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Abstract— Neuron-inspired signal propagation is proposed 
for communication in networks of nanodevices. Nanodevices 
should be able to interpret and forward signals inside the 
network in order to transport the information between two 
endpoints. Applications at the nano level demand processing 
systems that are very power efficient and simple. To achieve 
that, a brain inspired spiking neural network with pattern 
recognition and relaying capabilities is presented. The neural 
network learns the desired features using STDP, a power 
efficient and biologically plausible learning method. Finally, 
several nanonetworks are simulated, communicating using 
OWC. The results obtained show that signal similarity between 
the emitted and received signal highly depends on the design 
space of the neurons. It is possible to create networks with NDs 
capable of transporting information between two endpoints. 

Keywords—Nanotechnology, Nanonetworks, Molecular, 
communication, SNN, STDP, Relay. 

I INTRODUCTION 

 One of the promising topics in technology right now is, 
without a doubt, the Internet of things (IoT). The IoT consists 
in giving network connectivity to physical devices and 
everyday objects by embedding electronics inside them so 
they can communicate with each other over an established 
network and allow remote control or monitoring. The range of 
fields in which IoT can be useful is enormous thus making it 
an interesting topic of research and development. Electronic 
devices such as sensors, microcontrollers and antennas are 
currently deployed in many devices and places including 
domestic appliances, hospitals, public parks, vehicles, etc. The 
number of devices is increasing exponentially, for instance, in 
2015 there were already 83 million smart devices in people’s 
homes. This number is expected to grow to 193 million by 
2020. As the number of devices s continues to increase we see 
reduction in their size, volume and cost [1]. By means of 
economy of scale, future IoT devices will have a much smaller 
footprint, lower power consumption, longer operation lifespan 
and will be deployed in even larger numbers than nowadays. 
In order to realize these envisioned IoT devices, 
nanotechnology plays a central role. Nanotechnology is the 
construction and use of functional complex structures based 
on molecular (atomic) manufacturing scale. They exhibit 
novel physical, chemical and biological properties, 
phenomena, and processes because of their nanometer size 
[2]. At the nanometer scale, a nanomachine (NM) is defined 
as the most basic functional unit, integrated by nano-
components and able to perform simple tasks such as sensing 
or actuation. Deploying NMs in objects and interacting with 
them through the internet opens up a new and exciting field of 
research on the information transmission, i.e., the Internet of 
nano-things (IoNT). Nano-scale devices impose a new set of 

challenges posed by the physical characteristics of NMs, 
which needs investigating [3] including: (i) dimension, where 
size reduction sets new constraints, e.g., power limitations, 
which include independent energy harvesting and low power 
consumption; (ii) scarce computational resources, where 
microprocessors/controllers may not be suitable, thus the need 
for computationally efficient architectures; and (iii) nanoscale 
communications with low power and less complexity and with 
compliant protocols. 
 Nanonetworks (nanoscale network) will enable a new and 
unlimited number of applications that will revolutionize the 
world we live in. There are a growing number of research 
activities worldwide in developing products at the nanoscale, 
some of them already being used while others are just a vision 
for the future. Some application of nanonetworks include 
biomedical (immune system support, implants, intelligent 
drug delivery, health monitoring), environment (bio-
degradation, air pollution control and animal control), industry 
(food and water quality control, functionalized materials and 
fabrics) and military (functionalized equipment) [4]. 

In this paper, we propose a novel wireless communication 
architecture for nanodevices (NDs) based on neural networks, 
with relaying and pattern recognition capabilities. Different 
NMs communicate wirelessly exploiting the optical spectrum. 
We have created a simple and efficient network composed of 
NDs which can propagate information between two endpoints. 
After that, we calculated the similarity between the emitted 
and received signal for different parameters and noise levels. 

The rest of the paper is organized as follows: Section II 
introduces the multiscale nano-device communication. The 
optical nanonetwork system architecture is explained in 
Section III. Section IV presents the simulation set up and the 
achieved results. Finally, Section V concludes the paper.  

