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A UNIFIED APPROACH TO MIXED-INTEGER OPTIMIZATION
PROBLEMS WITH LOGICAL CONSTRAINTS

DIMITRIS BERTSIMAS∗, RYAN CORY-WRIGHT† , AND JEAN PAUPHILET‡

Abstract. We propose a unified framework to address a family of classical mixed-integer op-
timization problems with logically constrained decision variables, including network design, facility
location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse princi-
pal component analysis, and sparse learning problems. These problems exhibit logical relationships
between continuous and discrete variables, which are usually reformulated linearly using a big-M
formulation. In this work, we challenge this longstanding modeling practice and express the logi-
cal constraints in a non-linear way. By imposing a regularization condition, we reformulate these
problems as convex binary optimization problems, which are solvable using an outer-approximation
procedure. In numerical experiments, we establish that a general-purpose numerical strategy, which
combines cutting-plane, first-order, and local search methods, solves these problems faster and at a
larger scale than state-of-the-art mixed-integer linear or second-order cone methods. Our approach
successfully solves network design problems with 100s of nodes and provides solutions up to 40%
better than the state-of-the-art; sparse portfolio selection problems with up to 3, 200 securities com-
pared with 400 securities for previous attempts; and sparse regression problems with up to 100, 000
covariates.

Key words. mixed-integer optimization; branch and cut; outer approximation

AMS subject classifications. 90C11, 90C57, 90C90

1. Introduction. Many important problems from the Operations Research lit-
erature exhibit a logical relationship between continuous variables x and binary vari-
ables z of the form “x = 0 if z = 0”. Among others, start-up costs in machine sched-
uling problems, financial transaction costs, cardinality constraints and fixed costs in
facility location problems exhibit this relationship. Since the work of [34], this rela-
tionship is usually enforced through a “big-M” constraint of the form −Mz ≤ x ≤Mz
for a sufficiently large constant M > 0. Glover’s work has been so influential that
big-M constraints are now considered as intrinsic components of the initial problem
formulations themselves, to the extent that textbooks in the field introduce facility lo-
cation, network design or sparse portfolio problems with big-M constraints by default,
although they are actually reformulations of logical constraints.

In this work, we adopt a different perspective on the big-M paradigm, view-
ing it as a regularization term, rather than a modeling trick. Under this lens, we
show that regularization drives the computational tractability of problems with log-
ical constraints, explore alternatives to the big-M paradigm and propose an efficient
algorithmic strategy which solves a broad class of problems with logical constraints.

1.1. Problem Formulation and Main Contributions. We consider opti-
mization problems which unfold over two stages. In the first stage, a decision-maker
activates binary variables, while satisfying resource budget constraints and incurring
activation costs. Subsequently, in the second stage, the decision-maker optimizes over
the continuous variables. Formally, we consider the problem

(1.1) min
z∈Z,x∈Rn

c>z + g(x) + Ω(x) s.t. xi = 0 if zi = 0 ∀i ∈ [n],
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where Z ⊆ {0, 1}n, c ∈ Rn is a cost vector, g(·) is a generic convex function which
possibly models convex constraints x ∈ X for a convex set X ⊆ Rn implicitlyby
requiring that g(x) = +∞ if x /∈ X , and Ω(·) is a convex regularization function; we
formally state its structure in Assumption 2.2.

In this paper, we provide three main contributions: First, we reformulate the
logical constraint “xi = 0 if zi = 0” in a non-linear way, by substituting zixi for xi in
Problem (1.1). Second, we leverage the regularization term Ω(x) to derive a tractable
reformulation of (1.1). Finally, by invoking strong duality, we reformulate (1.1) as a
mixed-integer saddle-point problem, which is solvable via outer approximation.

Observe that the structure of Problem (1.1) is quite general, as the feasible set Z
can capture known lower and upper bounds on z, relationships between different zi’s,
or a cardinality constraint e>z ≤ k. Moreover, constraints of the form x ∈ X , for
some convex set X , can be encoded within the domain of g, by defining g(x) = +∞ if
x /∈ X . As a result, Problem (1.1) encompasses a large number of problems from the
Operations Research literature, such as the network design problem described in Ex-
ample 1.1. These problems are typically studied separately. However, the techniques
developed for each problem are actually different facets of a single unified story, and,
as we demonstrate in this paper, can be applied to a much more general class of
problems than is often appreciated.

Example 1.1. Network design is an important example of problems of the
form (1.1). Given a set of m nodes, the network design problem consists of
constructing edges to minimize the construction plus flow transportation cost.
Let E denote the set of all potential edges and let n = |E|. Then, the network
design problem is given by:

(1.2)
min

z∈Z,x∈Rn
+

c>z + 1
2x
>Qx+ d>x s.t. Ax = b,

xe = 0 if ze = 0 ∀e ∈ E,

where Z = {0, 1}n, A ∈ Rm×n is the flow conservation matrix, b ∈ Rm is the
vector of external demands and Q ∈ Rn×n, d ∈ Rn define the quadratic and
linear costs of flow circulation. We assume that Q � 0 is a positive semidefinite
matrix. Inequalities of the form ` ≤ z ≤ u can be incorporated within Z to
account for existing/forbidden edges in the network. Problem (1.2) is of the
same form as Problem (1.1) with

g(x) + Ω(x) :=

{
1
2x
>Qx+ d>x, if Ax = b,x ≥ 0,

+∞, otherwise.

We present a generalized model with edge capacities and multiple commodities in
Section 2.1.1.

1.2. Background and Literature Review. Our work falls into two areas of
the mixed-integer optimization literature which are often considered in isolation: (a)
modeling forcing constraints which encode whether continuous variables are active
and can take non-zero values or are inactive and forced to 0, and (b) decomposition
algorithms for mixed-integer optimization problems.
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Formulations of forcing constraints. The most popular way to impose forc-
ing constraints on continuous variables is to introduce auxiliary discrete variables
which encode whether the continuous variables are active, and relate the discrete and
continuous variables via the big-M approach of [34]. This approach was first applied
to mixed-integer non-linear optimization (MINLO) in the context of sparse portfolio
selection by [14]. With the big-M approach, the original MINLO admits bounded
relaxations and can therefore be solved via branch-and-bound. Moreover, because
the relationship between discrete and continuous variables is enforced via linear con-
straints, a big-M reformulation has a theoretically low impact on the tractability of
the MINLOs continuous relaxations. However, in practice, high values of M lead to
numerical instability and provide low-quality bounds [see 4, Section 5].

This observation led [28] to propose a class of cutting-planes for MINLO prob-
lems with indicator variables, called perspective cuts, which often provide a tighter
reformulation of the logical constraints. Their approach was subsequently extended
by [1], who, building upon the work of [5, pp. 88, item 5], proved that MINLO prob-
lems with indicator variables can often be reformulated as mixed-integer second-order
cone problems (see [37] for a survey). More recently, a third approach for coupling
the discrete and the continuous in MINLO was proposed independently for sparse
regression by [47] and [13]: augmenting the objective with a strongly convex term of
the form ‖x‖22, called a ridge regularizer.

In the present paper, we synthesize the aforementioned and seemingly unrelated
three lines of research under the unifying lens of regularization. Notably, our frame-
work includes big-M and ridge regularization as special cases, and provides an ele-
mentary derivation of perspective cuts.

Numerical algorithms for mixed-integer optimization. A variety of “clas-
sical” general-purpose decomposition algorithms have been proposed for general MIN-
LOs. The first such decomposition method is known as Generalized Benders Decom-
position, and was proposed by [33] as an extension of [6]. A similar method, known
as outer-approximation was proposed by [22], who proved its finite termination. The
outer-approximation method was subsequently generalized to account for non-linear
integral variables by [25]. These techniques decompose MINLOs into a discrete mas-
ter problem and a sequence of continuous separation problems, which are iteratively
solved to generate valid cuts for the master problem.

Though slow in their original implementation, decomposition schemes have ben-
efited from recent improvements in mixed-integer linear solvers in the past decades,
beginning with the branch-and-cut approaches of [45, 48], which embed the cut gen-
eration process within a single branch-and-bound tree, rather than building a branch-
and-bound tree before generating each cut. We refer to [23, 24] for recent successful
implementations of “modern” decomposition schemes. From a high-level perspective,
these recent successes require three key ingredients: First, a fast cut generation strat-
egy. Second, as advocated by [23], a rich cut generation process at the root node.
Finally, a cut selection rule for degenerate cases where multiple valid inequalities exist
(e.g., the Pareto optimality criteria of [43]).

In this paper, we connect the regularization used to reformulate logical constraints
with the aforementioned key ingredients for modern decomposition schemes. Hence,
instead of considering a MINLO formulation as a given and subsequently attempt to
solve it at scale, our approach view big-M constraints as one of many alternatives.
We argue that regularization is a modeling choice that impacts the tractability of the
formulation and should be made accordingly.
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1.3. Structure. We propose a unifying framework to address mixed-integer op-
timization problems, and jointly discuss modeling choice and numerical algorithms.

In Section 2, we identify a general class of mixed-integer optimization problems,
which encompasses sparse regression, sparse portfolio selection, sparse principal com-
ponent analysis, unit commitment, facility location, network design and binary qua-
dratic optimization as special cases. For this class of problems, we discuss how impos-
ing either big-M or ridge regularization accounts for non-linear relationships between
continuous and binary variables in a tractable fashion. We also establish that regular-
ization controls the convexity and smoothness of Problem (1.1)’s objective function.

