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Alternative transient eddy-current 

fowmetering methods for liquid metals 

Richard Looney, Jānis Priede 

Flow Measurement Research Centre, Coventry University, UK 

Abstract 

We present a comprehensive numerical analysis of alternative transient eddy-current fow-
metering methods for liquid metals. This type of fowmeter operates by tracking eddy-
current markers excited by the magnetic feld pulses in the fow of a conducting liquid. 
Using a simple mathematical model, where the fuid fow is replaced by a translating cyl-
inder, a number possible alternative measurement schemes are considered. The velocity of 
the medium can be measured by tracking zero crossing points and spatial or temporal ex-
trema of the electromotive force (emf) induced by transient eddy currents in the surrounding 
space. Zero crossing points and spatial extrema of the emf travel synchronously with the 
medium whereas temporal extrema experience an initial time delay which depends on the 
conductivity and velocity of the medium. Performance of transient eddy-current fowmeter-
ing depends crucially on the symmetry of system. Eddy current asymmetry of a few per 
cent makes the detection point drift with a velocity corresponding to a magnetic Reynolds 
number Rm ∼ 0.1. With this level of asymmetry transient eddy-current fowmetering can be 
reliably applicable only to fows with Rm & 0.1. A more accurate symmetry adjustment or 
calibration of fowmeters may be necessary at lower velocities. 

Keywords: Electromagnetic fowmeter, liquid metal, eddy current 

1. Introduction

Accurate and reliable fowmetering of molten metals is required not only in various me-
tallurgical processes but also in the nuclear industry where liquid metals are used for cooling 
of advanced reactors [1, 2, 3]. The application of standard induction fowmeters to molten 
metals is limited by their chemical aggressiveness which may cause corrosion of electrodes 
and other contact problems. There is a variety of contactless fowmeters which have been de-
veloped to avoid the problems with electrodes. Induction fowmeters can be made contactless 
by using capacitately-coupled electrodes [4, 5]. However, most contactless electromagnetic 
fowmeters for liquid metals employ various e˙ects related to eddy currents. For example, the 
fow rate can be determined by measuring the force generated by eddy currents on a magnet 
placed close to the fow of conducting liquid, as frst suggested by Shercli˙ [6] and recently 
pursued by the so-called Lorentz Force Velocimetry [7, 8]. An alternative approach, which 
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is virtually force-free and thus largely independent of the conductivity of liquid metal [9], is 
to determine the fow rate from the equilibrium rotation rate of a freely rotating magnetic 
fywheel [10, 11, 12, 13] or just a single magnet [14]. 

The standard eddy-current fowmeters operate by measuring the fow-induced perturba-
tion of the applied magnetic feld [15, 16, 17]. The same principle underlies also the so-called 
fow tomography which can reconstruct the basic features of the fow using the spatial dis-
tribution of the induced magnetic feld [18, 19]. The application of this type of fowmeters 
becomes problematic when the induced magnetic feld is signifcantly weaker than the ex-
ternal feld, which is the case at low velocities. Although the background signal produced 
by the transformer e˙ect of the applied magnetic feld can be compensated by a proper 
arrangement of sending and receiving coils [20], standard eddy-current fowmeters remain 
highly susceptible to small geometrical imperfections and disturbances. The sensitivity of 
eddy-current fowmeters to such geometrical disturbances can signifcantly be reduced by 
measuring the phase shift induced by the fow between two sensor coils instead of the usual 
amplitude di˙erence [21]. One of the remaining drawbacks of the phase-shift fowmeter is 
the dependence of the signal not only on the velocity but also on the conductivity of liquid 
metal. This is a general problem which a˙ects not only eddy-current but also the Lorentz 
force fowmeters unless based on the elaborate time-of-fight measurements [22]. Recently, 
we showed that the sensitivity of the phase-shift fowmeter to the variations of conductivity 
of liquid metal can be signifcantly reduced by rescaling the fow-induced phase shift between 
the receiving coils with the phase shift between the sending and one of the receiving coils 
[23]. 

