, consequently leading to apoptosis. DHA has also been shown to 

decrease the level of splenic CD4+, CD25+ and FOXP3+ regulatory T cells in vivo, which 

was demonstrated by the reduction of tumour size and a decrease in cytokine levels 

(Jiao et al., 2007, Liung et al., 2011). 

Clearly, all cells have to control the level of apoptosis that is occurring as such many 

pathways involving inhibitors of apoptosis, such as survivin which promote cell 

survival. Survivin is also known as Baculoviral IAP/ inhibitor of apoptosis protein 

repeat-containing protein 5 (BIRC5), and it is an apoptosis inhibitor 4 (API4) and a 

member of the inhibitor of apoptosis protein (IAP) gene family. It plays a vital role in 

cell division and suppression of apoptosis by suppressing cell death, initiated by both 

intrinsic and extrinsic apoptotic pathways (Ambrosini, Adida and Altieri, 1997; Salvesen 

and Duckett, 2002; Schimmer, 2004). There is also evidence that it plays a role in 

tumour formation, tumour cell resistance to anti-cancer agents and may act as a marker 

and prognostic indicator for certain cancers including pancreatic and colorectal cancers 

(Ambrosini et al., 1997;Muchmore et al., 2000; Altieri, 2003; Wheatley et al., 2005). 

Survivin is highly expressed in human malignancies including colorectal cancer and 

leukaemia, but rarely in healthy tissues (Tamm et al., 1998; Dohi et al., 2004; McNeish et 

al., 2005; Lu, Luo and Tao, 2007; Ryan, O'Donovan and Duffy, 2009). The anti-apoptotic 

effect of survivin stems from its inhibitory action on caspase 3 and 7 (Zaffaroni et al., 

2005). Survivin has been reported to interact with a number of other proteins. It binds 

and inhibits the activity of the pro-apoptotic mitochondrial protein SMAC (second 

mitochondria-derived activator of caspases) /Diablo (direct IAP binding protein with 
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low pI), and stabilizing XIAP (X-linked inhibitor of apoptosis protein) by preventing 

ubiquitination and subsequent proteasomal degradation of the proteins. DHA has been 

shown to down-regulate protein expression of survivin in the lung cancer cell lines SPC-

A-1, due to down-regulation of its mRNA (Tamm et al., 1998). 

Recent in vitro studies in human prostate malignant cells have shown that DHA-

mediated apoptosis is also correlated with inhibition of the PI3-kinase/AKT 

(phosphoinosine 3-kinase/serine-threonine protein kinase) and extracellular signal 

regulated kinase (ERK) survival pathway (He et al., 2010). AKT, also known as Protein 

Kinase B (PKB), is a serine/threonine protein kinase that plays a key role in multiple 

cellular processes such as cell proliferation and apoptosis (M Pap and GM Cooper, 

1998). Since it can block apoptosis, and thereby promote cell survival, AKT has been 

implicated as a major factor in many types of cancer (O’Gorman et al., 2000; Testa and 

Tsichlis, 2005; De Souza, Russell and Kearsley, 2009). 
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Figure 5: The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. 

Effects of artemisinins on cytokine secretion: 

Cytokines such as Interleukin-6 (IL-6) and TNF-α are pleiotropic cytokines which 

play a major role in a number of diseases (Jones et al., 2005; Hodge et al., 2005; 

Tzanavari, Giannogonas And Karalis, 2010). IL-6 plays a major role in malignancy 

and has shown to be an inhibitor of apoptosis and angiogenesis in cancer cells. 

Normal human circulating IL-6 is in the 1pg/ml range, with modest elevations in certain 

cancers (Kozłowski et al., 2003; Hong, Angelo and Kurzrock, 2007; Lukaszewicz, 

Mroczko and Szmitkowski, 2007). It has also been reported that IL-6 promotes 

inflammation-associated carcinogenesis, such as colitis-associated cancer (Mouawad et 

al., 1996; Naugler and Karin, 2008). 

TNF-α, also known as cachectin, plays an important role in inflammation, immune 

system development, apoptosis and lipid metabolism (Idriss and Naismith, 2000; 
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Hehlgans and Pfeffer, 2005; Chen et al., 2009; Salek and Croft, 2010; Van et al., 2010). 

TNF-α is produced by tumour cells and assembled intracellularly to form non-

covalently linked homotrimer which is expressed on the cell surface (Perez et al., 1990; 

Tang, Hung and Klostergaard, 1996; Watts et al., 1999). 

Interestingly, artesunate have been reported to cause the suppression of TNF-α and 

production of IL-6, as well as activation of PI3K-AKT pathway. Additionally, it has been 

reported that 1, 2, 4-trioxanes are known to induce apoptosis by blocking the 

signalling pathway NF-kβ. There is evidence that artesunate leads to the 

suppression of signalling pathway NF-kβ signalling and consequently inhibits TNF-

α-induced production of the pro-inflammatory cytokines, such as IL-1, IL-6 and IL-8, 

in human rheumatoid arthritis (Lukaszewicz, Mroczko and Szmitkowski, 2007; Xu et 

al., 2007). Recently, it was reported that DHA inhibits angiogenesis in human 

pancreatic cancer by inhibition of NF-kβ DNA-binding activity and also decreased 

the expression of NF-kβ-targeted pro-angiogenic gene products, VEGF (Vascular 

endothelial growth factor), IL-8, COX-2 (Cyclooxygenase-2) and MMP-9 (Matrix 

metalloproteinases-9)in vitro and in vivo (Efferth, 2005). In-vivo experiments using 

DHA also demonstrated increased levels of IFN-γ but decreased the levels of IL-4. In 

HCT116 cells it has been reported that the apoptotic genes, such as TNF-α, TRAILR, 

CASP, GADD45 were expressed at much higher levels, while some survival genes, 

such as, Bcl2, AKT, BAD were expressed at lower levels, inducing apoptosis upon 

DHA treatment (Wang et al., 2011; Ji et al., 2011). 

Effects of artemisinins on DNA fragmentation: 

Apoptotic cells also have a major distinctive characteristic of DNA fragmentation, which 

occurs by endogenous endonucleases activation, producing oligonucleosomes (Noori 



[25] 
 

and Hassan, 2011; Farsam et al., 2011). It is postulated that the carbon-centred free 

radicals generated by artemisinin and its derivatives upon reductive cleavage by iron 

alkylates into DNA which may cause DNA fragmentation (Noori and Hassan, 2011; 

Farsam et al., 2011). 

 

Effects of artemisinins on cell migration/metastasis: 

Metastasis and invasion are fundamental uncontrolled properties of malignant cancer 

cells, which is a leading cause of morbidity and mortality. The invasion of lymph and 

blood vessels are important steps in metastasis which requires increased expression of 

matrix metalloproteinases (MMPs), cell-extracellular matrix (ECM) interactions and 

disconnection of intercellular adhesion and degradation of ECM. MMPs have been 

implicated in malignancy and members of its family are involved in degradation of ECM. 

The activity of MMPs is kept in check by TIMPs (tissue inhibitor of matrix 

metalloproteinases) (Hwang et al., 2010). It has been reported that inhibition of the 

expression of MPPs or enzyme activity can be used as early targets for preventing 

cancer metastasis (Liotta, Steeg and Stetler-Stevenson, 1991; Deryugina et al., 1997; 

Stamenkovic, 2000; Hwang et al., 2010)).  

Artemisinin has been reported to have inhibitory effect on invasion and metastasis of 

human hepatocellular carcinoma (HCC) cell lines (HEPG2 and SMMC-7721). The drugs 

inhibited, in a concentration-dependent manner, the invasion and migration of the cells 

by reducing the levels of MMP2 and inducing cellular levels of TIMP2 (Liabakk et al., 

1996; Hwang et al., 2010; Wang et al., 2011). They have been also demonstrated to 

activate Cdc42, which enhance E-cadherin activity, resulting in greater cell-cell adhesion 
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and consequently reduced metastasis (Du et al., 2009; Weifeng et al., 2011). DHA is also 

an effective anti-metastatic agent that functions by down-regulating MMP-9 gene 

expression, through inhibition of PKCa/Raf/ERK and JNK phosphorylation in human 

fibrosarcoma HT-1080 cells (Du et al., 2009; Weifeng et al., 2011). 

Aim of our research: 

Cancer treatment continues to pose a significant economic burden to health care 

systems. Artemisinin derivates have shown great promise as anticancer agents and may 

have potential clinical utility. Unfortunately, currently many of the agents are effective 

against tumour cells within the micromolar range as opposed to the nanomolar range 

seen against plasmodium parasites, but it is hoped that via rational drug design this 

range can be reduced. In the current study we have access to a number of novel 

derivatives of dihydroartemisinin minor groove binding conjugates like JC339 and 

LLP271 through a collaborative research partnership with the chemistry department of 

the University of Liverpool. Our aim was to evaluate the cytotoxicity of those derivatives 

against human colon cancer cell line (HT29-AK) and leukemia cell line (HL60) and to 

compare the observed effects with the effects of the parent compound (DHA). Our 

experiments also aimed to determine the mechanism of action of JC339 and LLP271 by 

using a range of techniques such as MTT assay, Flow cytometry, ELISA and wound 

healing assay etc. We have also evaluated the cytotoxicity of some of the novel 

tetraoxane RKA compounds against human colon cancer cell line (HT29-AK) and 

leukemia cell line (HL60). The figure below shows the chemical structures of all the test 

agents used in this study, 
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Figure 6: The chemical structures of the test agents. (A) is the chemical structure of 

the dihydroartemisinin hybrid LLP271 (B) is JC3-39 whose structure is unknown. 
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The structures of the tetraoxane dimmers RKA138 (C), RKA149 (D), RKA152 (E), 

RKA150 (F), RKA151 (G), RKA158 (H), RKA155 (I) and RKA160 (J). 