II MULTISCALE NANO-DEVICE COMMUNICATION 
By their nature, NDs have an extremely small workspace 

and can only act locally, i.e., can sense their surrounding 
and/or actuate upon it. Also, because of their simple 
architectures and limited resources, the range of things that 
they can do individually is very limited. Therefore, exploring 
NMs-to-NMs communications will considerably expand their 
capabilities and applications by allowing them to execute 
distributed and cooperative tasks to pursue a common 
objective as well as expand their coverage areas [5]. For NMs-
to-NMs network, there are several communications 
paradigms. The most popular ones are Molecular 
Communications (MC), Terahertz (THz) Band RF 
Communications and Optical Communications. 

In MC molecules are used as the carrier signal to encode, 
transmit and receive information [6] and provides means for 
NMs (biological or artificial) to communicate with each other 
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[4]. In THz band RF Communications, the frequency band 
with the range of 0.1-10 THz is used for ND-to-ND 
communications [7]. Finally, Optical Communications use the 
range of frequencies roughly between 450 and 750 THz [16-
17]. 

III  OPTICAL NANO NETWORK SYSTEM ARCHITECTURE 
A ND is constructed using nano-scale component with a 

specific task at the nano-level [9]. The tasks performed, which 
are very simple and are restricted to its neighborhood 
environment due to its limited capabilities and a small size, 
include computation, sensing, actuation, communication and 
energy harvesting. NDs can be both artificial nano-machines 
as well as naturally created ones found in biological systems. 
The system architecture for a ND-based communication is 
illustrated in Fig. 1, which includes processing and control 
unit, communication unit, power unit, sensors and actuators.  

3.1  ND architecture 
The communication module, see Fig. 1, is composed by 

an optical receiver (Rx), an optical emitter and signal 
conditioning circuits. The foreseen optical transceivers for 
NDs are plasmonic devices like nano-antennas or spasers. 
The processing unit composed of spiking neural networks 
(SNN) with relaying and pattern recognition capabilities is 
used for interpreting the information received from the 
network and forwarding it to other points in the network. In 
the proposed work, NDs communicate by exchanging spike-
encoded information. The usage of SNNs takes inspiration 
from the human brain which consumes no more than 20 W of 
power and can do rather complex tasks for traditional 
computers like facial recognition and natural language 
processing [17]. 

3.1.1  Relaying 
A neuron will produce a spike at its output when its 

membrane voltage level reaches a threshold. In addition, a 
neuron can have a spike output with higher energy for each 
received spike, making it a natural spike regenerator and a 
relay node. However, neurons have specific dynamics, set by 
time constants, which define how fast they can accumulate 
and fire. This leads to a bandwidth limitation, which sets the 
maximum relaying speed. In order to model the neuron 
dynamics, the leaky integrate-and-fire (LIF) model has been 
used [11, eq. (1) and (2)]. 

For a neuron with n synapses, each pre-synaptic spike Sit 
increases the membrane potential P by a value influenced by 
the synaptic weight Wi and the neuron’s time constant 𝜏𝜏 . The 

membrane potential is also decreasing by a constant value D 
at each time instant. If P surpasses the threshold value Pthr the 
𝑃𝑃(𝑡𝑡)

=

⎩
⎨

⎧𝑃𝑃(𝑡𝑡 − 1) +
1
𝜏𝜏
�� 𝑊𝑊𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 − 𝐷𝐷

𝑛𝑛

𝑖𝑖=1
� 𝑖𝑖𝑖𝑖 𝑃𝑃rest < 𝑃𝑃(𝑡𝑡 − 1) < 𝑃𝑃𝑖𝑖ℎ𝑟𝑟

𝑃𝑃refract   𝑖𝑖𝑖𝑖 𝑃𝑃(𝑡𝑡 − 1) ≥ 𝑃𝑃thr
𝑃𝑃rest   𝑖𝑖𝑖𝑖 𝑃𝑃(𝑡𝑡 − 1) ≤ 𝑃𝑃rest

(1) 

𝑂𝑂(𝑡𝑡) = �𝑉𝑉spike    𝑖𝑖𝑖𝑖 𝑃𝑃(𝑡𝑡) ≥ 𝑃𝑃thr
0                       𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(2) 

neuron outputs a spike and enters in a refractory state. The 
refractory state is defined as the membrane potential being 
reset to Prefract and the neuron being insensible to its inputs 
during a refractory period Trefract. With no received stimuli, the 
neuron membrane potential remains at a fixed level Prest. The 
LIF model enables creation of neurons with different working 
speeds and thresholds. 