Another electromagnetic fowmeter, which is largely insensitive to the conductivity of 
medium, is the pulsed feld fowmeter [24, 25]. This type of device, which has been recently 
developed under the name of transient eddy-current fowmeter [26] and claimed to be cal-
ibration free [27], operates by exciting and then tracking transient eddy current markers as 
they are carried along by a moving conductor. 

In this paper, we present a comprehensive numerical analysis of alternative designs of 
transient eddy fowmeters which di˙er by the feature of eddy current distribution tracked. 
The velocity of the medium can be determined by tracking either zero crossing points or 
extrema of the induced emf. There are two types of extrema – spatial and temporal, which 
can be tracked. We point out that the transient eddy-current fowmetering relies essentially 
on the symmetry of the system. 

The paper is organized as follows. In the next section, we introduce a mathematical 
model of a transient eddy-current fowmeter where the liquid fow is substituted by an in-
fnite cylinder that translates along its axis. The basics of the method are discussed in Sec. 
3 where the temporal evolution of axially mono-harmonic eddy current eigenmodes are con-
sidered. In Section 4 we present numerical results for axially mono-harmonic eddy current 
distributions as well as more realistic distributions generated circular current loops. The 
paper is concluded by a summary and discussion of results in Section 5. 

2. Mathematical Model 

Consider a solid infnitely long cylinder of radius R and electrical conductivity ˙ trans-
lating at a velocity v = ezv parallel to its axis in an external magnetic feld B0, which is 
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Figure 1: Sketch of set-up showing a cylinder of radius R and electrical conductivity ˙ translating at velocity 
v parallel to its axis in the magnetic feld generated by two anti-symmetric current loops. 

periodically switched on and o˙ for the time intervals ˝ and T − ˝, respectively, where T is 
the period of one full cycle. The induced electric feld is governed by the Maxwell-Faraday 
equation 

E = −∇' − @tA, 

where ' is the electric potential and A is the vector potential, which defnes the magnetic 
feld as B = ∇ × A. The eddy current density induced in a moving medium is given by 
Ohm’s law 

j = ˙(E + v × B) = ˙(−∇' − @tA + v × ∇ × A). (1) 

In the following, we consider an axisymmetric magnetic feld which has only r and z com-
ponents in the cylindrical system of coordinates and, thus, can be described by a purely 
azimuthal vector potential A = e°A as B = −r−1e° × ∇(rA) with ' ≡ 0. Note that 
B · ∇(rA) ≡ 0, which means that the isolines of rA = � represent the fux lines of B. Ap-
plying Ampere’s law j = µ −0

1
∇ × B to Eq. (1) we obtain the following advection-di˙usion 

equation for A(r) 

µ0˙(@tA + v@zA) = @r(r 
−1@r(rA)) + @z 

2A, (2) 

where µ0 = 4ˇ× 10−7 H/m is the vacuum permeability. The continuity of B at the cylinder 
surface at r = 1 requires the continuity of A and @rA. 

Subsequently, we change to dimensionless variables by using R, ˝m = µ0˙R
2 and vm = 

(µ0˙R)−1 as the length, time and velocity scales, respectively. Then the problem is defned 
by the magnetic Reynolds number Rm = µ0˙vR, which represents a dimensionless velocity. 