MATERIALS AND METHODS 

Reagents and chemicals: 

The semi-synthetic derivative of artemisinin (dihydroartemisinin/DHA) was purchased 

from Dafra-Pharma (Belgium). Derivatives of DHA (JC3-39 and LLP271) and the novel 

tetraoxane RKA compounds (RKA138, RKA149, RKA150, RKA151, RKA152, RKA155, 

RKA158 and RKA160) were kindly donated by the University of Liverpool (Liverpool, 

U.K). All the ELISA kits which include the QUANTIKINE Human total survivin 

immunoassay, Human TNF-alpha, Human IL-6 and Human sTfR were purchased from 

R&D Systems (Minneapolis, U.S.A). The antibodies (AKT and catalytically active cleaved 

caspase-3) for flow cytometric analysis were purchased from Cell-Signaling Technology 

(New England Biolabs, Herts; U.K). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide were purchased from Sigma-Aldrich (Poole, U.K). All 

media were supplied by Biosera and Invitrogen and chemicals, unless mentioned 

otherwise, were supplied by Fisher Scientific, Leicestershire (UK). All the drugs were 

dissolved in dimethylsulfoxide (DMSO) with the final concentration in the incubation 

media being less than 1%. 

Cell culture: 

Human colonic adenocarcinoma cells (HT29-AK) and Human promyelocytic leukemia 

cells (HL60) were obtained from the European Collection of Cell Cultures (ECACC). The 

cells were maintained in the log phase of growth. They were cultured in EMEM and 
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RPMI-1640 medium respectively supplemented with 10% fetal bovine serum (FBS). 

The EMEM media was further supplemented with 1% L-glutamine (Lonza, Verviers, 

Belgium). Cells were sub cultured twice a week and maintained at 37°C humidified 

incubator with 5% CO₂. Cell counting involved the use of an electronic counter 

(NucleoCounter ®, Chemometec, Allerod, Denmark). 

Trypsinization (for the adherent cells): 

Trypsinization process was used to get the adherent cells (HT29-AK) in suspension in 

the initiation and termination step of each experiment and for sub-culturing. First the 

medium from culture flasks was aspirated. Then the attached cells were washed thrice 

with 5mL of PBS. All the PBS was removed before 1mL of trypsin (Lonza, Verviers, 

Belgium) was added to each flask and incubated at 37°C for about 3-5 minutes. Then 10-

15mL of EMEM medium supplemented with 10% FBS and 1% L-glutamine was added to 

each flask to inactivate the trypsin. The cell suspension was then counted and used for 

subsequent assays. 

Measurement of cytotoxicity: 

MTT (3-4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay is a 

colorimetric assay for measuring the cytotoxicity of drugs. 

HT29-AK and HL60 cells (1×104 cells/well) were seeded in flat bottom 96-well plates. 

The cells were then exposed to varying concentrations (0-100µM) of the drugs (DHA, 

RKA138, RKA149, RKA150, RKA151, RKA152, RKA155, RKA158, RKA160, JC339 and 

LLP271) and incubated for 24 hours (at 370C and 5% CO2). Following incubation, cell 

viability measurements were carried out by the addition of 20µl of 5mg/ml of MTT 

solution into each well and incubating the plates for 2 hours (at 370C and 5% CO2). 
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Thereafter, 100µl of lysis solution (15% sodium dodecylsulphate in 50% N, N-dimethyl 

formamide) was added into each well to dissolve the formazan crystals. The plates were 

further incubated overnight. The absorbance of the samples were measured at 492nm 

using a micro-plate reader (Stingray software; Anthos-2001, Anthos laboratory 

instruments, UK). 

DATA ANALYSIS TO DETERMINE THE IC50 VALUE OF THE DRUGS: The IC50 value 

(inhibitory concentration of a drug at which 50% of cells are killed) was determined by 

calculating the percentage of growth from the optical density readings obtained from 

the plates by the following equation: 

 

% of cell growth = Optical density of drug treated cells × 100 

                                              Optical density of control cells 

The mean percentage of cell growth was plotted against the concentration of the drugs 

and the IC50 was analyzed with the 4 parameter logistic analysis using Grafit (Erithacus 

Software, UK). 

 

 

Effect of drug treatment on cleaved caspase-3 and P-AKT activity: 

AKT, also known as Protein Kinase B (PKB), is a serine/threonine protein kinase that 

plays a key role in multiple cellular processes such as apoptosis and cell migration. 

Caspase-3 protein is a member of the cysteine-aspartic acid protease (caspase) family. 
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Sequential activation of caspases plays a central role in apoptosis. We used flow 

cytometric analyses to determine if the drugs mediate their cytotoxicity via targeting 

these important molecules. 

In order to determine the effects of drug treatment on cleaved caspase-3 activity, the 

cells (HT29-AK and HL60 at 5×106 cells/flask) were incubated in the absence or 

presence of 3 fixed concentrations of the drugs representing their ¼IC50, ½IC50 and 

IC50 for 24hrs (37C, 5% CO2). HT29-AK cells were incubated without or with DHA 

(15.3µM, 30.7µM and 61.4µM), JC339 (3.5µM, 7.1µM and 14.2µM) LLP271 (4.4µM, 

8.8µM and 17.6µM) RKA138 (9.3µM, 18.6µM and 37.2µM), RKA149 (10.4µM, 20.9µM 

and 41.8µM), RKA150 (0.9µM, 1.8µM and 3.7µM), RKA151 (8.2µM, 16.4µM and 32.8µM), 

RKA152 (3.4µM, 6.8µM and 13.6µM) and RKA158 (11.6µM, 23.1µM and 46.3µM) for 

24hrs at 37C in the presence of 5% CO2. 

In another experiment, HL60 cells were similarly incubated without or with DHA 

(0.1µM, 0.2µM and 0.4µM), RKA138 (1.7µM, 3.3µM and 6.7µM), RKA149 (1.7µM, 3.3µM 

and 6.6µM), RKA150 (3µM, 6.1µM and 12.2µM), RKA151 (8.6µM, 17.1µM and 34.3µM), 

RKA152 (1.8µM, 3.6µM and 7.1µM), RKA152M (7.8µM, 15.6µM and 31.2µM), RKA155 

(4µM, 8µM and 16.1µM) and RKA158 (3.9µM, 7.9µM and 15.7µM) for 24hrs at 37C in 

the presence of 5% CO2. 

The assay was terminated by centrifugation (at 1200 rpm for 2 minutes) and the cell 

pellets were then re-suspended in 250µl of PBS. Samples were then fixed in 250µl of 6% 

formaldehyde at 370C for 10 minutes. Thereafter the samples were centrifuged (at 1200 

rpm for 2 minutes) after chilling on ice for 1 minute. The samples were then 

permeabilized by re-suspending them in ice-cold 90% methanol. The samples were 

then centrifuged (at 1200 rpm for 2 minutes) followed by 2 wash steps in 200µl of 



[32] 
 

incubation buffer (0.5% BSA in PBS stored at 40C). The samples were re-suspended in 

100µl incubation buffer and incubated at room temperature for 10 minutes. Thereafter 

samples were incubated for 1 hour at room temperature with 100µl of primary 

antibody (pro-apoptotic marker caspase-3). A further wash step was done followed by 

resuspending the cell pellet in 500µl of PBS. Finally, the cell samples were being 

analysed on the BD FACS Calibur® flow cytometer on the FL-1 channel. The 

fluorescence of the cells was plotted against the number of events and the data were 

registered on a logarithmic scale prior to calculation of the mean relative fluorescence 

units. 

In a separate experiment, we investigated the effect of drug treatment on apoptosis 

using AKT antibody. For this only HT29-AK cells were incubated without or with DHA 

(15.3µM, 30.7µM and 61.4µM), JC339 (3.5µM, 7.1µM and 14.2µM) and LLP271 (4.4µM, 

8.8µM and 17.6µM). The cells were collected by trypsinisation and then centrifuged (at 

1200 rpm for 2 minutes) and the cell pellets were re-suspended in 250µl of PBS. The 

samples were then fixed in 250µl of 6% formaldehyde at 370C for 10 minutes. 

Thereafter the samples were centrifuged (at 1200 rpm for 2 minutes) after chilling on 

ice for 1 minute. The samples were then permeabilized by re-suspending them in ice-

cold 90% methanol. The samples were then centrifuged (at 1200 rpm for 2 minutes) 

followed by 2 wash steps in 200µl of incubation buffer (0.5% BSA in PBS stored at 40C). 

The samples were re-suspended in 100µl incubation buffer and incubated at room 

temperature for 10 minutes. Thereafter samples were incubated for 1 hour at room 

temperature with 100µl of primary antibody (pro or anti-apoptotic marker AKT). A 

further wash step was done followed by re-suspending the cell pellet in 500µl of PBS. 

Finally, the samples were being analysed on the BD FACS Calibur® flow cytometer on 
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the FL-1 channel. The fluorescence of the cells was plotted against the number of events 

and the data were registered on a logarithmic scale prior to calculation of the mean 

relative fluorescence units. 