By applying a pulse with maximum amplitude, Vmax, 
during enough time, we ensure that the neuron spikes as fast 
as possible. The minimum time between two output spikes 
depends on the neuron parameters and is given by:  

𝑇𝑇min  =  
𝑃𝑃thr − 𝑃𝑃rest
𝑉𝑉max − 𝐷𝐷

× 𝜏𝜏 + 𝑇𝑇refract 
(3) 

Note, the maximum firing rate of the relay neuron 
FRmax=1/Tmin. We have considered a neuron with the 
following characteristics: Vmax = 5 VU (voltage unit), Wi = [1], 
Pthr = 40 VU, Prest = 20 VU, 𝜏𝜏 = 3 ms, Trefract = 5 ms, and D = 
0.5. Using these parameters, we can obtain through simulation 
fs ≥ 666.7 Hz and FRmax = 54.5 Hz. Note, under continuous 
Vmax, the neuron firing rate can be determined using (3), which 
will be the same as above i.e., 54.5 Hz. 

Another important experiment consists in changing the 
input signal to a uniformly distributed random sequence of 
spikes with amplitudes between [0, Vmax]. The frequency 
response obtained for this experiment shows the most 
probable firing rate of the neuron. Maintaining the parameters 
for the relay neuron, the most probable firing rate obtained 
was 28.5 Hz. Applying a uniformly distributed random 
sequence of spikes with amplitudes between [0, Vmax] is 
equivalent to applying a DC signal of value Vmax/2 because 
the neuron acts as an integrator. Then, it makes sense that the 
most probable firing rate obtained is around half of the 
maximum firing rate. 

3.1.2  Pattern Recognition 
ND communications are practical provided devices can 

detect and interpret messages encoded in the spike signals. In 
ND communications, with messages encoded in spike patterns 
one can use SNNs’ pattern recognition capability for 
processing of the received spike signals. Spike-time 
dependent plasticity (STDP), which is a biological process 
that adjusts the strength of connections between neurons in the 
brain [11], is considered as an unsupervised learning 
mechanism used in biological neural systems. Because of its 
low complexity, it is a more suitable learning technique to use 
in NDs than more traditional techniques like backpropagation. 
In STDP, the synaptic weights are adjusted based on the 
temporal order of pre- and post-synaptic spikes. If a pre-
synaptic spike arrives before a post-synaptic spike, the 
synaptic weight increases (long term potentiation (LTP)), 
otherwise the synaptic weight decreases (long term depression 
(LTD)). The learning window (i.e., the modification of the 
weight w of a synapse connecting a pre- and post- synaptic 
neurons) for STDP is defined as [11, eq. (4)]:  

Fig. 1. Wireless communication schemes available for nanonetworks 

Fig. 1: Proposed architecture of the communication module in a nanodevice 
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Δ𝑤𝑤 =

⎩
⎨

⎧ 𝐴𝐴+exp �
∆𝑡𝑡
𝜏𝜏+
�      𝑖𝑖𝑖𝑖 𝑡𝑡pre < 𝑡𝑡post 

𝐴𝐴−exp �−
∆𝑡𝑡
𝜏𝜏−
�      𝑖𝑖𝑖𝑖 𝑡𝑡pre > 𝑡𝑡post

(4) 

where ∆𝑡𝑡 =  𝑡𝑡pre − 𝑡𝑡post  is the time difference between the 
pre- and post-synaptic spikes, 𝜏𝜏+  and 𝜏𝜏−  correspond to the 
pre-synaptic and post-synaptic time interval and 𝐴𝐴+  and 𝐴𝐴− 
indicate the strengths of potentiation and depression, 
respectively. The new values for w is given by: 