We frst consider the evolution of the eddy currents induced by the external magnetic 
feld in the form of a single Fourier harmonic which varies as 
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ˆA0(r, z, t) = A0(r) sin(kz)f(t), 

where k is the wave number and 

ˆ N/2 
X�(t) + �(˝ − t)− �(T − t), 0 ≤ t < T i!ntf(t) = = fne f(t − T ), t > T 

n=−N/2 

is the time variation which is defned using the complementary error function �(t)=erfc(t/�) 
to allow for a fnite transition time � between the “on” and “o˙” states. This transition 
time, which we set to three sampling time intervals T/N , is necessary to suppress the Gibbs 
phenomenon in the Fourier series representation of f(t). The Fourier coeÿcients fn for the 
modes with frequencies !n = 2ˇn/T are computed using the FFT with a typical number of 
sampling points N = 1024. The solution can be represented in the complex form as 

N/2 
h i 

X 

t+kx)ˆ i(!nA(r, z, t) = ℑ An(r)fne . 
n=−N/2 

The radial distribution of the magnetic feld outside the cylinder is given by the general 
solution of Eq. (2) with ˙ = 0 

Ân(r) = CI1(kr) +Dn
oK1(kr), (3) 

where I�(x) and K�(x) are the modifed Bessel functions of the frst and second kind with 
order � [28]; C is an unknown constant which depends on the current distribution generating 
the feld and Dn

o is an unknown constant associated with the n-th harmonic of the induced 
magnetic feld. Inside the cylinder, the solution of Eq. (2) which is regular at the axis r = 0 
is 

ˆ DiAn(r) = nI1(�r), (4) 

where � = (k2 + i(!n + kRm))
1/2 

. The unknown constants Dn
o and Dn

i are determined by 
the continuity conditions of A as follows 

Do 
n = Cn(kI0(k)I1(�)− �I0(�)I1(k)), 

Di 
n = Cnk(K0(k)I1(k) + I0(k)K1(k)), 

where Cn = C/(kK0(k)I1(�)+�I0(�)K1(k)). Since the current amplitude is irrelevant in our 
analysis, we can set C = 1. 

The solution for a single Fourier harmonic obtained above can be extended to a more 
realistic external magnetic feld generated by a thin circular loop. The free-space distribution 
of the magnetic feld, which is generated by a single current loop with radius rc and axial 
position zc carrying the dimensionless current jc, is governed by 

∇
2A0 = −jc�(r − rcer − zcez), (5) 
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where �(r) is the Dirac delta function and r is the radius vector. This problem can easily 
´ 
∞

be solved using the Fourier transform Â(r) = 
−∞ A(r, z)e

ikz dz, which converts Eq. (5) into 

(r −1(rÂ0) 
′ ) ′ − k2Â0 = −ĵc�(r − rc), (6) 

−ikzcwhere ĵc = jce . The solution, which is continuous at r = rc, regular at r = 0, and decays 
at r → ∞, can be written as 

ˆ 

DcI1(kr)/I1(krc), r < rc;Â0(r) = 
DcK1(kr)/K1(krc), r > rc, 

where Dc = −ĵc/k (I0(krc)/I1(krc) +K0(krc)/K1(krc)) follows from the integration of Eq. 
(6) over the singularity at r = rc. Then the unknown constant defning the distribution 

P 

c Dcof the applied magnetic feld in Eq. (3) can be written as C = /I1(krc) where the 
summation is over the current loops generating the feld. The vector potential in physical 
space is obtained by the inverse Fourier transform which is computed using the FFT with a 
typical number of sampling points M = 1024 and axial cut-o˙ distance zmax = ±51.2. 

3. Eigenmode evolution 

The basics of transient eddy-current fowmetering are best revealed by the evolution of 
separate eigenmodes, which can be sought in the complex form as 

ikz−
t ˆA(r, z, t) = A(r)e , (7) 

where k is a given real wave number and 
 is an unknown complex decay rate. The latter has 
to be determined together with the amplitude distribution Â(r) by solving the eigenvalue 
problem posed by Eq. (2). In the absence of external magnetic feld, the solution outside 
the cylinder (3) reduces to 

Â(r) = DoK1(kr), (8) 

where Do is an unknown constant. Inside the cylinder, the general solution of Eq. (2) can 
be written as 

Â(r) = DiJ1(�r), 

where Di is another unknown constant, J�(x) is the Bessel function of the frst kind and 

order �, and � = (
 − k2 − ikRm)
1/2 

. The continuity of A and its frst derivative leads to 
the following characteristic equation 