 

Effect of drug treatment on DNA damage by gel electrophoresis: 

An aliquot of HT29-AK cells (5×106 cells/flask) and media were incubated without or 

with DHA (15.3µM, 30.7µM and 61.4µM), JC339 (3.5µM, 7.1µM and 14.2µM) and LLP271 

(4.4µM, 8.8µM and 17.6µM) for 24 hours (at 370C and 5% CO2). The cells were collected 

by trypsinisation and centrifuged at 1200 rpm for 2 minutes. The pellets were re-

suspended in 200µl of EMEM media. DNA was purified following the manufacturer’s 

(QIAGEN, Maryland, USA) protocol. Measurement of DNA concentrations was then 

carried out with Nano-Drop (N.D) Spectrophotometer (ND-1000 software, Labtech 

International, UK) at 260nm. 

An equal concentration and volume of DNA (10ng/µl DNA and 25µl volume, the volume 

was adjusted using sterile distilled water) for all the samples was loaded into each well 

of a 1% agarose gel stained with 10µl of ethidium bromide. One of the control samples 

was further heat treated at 950C for 25 minutes. 60mA current for each gel slab was 

used to run DNA. The samples were then visualized and photographed under UV-light. 

Effect of drug treatment on cellular survivin level: 

Survivin is a protein which functions to inhibit caspase activation, thereby leading to 

negative regulation of apoptosis or programmed cell death (35). It is expressed highly in 

most human tumours. 
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To investigate the effects of drug treatment on survivin levels, HT29-AK cells (2×106 

cells/well) were incubated in 6 well flat bottomed plates in the absence or presence of 

DHA (15.3µM, 30.7µM and 61.4µM), JC339 (3.5µM, 7.1µM and 14.2µM) and LLP271 

(4.4µM, 8.8µM and 17.6µM) for 24 hours (at 370C and 5% CO2). The cells were collected 

by trypsinisation and centrifuged as described previously. The cell pellets were washed 

in PBS by centrifugation (at 1200 rpm for 2 minutes) and solubilized in Lysis Buffer 6 as 

described by the manufacturer (www.rndsystems.com).  

The lysates were centrifuged (at 1200rpm for 5 minutes) and 60µl of the supernatant 

was mixed with 60µl of the assay diluents. Aliquots of cell lysate and media were 

retained for analysis. Then 100µl of each standard and sample was added in each well of 

the ELISA plate. The plates were then incubated for 2 hours at room temperature, 

covered with the provided adhesive strip. The wells were washed 3 times with wash 

buffer and then 100µl detection antibody was added. The plates were again incubated 

for 2 hours at room temperature. After incubation the wells were washed as described 

previously. Furthermore, 100µl of Streptavidin-HRP was added to each well and 

incubated for 20 minutes at room temperature. The wells were washed three times with 

wash buffer. Then 100µl Substrate solution was added and incubated for 20 minutes at 

room temperature. Thereafter 50µl of stop solution was added to each well. The optical 

density was measured at 450nm within 30 minutes and the data was further analysed 

by plotting standard graph for known survivin concentrations. The unknown survivin 

concentrations of samples were calculated by plotting the absorbance values in 

standard graph. 
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Effect of drug treatment on wound healing: 

HT29-AK cells (2×106 cells/well) were cultured (at 370C, 5% CO2) in 6 well flat 

bottomed plates until confluency was reached (3-7 days). Once the cells were confluent, 

a uniform wound was created using a sterile P10 pipette tip. Then non-adherent cells 

were washed twice using EMEM media supplemented with 10% FBS and 20mM L-

glutamine. A picture of wells with the confluent cells and the wound-created cells were 

taken. Thereafter the cells were incubated without or with DHA (6.1µM, 15.3µM, 

30.7µM and 61.4µM), JC339 (1.4µM, 3.5µM, 7.1µM and 14.2µM) and LLP271 (1.8µM, 

4.4µM, 8.8µM and 17.6µM) for 3 days at 370C and 5% CO2. The assays were terminated 

by taking pictures of the wells again. The effects of drug treatment on wound healing 

were assessed by comparing the control pictures (confluent non-treated wells; wells 

with wound, but without any drug treatment) with the pictures taken of drug treated 

wells (confluent treated wells; wells with wound and drug-treated). 

 

Trypan blue test to evaluate cell death in the wound healing assay: 

Here, an aliquot of the culture media was collected from each well (untreated and drug-

treated) of the wound healing assay in order to check the viability of the cells and to 

compare it with the viability of the control sample. Equal volumes (20µl each) of the 

collected samples and trypan blue dye were mixed before being loaded on the glass-

slide and viewed under light microscope at 10x magnification and pictures were taken. 

Along with this, the numbers of dead cells were counted using a haemocytometer 

following the equation mentioned below: 

Cell count = average number of cells in large corner square X 1x104 cells/ml X2 
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Effect of drug treatment on the cellular level of TNF-α: 

TNF-α (Tumor Necrosis Factor-alpha) is a cytokine. It is produced chiefly by activated 

macrophages. TNF-α is able to induce apoptotic cell death and to inhibit 

tumourigenesis. 

To determine the effect of drug treatment on the cellular level of TNF-α, we incubated 

HT29-AK cells (5×106 cells/flask) without or with DHA (15.3µM, 30.7µM and 61.4µM), 

JC339 (3.5µM, 7.1µM and 14.2µM) and LLP271 (4.4µM, 8.8µM and 17.6µM) for 24 hours 

at 370C and 5% CO2. Thereafter 200µl of the incubation was taken and stored at -200C 

for batch analysis of TNF-alpha levels as described by the manufacturer 

(www.rndsystems.com). 

Effect of drug treatment on the cellular level of IL-6: 

Interleukin 6 (IL-6), also known as interferon-beta 2, is an α-helical cytokine that plays 

important role in cancer progression (36). 

To determine the effect of drug treatment on the cellular level of IL-6, we incubated 

HT29-AK cells (5×106 cells/flask) without or with DHA (15.3µM, 30.7µM and 61.4µM), 

JC339 (3.5µM, 7.1µM and 14.2µM) and LLP271 (4.4µM, 8.8µM and 17.6µM) in small 

culture flasks for 24 hours at 370C and 5% CO2. Thereafter 100µl of the incubation 

medium was taken and stored at -200C for batch analysis of IL-6 levels as described by 

the manufacturer (www.rndsystems.com). 

Effect of drug treatment on the cellular level of sTfR: 

Soluble transferrin receptor (TfR) is a trans-membrane, disulfide-linked dimmer that 

arises from the proteolysis of TfR (37). It delivers iron to the cell cytosol which acts as a 
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cofactor for DNA metabolism. As we have hypothesized that the specificity of our drugs 

to cancer cells is based on the cellular level of iron, measuring the levels of sTfR may 

give us an indirect measure of the relative levels of iron within the cells in the absence 

or presence of drug. 

This assay is based on the micro plate sandwich enzyme immunoassay technique using 

two different monoclonal antibodies specific for sTfR. Briefly, the HT29-AK cells (5×106 

cells/well) were incubated without or with DHA (15.3µM, 30.7µM and 61.4µM), JC339 

(3.5µM, 7.1µM and 14.2µM) and LLP271 (4.4µM, 8.8µM and 17.6µM) in a 6-well plate 

for 24 hours (at 370C and 5% CO2). The cells were collected by trypsinisation and 

centrifuged at 1200rpm for 5 minutes. The cell pellets were solubilized in Lysis Buffer 6 

as described in the survivin assay. Thereafter 50µl of the cell-lysate was taken and 

stored at -200C for batch analysis of sTfR levels as described by the manufacturer 

(www.rndsystems.com). 

First, 100µl of sTfR assay diluent was added into each well. Then 20µl of each standard 

and sample was added to the wells and incubated for 1 hour at room temperature. The 

wells were washed three times with wash buffer. Thereafter 100µl of sTfR conjugate 

was added and incubated again for 1 hour at room temperature. The wells were washed 

again as described previously. Then 100µl of substrate solution was added and 

incubated for 30 minutes at room temperature. The assay was terminated by adding 

100µl of stop solution. The optical density was measured at 450nm within 30 minutes 

and the data was further analysed by plotting standard graph for known sTfR 

concentrations. The unknown sTfR concentrations of samples were calculated by 

plotting the absorbance values in standard graph. 
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Statistical analysis: 

Data are expressed as mean ± SD and was assumed to be non-normal; the Shapiro-Wilk 

test was used to assess the distribution of the data. Statistically significant differences 

between controls and test samples were then assessed either by one-way ANOVA 

followed by Mann-Whitney U test using Stats-Direct statistical software, version 2.6.3, 

2007 (Cheshire, UK). 

 

 

 

RESULTS 

The cytotoxicity of the compounds against HL60 and HT29-AK cells: 

At the start of these investigations, the cytotoxicity of artesunate (a semi-synthetic 

derivative of artemisinin) against HL60 cells and HT29-AK cells were evaluated. In the 

case of HT29-AK cells, the cells were treated with artesunate at time 0 (i.e. cells and 

drug added at the same time), at proliferating and at confluence and the results are 

represented in Table 1. We observed that artesunate was more cytotoxic against HL60 

cells than HT29-AK cells (1.45±0.08µM vs. 160.44±1.62µM). The rank order of potency 

of artesunate against HT29-AK cells at time 0, at proliferating and at confluence was 

confluence  proliferating  time 0. The IC50 value of artesunate against confluent HT29-

AK cells was 51.75±2.94µM, which was significantly (P≤0.05) more potent than DHA. 
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Table 1 The cytotoxicity results for artesunate against HL60 and HT29-AK tumour cell 

lines over different times of confluency. The IC50 values are means±S.D of three 

independent experiments with six replicates in each. HL60 cells were incubated with 

varying concentrations (0-100µM) of artesunate for 24 hours before the cytotoxicity 

was measured using MTT assay. Whether in case of HT29-AK cells, for time 0, cells were 

incubated with artesunate (0-750µM) as soon as the cells are seeded in the 96-well 

microtitre plates; at proliferating, cells were allowed to grow for 2-3 days before being 

treated and at confluence, cells were treated at least 3-4 days post seeding respectively. 