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑤𝑤old + 𝜎𝜎∆𝑤𝑤(𝑤𝑤max − 𝑤𝑤old)     𝑖𝑖𝑖𝑖 ∆𝑤𝑤 > 0
𝑤𝑤old + 𝜎𝜎∆𝑤𝑤(𝑤𝑤old − 𝑤𝑤min)     𝑖𝑖𝑖𝑖 ∆𝑤𝑤 ≤ 0 (5) 

where 𝜎𝜎 is the weight adaptation speed. Note, wmin < w < 
wmax [11, eq. (5)]. This approach allows w profiles to have 
shapes similar to specific temporal spike patterns that they 
receive. There is no need for external sources to state if a 
neuron has received the pattern or not. Because of that, STDP 
is considered an unsupervised learning mechanism in pattern 
recognition.  
 Some type of competitive learning method should be 
implemented for STDP to ensure correct operation. In 
neurobiology, lateral inhibition (LI) is a form of competitive 
learning which defines the capacity of an excited neuron in 
reducing the activity of its neighbors [13]. LI can be 
implemented by creating inhibitory connections between the 
output neurons, so the first neuron to spike will inhibit others 
from doing the same and consequently preventing activation 
of STDP in the neurons. A popular form of LI is Winner-take-
all (WTA) [14], where the first spiking neuron activates STDP 
and reinforces the proper synapses while other neurons have 
their membrane voltages reset to the resting potentials.  

By merging STDP and the neuron model, it is possible to 
create a functional SNN with spike pattern recognition 

capability. We have created and simulated an SNN setup in 
MATLAB, which includes 5 input neurons to generate the 
input spikes and 2 output neurons. Each output neuron is 
connected via traditional synapses to all the input neurons and 
to the other output neuron via an inhibitory synapse, which is 
used for LI in the form of WTA. The output neurons are 
equipped with STDP that will change w of the 5 input 
synapses during the learning process. All neurons within SNN 
are equal with the parameters of Vmax= 1 VU, Pthr = 40 VU, 
Prest = 20 VU,  𝜏𝜏 = 1 TU (time unit), Trefract = 3 TU and D = 0.5 
VU/TU.  

The initial synaptic weights are assigned randomly at the 
start of simulation, which creates a degree of diversity in 
determining which neuron is more apt to detect the pattern in 
the beginning. The pattern recognition task assigned to the 
network is to detect the spike’s pattern. The learning phase 
consists in feeding the network with random spike sequences 
at the start and then with the target pattern. If the learning 
phase is successful, then one of the output neurons should 
have synapses that are shaped to detect the target pattern 
effortlessly. Fig. 2 illustrates the phase, where the network is 
fed with the target pattern and random patterns. Also shown 
are the membrane potentials for O1 and O2, where O2 is much 
more sensitive for detecting the target pattern than O1. This 
results in SNN successfully detecting the pattern when it is 
present as it can be seen the last graph in Fig. 2.  

Following the learning of network, its performance can be 
evaluated for different scenarios. In a real scenario (i.e., with 
noise), the noise variance after generating the spike signal is 
computed for a specific signal to noise ratio (SNR) value. We 
have evaluated the networks accuracy by feeding the it with a 
random spike signal and noise. Fig. 3 shows the network 
accuracy as a function of SNRs. For each SNR, the testing 
dataset contains 100,000 examples for the target pattern and 
random spike sequences with 50% each. As can be seen, the 
accuracy reaches the maximum of ~ 84% for a SNR > 13 dB. 