�J0(�)/K0(k) + kJ1(�)/K1(k) = 0, (9) 

which has real roots � that defne the complex associated decay rates 


 = �2 + k2 + ikRm . (10) 

The most important result that follows from this expression is the constant phase speed 
ℑ[
]/k = Rm at which all eddy current patterns travel regardless of their wave number. 
Note that the corresponding physical velocity Rmvm = v is that of the medium. This means 
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Figure 2: Three lowest eddy current decay rates versus the wave number. 

that the velocity of the medium can be determined by measuring the phase velocity at which 
an eddy current pattern is advected. This is the main idea behind the transient eddy-current 
fowmetering. 

The second important result that follows from Eqs. (9,10) concerns the decay rate ℜ[
]. 
As seen in fgure 2, where the decay rates of the frst three dominant eigenmodes are plotted 
against the wave number, the lowest decay rates occur in the long wave limit k → 0. In 
this limit, the characteristic equation (9) reduces to J0(�) = 0 and yields ℜ[
1] ≈ 5.78. 
It means that the eddy current amplitude drops by almost three orders of magnitude over 
the the characteristic magnetic di˙usion time ˝m = µ0˙R

2 . The decay times of subsequent 
eigenmodes are signifcantly shorter. It implies that the time interval over which a transient 
eddy current pattern can be tracked is limited by a few magnetic di˙usion time scales tm. 
The respective dimensionless distance over which the pattern is advected is, thus, limited by 
a few Rm. 

The decay of eddy currents makes the determination of their phase speed more complic-
ated than for a constant-amplitude wave. For the latter, the phase velocity describes the 
motion of points with a fxed amplitude. In a decaying wave, the only points whose amp-
litude remains constant in time are those at which the oscillating quantity passes through 
zero. Depending on the physical quantity whose zero crossing is tracked, several alternat-
ives of transient eddy-current fowmetering are possible. Mathematically, the alternative 
quantities are related with temporal or spatial derivatives of eddy current distribution. For 
example, the emf induced by a decaying eddy current, which gives rise to voltage in the 
pick-up coils, is related with the time derivative of the associated magnetic fux. In our case, 
the latter is defned by E = −@t�. Instead of zero crossings one can also track extrema of E , 
either in space or time, which are defned mathematically by the zero crossings of @zE and 
@tE , respectively. 

4. Results 

4.1. Mono-harmonic eddy current distribution 
Let us start with an external magnetic feld which is periodically switched o˙ and on 

for the dimensionless time intervals ˝ = 3 and T − ˝ = 1, respectively. According to the 
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Figure 3: Variation of the magnetic fux � = rA over one time period at z = 0.5 and r = 0.5, 1, 2 for the 
Fourier harmonic with the wave number k = 1 when the cylinder is at rest (Rm = 0) (a); variation of the 
emf magnitude |@t�| with time at the same points for Rm = 0 and Rm = 1 (b). 

previous eigenvalue analysis, these time intervals are suÿciently long for the eddy currents 
to develop. This is confrmed by the temporal variation of the magnetic fux � = rA shown 
in Fig. 3(a) for the wave number k = 1 at z = 0.5 and three di˙erent radii when the cylinder 
is at rest (Rm = 0). The respective variation of the emf magnitude is plotted in Fig. 3(b). 
When the cylinder is at rest (Rm = 0), the emf is seen to decrease exponentially with time 
as predicted by the previous eigenvalue analysis. When the cylinder moves with velocity 
Rm = 1 the decrease of emf is accompanied by a zero crossing, which for the observation 
point located at z = 0.5 occurs at the time instant t ≈ 0.5. This point is seen as the cusp on 
the semi-logarithmic plot of |E| in Fig. 3(b). Shortly after passing through zero, emf is seen 
to attain a local extremum, which is defned mathematically by zero crossing of @tE . 