In Section 3, we propose a conjunction of general-purpose numerical algorithms
to solve Problem (1.1). The backbone of our approach is an outer approximation
framework, enhanced with first-order methods to solve the Boolean relaxations and
obtain improved lower bounds, certifiably near-optimal warm-starts via randomized
rounding, and a discrete local search procedure. We also connect our approach to the
perspective cut approach [28] from a theoretical and implementation standpoint.

Finally, in Section 4, we demonstrate empirically that algorithms derived from
our framework can outperform state-of-the-art solvers. On network design problems
with 100s of nodes and binary quadratic optimization problems with 100s of vari-
ables, we improve the objective value of the returned solution by 5 to 40% and 5
to 85% respectively, and our edge increases as the problem size increases. On em-
pirical risk minimization problems, our method with ridge regularization is able to
accurately select features among 100, 000s (resp. 10, 000s) of covariates for regression
(resp. classification) problems, with higher accuracy than both Lasso and non-convex
penalties from the statistics literature. For sparse portfolio selection, we solve to
provable optimality problems one order of magnitude larger than previous attempts.
We then analyze the benefits of the different ingredients in our numerical recipe on
facility location problems, and discuss the relative merits of different regularization
approaches on unit commitment instances.

Notation. We use nonbold face characters to denote scalars and components of
matrices, lowercase bold faced characters such as x to denote vectors, uppercase bold
faced characters such as X to denote matrices, and calligraphic characters such as X
to denote sets. We let e denote a vector of all 1’s, and 0 denote a vector of all 0’s,
with dimension implied by the context. If x is a n-dimensional vector then Diag(x)
denotes the n × n diagonal matrix whose diagonal entries are given by x. If f(x) is
a convex function then its perspective function ϕ(x, t), defined as ϕ(x, t) = tf(x/t)
if t > 0, ϕ(0, 0) = 0, and ∞ elsewhere, is also convex [17, Chapter 3.2.6.]. Finally, we
let Rn+ denote the n-dimensional nonnegative orthant.

2. Framework and Examples. In this section, we present the family of prob-
lems to which our analysis applies, discuss the role played by regularization, and
provide some examples from the Operations Research literature.

2.1. Examples. Problem (1.1) has a two-stage structure which comprises first
“turning on” some indicator variables z, and second solving a continuous optimization
problem over the active components of x. Precisely, Problem (1.1) can be viewed as
a discrete optimization problem:

min
z∈Z

c>z + f(z),(2.1)

where the inner minimization problem

(2.2) f(z) := min
x∈Rn

g(x) + Ω(x) s.t. xi = 0 if zi = 0 ∀i ∈ [n],
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yields a best choice of x given z. As we illustrate in this section, a number of problems
of practical interest exhibit this structure.

Example 2.1. For the network design example (1.2), we have

f(z) := min
x∈Rn

+:Ax=b

1
2x
>Qx+ d>x s.t. xe = 0 if ze = 0 ∀e ∈ E.

2.1.1. Network Design. Example 1.1 illustrates that the single-commodity
network design problem is a special case of Problem (1.1). We now formulate the
k-commodity network design problem with directed capacities as minimizing over
Z = {0, 1}n the function:

(2.3)

f(z) := min
fj ,x∈Rn

+

1
2x
>Qx+ d>x s.t. Af j = bj ∀j ∈ [k],

x =

k∑
j=1

f j , x ≤ u,

xe = 0 if ze = 0 ∀e ∈ E.

2.1.2. Sparse Empirical Risk Minimization. Given a matrix of covariates
X ∈ Rn×p and a response vector y ∈ Rn, the sparse empirical risk minimization
problem seeks a vector w which explains the response in a compelling manner, i.e.,
minimizes over Z := {z ∈ {0, 1}p : e>z ≤ k} the function:
(2.4)

f(z) := min
w∈Rp

n∑
i=1

`
(
yi,w

>xi
)

+
1

2γ
‖w‖22 s.t. wj = 0 if zj = 0 ∀j ∈ [p],

where ` is an appropriate convex loss function; we provide examples of suitable loss
functions in Table 1.

Table 1: Loss functions and Fenchel conjugates for ERM problems of interest.

Method Loss function Domain Fenchel conjugate

OLS 1
2 (y − u)2 y ∈ R `?(y, α) = 1

2α
2 + αy

SVM max(1− yu, 0) y ∈ {±1} `?(y, α) =

{
αy, if αy ∈ [−1, 0],

∞, otherwise.

2.1.3. Sparse Portfolio Selection. Given an expected marginal return vector
µ ∈ Rn, estimated covariance matrix Σ ∈ Sn+, uncertainty budget parameter σ > 0,
cardinality budget parameter k ∈ {2, . . . , n− 1}, linear constraint matrix A ∈ Rn×m,
and right-hand-side bounds l,u ∈ Rm, investors determine an optimal allocation of
capital between assets by minimizing over Z =

{
z ∈ {0, 1}n : e>z ≤ k

}
the function

(2.5)
f(z) := min

x∈Rn
+

σ

2
x>Σx− µ>x

s.t. l ≤ Ax ≤ u, e>x = 1, xi = 0 if zi = 0 ∀i ∈ [n].
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2.1.4. Unit Commitment. In the DC-load-flow unit commitment problem,
each generation unit i incurs a cost given by a quadratic cost function f i(x) = aix

2 +
bix+ ci for its power generation output x ∈ [0, ui]. Let T denote a finite set of time
periods covering a time horizon (e.g., 24 hours). At each time period t ∈ T , there
is an estimated demand dt. The objective is to generate sufficient power to satisfy
demand at minimum cost, while respecting minimum time on/time off constraints.

By introducing binary variables zi,t, which denote whether generation unit i is
active in time period t, requiring that z ∈ Z, i.e., z obeys physical constraints such
as minimum time on/off, the unit commitment problem admits the formulation:

min
z

f(z) +
∑
t∈T

n∑
i=1

cizi,t s.t. z ∈ Z ⊆ {0, 1}n×|T |,(2.6)

(2.7)

where: f(z) := min
x

∑
t∈T

(
n∑
i=1

1
2aix

2
i,t + bixi,t

)
s.t.

n∑
i=1

xi,t ≥ Dt ∀t ∈ T ,

xi,t ∈ [0, ui,t] ∀i ∈ [n],∀t ∈ T ,
xi,t = 0 if zi,t = 0 ∀i ∈ [n],∀t ∈ T .

2.1.5. Facility Location. Given a set of n facilities and m customers, the fa-
cility location problem consists of constructing facilities i ∈ [n] at cost ci to satisfy
demand at minimal cost, i.e., minimizing over Z = {0, 1}n the function:
(2.8)

f(z) := min
X∈Rn×m

+

c>z +

m∑
j=1

n∑
i=1

cijxij s.t.

m∑
j=1

xij ≤ ui ∀i ∈ [n],

n∑
i=1

xij = dj ∀j ∈ [m], xij = 0 if zi = 0 ∀i ∈ [n], j ∈ [m].

In this formulation, xij corresponds to the quantity produced in facility i and shipped
to customer j at a marginal cost of cij . Moreover, each facility i has a maximum
output capacity of ui and each customer j has a demand of dj . In the uncapacitated
case where ui = ∞, the inner minimization problems decouple into independent
knapsack problems for each customer j.

2.1.6. Sparse Principal Component Analysis (PCA). Given a p × p pos-
itive semidefinite covariance matrix Σ, Σ ∈ Sp+ in short, the sparse PCA problem is
to select a vector z which maximizes over Z =

{
z ∈ {0, 1}p : e>z ≤ k

}
the function

f(z) = max
x∈Rp

x>Σx s.t. ‖x‖22 = 1, xi = 0 if zi = 0 ∀i ∈ [p].(2.9)

This function is apparently non-concave in z, because f(z) is the optimal value of
a non-convex quadratic optimization problem. Fortuitously however, this problem
admits an exact mixed-integer semidefinite reformulation, namely

f(z) = max
X∈Sp

+

〈Σ,X〉 s.t. tr(X) = 1, xi,j = 0 if zi = 0 or zj = 0 ∀i, j ∈ [p].(2.10)

Indeed, for any fixed z, Problem (2.10) maximizes a linear function inX and therefore
admits a rank-one optimal solution. Thus, we prove that sparse PCA admits an exact
mixed-integer semidefinite optimization reformulation.
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2.1.7. Binary Quadratic Optimization. Given a symmetric cost matrix Q,
the binary quadratic optimization problem consists of selecting a vector of binary
variables z which minimizes over Z = {0, 1}n the function:

(2.11) f(z) = z>Qz.

This formulation is non-convex and does not include continuous variables. How-
ever, introducing auxiliary continuous variables yields the equivalent formulation [26]
of minimizing over Z = {0, 1}n the function:

f(z) := min
Y ∈Rn×n

+

〈Q,Y 〉 s.t. yi,j ≤ 1 ∀i, j ∈ [n],(2.12)

yi,j ≥ zi + zj − 1 ∀i ∈ [n],∀j ∈ [n]\{i},
yi,i ≥ zi ∀i ∈ [n],

yi,j = 0 if zi = 0 ∀i, j ∈ [n],

yi,j = 0 if zj = 0 ∀i, j ∈ [n].