The cytotoxicity was measured as described previously. *P<0.05 as tested by Mann-

Whitney U test. 

Cells IC50 (µM) 

Mean±SD 

HL60 1.45±0.08 

HT29-AK 160.44±1.62a 

125.54±3.30b 

51.75±2.94c* 

a,b and c represent the data obtained against HT29-AK cells at time zero, proliferating 

(2-3 days post seeding) and upon reaching confluency (3-4 days post seeding), 

respectively. 

In the subsequent studies, the cytotoxicity of the test agents (JC3-39, LLP271 and the 

tetraoxane dimers, the RKA series) was evaluated in comparison to DHA using the MTT 

assay and the results can be seen in Table 2. Interestingly, all the test agents were 

cytotoxic against both HL60 and HT29-AK cell lines, with HL60 cells being more 

susceptible compared to HT29-AK cells. DHA was more potent than all the other 
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compounds tested in case of HL60 cells. However, all of the novel agents were 

significantly (P≤0.05) more potent than DHA against HT29-AK cell line. The rank order 

of activity of the tetraoxane dimers against HL60 cells was as follows: RKA149  

RKA138  RKA152  RKA150  RKA158  RKA155  RKA152M  RKA151. Against 

HT29-AK cells the rank order of potency of the agents was as follows: RKA150  

RKA152  RKA151  RKA138  RKA149  RKA158. The IC50 values of JC3-39 and 

LLP271 against HT29-AK cells were 14.20±0.22µM and 17.60±0.21µM respectively, 

both of which were significantly (P<0.001) more potent in comparison to DHA. Overall, 

the data showed that HL60 cells were more susceptible to DHA as only 0.39±0.11µM 

was needed to kill 50% cells, whereas HT29-AK cells were more susceptible towards 

the novel agents (Table 2). 

 

 

Table 2: Cytotoxicity results for the different compounds in comparison to DHA against 

HL60 and HT29-AK tumour cell lines. The IC50 values are mean of three independent 

experiments with six replicates in each ± standard deviation. The cytotoxicity of 

RKA152M and RKA155 against HT29-AK cells and the cytotoxicity of JC3-39 and 

LLP271 against HL60 cells were not determined (N.D). *P<0.05, **P<0.01 and ***P<0.001 

as tested by Mann-Whitney U test. 
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Test agents IC50 against HL60 

Mean ±S.D 

(µM) 

IC50 against HT29-AK 

Mean ±S.D 

(µM) 

DHA 0.39±0.11 
 

61.40±0.45 
 

RKA138 6.99±0.12 
 

37.16±0.16* 
 

RKA149 6.56±0.16 
 

41.79±0.24* 
 

RKA150 12.24±0.68 
 

3.75±0.37*** 
 

RKA151 34.29±0.63 
 

32.77±0.31** 
 

RKA152 7.14±0.15 
 

13.59±0.11*** 
 

RKA158 16.44±0.54 
 

46.29±0.31* 
 

RKA152M 31.21±1.81 N.D 

RKA155 18.81±2.30 N.D 

 

 

JC3-39 N.D 14.20±0.22*** 
 

LLP271 N.D 17.60±0.21*** 
 

 

 

Effect of drug treatments on the cellular concentration of sTfR in 

HT29-AK cells: 

Iron is central to the cytotoxicity of artemisinins as it mediates the reductive conversion 

of the drugs to reactive species which ultimately kill the cancer cells. Here the cellular 

sTfR levels were measured and also the effects of drug treatments on cellular sTfR level 
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in the absence and presence of the test agents was evaluated. This gave us a very crude 

measure of cellular transferrin level and the effect of drug treatment on receptor 

expression. There were measurable levels of sTfR in the control cells ranging from 

4.3±0.5nmol/L to 5.9±0.6nmol/L (Figure 7). There was a significant (P<0.05) decrease 

in cellular sTfR concentration when cells were treated with 15.3µM of DHA as compared 

to control (Figure 1A). However, surprisingy, none of the other concentrations (30.7µM 

and 61.4µM) tested of DHA significantly altered the level of sTfR (Figure 7A). Upon 

treatment with 3.5µM and 7.1µM of JC3-39, there was a significant (P≤0.05) increase in 

cellular sTfR level as compared to the control. The cellular sTfR concentration in the 

control samples was 4.3±0.5nmol/L; 5.2±0.3nmol/L and 5.9±0.5nmol/L was measured 

in samples treated with 3.5µM and 7.1µM of JC3-39 respectively. There was no 

significant alteration in the cellular level of sTfR when the cells were treated with 

14.2µM of JC3-39 as compared to control (Figure 7B). When HT29-AK cells were treated 

with 4.4µM of LLP271, the cellular sTfR concentration was significantly (P<0.001) 

decreased as compared to control (3.9±0.3nmol/L vs. 5.6±0.4nmol/L). None of the 

other concentrations tested of LLP271 (8.8µM and 17.6µM) significantly altered the 

levels of sTfR compared to control (Figure 7C). 
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Figure 7 The effects of different test agents on the cellular concentration of sTfR in 

HT29-AK cells. Cells were treated without or with various concentrations of DHA, JC3-

39 and LLP271 for 24 hours before sTfR levels were measured by ELISA. Results are 

means ± SD of three independent experiments. *P<0.05, **P<0.01 and ***P<0.001 as 

tested by Mann-Whitney U test. 

 

Effect of drug treatments on cellular P-AKT levels in HT29-AK cells: 

Given that the agents are cytotoxic, we were interested to understand if drug treatments 

can alter the P-AKT levels as it plays a critical role in controlling cell survival and 

apoptosis (F Pene, YE Claessens, O Muller, F Viguie and P Mayeu - Oncogene, 2002 - 

ukpmc.ac.uk). As can be seen in Figure 8, we found that all the drugs tested markedly 

increased the levels of P-AKT in HT29-AK cells in a concentration dependent manner as 

compared to control. The concentration of P-AKT in the control samples ranged from 



[44] 
 

47.9±0.8 RFU to 62.6±3.4 RFU. Cells treated with 15.3µM DHA showed a significant 

(p<0.001) increase in P-AKT activity as compared to control (139.14±8.45 RFU vs. 

53.4±3.22 RFU). Similarly, the HT29-AK cells treated with 30.7µM and 61.4µM DHA also 

showed a significant (p≤0.05) increase in P-AKT activity as compared to control (Figure 

8A). When cells were treated with 3.5µM of JC3-39, a P-AKT activity of 88.25±10.52 RFU 

was measured which was significantly (p<0.05) greater than control (62.59±3.47 RFU). 

The P-AKT activity was increased by ~1.5 and ~1.4 folds as compared to control when 

cells were treated with 7.1µM and 14.2µM of JC3-39 respectively (Figure 8B). When 

cells were treated with 4.4µM, 8.8µM and 17.6µM of LLP271, the relative fluorescence of 

P-AKT measured were 110.4±10.63, 132.84±1.8 and 155.46±2.2 RFU respectively 

which were significantly (P0.05) greater than control (Figure 8C). 
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Figure 8 Graphs showing the effects of the test agents on P-AKT activity in HT29-AK 

cells. Cells were first treated without or with different concentrations of DHA, JC3-39 

and LLP246 for 24 hours as mentioned in the methods section before P-AKT activity 
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was measured by flow cytometric analysis. Results are expressed as the mean ±SD 

values obtained from three independent experiments. *P<0.05, **P<0.01 and ***P<0.001 

as tested by Mann-Whitney U test. 

 

Effect of drug treatments on cleaved caspase-3 activity in HT29-AK 

cells: 

To further investigate whether the dimers have the potential to increase apoptosis, the 

effects of the agents on caspase 3 activity was evaluated against HT29–AK cells. The 

results obtained (Figure 9) showed that all the compounds tested increased apoptosis 

by increasing catalytically active caspase-3 activity. The levels of cleaved caspase-3 in 

the control cells ranged from 46.5±11.9 RFU to 62.3±3.86 RFU. The catalytically active 

cleaved caspase-3 activity was significantly (p≤0.05) increased when cells were treated 

with 15.3µM DHA as compared to control (145.6±8.32 RFU vs. 62.3±3.86 RFU). 

Similarly, in 30.7µM and 61.4µM of DHA treated samples we have observed ~1.9 and 

~1.7-folds increase in fluorescence respectively as compared to control (Figure 9A). The 

catalytically active cleaved caspase-3 activity was significantly (p≤0.05) increased upon 

treating the cells with 3.5µM of JC3-39 as compared to control (77.8±2.2 RFU vs. 

46.6±11.9 RFU). The activity of cleaved caspase-3 was increased by ~2.08-fold when 

HT29-AK cells were treated with 7.1µM of JC3-39 as compared to control. A significantly 

greater (P<0.01) relative fluorescence of 100.5±5.3 RFU was measured when cells were 

treated with 14.2µM of JC3-39 as compared to control (Figure 9B). A concentration 

dependent increase in catalytically active cleaved caspase-3 activity was observed in 

HT29-AK cells treated with LLP271. Cleaved caspase-3 activity was increased by ~2.25-
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fold when the cells were treated with 4.4µM of LLP271. Similarly, it was increased by 

~2.7 and ~3.4 folds as compared to control when the cells were treated with 8.8µM and 

17.6µM of LLP271 respectively (Figure 9C). 
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Figure 9 The effects of different drug treatments upon catalytically active cleaved 

caspase-3 activity in HT29-AK cells. Cells were first treated without or with different 

concentrations of DHA (15.3µM, 30.7µM and 67µM), JC3-39 (3.5µM, 7.1µM and 14.2µM) 

and LLP271 (4.4µM, 8.8µM and 17.6µM) for 24 hours as described in the methods 

section before catalytically active cleaved caspase-3 activity were measured by flow 

cytometric analysis. Results are the mean ±SD of three independent experiments. 