Figure 4 shows the evolution of the magnetic feld pattern and the associated emf with 
wave number k = 1 after switching external magnetic feld o˙ for the cylinder moving with 
velocity Rm = 1. It may be seen that the zero crossing of the emf, which is marked by the 
increased density of isolines in the middle row, closely follows the medium by being located 
at z = tRm. Thus, the velocity of medium can be determined directly as Rm = z/t, where z 
is the axial distance of the observation point from the wave node and t is the time at which 
the emf passes through zero at that point after switching the feld o˙. The pattern of the 
magnetic fux lines, which is shown at the top row of Fig. 4, may be seen to run slightly 
ahead of that of the emf. This is obviously due to the e˙ect of advection, which tilts the 
magnetic fux lines in the direction of motion. On the other hand, the time derivative, which 
is equivalent to the multiplication of the dominating eigenmode (7) by −
, causes a phase 
shift of the resulting distribution by arg(−
). Thus, the pattern of @tE , which is shown in 
the bottom row of Fig. 4, lags slightly behind that of E . Note that the zero crossing of @tE , 
which like that of E is marked by the increased density of the isolines, indicates the location 
of temporal extremum of E . Location of spatial extremum of E is defned by zero crossings of 
@zE . For a mono-harmonic eddy current, the distribution of @zE = ikE is shifted by a quarter 
wave length relative to that of E . Therefore the spatial extrema of emf in a mono-harmonic 
wave move in exactly the same way as zero crossings. 
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Figure 4: The magnetic fux lines (� = const) (top), the isolines of emf E = −@t� (middle), and of 
E = −@2 � (bottom) for Rm = 1 at the time instants t = 0, 0.4, 0.8, 1.2 after a mono-harmonic external @t tt

magnetic feld with the wave number k = 1 has been switched o˙. Subsequent isolevels di˙er by a factor of 
two and cluster around zero value. 
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Figure 5: (a) Axial zero crossing positions of E and @tE as well as the relative magnitude of E against 
time for mono-harmonic eddy current distributions with k = 0.5, 1 and Rm = 0.1, 0.5, 1. (b) Axial zero 
crossing positions of E , @tE and @z E , @z� for the eddy current distributions generated respectively by two 
antisymmetric and a single current loop with the radius r = 2 and placed at z = ±1 and z = 0. 

As zero crossing outside the cylinder is seen in Fig. 4 to occur synchronously along the 
radius, in the following we focus on the emf distribution along the surface r = 1. Figure 
5(b) shows zero crossing positions of both E and @tE against time as well as the respective 
evolution of the emf amplitude for two mono-harmonic eddy current distributions with wave 
numbers k = 1 and k = 0.5 and three di˙erent velocities Rm = 0.1, 0.5, 1. Firstly, the 
emf for both distributions may be seen to decay in a good agreement with the analytically 
determined damping rates for the respective wave numbers. Secondly, the zero crossing 
points of E in both waves move in exactly the same way with velocity Rm starting from 
the node z = 0. Temporal extrema points, which correspond to zero crossings of @tE , also 
move at the same velocity as the medium but with a time delay which depends on the wave 
number k as well as on the velocity Rm itself. It means that at least two measurement points 
are required to eliminate this o˙set and, thus, to determine the velocity of the medium using 
temporal extrema of emf. 

4.2. Eddy currents induced by circular loops 

Now let us consider the evolution of eddy currents generated by realistic coils made of 
circular loops. We start with an antisymmetric coil confguration consisting of two circular 
loops of radius rc = 2 which are placed at zc = ±1 and carry equal but opposite currents. 
This confguration creates a zero crossing of emf at the symmetry plane z = 0 between the 
loops which is analogous to the wave node of the mono-harmonic distribution considered in 
the previous section. As a result, the advection of the feld pattern by the moving medium, 
which is shown for Rm = 1 in Fig. 6(left), is similar to that of the mono-harmonic eddy 
current distribution in Fig. 4(top). Also the zero crossing points of E and @tE move in the 
same way as in the mono-harmonic wave. But there is one substantial di˙erence between the 
mono-harmonic and anti-symmetric eddy-current distributions which concerns the motion 
of spatial extrema of emf. There are two such extrema, which are seen in Fig. 6(right) to be 
located at the current loops where zero crossings of @zE are marked by the increased density 
of isolines. First of all, it is obvious that these extrema do not move at the same velocity. 
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Figure 6: The magnetic fux lines (� = const) (left) and the isolines of @z E = −@2 � (right) at the time 
tz