2.1.8. Union of Ellipsoidal Constraints. We now demonstrate that an even
broader class of problems than MIOs with logical constraints can be cast within our
framework. Concretely, we demonstrate that constraints x ∈ S :=

⋃k
i=1(Qi ∩ Pi),

where Qi := {x ∈ Rn : x>Qix + h>i x + gi ≤ 0}, with Qi � 0, is an ellipsoid and
Pi := {x : Aix ≤ bi} is a polytope, can be reformulated as a special case of our
framework. We remark that the constraint x ∈ S is very general. Indeed, if we were
to omit the quadratic constraints then we obtain a so-called ideal union of polyhedra
formulation, which essentially all mixed-binary linear feasible regions admit [see 52].

To derive a mixed-integer formulation with logical constraints of S that fits within
our framework, we introduce xi ∈ Rn and δi ∈ {0, 1}n, such that xi ∈ Qi ∩ Pi if
δi = 1, xi = 0 otherwise, and x =

∑
i xi. We enforce xi ∈ Qi ∩ Pi by introducing

slack variables ξi, ρi for the linear and quadratic constraints respectively, and forcing
them to be zero whenever δi = 1. Formally, S admits the following formulation

x =

k∑
i=1

xi,

k∑
i=1

δi = 1,(2.13)

Aixi ≤ bi + ξi ∀i ∈ [k],

x>i Qixi + h>i xi + gi ≤ ρi ∀i ∈ [k],

xi = 0 if δi = 0 ∀i ∈ [k],

ξi = 0 if (1− δi) = 0 ∀i ∈ [k],

ρi = 0 if (1− δi) = 0 ∀i ∈ [k].

2.2. A Regularization Assumption. When we stated Problem (1.1), we as-
sumed that its objective function consists of a convex function g(x) plus a regulariza-
tion term Ω(x). We now formalize this assumption:

Assumption 2.2. In Problem (1.1), the regularization term Ω(x) is one of:
• a big-M penalty function, Ω(x) = 0 if ‖x‖∞ ≤M and ∞ otherwise,

• a ridge penalty, Ω(x) =
1

2γ
‖x‖22.

This decomposition often constitutes a modeling choice in itself. We now illustrate
this idea via the network design example.
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Example 2.3. In the network design example (1.2), given the flow conser-
vation structure Ax = b, we have that x ≤ Me, where M =

∑
i:bi>0 bi. In

addition, if Q � 0 then the objective function naturally contains a ridge reg-
ularization term with 1/γ equal to the smallest eigenvalue of Q. Moreover, it
is possible to obtain a tighter natural ridge regularization term by solving the
following auxiliary semidefinite optimization problem a priori

max
q≥0

e>q s.t. Q−Diag(q) � 0,

and using qi as the ridge regularizer for each index i [30].

Big-M constraints are often considered to be a modeling trick. However, our frame-
work demonstrates that imposing either big-M constraints or a ridge penalty is a
regularization method, rather than a modeling trick. Interestingly, ridge regulariza-
tion accounts for the relationship between the binary and continuous variables just
as well as big-M regularization, without performing an algebraic reformulation of the
logical constraints1.

Conceptually, both regularization functions are equivalent to a soft or hard con-
straint on the continuous variables x. However, they admit practical differences: For
big-M regularization, there usually exists a finite value M0, typically unknown a pri-
ori, such that if M < M0, the regularized problem is infeasible. Alternatively, for
every value of the ridge regularization parameter γ, if the original problem is feasible
then the regularized problem is also feasible. Consequently, if there is no natural
choice of M then imposing ridge regularization may be less restrictive than impos-
ing big-M regularization. However, for any γ > 0, the objective of the optimization
problem with ridge regularization is different from its unregularized limit as γ →∞,
while for big-M regularization, there usually exists a finite value M1 above which the
two objective values match. We illustrate this discussion numerically in Section 4.3.

2.3. Duality to the Rescue. In this section, we derive Problem (2.2)’s dual
and reformulate f(z) as a maximization problem. This reformulation is significant
for two reasons: First, as shown in the proof of Theorem 2.5, it leverages a non-linear
reformulation of the logical constraints “xi = 0 if zi = 0” by introducing additional
variables vi such that vi = zixi. Second, it proves that the regularization term Ω(x)
drives the convexity and smoothness of f(z), and thereby drives the computational
tractability of the problem. To derive Problem (2.2)’s dual, we require:

Assumption 2.4. For each subproblem generated by f(z), where z ∈ Z, either
the optimization problem is infeasible, or strong duality holds.

Note that all seven problems stated in Section 2.1 satisfy Assumption 2.4, as
their inner problems are convex quadratics with linear or semidefinite constraints [17,
Section 5.2.3]. Under Assumption 2.4, the following theorem reformulates Problem
(2.1) as a saddle-point problem:

1Specifically, ridge regularization enforces logical constraints through perspective functions, as is
made clear in Section 3.4.
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Theorem 2.5. Under Assumption 2.4, Problem (2.1) is equivalent to:

(2.14) min
z∈Z

max
α∈Rn

c>z + h(α)−
n∑
i=1

zi Ω?(αi),

where h(α) := infv g(v) − v>α is, up to a sign, the Fenchel conjugate of g [see 17,
Chap. 3.3], and

Ω?(β) := M |β| for the big-M penalty,

Ω?(β) := γ
2β

2 for the ridge penalty.

Proof. Let us fix some z ∈ {0, 1}n, and suppose that strong duality holds for the
inner minimization problem which defines f(z). Then, after introducing additional
variables v ∈ Rn such that vi = zixi, we have

f(z) = min
x,v

g(v) + Ω(x) s.t. v = Diag(z)x.

Let α denote the dual variables associated with the coupling constraint v = Diag(z)x.
The minimization problem is then equivalent to its dual problem, which is given by:

f(z) = max
α

h(α) + min
x

[
Ω(x) +α>Diag(z)x

]
,

Since Ω(·) is decomposable, i.e., Ω(x) =
∑
i Ωi(xi), we obtain:

min
x

[
Ω(x) +α>Diag(z)x

]
=

n∑
i=1

min
xi

[Ωi(xi) + zixiαi]

=

n∑
i=1

−Ω?(−ziαi) = −
n∑
i=1

ziΩ
?(αi),

where the last equality holds as zi > 0 for the big-M and z2i = zi for the ridge penalty.
Alternatively, if the inner minimization problem defining f(z) is infeasible, then

its dual problem is unbounded by weak duality2.

Remark 2.6. Without regularization, i.e., Ω(x) = 0, a similar proof shows that
Problem (2.1) admits an interesting saddle-point formulation:

min
z∈Z

max
α∈Rn

c>z + h(α) s.t. αi = 0, if zi = 1 ∀i ∈ [n],

since Ω?(α) = minx [xα− Ω(x)] =0 if α = 0, and +∞ otherwise. Consequently, the
regularized formulation can be regarded as a relaxation of the original problem where
the hard constraint αi = 0 if zi = 1 is replaced with a soft penalty term −ziΩ?(αi).

Remark 2.7. The proof of Theorem 2.5 exploits three attributes of the regularizer
Ω(x). Namely, (1) decomposability, i.e., Ω(x) =

∑
i Ωi(xi), for appropriate scalar

functions Ωi, (2) the convexity of Ω(x) in x, and (3) the fact that Ω(·) regularizes3

towards 0, i.e., 0 ∈ arg minx Ω(x). However, the proof does not explicitly require that
Ω(x) is either a big-M or a ridge regularizer. This suggests that our framework could
be extended to other regularization functions.

2Weak duality implies that the dual problem is either unfeasible or unbounded. Since the feasible
set of the maximization problem does not depend on z, it is always feasible, unless the original
problem (1.1) is itself infeasible. Therefore, we assume without loss of generality that it is unbounded.

3Importantly, the third attribute allows us to strengthen the formulation by not associating z
with x in Ω(x), since xi = 0 is a feasible, indeed optimal choice of x for minimizing the regularizer
when zi = 0; this issue is explored in more detail in [8, Lemma 1]; see also [11, Appendix A.1].
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Example 2.8. For the network design problem (1.2), we have

h(α) = min
x≥0:Ax=b

1
2x
>Qx+ (d−α)>x,

= max
β0≥0,p

b>p− 1
2

(
A>p− d+α+ β0

)>
Q−1

(
A>p− d+α+ β0

)
.

Introducing ξ = Q−1/2
(
A>p− d+α+ β0

)
, we can further write

h(α) = max
ξ,p

b>p− 1
2‖ξ‖

2
2 s.t Q1/2ξ ≥ A>p− d+α.

Hence, Problem (1.2) is equivalent to minimizing over z ∈ Z the function

c>z + f(z) = max
α,ξ,p

c>z + b>p− 1
2‖ξ‖

2
2 −

n∑
j=1

zj Ω?(αj)

s.t Q1/2ξ ≥ A>p− d+α.

Theorem 2.5 reformulates f(z) as an inner maximization problem, namely

f(z) = max
α∈Rn

h(α)−
n∑
i=1

zi Ω?(αi),(2.15)

for any feasible binary z ∈ Z. The regularization term Ω will be instrumental in our
numerical strategy for it directly controls both the convexity and smoothness of f .
Note that (2.15) extends the definition of f(z) to the convex set Bool(Z), obtained
by relaxing the constraints z ∈ {0, 1}p to z ∈ [0, 1]p in the definition of Z.