3.2  Channel 
The total loss of the channel is given by [8, eq. (6)]: 

𝐿𝐿tot(𝑑𝑑) = 𝐷𝐷𝑛𝑛 �
𝜆𝜆𝑔𝑔

4𝜋𝜋𝑑𝑑
�
2

× 𝑒𝑒−𝜇𝜇abs𝑑𝑑 × 𝑒𝑒−𝜇𝜇sca𝑑𝑑 (6) 

where Dn is the directivity of the nanoantenna, d is the distance 
from the source, 𝜆𝜆𝑔𝑔  is the effective wavelength, 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎  is the 
molecular absorption coefficient and 𝜇𝜇sca  is the scattering 
coefficient [15]. The minimum delay of the channel ∆t = 
(d×n)/c where n is the refractive index of the medium and c is 
the speed of light. Note, in a dense ND network with devices 
located very close to each other the propagation delay will be 
very small. 

3.3  Noise analysis 
The types of noise, which will affect the system 

performance, are highly dependent on the types of devices and 
processes within the system. In ND, currently only molecular 
absorption noise, thermal noise and photon shot noise can be 
considered since the optical Rx adopted in this scheme is at it 
development stage, therefore needs more investigation on its 
noise characteristics. Until now, it has been considered that 
molecules result in the loss n of optical signals. Note, 
molecular vibration leads to EM radiation at the same 
frequency as the incident waves, which is called molecular 
absorption noise [9, eq. (7)]. 

The equivalent molecular absorption noise power at the 
Rx, for a given bandwidth B is: 

Fig. 2: SNN detecting the target pattern successfully. 

Fig. 3: Network accuracy for different SNR 
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𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘𝐵𝐵 �𝑇𝑇0𝜀𝜀(𝑖𝑖,𝑑𝑑) 𝑑𝑑𝑖𝑖 (7) 

where kB is the Boltzmann constant, f is the frequency of the 
EM wave, T0 is the reference temperature and 𝜀𝜀  is the 
emissivity of the channel. The thermal noise power is given 
by:  

𝑃𝑃jn = 𝑅𝑅𝐿𝐿𝐼𝐼jn2 = 4𝑘𝑘𝐵𝐵𝑇𝑇𝑛𝑛𝐵𝐵 (8) 

where RL is an equivalent resistance working at the 
temperature Te and Ijn is the generated noise current [16, eq. 
(8)]. Photon fluctuation noise, also called the photon shot 
noise is associated with the quantum nature of light itself [16, 
eq. (9)]. Since the detection of a photon at the Rx is 
independent from the others, the number of photons counted 
will suffer fluctuations even for a constant power optical 
source. These fluctuations of the number of photons detected 
is the photon shot noise and is described by a Poisson process: 

𝑃𝑃(𝑘𝑘 𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑒𝑒 𝑖𝑖𝑜𝑜 𝑖𝑖𝑜𝑜𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘! (9) 

where 𝜆𝜆 is the average number of photons per interval and k is 
the number of occurrences. Photon shot noise is more relevant 
when the optical power is low, i.e., when the average number 
of photons is low, variations from the average are more 
noticeable. The shot noise can be significant in the case of 
pulse based optical wireless communications, since 
photodetectors may detect a reduced number of photons.  

3.4  Network model 
Since NDs have relaying capabilities, the main purpose is 

to propagate information between two endpoints of the 
network. Fig. 4 shows the interconnections of 5 devices. The 
channel information together with the information obtained 
from the nanodevice model are used to evaluate the optical 
link between NDs. We can compute the optical link 
attenuation att between two NDs as: 

𝑖𝑖𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑜𝑜𝑒𝑒𝑚𝑚𝑙𝑙(𝜃𝜃) × 𝐿𝐿tot(𝑑𝑑) × 𝑅𝑅𝐴𝐴𝑟𝑟cos (Ψ) (10)
where m expresses the Lambert index of a LED light source, 
𝜃𝜃 represents the angle between the light emission direction 
and the normal light source, R represents Rx’s responsivity, Ar 
is the active area of the Rx and Ψ is the angle between light 
emission direction and Rx normal. 