instants t = 0, 0.4, 0.8, 1.2 after the external magnetic feld generated by a pair of antisymmetric current 
loops with radius rc = 2 located at zc = ±1 has been switched o˙. 
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Namely, the right (downstream) extremum moves noticeably faster than the medium whereas 
the left (upstream) one moves not only much slower but also in the opposite direction. The 
main di˙erence between the spatial extrema in the previous mono-harmonic and the present 
two-loop eddy current distributions is the absence of symmetry in the latter. It will be shown 
later that symmetry is crucial to the transient eddy current fowmetering. 

Eddy current distribution with a spatially symmetric emf extremum but without zero 
crossing can be generated using a single current loop [25]. The evolution of the feld pattern 
generated by a current loop of radius rc = 2 placed at zc = 0 is shown in Fig. 7 for Rm = 1. 
In this case, there are neither zero crossings nor temporal extrema of emf but only axial 
extrema of the magnetic fux and emf. These extrema, which are respectively located at 
the zero crossings of @z� = −rBr and @zE , move synchronously with the medium. The 
axial extremum of emf is seen to move without the time lag as the zero crossing in the 
anti-symmetric set-up, whereas the fux extremum experiences a time lag similar to that of 
the temporal emf maximum in the anti-symmetric set-up. Note that the axial extremum of 
the magnetic fux can be detected as a zero crossing of the radial fux component Br using, 
for example, a Hall sensor. Also note that at least two sensor coils are required to detect 
an axial maximum of emf, whereas one coil can be used to detect zero crossing or temporal 
extremum of emf in the antisymmetric set-up. The latter, however, requires two excitation 
coils. 

Finally, let us examine the e˙ect of a possible asymmetry in the initial eddy current 
distribution generated by a two-coil set-up with opposite but slightly di˙erent currents. To 
characterize this kind of asymmetry we use the parameter S = (j+ − j−)/(j+ + j−), where 
j+ and j− are the currents in the coils placed respectively on the left and right from z = 0. 
Temporal evolution of eddy current distribution with the initial asymmetry of S = 5% 
generated by two coils of radius rc = 2 placed zc = ±1 is shown in Fig. 8 for the medium 
at rest (Rm = 0). Because for S > 0 the current in the coil on the left is higher than that 
on the right the initial emf pattern at t = 0 is slightly tilted to the right. In contrast to 
the perfectly anti-symmetric distribution, where each Fourier mode of emf crosses zero at 
zc = 0 independently of other harmonics, in the asymmetric distribution, the zero crossing 
is a result of superposition of di˙erent Fourier modes. Because di˙erent harmonics decay 
at di˙erent rates depending on their wave number, the zero crossing line in the asymmetric 
distribution is not stationary but drifts to the right, as seen in Fig. 8. The direction of this 
drift is reversed for negative S. As seen in Fig. 9, after a relatively short initial transient 
time, the drift velocity slightly increases and then saturates at the level which rises with the 
asymmetry S and is nearly the same for zero crossing and temporal extremum of emf. The 
drift velocity averaged over the time interval from t = 0 to t = 3 is seen in Fig. 9 to increase 
nearly linearly with S. At the same time the drift velocity reduces with the increase of axial 
separation between the coils whereas their radius has a relatively weak e˙ect. 