Convexity. f(z) is convex in z as a point-wise maximum of linear function of z.
In addition, denoting α?(z) a solution of (2.15), we have the lower-approximation:

(2.16) f(z̃) ≥ f(z) +∇f(z)>(z̃ − z) ∀z̃ ∈ Z,

where [∇f(z)]i := −Ω?(α?(z)i) is a sub-gradient of f at z.
We remark that if the maximization problem in α defined by f(z) admits multiple

optimal solutions then the corresponding lower-approximation of f at z may not be
unique. This behavior can severely hinder the convergence of outer-approximation
schemes such as Benders’ decomposition. Since the work of [43] on Pareto optimal
cuts, many strategies have been proposed to improve the cut selection process in the
presence of degeneracy [see 23, Section 4.4 for a review]. However, the use of ridge
regularization ensures that the objective function in (2.14) is strongly concave in αi
such that zi > 0, and therefore guarantees that there is a unique optimal choice of
α?i (z). In other words, ridge regularization naturally inhibits degeneracy.

Smoothness. f(z) is smooth, in the sense of Lipschitz continuity, which is a
crucial property for deriving bounds on the integrality gap of the Boolean relaxation,
and designing local search heuristics in Section 3. Formally, the following proposition
follows from Theorem 2.5:

Proposition 2.9. For any z, z′ ∈ Bool (Z),

(a) With big-M regularization, f(z′)− f(z) ≤M
n∑
i=1

(zi − z′i)|α?(z′)i|.
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(b) With ridge regularization, f(z′)− f(z) ≤ γ

2

n∑
i=1

(zi − z′i)α?(z′)2i .

Proof. By Equation (2.14),

f(z′)− f(z) = max
α′∈Rn

(
h(α′)−

n∑
i=1

z′iΩ
?(α′i)

)
− max
α∈Rn

(
h(α)−

n∑
i=1

ziΩ
?(αi)

)
,

= h(α?(z′))−
n∑
i=1

z′iΩ
?(α?(z′)i)− h(α?(z′)) +

n∑
i=1

ziΩ
?(α?(z′)i),

≤
n∑
i=1

(zi − z′i)Ω?(α?(z′)i),

where the inequality holds because an optimal choice of α′ is a feasible choice of α.

Proposition 2.9 demonstrates that, when the coordinates of α?(z) are uniformly
bounded4 with respect to z, f(z) is Lipschitz-continuous, with a constant L propor-
tional to M (resp. γ) in the big-M (resp. ridge) case. We provide explicit bounds
on the magnitude of L in Appendix B.

2.4. Merits of Ridge, Big-M Regularization: Theoretical Perspective.
In this section, we propose a framework to reformulate MINLOs with logical con-
straints, which comprises regularizing MINLOs via either the widely used big-M mod-
eling paradigm or the less popular ridge regularization paradigm. We summarize the
advantages and disadvantages of each regularizer in Table 2. However, note that we
have not yet established how these characteristics impact the numerical tractability
and quality of the returned solution; this is the topic of the next two sections.

Table 2: Summary of the advantages (+) /disadvantages (−) of both techniques.

Regularization Characteristics

Big-M
(+) Linear constraints
(+) Supplies the same objective if M > M1, for some M1 <∞
(−) Leads to infeasible problem if M < M0, for some M0 <∞

Ridge
(+) Strongly convex objective
(−) Systematically leads to a different objective for any γ > 0
(+) Preserves the feasible set

3. An Efficient Numerical Approach. We now present an efficient numerical
approach to solve Problem (2.14). The backbone is an outer-approximation strategy,
embedded within a branch-and-bound procedure to solve the problem exactly. We
also propose local search and rounding heuristics to find good feasible solutions, and
use information from the Boolean relaxation to improve the duality gap.

3.1. Overall Outer-Approximation Scheme. Theorem 2.5 reformulates the
function f(z) as an inner maximization problem, and demonstrates that f(z) is con-
vex in z, meaning a linear outer approximation provides a valid underestimator of

4Such a uniform bound always exists, as f(z) is only supported on a finite number of binary
points. Moreover, the strong concavity of h can yield stronger bounds (see Appendix B).
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f(z), as outlined in Equation (2.16). Consequently, a valid numerical strategy for
minimizing f(z) is to iteratively minimize a piecewise linear lower-approximation of
f and refining this approximation at each step until some approximation error ε is
reached, as described in Algorithm 3.1. This scheme was originally proposed for con-
tinuous decision variables by [40], and later extended to binary decision variables by
[22], who provide a proof of termination in a finite, yet exponential in the worst case,
number of iterations.

Algorithm 3.1 Outer-approximation scheme

Require: Initial solution z1

t← 1
repeat

Compute zt+1, ηt+1 solution of

min
z∈Z,η

c>z + η s.t. ∀s ∈ {1, . . . , t}, η ≥ f(zs) +∇f(zs)>(z − zs)

Compute f(zt+1) and ∇f(zt+1)
t← t+ 1

until f(zt+1)− ηt+1 ≤ ε
return zt

To avoid solving a mixed-integer linear optimization problem at each iteration, as
suggested in the pseudo-code, this strategy can be integrated within a single branch-
and-bound procedure using lazy callbacks, as originally proposed by [48]. Lazy call-
backs are now standard tools in commercial solvers such as Gurobi and CPLEX
and provide significant speed-ups for outer-approximation algorithms. With this im-
plementation, the commercial solver constructs a single branch-and-bound tree and
generates a new cut at a feasible solution z.

We remark that the second-stage minimization problem may be infeasible at some
zt. In this case, we generate a feasibility cut rather than outer-approximation cut.
In particular, the constraint

∑
i z
t
i(1− zi) +

∑
i(1− zti)zi ≥ 1 excludes the iterate zt

from the feasible set. Stronger feasibility cuts can be obtained by leveraging problem
specific structure. For instance, when the feasible set satisfies zt /∈ Z =⇒ ∀z ≤
zt, z /∈ Z,

∑
i(1 − zti)zi ≥ 1 is a valid feasibility cut. Alternatively, one can invoke

conic duality if g(x) generates a conic feasibility problem. Formally, assume

g(x) =

{
〈c,x〉, if Ax = b, x ∈ K,
+∞, otherwise,

where K is a closed convex cone. This assumption gives rise to some loss of gen-
erality. Note, however, that all the examples in the previous section admit conic
reformulations by taking appropriate Cartesian products of the linear, second-order
and semidefinite cones [5]. Assuming that g(x) is of the prescribed form, we have the
dual conjugate

h(α) = inf
x
〈x,α〉 − g(x) = max

π
〈b,π〉+

{
0, if c−α−A>π ∈ K?,
+∞, otherwise,

where K? is the dual cone to K. In this case, if some binary vector z gives rise to an
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infeasible subproblem, i.e., f(z) = +∞, then the conic duality theorem implies5 that
there is a certificate of infeasibility (α,π) such that

c−α−A>π ∈ K?, 〈b,π〉 >
n∑
i=1

ziΩ
?(αi).

Therefore, to restore feasibility, we can simply impose the cut 〈b,π〉 ≤
∑n
i=1 ziΩ

?(αi).
As mentioned in Section 1.2, the rate of convergence of outer-approximation

schemes depends heavily on three criterion. We now provide practical guidelines
on how to meet these criterion:

1. Fast cut generation strategy: To generate a cut, one solves the second-stage
minimization problem (2.2) (or its dual) in x, which contains no discrete
variables and is usually orders of magnitude faster to solve than the origi-
nal mixed-integer problem (1.1). Moreover, the minimization problem in x
needs to be solved only for the coordinates xi such that zi = 1. In practice,
this approach yields a sequence of subproblems of much smaller size than
the original problem, especially if Z contains a cardinality constraint. For
instance, for the sparse empirical risk minimization problem (2.4), each cut is
generated by solving a subproblem with n observations and k features, where
k � p. For this reason, we recommend generating cuts at binary z’s, which
are often sparser than continuous z’s. This recommendation can be relaxed
in cases where the separation problem can be solved efficiently even for dense
z’s; for instance, in uncapacitated facility location problems, each subprob-
lem is a knapsack problem which can be solved by sorting [24]. If possible,
we recommend theoretically analyzing the sparsity of the optimal solution a
priori, to derive an explicit cardinality or budget constraint on z and ensure
the sparsity of each incumbent solution.

2. Cut selection rule in presence of degeneracy: In the presence of degeneracy,
selection criteria, such as Pareto optimality [43], have been proposed to ac-
celerate convergence. However, these criteria are numerous, computationally
expensive and all in all, can do more harm than good [46]. In an opposite
direction, we recommend alleviating the burden of degeneracy by design, by
imposing a ridge regularizer whenever degeneracy hinders convergence.

3. Rich root node analysis: As suggested in [23], providing the solver with
as much information as possible at the root node can drastically improve
convergence of outer-approximation methods. This is the topic of the next
two sections. Restarting mechanisms, as described in [23, Section 5.2], could
also be useful, although we do not implement them in the present paper.

These ingredients, and especially the ability to generate cuts efficiently, dictate which
types of problems could benefit the most from our approach and which regularizer
to use. Problems with an explicit cardinality constraint, for instance, would require
a small subproblem to be solved at each iteration. For network design problems,

5We should note that this statement is, strictly speaking, not true unless we impose regularization.
Indeed, the full conic duality theorem [5, Theorem 2.4.1] allows for the possibility that a problem is
infeasible but asymptotically feasible, i.e.,

@x : Ax = b,x ∈ K but ∃{xt}∞t=1 : xt ∈ K ∀t with ‖Axt − b‖ → 0.