*P<0.05, **P<0.01 and ***P<0.001 as tested by Mann-Whitney U test. 
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Drug treatments induced DNA fragmentation of HT29-AK and HL60 

cells: 

Given that the drugs increased the levels of catalytically active caspase-3, which is an 

important signal that the drugs caused apoptosis, the next experiments investigated the 

effects of drug treatments on DNA fragmentation. Induction of HT29-AK DNA 

fragmentation upon drug treatments was analyzed using agarose gel electrophoresis 

after incubating the cells without or with the drugs for 24hours. As can be seen in 

Figure 10, all the agents (DHA, JC3-39 and LLP271) caused some DNA fragmentation 

which is illustrated in the lanes by smearing or laddering. There were two types of 

control (without any drugs) samples, one was non-heat-treated control (lane 2) and 

another one was heat-treated (at 950C for 20 minutes) control (lane 3). The heat-

treated control was included to enable the interpretation of data acquired from the 

drug-treated samples. The effect of different concentrations of DHA on DNA damage can 

be seen in lanes 4, 5 and 6. In lane 4 the cells were treated with 15.3µM DHA. Similarly 

in lane 5 and 6 the cells were treated with 30.7µM and 67µM DHA respectively; with all 

treatments showing DNA smearing compared to control. The effect of 3.5µM, 7.1µM and 

14.2µM of JC3-39 on the cells showed some DNA damage in lanes 7, 8 and 9 

respectively. LLP271 treatment also caused DNA damage in lanes 10, 11 and 12. In lane 

10 the cells were treated with 4.4µM of LLP271, whereas in lanes 11 and 12 the cells 

were exposed to 8.8µM and 17.6µM LLP271 respectively. The characteristics DNA 

smear pattern in all the above mentioned lanes at different concentrations of the test 

agents represents degradation of genomic DNA into smaller, low molecular weight 

fragments being definitive signs of the induction of apoptosis. The difference in band 

sizes in all of the lanes is unfortunately a result of operator error making it impossible 
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to make an accurate comparison of the effects of the agents on DNA damage. As a 

consequence of which different amounts of DNA was loaded into the wells. However, 

there was some background DNA damage in the control samples (Figure 10, non-drug-

treated, lane 2), but the heat-treated samples appear to display greater DNA damage 

compared to their non-heat-treated, non-drug treated counterparts (Figure 10, lane 3). 

But despite this error it can be observed that compared to normal control (lane 2) and 

heat treated control (lane 3) drug treatment of the cells caused some DNA 

fragmentation. 

 

Figure 10 A representative gel image for the effects of drug treatments on DNA 

fragmentation using agarose gel electrophoresis. HT29-AK cells were treated without or 

with DHA (lane 4:15.3µM, lane 5:30.7µM and lane 6:61.4µM); JC3-39 (lane 7:3.5µM, lane 

8:7.1µM and lane 9:14.2µM) and LLP271 (lane 10:4.4µM, lane 11:8.8µM and lane 

12:17.6µM) for 24hrs. The gel was then visualised under U.V light after running for 30 

minutes under 60mA current. E. coli. molecular marker ladder (Bioline, UK) was used to 

determine DNA bands from 421 kDa to 19329 kDa, as shown in lanes 1 and 13. The red 

arrow-heads in the figure indicate the DNA smearing. 

We also investigated the effects of the tetraoxane dimers (the RKA compounds) on DNA 

damage against HL60 cells and the results can be seen in Figure 11. As in figure 10, 
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unfortunately, variable concentrations of DNA were loaded in each well due to operator 

error. RKA138 (at 3.4µM, 6.9µM and 13.8µM) induced DNA damage in HL60 cells as can 

be seen in lanes 4, 5 and 6 respectively. Similarly, lanes 7, 8 and 9 indicate the DNA 

damaging effects of RKA149 on DNA damage in HL60 cells treated with 3.3µM, 6.6µM 

and 13.2µM RKA149 respectively. Lanes 10, 11 and 12 represent the effects of 6.1µM, 

12.2µM and 25.4µM RKA150 on DNA damage respectively. The effects of RKA152 on 

DNA damage was observed in lanes 13, 14 and 15 that were treated with 3.5µM, 7.1µM 

and 14.2µM RKA152 respectively. The effects of 8.2µM, 16.4µM and 32.8µM of RKA158 

on DNA damage can be seen in lanes 16, 17 and 18 respectively. We observed DNA 

smearing in all the different concentrations of respective drugs. 

 

Figure 11 The effects of drug treatments on DNA fragmentation using agarose gel 

electrophoresis. HL60 cells were treated without or with RKA138 (lane 4:3.4µM, lane 

5:6.9µM and lane 6:13.8µM); RKA149 (lane 7:3.3µM, lane 8:6.6µM and lane 9:13.2µM); 

RKA150 (lane 10:6.1µM, lane 11:12.2µM and lane 12:25.4µM); RKA152 (lane 13:3.5µM, 

lane 14:7.1µM and lane 15:14.2µM) and RKA158 (lane 16:8.2µM, lane 17:16.4µM and 

lane 18:32.8µM) for 24hrs. There were 2 controls: non-drug treated (lane 2) and non-

drug and heat-treated (at 950C for 20 minutes, lane 3) controls. DNA was visualised 

under U.V light after running for 30 minutes under 60mA current. E. coli. Molecular 
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marker ladder (Bioline, UK) was used to determine DNA bands from 421 kDa to 19329 

kDa, as shown in lane1. The red arrow-heads in the figure indicate the DNA smearing. 

Drug treatments caused variable changes in cellular survivin level in 

HT29-AK cells: 

The cellular survivin levels upon treatment with different concentrations of the agents 

were measured and the results are illustrated in Figure 12. We found no significant 

alterations in survivin level when cells were treated with 15.3µM and 30.7µM of DHA 

respectively as compared to control, but a higher concentration of DHA (61.4µM) 

caused a ~5.7-fold increase in cellular survivin concentration as compared to control 

(Figure 12A). There was no significant alterarion of survivin concentration when HT29-

AK cells were treated with 3.5µM and 7.1µM JC3-39 as compared to control. However 

cells treated with 14.2µM of JC3-39 showed a significant (P<0.01) decrease in survivin 

concentration as compared to control (Figure 12B). Similarly cells treated with 4.4µM 

and 8.8µM of LLP271 did not alter the cellular survivin concentration but we observed a 

significant (P<0.05) decrease in the cellular survivin concentration in samples treated 

with 17.6µM LLP271 (Figure 12C). 
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Figure 12 The effects of different drug treatments on cellular survivin concentrations in 

HT29-AK cells determined by ELISA. Results are expressed as mean ± SD of three 

independent experiments. *P<0.05, **P<0.01 and ***P<0.001 as tested by Mann-

Whitney U test. The differences in control samples is perhaps due to freeze thawing. 

Inhibition of the capacity of the wound to heal in HT29-AK cells upon 

drug treatments: 

Tumour cell invasion and migration play a major role in metastasis which is a major 

cause of morbidity and mortality (K Nabeshima, T Inoue, and Y Shima - Pathology, 2002 

- Wiley Online Library). Matrix metalloproteinases and tissue inhibitor of matrix 

metalloproteinases play a crucial role in the metastatic and invasion processes. To 

evaluate the effects of drug treatment on HT29-AK cell migration/invasion, we 

investigated the effects of drug treatment on wound healing (Figure 13) as a scratch 

assay. Cells were first allowed to reach confluency (Figure 13X) and then a uniform 

wound was created (Figure 13Y) using a sterile P10 pipette tip and the cells were 
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treated without or with four different concentrations of the drugs as shown in F1-F36 

following several washings to remove the non-adherent cells. Our observation 

demonstrates that the initial wound created (see Figure 13Y) was completely closed 

after 7 days of culture in the media containing no drug (see Figure 13Z). There was a 

concentration dependent inhibition of the ability of the wound to heal/close in case of 

all the drugs used for this experiment. At the start of the experiment, the size of the 

wound was 72.5µm (initial control, Figure 13), but this wound was completely closed 

upon 7 days of culture without drug treatment (final control, Figure 13). Compared to 

the final control, the ability of the wound to heal was markedly reduced by artesunate, 

DHA and other novel compounds (JC3-39, LLP271) in a concentration dependent 

fashion. Similarly all the tetraoxane dimers (the RKA compounds) caused a 

concentrations dependent decrease in the ability of the wounds to close (Figure 13). At 

concentrations corresponding to their IC50s, RKA152 had the weakest effect on the 

ability of the wounds to close; the following rank order of effectiveness at preventing 

wound healing was observed: artesunate> RKA138> RKA149> RKA150> RKA158> 

LLP271> DHA> JC3-39> RKA152 (Figure 13). Overall the data showed that the dimers 

were more potent at reducing the capacity of the wounds to heal compared to DHA. 
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Figure 13 The light-microscopic images of the concentration-dependent effects of the 

drugs (DHA, JC3-39, LLP271, artesunate, RKA138, RKA149, RKA150, RKA152 and 

RKA158) on wound healing in HT29-AK cells. All the pictures were taken using the 

same 10X magnification. Cells were cultured for 7 days (at 370C and 5% CO2) to allow 

the establishment of confluency (Figure 13X) and following the creation of a wound 

using a sterile P10 pipette tip (Figure 13Y). Figure 13Z shows the closure of the wound 

after 7 days of culture without drug treatment. Effects of 30.7µM, 61.4µM, 122.8µM and 

307µM DHA (F1-F4); 7.1µM, 14.2µM, 28.4µM and 71µM JC3-39 (F5-F8); 8.8µM, 17.6µM, 

35.2µM and 88µM LLP271 (F9-F12); 80.2µM, 160.4µM 320.8 µM and 802µM artesunate 

(F13-F16); 18.6µM, 37.2µM, 74.4µM and 186µM RKA138 (F17-F20); 20.9µM, 41.4µM, 

83.6µM and 209µM RKA149 (F21-F24); 1.9µM, 3.8µM, 7.5µM and 19.8µM RKA150 (F25-

F28); 6.8µM, 13.6µM, 27.2µM and 68µM RKA152 (F29-F32) and 23.2µM, 46.3µM, 

92.6µM and 231.5µM RKA158 (F33-F36) on wound healing. Arrows represent the 

wound area which can be seen to have closed or widened in some of the images. 