5. Summary and conclusions 

We have carried out a comprehensive numerical analysis of a transient eddy-current 
fowmetering method which is applicable to liquid metals. The method works by exciting 
and then tracking eddy currents as they are advected by a moving conductor. Because eddy 
currents decay by about three orders of magnitude over the characteristic characteristic 
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Figure 7: The magnetic fux lines (� = const) (top), the isolines of @z� (middle) and @z E = −@2 � (bottom) 
zt

for Rm = 1 at the time instants t = 0, 0.4, 0.8, 1.2 after the external magnetic feld generated by a single 
current loop located at rc = 2 and zc = 0 has been switched o˙. Levels of subsequent isolines di˙er by a 
factor of two and the increased density of isolines indicates zero value. 
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Figure 8: The emf isolines for Rm = 0 at the time instants t = 0, 0.4, 0.8, 1.2 after the external magnetic 
feld generated by a pair of opposite current loops located at rc = 2 and zc = ±1 with the current asymmetry 
of S = 5% has been switched o˙.

 0.8  0.35 1.2

S = 1% 

3% 

5%z 
Rm0 

(a)

 0  0.5  1  1.5  2  2.5

±zc = 0.5 

0.75 

1 

1.5 

2 

rc = 1.5 
2 

2.5 

(b) 

0.7  0.3

Z
er

o 
dr

if
t v

el
oc

ity
, R

m
0 1

 0.8

 0.6

 0.4

 0.2

 0.6
 0.25

Z
er

o 
po

si
tio

n,
 z

 0.5

 0.4
 0.2

 0.15
 0.3

 0.1
0.2

 0.050.1

 0  0  0
 0  2  4  6  8  10 

Time, t Current asymmetry, S (%) 

Figure 9: (a) Axial position of zero crossing and its drift velocity along the surface of cylinder at rest 
(Rm = 0) against the time after the external magnetic feld generated by a pair of opposite current loops 
located at rc = 2 and zc = ±1 with the current asymmetry S has been switched o˙. The upper and lower 
curves correspond to the zero crossing of emf (E = −@t�) and its temporal derivative (@tE), respectively. 
(b) Zero drift velocity depending on the current asymmetry s in two circular loops with radii rc = 1.5, 2, 2.5 
placed at the axial positions ±zc = 0.5, 0.75, 1, 1.5, 2. 
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magnetic di˙usion time ˝m = µ0˙R
2 , which is ∼ 0.1 s in a liquid metal with a characteristic 

conductivity ˙ ∼ 106 S/m and size R ∼ 0.1m, the time interval over which they can be 
tracked is limited to a few magnetic di˙usion time scales ˝m. The distance over which the 
eddy current pattern can be tracked scales as ∼ Rm. This means that for small Rm, the 
pick-up coils have to be placed suÿciently close to the excitation coils at the distance ∼ Rm. 

We considered several alternative measurement schemes in which di˙erent characteristic 
features of eddy current distributions are tracked. The trackable features are zero crossing 
points or extrema of the emf induced by the transient eddy currents. There are two kinds 
of extrema which can be tracked: temporal and spacial. The former corresponds to emf (E) 
passing through extremum in time at a fxed axial position. The latter corresponds to emf 
passing through extremum at some axial position at a fxed instant of time. Mathematic-
ally, these two types of extrema are defned as zero crossings of @tE and @zE , respectively. 
Physically, temporal extremum can be detected using a single pick-up coil, whereas at least 
two coils are required to detect the passage of spatial extremum. 

A zero crossing point is detected by the the original measurement scheme of Zheigur 
and Sermons [24] using a single pick-up coil and its distance from the excitation coil to 
determine the fow rate. The location of excitation coil is not required by the measurement 
schemes of Forbriger and Stefani [26] and Krauter and Stefani [27] who use respectively 
three and two non-coaxial pick-up coils to track approximately the emf zero crossing point. 
The measurement scheme analysed numerically by Tarabad and Baker [25] is based on the 
detection of temporal emf extremum using a single excitation coil and two symmetric pick-up 
coils in the di˙erential connection. 