Fortunately, the regularizer Ω(x) alleviates this issue, because it is coercive (i.e., “blows up” to +∞
as ‖x‖ → ∞) and therefore renders all unbounded solutions infeasible and ensures the compactness
of the level sets of g(x) + Ω(x).
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the network flow structure of the feasible set is a key numerical asset so we intuit
that ridge regularization, which leaves the feasible set unchanged, would be very
efficient. On the other hand, for uncapacitated facility location, sub-problems with
big-M regularization boils down to a knapsack problem and can be solved efficiently
via sorting, as discussed in [24, Section 3.1].

3.2. Improving the Lower-Bound: A Boolean Relaxation. To certify op-
timality, high-quality lower bounds are of interest and can be obtained by relaxing
the integrality constraint z ∈ {0, 1}n in the definition of Z to z ∈ [0, 1]n. In this case,
the Boolean relaxation of (2.1) is:

min
z∈Bool(Z)

c>z + f(z),

which can be solved using Kelley’s algorithm [40], which is a continuous analog of
Algorithm 3.1. Stabilization strategies have been empirically successful to accelerate
the convergence of Kelley’s algorithm, as recently demonstrated on uncapacitated fa-
cility location problems by [24]. However, for Boolean relaxations, Kelley’s algorithm
computes f(z) and ∇f(z) at dense vectors z, which is (sometimes substantially) more
expensive than for sparse binary vectors z’s, unless each subproblem can be solved
efficiently as in [24].

Alternatively, the continuous minimization problem admits a reformulation

(3.1) min
z∈Bool(Z)

max
α∈Rm

c>z + h(α)−
n∑
i=1

zi Ω?(αj).

analogous to Problem (2.14). Under Assumption 2.4, we can further write the min-
max relaxation formulation (3.1) as a non-smooth maximization problem

max
α∈Rn

q(α), with q(α) := h(α) + min
z∈Bool(Z)

n∑
i=1

(ci − Ω?(αi)) zi

and apply a projected sub-gradient ascent method as in [12]. We refer to [7, Chapter
7.5.] for a discussion on implementation choices regarding step-size schedule and
stopping criteria, and [50] for recent enhancements using restarting.

The benefit from solving the Boolean relaxation with these algorithms is threefold.
First, it provides a lower bound on the objective value of the discrete optimization
problem (2.1). Second, it generates valid linear lower approximations of f(z) to
initiate the cutting-plane algorithm with. Finally, it supplies a sequence of continuous
solutions that can be rounded and polished to obtain good binary solutions. Indeed,
the Lipschitz continuity of f(z) suggests that high-quality feasible binary solutions can
be found in the neighborhood of a solution to the Boolean relaxation. We formalize
this observation in the following theorem:

Theorem 3.1. Let z? denote a solution to the Boolean relaxation (3.1), R denote
the indices of z? with fractional entries, and α?(z) denote a best choice of α for a
given z. Suppose that for any z ∈ Z, |α?(z)j | ≤ L. Then, a random rounding z of
z?, i.e., zj ∼ Bernoulli(z?j ), satisfies 0 ≤ f(z) − f(z?) ≤ ε with probability at least

p = 1− |R| exp
(
− ε

2

κ

)
, where

κ := 2M2L2|R|2 for the big-M penalty,

κ := 1
2γ

2L4|R|2 for the ridge penalty.
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We provide a formal proof of this result in Appendix A.1. This result calls for multiple
remarks:

• For ε >
√
κ ln(|R|), we have that p > 0, which implies the existence of a

binary ε-optimal solution in the neighborhood of z?, which in turn bounds
the integrality gap by ε. As a result, lower values of M or γ typically make
the discrete optimization problem easier.

• A solution to the Boolean relaxation often includes some binary coordinates,
i.e., |R| < n. In this situation, it is tempting to fix zi = z?i for i /∈ R and solve
the master problem (2.1) over coordinates in R. In general, this approach
provides sub-optimal solutions. However, Theorem 3.1 quantifies the price of
fixing variables and bounds the optimality gap by

√
κ ln(|R|).

• In the above high-probability bound, we do not account for the feasibility of
the randomly rounded solution z. Accounting for z’s feasibility marginally re-
duces the probability given above, as shown for general discrete optimization
problems by [49].

Under specific problem structure, other strategies might be more efficient than
Kelley’s method or the subgradient algorithm. For instance, if Bool (Z) is a poly-
hedron, then the inner minimization problem defining q(α) is a linear optimization
problem that can be rewritten as a maximization problem by invoking strong duality.
Although we only consider linear relaxations here, tighter bounds could be attained
by taking a higher-level relaxation from a relaxation hierarchy, such as the [41] hier-
archy [see 42, for a comparison]. The main benefit of such a relaxation is that while
the aforementioned Boolean relaxation only controls the first moment of the proba-
bility measure studied in Theorem 3.1, higher level relaxations control an increasing
sequence of moments of the probability measure and thereby provide non-worsening
probabilistic guarantees for randomized rounding methods. However, the additional
tightness of these bounds comes at the expense of solving relaxations with additional
variables and constraints6; yielding a sequence of ever-larger semidefinite optimiza-
tion problems. Indeed, even the SDP relaxation which controls the first two moments
of a randomized rounding method is usually intractable when n > 300, with current
technology. For an analysis of higher-level relaxations in sparse regression problems,
we refer the reader to [2].

3.3. Improving the Upper-Bound: Local Search and Rounding. To im-
prove the quality of the upper-bound, i.e., the cost associated with the best feasible
solution found so far, we implement two rounding and local-search strategies.

Our first strategy is a randomized rounding strategy, which is inspired by Theorem
3.1. Given z0 ∈ Bool(Z), we generate randomly rounded vectors z by sampling z
according to zi ∼ Bernoulli(z0i) until z ∈ Z, which happens with high probability
since E[z] = z0 satisfies all the constraints which describe Z, besides integrality [49].

Our second strategy is a sequential rounding procedure, which is informed by
the lower-approximation on f(z), as laid out in Equation (2.16). Observing that the
ith coordinate ∇f(z0)i provides a first-order indication of how a change in zi might
impact the overall cost, we proceed in two steps. We first round down all coordinates
such that ∇f(z0)i(0 − z0i) < 0. Once the linear approximation of f only suggests
rounding up, we round all coordinates of z to 1 and iteratively bring some coordinates
to 0 to restore feasibility.

If z0 is binary, we implement a comparable local search strategy. If z0i = 0, then

6n2 additional variables and n2 additional constraints for empirical risk minimization, versus
n+ 1 additional variables and n additional constraints for the linear relaxation.
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switching the ith coordinate to one increases the cost by at least ∇f(z0)i. Alterna-
tively, if z0i = 1, then switching it to zero increases the cost by at least −∇f(z0)i.
We therefore compute the one-coordinate change which provides the largest potential
cost improvement. However, as we only have access to a lower approximation of f ,
we are not guaranteed to generate a cost-decreasing sequence. Therefore, we termi-
nate the procedure as soon as it cycles. A second complication is that, due to the
constraints defining Z, the best change sometimes yields an infeasible z. In practice,
for simple constraints such as ` ≤ z ≤ u, we forbid switches which break feasibility;
for cardinality constraints, we perform the best switch and then restore feasibility at
minimal cost when necessary.

3.4. Relationship With Perspective Cuts. In this section, we connect the
perspective cuts introduced by [28] with our framework and discuss the merits of both
approaches, in theory and in practice. To the best of our knowledge, a connection
between Boolean relaxations of the two approaches has only been made in the context
of sparse regression, by [54]. That is, the general connection we make here between
the discrete problems, as well as their respective cut generating procedures, is novel.

We first demonstrate that imposing the ridge regularization term Ω(x) = 1
2γ ‖x‖

2
2

naturally leads to the perspective formulation of [28]:

Theorem 3.2. Suppose that Ω(x) = 1
2γ ‖x‖

2
2 and that Assumption 2.4 holds.

Then, Problem (2.14) is equivalent to the following optimization problem:

(3.2) min
z∈Z

min
x∈Rn

c>z + g(x) +
1

2γ

n∑
i=1


x2i
zi
, if zi > 0,

0, if zi = 0 and xi = 0,

∞, otherwise.

Theorem 3.2 follows from taking the dual of the inner-maximization problem in
Problem (2.15); see Appendix A.2 for a formal proof. Note that the equivalence stated
in Theorem 3.2 also holds for z ∈ Bool(Z). As previously observed in [5, 1], Problem
(3.2) can be formulated as a second-order cone problem (SOCP)

(3.3) min
x∈Rn,z∈Z,θ∈Rn

c>z + g(x) +

n∑
i=1

θi s.t.

∥∥∥∥∥
(√

2
γxi

θi − zi

)∥∥∥∥∥
2

≤ θi + zi ∀i ∈ [n].

and solved by linearizing the SOCP constraints into so-called perspective cuts, i.e.,
θi ≥ 1

2γ x̄i(2xi − x̄izi),∀x̄ ∈ X̄ , which have been extensively studied in the literature in

the past fifteen years [28, 36, 20, 27, 2]. Observe that by separating Problem (3.2) into
master and subproblems, an outer approximation algorithm yields the same cut (2.16)
as in our scheme. In this regard, our approach supplies a new and insightful derivation
of the perspective cut approach. It is worth noting that our proposal can easily be
implemented within a standard integer optimization solver such as CPLEX or Gurobi
using callbacks, while existing implementations of the perspective cut approach have
required tailored branch-and-bound procedures [see, e.g., 28, Section 3.1].