We also measured the diameter of the wounds and the results are represented in Figure 

14. It can be seen that as the concentrations of the test agents increased, the capacity of 

the wound to heal decreased i.e. the diameter of the wound increased. The initial wound 

in Figure 14Y was completely closed after 7 days of culture (Figure 14Z). The sizes of 

the wounds were 6.1µm, 17.5µm, 52.6µm and 76.4µm when cells were treated with 

30.7µM, 61.4µM, 122.8µM and 307µM DHA respectively. At the highest concentration of 

JC3-39 (71µM) we measured a wound diameter of 63.6µm which gradually closed down 

to 5.7µm when cells were treated with 7.1µM of JC3-39. The wound size was 7.2µm 

when cells were treated with 8.8µM of LLP271. Similarly, the sizes of the wounds were 

23.6µm, 58.8µm and 74.9µm when cells were treated with 17.6µM, 35.2µM and 88µM of 
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LLP271 respectively. We observed a wound size of 76.8µm when cells were treated with 

802µM artesunate. As the concentration of artesunate decreases the wound size 

decreases as well with the lowest being 14.2µm in case of 80.2µM treatment. The sizes 

of the wounds were 10.6µm, 46.2µm, 67.4µm and 75.1µm when cells were treated with 

18.6µM, 37.2µM, 74.4µM and 186µM RKA138 respectively. Diameters of the wounds 

were 9.7µm, 21.1µm, 59.2µm and 75.3µm when cells were treated with 20.9µM, 41.4µM, 

83.6µM and 209µM RKA149 respectively. We observed a wound size of 73.6µm when 

cells were treated with 19.8µM RKA150. As the concentration of RKA150 decreases the 

wound size decreases as well with the lowest being 8.5µm in case of 1.9µM treatment. 

The measured diameters of wounds were 4.6µm, 27.3µm, 67.6µm and 71.8µm when 

cells were incubated with 6.8µM, 13.6µM, 27.2µM and 68µM RKA152 respectively. At 

the lowest concentration of RKA158 (23.2µM), we measured a wound of 7.9µm in 

diameter. The diameter gradually increased to 75.7µm when cells were treated with 

231.5µM of RKA158. 

We observed that the agents that are proved to be very much cytotoxic against HT29-

AK cell line could not inhibit the wound healing as much as expected (Table 1 and 2 

versus Figure 14). This could be because the diameters of the wound that we measured 

do not represent the average diameter of the wound or the total number of dead cells in 

the vicinity of the wound. Only two random areas of the wound were measured rather 

than measuring several regions of the wound. The inadequate mixing of the media while 

counting the number of dead cells also caused variation. We also observed a lot of cell 

clumping in samples that were treated with higher concentrations of the drugs. This cell 

clumping made it impossible to count the accurate cell number in it (for example figures 
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4D, 9A and 9D). However from the observations it is clear that all the drugs decreased 

the migration of the cells and caused cell death (Figure 14). 

 

Figure 14 The concentration-dependent effects of the drugs on wound healing in HT29-

AK cells after 7 days of treatment without or with the drugs as shown. Upon 

establishing confluency, wounds were created followed by cells being incubated 

without or with the drugs for 7 days before the assays were terminated and assessed as 

described in detail in the materials and methods section. Initial control is the wound 

size at the start of the experiment whereas final control is the wound size 7 days post 

incubation without drug but with media changed on day 2. Each bar represents the 

mean of 2 independent observations. X axis represents the different concentrations of 

the agents used in this experiment. The left Y axis represents the diameter of the 
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wounds in micrometer unit and the right Y axis represents the corresponding number 

of dead cells. 

As the drugs are shown to be cytotoxic (Table 1and 2) and also decreased the ability of 

the wound to close, we were interested to find out if the cells that can be seen in the 

vicinity of the wounds in Figure 13 were dead or alive. By definition, cells undergoing 

apoptosis should not take up trypan blue. When these dies are taken up in vitro, it’s 

usually due to a process called "secondary necrosis" which is detectable because cells 

are not engulfed by circulating phagocytes. Using trypan blue as a marker for apoptosis 

in vitro can be used as an estimate of apoptosis, but it may sometimes considerably 

underestimate the actual extent of apoptosis taking place, or alternatively, overestimate 

the amount of apoptosis if necrosis contributes to cell death. 

To investigate this we stained an aliquot of the incubation media/cell suspension from 

each of the respective wells with trypan blue and evaluated them for viable cell count. 

The results of this experiment are represented in Figure 15. As can be seen in figure 14 

(y-axis on right hand side) there was a concentration dependent increase in the number 

of dead cells compared to control. The number of dead cells was 3×104, 6×104, 8×104 

and 12×104 cells/ml when the cells were treated with 30.7µM, 61.4µM, 122.8µM and 

307µM of DHA respectively. At the lowest concentration of JC3-39 (7.1µM) we obtained 

a dead cell count of 6×104cells/ml which gradually increased as the concentration 

increases. At the highest concentration of JC3-39 (71µM) there were 17×104 dead cells 

in each ml of the cell suspension. The dead cell densities were 5×104, 8×104, 11×104 and 

16×104cells/ml when cells were treated with 8.8µM, 17.6µM, 35.2µM and 88µM of 

LLP271 respectively. We observed 4×104 dead cells in each ml of media when cells were 

treated with 80.2µM artesunate. As the concentrations of artesunate increased the 
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density of dead cells increased as well with the highest being 14×104cells/ml in case of 

802µM treatment. The number of dead cells was 2×104, 5×104, 9×104 and 15×104 

cells/ml when the cells were treated with 18.6µM, 37.2µM, 74.4µM and 186µM of 

RKA138 respectively. Number of dead cells was 4×104, 9×104, 12×104 and 14×104 

cells/ml when the cells were treated with 20.9µM, 41.4µM, 83.6µM and 209µM RKA149 

respectively. We measured a dead cell density of 9×104cells/ml when the cells were 

exposed to 1.9µM RKA150. As the concentration of RKA150 increases the number of 

dead cells increases as well with the highest being 23×104 cells in each ml of suspension 

in case of 19.8µM treatment. The measured number of dead cells were 6×104, 14×104, 

19×104 and 21×104 cells/ml when the cells were incubated with 6.8µM, 13.6µM, 27.2µM 

and 68µM of RKA152 respectively. At the lowest concentration of RKA158 (23.2µM), we 

measured a dead cell density of 2×104cells/ml. The density gradually increased to 

14×104cells/ml when cells were treated with 231.5µM of RKA158. 
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Figure 15 Representative light-microscopic (all pictures were taken using 10X 

magnification) images of the trypan blue exclusion test for DHA, JC3-39, LLP271, 

artesunate, RKA138, RKA149, RKA150, RKA152 and RKA158 against HT29-AK cells. 

Effects of 30.7µM, 61.4µM, 122.8µM and 307µM DHA (1A-1D); 7.1µM, 14.2µM, 28.4µM 

and 71µM JC3-39 (2A-2D); 8.8µM, 17.6µM, 35.2µM and 88µM LLP271 (3A-3D); 80.2µM, 

160.4µM 320.8 µM and 802µM artesunate (4A-4D); 18.6µM, 37.2µM, 74.4µM and 

186µM RKA138 (5A-5D); 20.9µM, 41.4µM, 83.6µM and 209µM RKA149 (6A-6D); 1.9µM, 

3.8µM, 7.5µM and 19.8µM RKA150 (7A-7D); 6.8µM, 13.6µM, 27.2µM and 68µM RKA152 

(8A-8D); 23.2µM, 46.3µM, 92.6µM and 231.5µM RKA158 (9A-9D) on wound healing. 

Arrows represent dead cells with dark blue colour and live cells with bright colour. 

Effect of drug treatments on the secretion of pro-inflammatory 

cytokine TNF-α in HT29-AK cell: 

To further investigate the mechanism of drug-induced cell death, the release of TNF-α 

was measured and the results are illustrated in Figure 16. The cells released TNF-α with 
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control values ranging from 24±0.9pg/ml to 64±1.04pg/ml. Overall, the effects of the 

test agents on TNF-α secretion were very variable. There were no significant alterations 

in TNF-α concentration when cells were treated with 15.3µM and 30.7µM of DHA as 

compared to control. However, the TNF-α concentration was significantly (P<0.05) 

increased as compared to control upon treating the cells with 61.4µM of DHA (Figure 

16A). The cellular TNF-α concentration was significantly (P<0.001) increased in 

samples treated with 3.5µM of JC3-39 as compared to control (296±1.5pg/ml vs. 