In the mono-harmonic eddy current distributions, which were analyzed frst, the spatial 
extrema of emf move in the same way as zero crossings because both remain separated by 
a quarter wave length. In this case, the velocity of medium can be determined simply as 
v = z/t, where t is the time after the eddy current excitation at which E or @zE passes through 
zero at the distance z from the wave node or its extremum, respectively. Flowmetering using 
temporal extrema of emf is slightly more complicated because these extrema occur some time 
after zero crossing. This additional time delay, which shows up also in the numerical results 
of Tarabad and Baker [25] and signifcantly disturbs their measurement scheme, depends 
on the conductivity of medium as well as on the eddy current distribution but not on the 
position of the observation point provided that it is not too close to the initial zero crossing 
point. Therefore the additional time delay can be eliminated by using two pick-up coils 
placed at z1 and z2. Then the velocity of the medium can be found as v = (z2 − z1)/(t2 − t1), 
where t1 and t2 are the times at which temporal extrema are detected in the respective coil. 
The same approach can be used to eliminate the uncertainty in the emf zero crossing time 
caused by the inaccuracy in the position of excitation coils. Note that the measurement 
scheme of Krauter and Stefani [27] is somewhat di˙erent because it relies on the assumption 
that the emf varies linearly in the space between the two pick-up coils. Forbriger and Stefani 
[26] make a similar assumption about the spatial variation of the magnetic fux density. 
These assumptions, which may hold for suÿciently closely spaced pick-up coils but not in 
general, are not required in the measurement schemes considered in this study. 

We considered also more realistic eddy current distributions generated by two anti-
symmetric circular current loops or a single loop. In the anti-symmetric set-up, the zero 
crossing point of emf as well as the subsequent temporal extremum was found to travel syn-
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chronously with the medium in the same way as with the mono-harmonic wave considered 
before. But this was not the case for the two spatial extrema which appear at both cur-
rent loops in this set-up. These two extrema were found to move at substantially di˙erent 
velocities from that of the medium. This result highlights the crucial importance of sym-
metry which holds for zero crossing points of emf but not for the two spatial extrema in the 
anti-symmetric set-up. In a single-loop set-up, which generates a spatially symmetric eddy 
current distribution, the spatial extremum of emf was found to travel synchronously with 
the medium as in the mono-harmonic wave. In this set-up, the velocity of the medium can 
be determined by also tracking axial extremum of the magnetic fux, which coincides with 
the zero crossing of the radial component of the magnetic feld. It has to be noted that 
because of the initial tilt of the magnetic fux lines in the direction motion, the extremum 
of magnetic fux arrives at a given observation point ahead that of emf. This time lead can 
be eliminated similarly to the delay of temporal extremum of emf by using two sensors as 
discussed above. 

Finally, we analyzed the e˙ect of a possible current asymmetry in the two-loop set-up, 
and showed that it gives rise to a spurious drift of the emf zero crossing point. It means 
that the mutual symmetry of exiting coils is crucial for the transient-eddy fowmetering. 
Asymmetry of a few per cent was found to result in the zero drift with a dimensionless 
velocity Rm ∼ 0.1. For the characteristic parameters used at the beginning of this section, 
the respective physical velocity is v ∼ 0.1m/s. It means that with this level of asymmetry, 
which is not unlikely in practice, transient eddy current fowmetering can be reliable only 
for the fows with Rm & 0.1. This estimate is consistent with the lowest Rm ≈ 0.35 and 
Rm ≈ 0.11 achieved respectively by Zheigur and Sermons [24] and Forbriger and Stefani 
[26]. At lower velocities, a more accurate symmetry adjustment or calibration of the device 
may be required. This obviously applies not only to the axisymmetric systems considered 
in our study but also to more complex non-coaxial coil arrengements used in the previous 
experimental studies. 

The results of this study may be useful for designing more accurate and reliable transient 
eddy-current fowmeters for liquid metals. 
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