3.5. Merits of Ridge, Big-M Regularization: Algorithmic Perspective.
We now summarize the relative merits of applying either ridge or big-M regularization
from an algorithmic perspective:

• As noted in our randomized rounding guarantees in Section 3.2, the two reg-
ularization methods provide comparable bound gaps when 2M ≈ γL, while
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if 2M � γL, big-M regularization provides smaller gaps, and if 2M � γL,
ridge regularization provides smaller gaps.

• For linear problems, ridge regularization limits dual degeneracy, while big-M
regularization does not. This benefit, however, has to be put in balance with
the extra runtime and memory requirements needed for solving a quadratic,
instead of linear, separation problem.

In summary, the benefits of applying either big-M or ridge regularization are largely
even and depend on the specific instance to be solved. In the next section, we perform
a sequence of numerical experiments on the problems studied in Section 2.1, to provide
empirical guidance on which regularization approach works best when.

4. Numerical Experiments. In this section, we evaluate our single-tree cutting-
plane algorithm, implemented in Julia 1.0 using CPLEX 12.8.0 and the Julia package
JuMP.jl version 0.18.4 [21]. We compare our method against solving the natural
big-M or MISOCP formulations directly, using CPLEX 12.8.0. All experiments were
performed on one Intel Xeon E5− 2690 v4 2.6GHz CPU core and using 32 GB RAM.

4.1. Overall Empirical Performance Versus State-of-the-Art. In this sec-
tion, we compare our approach to state-of-the-art methods, and demonstrate that our
approach outperforms the state-of-the-art for several relevant problems.

4.1.1. Network Design. We begin by evaluating the performance of our ap-
proach for the multi-commodity network design problem (2.3). We adapt the method-
ology of [36] and generate instances where each node i ∈ [m] is the unique source of
exactly one commodity (k = m). For each commodity j ∈ [m], we generate demands
according to bjj′ = bU(5, 25)e for j′ 6= j and bjj = −

∑
j′ 6=j b

j
j′ , where bxe is the closest

integer to x and U(a, b) is a uniform random variable on [a, b]. We generate edge
construction costs, ce, uniformly on U(1, 4), and marginal flow circulation costs pro-
portionally to each edge length7. The discrete set Z contains constraints of the form
z0 ≤ z, where z0 is a binary vector which encodes existing edges. We generate graphs
which contain a spanning tree plus pm additional randomly picked edges, with p ∈ [4],
so that the initial network is connected with O(m) edges. We also impose a cardi-
nality constraint e>z ≤ (1 + 5%)z>0 e, which ensures that the network size increases
by no more than 5%. For each edge, we impose a capacity ue ∼ bU(0.2, 1)B/Ae,
where B = −

∑m
j=1 b

j
j is the total demand and A = (1 + p)m. We penalize the con-

straint x ≤ u with a penalty parameter λ = 1, 0008. For big-M regularization, we set
M =

∑
j |b

j
j |, and take γ = 2

m(m−1) for ridge regularization.

We apply our approach to large networks with 100s nodes, i.e., 10, 000s edges,
which is ten times larger than the state-of-the-art [38, 36], and compare the quality
of the incumbent solutions after an hour, since no approach could terminate up to a
satisfiable optimality gap within this time limit. Note that we define the quality of a
solution as its cost in absence of regularization, although we might have augmented
the original formulation with a regularization term to compute the solution. As a
result, we can compare the performance big-M and ridge regularization directly, de-
spite the fact that the optimization problems they solve are actually different. On
the other hand, performance metrics that depend on the function being minimized,

7Nodes are uniformly distributed over the unit square [0, 1]2. We fix the cost to be ten times the
Euclidean distance.

8We do so to allow for a fair comparison between big-M and ridge regularization. By penalizing
the capacity constraint, we remove a natural big-M regularization term and no regularization can
be considered as more natural than the other.
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Table 3: Best solution found after one hour on network design instances with m nodes
and (1 + p)m initial edges. We report improvement, i.e., the relative difference be-
tween the solutions returned by CPLEX and the cutting-plane. Values are averaged
over five randomly generated instances. For ridge regularization, we report the “un-
regularized” objective value, that is we fix z to the best solution found and resolve
the corresponding sub-problem with big-M regularization. A “−” indicates that the
solver could not finish the root node inspection within the time limit (one hour), and
“Imp.” is an abbreviation of improvement.

Big-M Ridge Overall
m p unit CPLEX Cuts Imp. CPLEX Cuts Imp. Imp.

40 0 ×109 1.17 1.16 0.86% 1.55 1.16 24.38% 1.74%
80 0 ×109 8.13 7.52 6.99% 9.95 7.19 26.74% 10.85%
120 0 ×1010 3.03 2.10 29.94% − 1.94 −% 35.30%
160 0 ×1010 5.90 4.32 26.69% − 4.07 −% 30.91%
200 0 ×1010 11.45 7.78 31.45% − 7.50 −% 32.32%

40 1 ×108 5.53 5.47 1.07% 5.97 5.45 8.74% 1.41%
80 1 ×109 2.99 2.94 1.81% 3.16 2.95 6.78% 1.89%
120 1 ×109 8.38 7.82 6.69% − 7.82 −% 6.86%
160 1 ×1010 1.64 1.54 5.98% − 1.54 −% 6.03%
200 1 ×1010 2.60 2.54 2.33% − 2.26 −% 12.98%

40 2 ×108 4.45 4.38 1.62% 4.76 4.36 8.27% 2.06%
80 2 ×109 2.44 2.31 5.39% 2.46 2.31 5.97% 5.40%
120 2 ×109 6.23 5.89 5.55% − 5.89 −% 5.75%
160 2 ×1011 1.22 1.16 4.74% − 0.71 −% 19.33%
200 2 ×1010 2.06 1.43 30.46% − 1.01 −% 73.43%

40 3 ×108 3.91 3.85 1.58% 4.13 3.85 6.73% 1.78%
80 3 ×109 2.06 1.94 5.76% 2.04 1.94 5.44% 5.85%
120 3 ×109 5.43 5.15 5.31% − 4.2 −% 12.35%

40 4 ×108 3.32 3.28 1.35% 3.53 3.26 7.71% 1.85%
80 4 ×109 1.88 1.77 5.59% − 1.77 −% 5.64%

such as the optimality gap, would not permit such a comparison. In 100 instances,
our cutting plane algorithm with big-M regularization provides a better solution 94%
of the time, by 9.9% on average, and by up to 40% for the largest networks. For
ridge regularization, the cutting plane algorithm scales to higher dimensions than
plain mixed-integer SOCP, returns solutions systematically better than those found
by CPLEX (in terms of unregularized cost), by 11% on average. Also, ridge regular-
ization usually outperforms big-M regularization, as reported in Table 3. Given how
numerically challenging these optimization problems are, the optimality gaps returned
by all methods are often uninformative (> 100%) - see Section C Table 10. Still, we
observe that, with big-M regularization, CPLEX systematically returns tighter opti-
mality gaps that the cutting-plane approach, while with ridge regularization, the gaps
obtained by the cutting-plane algorithm are tighter 86% of the times. All in all, even
artificially added, ridge regularization improves the tractability of outer approxima-
tion.

4.1.2. Binary Quadratic Optimization. We study some of the binary qua-
dratic optimization problems collated in the BQP library by [53]. Specifically, the
bqp-{50, 100, 250, 500, 1000} instances generated by [3], which have a cost matrix
density of 0.1, and the be-100 and be-120.8 instances generated by [15], which re-
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Table 4: Average runtime in seconds on binary quadratic optimization problems from
the Biq-Mac library [53, 15]. Values are averaged over 10 instances. A “−” denotes
an instance which was not solved because the approach did not respect the 32GB
peak memory budget.

Instance n Average runtime (s)/Average optimality gap (%)

CPLEX-M CPLEX-M-Triangle Cuts-M Cuts-M-Triangle

bqp-50 50 29.4 0.6 30.6 0.4
bqp-100 100 122.3 51.7 25.3% 38.6
bqp-250 250 1108.1% 83.5% 87.0% 46.1%
bqp-500 500 2055.8% 1783.3% 157.3% 410.7%
bqp-1000 1000 − − 260.9% −
be100 100 79.7% 208.0% 249.4% 201.2%
be120.8 120 146.4% 225.8% 264.1% 220.3%

spectively have cost matrix densities of 1.0 and 0.8. Note that these instances were
generated as maximization problems, and therefore we consider a higher objective
value to be better. We warm-start the cutting-plane approach with the best solu-
tion found after 10, 000 iterations of Goemans-Williamson rounding [see 35]. We also
consider imposing triangle inequalities [19] via lazy callbacks, for they substantially
tighten the continuous relaxations.

Within an hour, only the bqp-50 and bqp-100 instances could be solved by any
approach considered here, in which case cutting-planes with big-M regularization is
faster than CPLEX (see Table 4). For instances which cannot be solved to optimality,
although CPLEX has an edge in producing tighter optimality gaps for denser cost
matrices, as depicted in Table 4, the cutting-plane method provides tighter optimality
gaps for sparser cost matrices, and provides higher-quality solutions than CPLEX for
all instances, especially as n increases (see Table 5).