64±1.04pg/ml). On the other hand the cellular TNF-α concentration significantly 

(P<0.01) decreased to 15.2±0.3pg/ml in cells treated with 7.1µM of JC3-39 as compared 

to control. 14.2µM of JC3-39 treated samples did not alter the TNF-α concentration 

(Figure 16B). There was no significant change in the TNF-α level from control when 

cells were treated with 4.4µM of LLP271. However there was a ~3.5 and ~11.1 fold 

increase in cellular TNF-α concentration in cells treated with 8.8µM and 17.6µM LLP271 

respectively as compared to control (Figure 16C). 
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Figure 16 Representing pro-inflammatory cytokine TNF-α concentration in HT29-AK 

cells treated without or with DHA, JC3-39 and LLP271. HT29-AK cells were treated 

without or with different concentrations of drugs as shown above for 24 hours (at 370C 

and 5% CO2) before TNF-α levels were measured by ELISA. Results are expressed as 

mean ± SD of three independent experiments. *P<0.05, **P<0.01 and ***P<0.001 as 

tested by Mann-Whitney U test. 

Effects of drug treatments on the secretion of IL-6 in HT29-AK cells: 

The effects of drug treatment on the secretion of IL-6 in HT29-AK cells are illustrated in 

Figure 17. Although some IL-6 was detected (values ranging from 0.09±0.02pg/ml to 

0.23±0.02pg/ml) in the control cells, none of the concentrations of DHA tested against 

HT29-AK cells significantly altered the cellular level of IL-6 as compared to control. 

Variable levels of cellular IL-6 concentrations of 0.09±0.02pg/ml, 0.12±0.06pg/ml, 

0.078±0.01pg/ml and 0.11±0.03pg/ml were measured upon treating HT29-AK cells 

with 0µM, 15.3µM, 30.7µM and 61.4µM DHA respectively (Figure 17A). There was no 
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alteration in IL-6 concentration when cells were treated with 3.5µM JC3-39. However, 

the IL-6 concentration was significantly (P≤0.01) increased when cells were treated 

with 7.1µM and 14.2µM JC3-39 as compared to control (0.4±0.1pg/ml and 

0.29±0.03pg/ml vs. 0.14±0.03pg/ml) (Figure 17B). When HT29-AK cells were treated 

with 4.4µM LLP271 the IL-6 concentration was significantly (P<0.01) increased as 

compared to control (0.3±0.1pg/ml vs. 0.23±0.02pg/ml). However, the IL-6 

concentration was decreased by ~1.2-fold as compared to control when cells were 

treated with 8.8µM LLP271. There was a significant (P<0.01) increase in cellular IL-6 

concentration in samples treated with 17.6µM LLP271 as compared to control (Figure 

17C). 
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Figure 17 The effects of the test agents on IL-6 secretion in HT29-AK cells. Cells were 

treated without or with (A) DHA (15.3µM, 30.7µM, 61.4µM); (B) JC3-39 (3.5µM, 7.1µM 

and 14.2µM) and (C) LLP271 (4.4µM, 8.8µM and 17.6µM) for 24 hours before the 

cellular IL-6 levels were measured by ELISA following the manufacturer’s 
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(www.rndsystems.com) protocol. Results are expressed as mean ± SD of three 

independent experiments. *P<0.05, **P<0.01 and ***P<0.001 as tested by Mann-

Whitney U test. 

 

 

 

DISCUSSION  

Artemisinin and its derivatives (artesunate, dihydroartemisinin, arteether, artemether, 

etc) are effective first-line anti-malarial agents for the treatment of both drug-sensitive 

and resistant strains of P. falciparum (Efferth et al., 2002; Chen et al., 2004; Soomro et 

al.; 2011). Interestingly, these agents have shown potent cytotoxic activities against 

many types of human cancer cell lines and they have been extensively studied as 

promising candidates for cancer therapy (Efferth, 2005; Mercer et al., 2007; Lu et al., 

2008). Through collaborative research we obtained novel agents which have been 

rationally designed to incorporate metabolically stable endoperoxide moieties as well 

as improved DNA-targeting properties. This study demonstrates the evaluation of the 

cytotoxicity and mode of action of novel compounds LLP271, JC3-39 (hybrids of DHA 

which are rationally designed from DHA and dipyrrole) and tetraoxane dimers RKA 

compounds (RKA138, RKA149, RKA150, RKA151, RKA152, RKA155, RKA158, RKA160) 

against HT29-AK (colon cancer cells) and HL60 (human leukaemia cells). Given that 

iron is central to the mode of action of 1, 2, 4-trioxanes (the artemisinins) and the 

tetraoxane dimers (i.e. incorporating more C-O-O-C in the structure) they are designed 
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to liberate reactive biomolecules upon reductive cleavage by cellular iron. In 

pharmaceutical research there is a great improvement in the process of drug discovery 

and development by rational drug designing (Ette et al., 2004; Galeazzi, 2009) and we 

recently reported the synthesis and antitumour activities of DHA-acridine hybrids/with 

improved activities over the parent drug DHA (Jones et al., 2009). 

Iron has also been reported to be essential in anti-tumour activity of artemisinin and its 

derivatives in several human malignancy cell lines (Moore et al., 1995; Posner et al., 

1997; Beekman et al., 1997; Beekman et al., 1998; Efferth et al., 2001; Jeyadevan et al., 

2004; Mercer et al., 2007; Parekh et al., 2009). The highest cytotoxic activity of these 

endoperoxides were reported towards human colon and leukaemia malignancy cells 

which are most sensitive, rapidly proliferating cells with high expression of transferrin 

receptors needed for endocytosis-mediated iron intake (Disbrow et al., 2005). 

DHA was the most potent among all the test agents against HL60 cells and the potency 

of the tetraoxane compound RKA150 was evaluated to be the highest of all the test 

agents against HT29-AK cells (Table 1 and 2) suggesting that the agents have 

differential cytotoxic effects against the cells. Although leukaemic cells are believed to 

contain more cellular iron (Li and Zhou, 2007; Mercer et al., 2007; Mu et al., 2007) 

and hence more susceptible to the cytotoxic effects of 1, 2, 4-trioxanes (Singh and Lai, 

2001), it is probable that the presence of more endoperoxide bridges, as in the 

tetraoxane dimers, does not necessarily translate into greater cytotoxicity. This may 

possibly be due to the unavailability of sufficient cellular iron to reductively cleave all of 

the peroxide bridges, generating the carbon-centred radicals which ultimately kill the 

cells. Alternatively, it may be due to the reduced capacity of these agents to enter the 

cells, due to steric hindrance. The increased cytotoxicity of JC3-39 may be due to both, 
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potent DHA and minor groove binding dipyrrole. This cytotoxicity may be due to ROS-

mediated damage or the damage may be independently associated with oxidative stress 

(Zizak et al., 2009; Kumar, Sharma and Rawat, 2011). There is evidence that 1, 2, 4-

trioxanes may interact with cellular DNA (Jones et al., 2009) and it is possible that the 

introduction of the dipyrrole skeleton of JC3-39 may have pharmacoenhanced DNA 

targeting and thus the cytotoxicity of JC3-39. 

sTfR expression is increased to facilitate iron intake, and there is evidence that its levels 

positively correlates with the aggressiveness of tumouric cells (Beguin et al., 1988; 

Singh and Lai, 2001; Lai et al.,2005). There is a constant relationship between total TfR 

and sTfR and concentration of sTfR is an indirect measure of TfR (Beguin et al., 1988; 

Singh and Lai, 2001; Lai et al., 2005). Thus measurement of sTfR may be a surrogate 

marker of the growth of the cells and may also explain the observed cytotoxic effects of 

the agents. The effects were variable in case of all the test agents in the current study. 

There were measurable amount of sTfR in HT29-AK cells with the concentrations 

ranging from 4.3±0.5nmol/L to 5.9±0.6nmol/L but the effects of the test agents were 

variable (Figure 7). However, DHA (at 15.3µM) only showed a weak reductive effect on 

sTfR levels, with higher concentrations (30.7µM and 61.4µM) lacking effects. When cells 

were treated with LLP271, there was a decrease in sTfR level at lowest concentration 

(4.4µM) while at higher concentrations (8.8µM and 17.6µM) the sTfR level was 

increased (Figure 7C). At the highest concentration of JC3-39 (14.2µM) there is decrease 

in sTfR level as compared to the lower doses (3.5µM and 7.1µM) (Figure 7B). It may be 

that the addition of lysis buffer alters the sTfR concentration by over-diluting the cells 

and/or all the cells were not lysed properly to release sTfR. Other possibility is may be 

the cells are dead due to the effect of the drug, hence, showing less sTfR. The increase in 
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concentration of receptors may be to enhance the delivery of drug via endocytosis and 

decrease in receptor level may show that drug is targeted to block the receptors or 

lowering the level of receptors in order to kill the higher proliferative cancer cells 

(Efferth, 2005; Cheung et al., 2010; Lee et al., 2010). The further future studies of sTfR 

upon the drugs treatment may lead to better understanding of their cytotoxicity and 

mode of action. 

P-AKT is the apoptotic inhibitor promoting the cell survival and proliferation and plays 

a vital role in a number of cell signalling pathways, regulating pro-survival genes in 

many cancers (O’Gorman et al., 2000; Testa and Tsichlis, 2005; De Souza, Russell and 

Kearsley, 2009). An in-vitro study in human prostate malignant cells and colorectal 

cancer cells has correlated the DHA-mediated apoptosis with the inhibition of the P13-

Kinase/P-AKT (an upstream component of P-AKT) and extracellular signal regulated 

kinase survival pathway (He et al., 2010). In another study, artesunate in human 

rheumatoid arthritis cells suppressed P-AKT pathway (Ghani et al., 2006; Chen, 2011). 