We remark that the cutting plane approach has low peak memory usage compared
with the other methods: For the bqp-1000 instances, cutting-planes without triangle
inequalities was the only method which respected the 32GB memory budget. This is
another benefit of decomposing Problem (1.1) into master and sub-problems.

4.1.3. Sparse Empirical Risk Minimization. For sparse empirical risk min-
imization, our method with ridge regularization scales to regression problems with up
p = 100, 000s features and classification problems with p = 10, 000s of features [12].
This constitutes a three-order-of-magnitude improvement over previous attempts us-
ing big-M regularization [10]. We also select features more accurately, as shown
in Figure 1, which compares the accuracy of the features selected by the outer-
approximation algorithm (in green) with those obtained from the Boolean relaxation
(in blue) and other methods.

4.1.4. Sparse Principal Component Analysis. We applied our approach to
sparse principal component analysis problems in [9], and by (a) introducing either
big-M or ridge regularization and (b) introducing additional valid inequalities into
the master problem, which we derived from the Gershgorin Circle Theorem [see 9,
Section 2.3, for details] successfully solved problems where p = 100s to certifiable
optimality, and problems where p = 1000s to certifiable near optimality, as reported
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Table 5: Average incumbent objective value (higher is better) after 1 hour for medium-
scale binary quadratic optimization problems from the Biq-Mac library [53, 15]. “−”
denotes an instance which was not solved because the approach did not respect the
32GB peak memory budget. Values are averaged over 10 instances. Cuts-Triangle
includes an extended formulation in the master problem.

Instance n Average objective value

CPLEX-M CPLEX-M-Triangle Cuts-M Cuts-M-Triangle

bqp-250 250 9920.8 41843.4 43774.9 43701.5
bqp-500 500 19417.1 19659.0 122879.3 122642.4
bqp-1000 1000 − − 351450.7 −
be100 100 16403.0 16985.0 17152.1 17178.5
be120.8 120 17943.2 19270.3 19307.7 19371.2

(a) Regression, p = 20, 000 (b) Classification, p = 10, 000

Fig. 1: Accuracy (A) of the feature selection method as the number of samples n
increases, for the outer-approximation algorithm (in green), the solution found by
the subgradient algorithm (in blue), ElasticNet (in red), MCP (in orange), SCAD
(in pink) [see 12, for definitions]. Results are averaged over 10 instances of synthetic
data with (SNR, p, k) = (6, 20000, 100) for regression (left) and (5, 10000, 100) for
classification (right).

in Table 6; we refer to [9] for descriptions of the datasets studied and more extensive
numerical experiments. This constitutes an order-of-magnitude improvement over
existing certifiably near-optimal approaches, which rely on semidefinite techniques
and therefore cannot scale to p = 1000s.

4.1.5. Sparse Portfolio Selection. We applied our approach to sparse portfo-
lio selection problems in [8]. By introducing a ridge regularization term, we success-
fully solved instances to optimality at a scale of one order of magnitude larger than
previous attempts as summarized in Table 7. Specifically, we optimized over the se-
curities in the Wilshire 5000, which contains around 3, 200 securities, an improvement
upon existing techniques, which cannot currently scale beyond the securities in the
S&P 500. Moreover, at smaller scales which existing techniques have been bench-
marked onincluding the set of synthetic instances generated by [28] with 200 − 400
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Table 6: Runtime in seconds per approach. We run all approaches on one thread,
and impose a time limit of 600s. If a solver fails to converge, we report the relative
bound gap at termination in brackets, and the no. explored nodes and cuts at the
time limit. For ridge regularization, we set γ = 100/k.

Dataset p k Big-M regularization Ridge regularization

Time(s) Nodes Cuts Time(s) Nodes Cuts

Pitprops 13 5 0.09 45 22 0.42 42 16
10 0.08 223 223 0.68 615 244

Wine 13 5 0.04 143 69 0.10 73 36
10 0.09 364 232 0.61 394 230

Miniboone 50 5 0.03 3 6 0.01 0 2
10 0.04 4 6 0.07 10 13

Communities 101 5 0.15 109 2 0.54 272 55
10 0.44 373 76 2.20 1, 800 328

Arrhythmia 274 5 5.27 1, 080 192 6.75 1, 242 282
10 (4.21%) 61, 000 11, 600 (4.63%) 77, 200 11, 360

Micromass 1300 5 131.3 4, 580 4 163.2 4 3, 809
10 378.6 321 16, 090 510.3 21, 700 566

securitiesour approach is as fast as and often faster than existing state-of-the-art ap-
proaches including [55, 27] among others [see 8, Section 5.2, for details].

Table 7: Largest sparse portfolio instances reliably solved by each approach

Reference Solution method Largest instance size solved
(no. securities)

[31] Perspective cut+SDP 400
[16] Nonlinear B&B 200
[32] Lagrangian relaxation B&B 300
[18] Lagrangian relaxation B&B 300
[55] SDP B&B 400
[27] Approx. Proj. Perspective Cut 400
[8] Algorithm 3.1 with ridge regularization 3, 200

4.2. Evaluation of Different Ingredients in Our Numerical Recipe. We
now consider the capacitated facility problem (2.8) on 112 real-world instances avail-
able from the OR-Library [3, 39], with the natural big-M and the ridge regularization
with γ = 1. In both cases, the algorithms return the true optimal solution. Com-
pared to CPLEX with big-M regularization, our cutting plane algorithm with big-M
regularization is faster in 12.7% of instances (by 53.6% on average), and in 23.85% of
instances (by 54.5% on average) when using a ridge penalty. This observation sug-
gests that ridge regularization is better suited for outer-approximation, most likely
because, as discussed in Section 3.1, a strongly convex ridge regularizer breaks the
degeneracy of the separation problems. Note that our approach could benefit from
multi-threading and restarting.

We take advantage of these instances to breakdown the independent contribution
of each ingredient in our numerical recipe in Table 8. Although each ingredient
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contributes independently, jointly improving the lower and upper bounds provides
the greatest improvement.

Table 8: Proportion of wins and relative improvement over CPLEX in terms of com-
putational time on the 112 instances from the OR-library [3, 39] for different imple-
mentations of our method: an outer-approximation (OA) scheme with cuts generated
at the root node using Kelley’s method (OA + Kelley), OA with the local search
procedure (OA + Local search) and OA with a strategy for both the lower and upper
bound (OA + Both). Relative improvement is averaged over all “win” instances.

Big-M Ridge
Algorithm % wins Relative improvement % wins Relative improvement

OA + Kelley 1.8% 36.6% 30.1% 91.6%
OA + Local search 1.9% 49.5% 19.4% 73.8%
OA + Both 12.7% 53.6% 92.5% 91.7%

4.3. Big-M Versus Ridge Regularization. In this section, our primary in-
terest is in ascertaining conditions under which it is advantageous to solve a problem
using big-M or ridge regularization, and argue that ridge regularization is preferable
over big-M regularization as soon as the objective is sufficiently strongly convex.

To illustrate this point, we consider large instances of the thermal unit commit-
ment problem originally generated by [29], and multiply the quadratic coefficient ai
for each generator i by a constant factor α ∈ {0.1, 1, 2, 5, 10}. Table 9 depicts the
average runtime for CPLEX to solve both formulations to certifiable optimality, or
provides the average bound-gap whenever CPLEX exceeds a time limit of 1 hour.
Observe that when α ≤ 1, the big-M regularization is faster, but, when α > 1 the
MISOCP approach converges fast while the big-M approach does not converge within
an hour. Consequently, ridge regularization performs more favorably whenever the
quadratic term is sufficiently strong.

Table 9: Average runtime in seconds per approach, on data from [29] where the
quadratic cost are multiplied by a factor of α. If the method did not terminate in one
hour, we report the bound gap. n denotes the number of generators, each instances
has 24 trade periods.

α 0.1 1 2 5 10

n Big-M Ridge Big-M Ridge Big-M Ridge Big-M Ridge Big-M Ridge

100 93.6 299.0 16.2 229.4 0.32% 47.9 1.68% 4.6 2.76% 6.0
150 35.6 352.1 6.2 28.3 0.25% 33.4 1.69% 6.4 2.82% 8.0
200 56.3 138.1 3.3 239.7 0.24% 112.9 1.62% 16.7 2.81% 21.2

We also compare big-M and ridge regularization for the sparse portfolio selection
problem (2.5). Figure 2 depicts the relationship between the optimal allocation of
funds x? and the regularization parameter M (left) and γ (right), and Figure 3 depicts
the magnitude of the gap between the optimal objective and the Boolean relaxation’s
objective, normalized by the unregularized objective. The two investment profiles
are comparable, selecting the same stocks. Yet, we observe two main differences:
First, setting M < 1

k renders the entire problem infeasible, while the problem remains
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feasible for any γ > 0. This is a serious practical concern in cases where a lower bound
on the value of M is not known a priori. Second, the profile for ridge regularization
seems smoother than its equivalent with big-M .

(a) Big-M regularization (b) Ridge regularization

Fig. 2: Optimal allocation of funds between securities as the regularization parameter
(M or γ) increases. Data is obtained from the Russell 1000, with a cardinality budget
of 5, a rank−200 approximation of the covariance matrix, a one-month holding period
and an Arrow-Pratt coefficient of 1, as in [8]. Setting M < 1

k renders the entire
problem infeasible.
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Fig. 3: Magnitude of the normalized absolute bound gap as the regularization param-
eter (M or γ) increases, for the portfolio selection problem studied in Figure 2

4.4. Relative Merits of Big-M , Ridge Regularization: An Experimental
Perspective. We now conclude our comparison of big-M and ridge regularization,
as initiated in Sections 2.4 and 3.5, by indicating the benefits of big-M and ridge
regularization, from an experimental perspective:

• As observed in Section 4.3, big-M and ridge regularization play fundamentally
the same role in reformulating logical constraints. This observation echoes
our theoretical analysis in Section 2.

• As observed in the unit commitment and sparse portfolio selection problems
studied in Section 4.3, ridge regularization should be the method of choice
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whenever the objective function contains a naturally occurring strongly con-
vex term, which is sufficiently large.

• As observed for network design and capacitated facility location problems
in sections 4.1.1-4.2, ridge regularization is usually more amenable to outer-
approximation than big-M regularization, because it eliminates most degen-
eracy issues associated with outer-approximating MINLOs.

• The efficiency of outer-approximation schemes relies on the speed at which
separation problems are solved. In this regard, special problem-structure or
cardinality constraints on the discrete variable z drastically help. This has
been the case in network design, sparse empirical risk minimization and sparse
portfolio selection problems in Section 4.1.1.

5. Conclusion. In this paper, we proposed a new interpretation of the big-M
method, as a regularization term rather than a modeling trick. By expanding this reg-
ularization interpretation to include ridge regularization, we considered a wide family
of relevant problems from the Operations Research literature and derived equivalent
reformulations as mixed-integer saddle-point problems, which naturally give rise to
theoretical analysis and computational algorithms. Our framework provides prov-
ably near-optimal solutions in polynomial time via solving Boolean relaxations and
performing randomized rounding9 as well as certifiably optimal solutions through an
efficient branch-and-bound procedure, and indeed frequently outperforms the state-
of-the-art in numerical experiments.

We believe our framework, which decomposes the problem into a discrete master
problem and continuous subproblems, could be extended more generally to mixed-
integer semidefinite optimization, as developed in [11, 9].

Acknowledgments. We thank the associate editor and the two anonymous ref-
erees for their valuable comments which improved the paper.
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Appendix A. Omitted Proofs.

A.1. Proof of Theorem 3.1: Quality of the Random Rounding Strategy.

Proof. We only detail the proof for the big-M regularization case, as the ridge
regularization case follows mutatis mutandis. From Proposition 2.9,

0 ≤ f(z)− f(z?) ≤ML|R| max
α≥0:‖α‖1≤1

∑
i∈R

(z?i − zi)αi.

The polyhedron {α : α ≥ 0, ‖α‖1 ≤ 1} admits |R|+ 1 extreme points. However, if

max
α≥0:‖α‖1≤1

∑
i∈R

(z?i − zi)αi > t,

for some t > 0, then the maximum can only occur at some α > 0 so that we can
restrict our attention to the |R| positive extreme points. Applying tail bounds on the
maximum of sub-Gaussian random variables over a polytope [see 51, Theorem 1.16],
since ‖α‖2 ≤ ‖α‖1 ≤ 1, we have for any t > 0,

P

(
max

α≥0:‖α‖1≤1

∑
i∈R

(z?i − zi)αi > t

)
≤ |R| exp

(
− t

2

2

)
,

so that

P

(
ML|R| max

α≥0:‖α‖1≤1

∑
i∈R

(z?i − zi)αi > ε

)
≤ |R| exp

(
− ε2

2M2L2|R|2

)
.
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A.2. Proof of Theorem 3.2: Relationship With Perspective Cuts.

Proof. Let us fix z ∈ Z. Then, we have that:

max
α

h(α)− γ

2

n∑
j=1

zjα
2
j = max

α,β
h(α)− γ

2

n∑
j=1

zj β
2
j s.t. β = α,

= max
α,β

min
x

h(α)− γ

2

n∑
j=1

zj β
2
j − x>(β −α),

= min
x

max
α

[
h(α) + x>α

]
︸ ︷︷ ︸

(−h)?(x)=g(x)

+

n∑
i=1

max
βi

[
−γ

2
zi β

2
i − xiβi

]
.

Finally, observing that

max
βi

[
−γ

2
zi β

2
i − xiβi

]
=


x2i

2γzi
if zi > 0,

max
βi

xiβi if zj = 0,

concludes the proof.

Appendix B. Bounding the Lipschitz Constant. In our results, we relied
on the observation that there exists some constant L > 0 such that, for any z ∈ Z,
‖α?(z)‖ ≤ L. Such an L always exists, since Z is a finite set. However, as our
randomized rounding results depend on L, explicit bounds on L are desirable.

We remark that while our interest is in the Lipschitz constant with respect to
“α” in a generic setting, we have used different notation for some of the problems
which fit in our framework, in order to remain consistent with the literature. In this
sense, we are also interested in obtaining a Lipschitz constant with respect to w for
the portfolio selection problem (2.5), among others.

In this appendix, we bound the magnitude of L in a less conservative manner. Our
first result provides a bound on L which holds whenever the function h(α) in Equation
(2.14) is strongly concave in α, which occurs for the sparse ERM problem (2.4) with
ordinary least-squares loss, the unit commitment problem (2.7), the portfolio selection
(2.5), and network design problems whenever Σ (resp. Q) is full-rank:

Lemma B.1. Let h(·) be a strongly concave function with parameter µ > 0 [see 17,
Chapter 9.1.2 for a general theory of strong convexity], and suppose that 0 ∈ dom(g)
and α? := arg maxα h(α). Then, for any choice of z, we have

‖α?(z)‖22 ≤ 8
h(α?)− h(0)

µ
,

i.e., ‖α?(z)‖∞ ≤ L, where L := 2
√

2h(α
?)−h(0)
µ .

Proof. By the definition of strong concavity, for any α we have

h(α) ≤ h(α?) +∇h(α?)>(α−α?)− µ

2
‖α−α?‖22,

where ∇h(α?)>(α − α?) ≤ 0 by the first-order necessary conditions for optimality,
leading to

‖α−α?‖22 ≤ 2
h(α?)− h(α)

µ
.
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In particular for α = 0, we have

‖α?‖22 ≤ 2
h(α?)− h(0)

µ
,

and for α = α?(z),

‖α?(z)−α?‖22 ≤ 2
h(α?)− h(0)

µ
,

since

h(α?(z)) ≥ h(α?(z))−
n∑
j=1

zjΩ
?
j (α

?(z)j) ≥ h(0).

The result then follows by the triangle inequality.

An important special case of the above result arises for the sparse ERM problem,
as we demonstrate in the following corollary to Lemma B.1:

Corollary B.2. For the sparse ERM problem (2.4) with an ordinary least squares
loss function and a cardinality constraint e>z ≤ k, a valid bound on the Lipschitz con-
stant is given by

‖β?(z)‖∞ = ‖Diag(Z)X>α?(z)‖∞ ≤ ‖Diag(Z)X>‖∞‖α?(z)‖∞
≤ max

i
Xi,[k]‖α‖2 ≤ 2 max

i
Xi,[k]‖y‖2,

where Xi,[k] is the sum of the k largest entries in the column Xi,[k].

Proof. Applying Lemma B.1 yields the bound

‖α‖2 ≤ 2‖y‖2,

after observing that we can parameterize this problem in terms of α, and for this
problem:

1. Setting α = 0 yields h(α) = 0.
2. 0 ≤ h(α?) ≤ y>α? − 1

2α
?>α? ≤ 1

2y
>y.

3. h(·) is strongly concave in α, with concavity constant µ ≥ 1.
The result follows by applying the definition of the operator norm, and pessimizing
over z.

Appendix C. Supplementary material for the numerical experiments.
In this section, we report additional performance metrics for the network design

experiments presented in Section 4.1.1. There, we reported the quality of the solution
returned by all methods within one hour, and compared two regularization strategies
(big-M vs. ridge) and two algorithms (CPLEX vs. Cuts). Indeed, given the sizes of
problems considered, the network design instances are computationally very challeng-
ing to solve. At such scales, finding a good feasible solution is already a very difficult
task. In practice, this translates into optimality gaps that are often irrelevant (i.e.,
higher than 100%) in most of the instances. Table 10 reports the optimality gaps
returned by each method after one hour, on instances where at least one of the four
gaps was less than 100%.
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Table 10: Optimality gap after one hour on network design instances with m nodes
and (1 + p)m initial edges. We only report results for instances where the resulting
gap was less than 100% for at least one of the four approaches. A “−” indicates that
the solver could not finish the root node inspection within the time limit (one hour).

Big-M Ridge
m p CPLEX Cuts CPLEX Cuts

40 0 69.8% 100% 98.9% 96.7%
80 0 100% 100% 100% 100%

40 1 38.6% 100% 99.8% 97.1%
80 1 100% 100% 100% 95.6%
120 1 100% 100% − 96.6%

40 2 23.3% 100% > 100% 97.7%
80 2 100% 100% 100% 96.3%

40 3 74.6% > 100% 97.5% 98.1%

40 4 100% 100% 99.2% 98.2%
80 4 100% 100% 100% 80.2%
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