P-AKT activation includes many stimuli, such as IL-6 or to most chemotherapeutical 

therapeutics and has been found to decrease apoptosis by alteration of NF-κb 

pathway (Efferth et al., 2004; Singh and Lai, 2006). At all of the concentrations of the 

test agents, there was a significant increase in levels of P-AKT as compared to 

control upon treating HT29-AK cells with DHA ,JC3-39 and LLP271 (Figure 8). This 

increase in P-AKT level may be due to the cell survival pathway via drug resistance. 

In-vitro studies determined that p13k/P-AKT pathway controls cell survival and 

drug resistance in HT29-AK and HT29-RDB (drug resistance) colon cancer cells 

(Tamm et al., 1998; Dohi et al., 2004; McNeish et al., 2005; Lu, Luo and Tao, 2007; Ryan, 
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O'Donovan and Duffy, 2009). Further studies of LLP271 and JC3-39 in the presence of P-

AKT inhibitors may clarify the effects of these agents on P-AKT activity. 

Many studies have shown that anticancer agents prevent tumour promotion and 

progression via the induction of apoptosis (Huang et al., 2006). Apoptosis involve the 

induction of cleaved caspases-3 and 7-dependent apoptotic cell death, mitochondrial 

endoplasmic reticulum stress, induction of cell cycle arrest at GO/G1 phase and 

subsequent DNA fragmentation (Parekh et al., 2009; Zhang, Chen and Gerhard, 2010; 

Morrissey et al., 2010; Alessandro et al., 2011). Caspase-3 is involved in both intrinsic 

and extrinsic mediated apoptosis (Ghavami et al., 2010). There is evidence that DHA 

induces apoptosis by up-regulation of pro-apoptotic protein Bax in pancreatic cancer 

cells leading to downstream activation of caspase-3, causing apoptosis (Ghavami et al., 

2010, Aung et al., 2011). These observations are consistent with the data acquired from 

the current studies. The novel anti-cancer agents JC3-39 and LLP271 elevated the level 

of caspase-3 in a concentration dependent manner in HT29-AK cell line (Figure 9). It 

could be postulated that LLP271-induced caspase-3 up-regulation may be related with 

activation of death receptor DR5, initiator (apical) caspase-8, which further triggered 

the activation of effector caspase -3 (Li et al., 2007; Lu et al., 2008; Zhou et al., 2008). It 

is not possible to conclude from the current studies if the drug treatment leads to 

caspase-3 increases via intrinsic or/and extrinsic pathways, but as extracellular signals 

are the main regulators of the intrinsic pathway it is probable that the observed effects 

are mediated via intrinsic pathway. 

The present study demonstrates the signs of DNA fragmentation in HT29-AK cells upon 

DHA, LLP271 and JC3-39 treatment as compared to untreated DNA (Figure 10 and 11). 

But there was no such clear visible difference in the smearing/laddering upon drug 
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treatments due to operator error. It can be suggested that LLP271 and JC3-39 mediated 

concentration dependent up-regulation of effector caspase-3 was leading to DNA 

fragmentation (Mercer et al., 2007; Lu et al., 2008; Ghavami et al., 2009; Lu et al.,2009; 

He et al., 2010). Unfortunately due to operator error it is not possible to evaluate if 

LLP271 and JC3-39 treated cells have greater DNA damaging effects compared to DHA 

alone. This may be expected due to the incorporation of dipyrrole, a DNA minor groove 

alkylating agent, into the structures of these agents (Efferth, 2005, Ghavami et al., 2009). 

Therefore this DNA interaction may cause an increase in the effect of the drug on DNA 

fragmentation. 

Survivin is highly expressed in human malignancies including colorectal cancer and 

leukaemia but rarely in healthy tissues and its down regulation may have a crucial role 

in cancer drug therapy (Lu, Luo and Tao, 2007; Ryan, O’Donovan and Duffy, 2009; Liu et 

al., 2010). Previous studies related to DHA have shown to down-regulate expression of 

survivin in lung cancer cell line SPC-A-1, due to down-regulation of mRNA and deplete 

levels across 4 prostate cancer cell lines (Mu et al., 2007; Morrissey et al., 2010). Our 

DHA treatment data showed increase in survivin level at the highest concentration 

(61.4µM) but the lower concentrations (15.3µM and 30.7µM) could not significantly 

alter the level compared to control (Figure 12A). It is known that in tumorigenesis 

survivin expression is inversely correlated with apoptosis inhibition (Lu et al., 2005; 

Ryan, O’Donovan and Duffy, 2009). JC3-39 and LLP271 produced identical effects with 

lower concentrations without effects whilst higher concentrations reduced cellular 

survivin concentrations. Overall the data showed variable effects on cellular survivin 

level. It may be due to the effect of the agents which caused death of the cells. 
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Metastasis and invasion are fundamental uncontrolled properties of malignant cancer 

cells, the leading cause of death in patients with cancer (Huang et al., 2010). There is in 

vitro and in vivo evidence that artemisinin has an inhibitory effect on invasion and 

migration in human carcinoma cell lines HepG2 and SMMC-7721 (Du et al., 2009; 

Weifeng et al., 2011). DHA is also an effective anti-metastatic agent against human 

fibrosarcoma HT-1080 cells (Huang et al., 2010; Wang et al., 2011). In our study we 

observed a concentration-dependent inhibition of wound healing upon treating HT29-

AK cells with DHA, LLP271, JC3-39 and RKA compounds as compared to untreated 

samples, demonstrated by an increase in wound diameter (Figure 13 and 14). The 

wound healing results were also supported by the trypan blue viability data, which 

showed a concentration-dependent increase in dead HT29-AK cells as compared to 

control (Figure 15). In previous studies, it has been reported that inhibition of MMP 

expression or enzyme activity can be used as early targets for preventing cancer 

metastasis (Liabakk, 1996; Wang et al., 2011). It can be postulated that these 

compounds cause decreased capacity of the wounds to close via the down regulation of 

MMP-9 gene expression, through inhibition of PKCa/Raf/ERK and JNK phosphorylation 

and reduction of NF-kB. Nevertheless, the effects observed with the compounds support 

those of Wu and colleagues who showed a concentration-dependent inhibition in the 

migration of epithelial ovarian cancer cells by DHA (Mercer et al., 2007). Further 

experiments, which are the focus of on-going investigations in the lab, may accept or 

refute these claims. 

The NF-κb factor is involved in apoptosis inhibition and further regulates the 

production of pro-inflammatory cytokine, such as TNF-α or IL-6 (Efferth, 2005; Paule et 

al., 2007; Wang et al., 2009). It has been reported in vitro and in vivo studies that 1, 2, 4-
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trioxanes block the signaling pathway of NF-κb and may therefore induce apoptosis 

(Efferth, 2005). Indeed, artesunate leads to the suppression of signaling pathway NF-kB 

and consequently, inhibits the tumour necrosis factor (TNF-α) induced production of 

pro-inflammatory cytokines, such as, interleukin-1 (IL-1), interleukin-6 (IL-6) and 

interleukin-8 (IL-8), in human rheumatoid arthritis (Xu et al., 2007). Furthermore DHA 

has been shown to inhibit angiogenesis in human pancreatic cancer by inhibition of NF-

kB DNA-binding activity and decreased the expression of NF-kB targeted pro-

angiogenic gene products- VEGF, IL-8, COX-2 and MMP-9 in vitro and in vivo (Wang et 

al., 2011; Ji et al., 2011). There were detectable levels of TNF-α and IL-6 in the cells 

(Figure 16 and 17) with drug treatment showing variable effects, but tending towards 

an increase in levels. Further studies are warranted to decipher the true effects of 

the agents on these important cytokines. 

As continuation of this research work further experiments can be done for each 

assessment. Iron dependency can be measured through the use of iron chelators like 

deferoxamine. DNA damage can also be evaluated using the COMET assay. Glutathione 

can be used to assess apoptotic pathways. Artemisinin and its derivatives are renowned 

for their potent anti malarial activity. They have found their way into clinical use in 

many areas where malaria is endemic. The fat-soluble derivatives artemether and 

arteether are approximately twice as active. The water-soluble dihydroartemisinin and 

artesunate are 4 to 5 times more active in vitro. Artemisinin is available only for oral 

and rectal administration. Absorption is incomplete and elimination is fast. Artesunate 

and artemether can be considered as prodrugs. Biotransformation into the active 

metabolite dihydro-artemisinin occurs rapidly almost immediately for artesunate. The 

pharmacokinetics of dihydroartemisinin is not yet completely clear. 
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In summary, the results of this study showed for the first time, that novel LLP271 and 

JC3-39 effectively induced growth-inhibition in colon cancer HT29-AK cells, JC3-39 

being the most potent. The cytotoxicity of tetraoxane RKA compounds against HT29-AK 

cells were also compared with their cytotoxicity against HL-60 cells. It was observed 

that the drugs displayed differential sensitivity against the cells with the HL-60 cells 

being more sensitive towards the drugs. As we hypothesized, JC3-39 displayed more 

potent anti-cancer properties over parent DHA and this may be due to its increased 

sequence-selective DNA binding affinity. Furthermore, cytotoxicity of LLP271 and JC3-

39 is strongly mediated by over-expression of P-AKT and cleaved caspase-3. These 

results provide evidence that LLP271 and JC3-39 may serve as an alternative candidate 

in the treatment of colon cancer alone or in combination with conventional therapeutic 

agents, and deserve to be further studied against other cancer cell types. 
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