IV  SIMULATION RESULTS 
A network composed by 50 NDs randomly deployed in a 

6x6 DU (distance unit) plane was created as depicted in Fig. 
5. The network consists in a source node (green) the generates
and information pulse and sends it to the network until it
reaches the sink node (red). The emitted and received signals
are illustrated in Fig. 6. In order to evaluate the similarity
between the signal at source and sink, a signal similarity
metric S was developed (eq. 11).

𝑆𝑆�𝑖𝑖(𝑡𝑡), 𝑜𝑜(𝑡𝑡)� =  
𝑜𝑜𝑖𝑖𝑐𝑐𝑐𝑐(𝑖𝑖(𝑡𝑡), 𝑖𝑖𝑑𝑑(𝑡𝑡))
𝑜𝑜𝑖𝑖𝑐𝑐𝑐𝑐(𝑖𝑖(𝑡𝑡), 𝑜𝑜(𝑡𝑡))

 (11) 

 where i(t) is the signal at source, id(t) is a delayed version 
of i(t) and o(t) is the signal at sink. The normalized are of the 
cross correlation nacc is given by eq.12. 

𝑜𝑜𝑖𝑖𝑐𝑐𝑐𝑐�𝑖𝑖(𝑡𝑡),𝑔𝑔(𝑡𝑡)�  =  
∫ 𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖(𝑖𝑖(𝑡𝑡),𝑔𝑔(𝑡𝑡), 𝜏𝜏)𝑑𝑑𝜏𝜏
max 𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖(𝑖𝑖(𝑡𝑡),𝑔𝑔(𝑡𝑡), 𝜏𝜏) (12)

where corr is the correlation between f(t) and g(t). 
 Metric S returns a result between 0 and 1 and the higher 
the value the stronger is the signal similarity. Cϵ is defined as: 

𝐶𝐶𝜖𝜖 = {𝑆𝑆(𝑖𝑖, 𝑜𝑜) ≥ 𝜖𝜖 | 𝜖𝜖 > 0} (13) 
 By observing several networks, it was defined that C0.7 
maintains high signal similarity, i.e. good quality networks. 

 The set of parameters changed during the results sections 
are the number of devices in the network and the main neuron 
parameters: τ, Trefract, Pthr and Spike duration. These 
parameters are the design space of the neuron and changing 
them results in networks with different relaying capabilities. 
As it can be seen in Fig. 7, for the same network of Fig. 6, 
changing the spike duration highly affects the shape of the 
pulse received. 

 Fig. 8 was obtained by simulating 3000 networks for each 
point and calculating the percentage that obtained C0.7. It 
depicts that the optimal number of devices that generates good 
quality networks is strongly related to the values of the design 
space. For two different design spaces, the optimal value 
changes. The orange curve peaked at 30 devices with 50% of 
networks with C0.7. The blue curve peaked at around 55 
devices with around 38% of networks with C0.7. The blue 
curve has a set of parameters that creates neurons that are 
slower and harder to fire in comparison with the orange curve. 
This results in a higher number of devices needed to propagate 
the stimulus from source to sink, thus the optimal value 
appearing for a higher value of devices. 
 Regarding tests with noise, Fig. 9 illustrates of different 
signal to noise ratios affect the signal similarity. To obtain this 
result, 95 networks with C0.7 were obtained and, for each of 
them, the signal similarity for different SNRs was obtained. 
As predicted, as the SNR decreases the worse is the signal 
similarity. 

V CONCLUSIONS 
The architecture proposed in this work provides NDs with 

communication capabilities, such as relaying and pattern 

Fig. 4: Simple network example with 5 devices 

Fig. 5: Nanonetwork with 50 devices deployed randomly 

0 1 2 3 4
Horizontal axis (DU)

0

1

2

3

4

Ve
rt

ic
al

 a
xi

s 
(D

U
)

0 1 2 3 4 5 6

Horizontal axis (DU)

0

1

2

3

4

5

6

Ve
rt

ic
al

 a
xi

s 
(D

U
)



The 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC2020) 

recognition, while using a reduced number of neurons. The 
results obtained show that signal similarity between the 
emitted and received signal highly depends on the design 
space of the neurons as well as the number of devices. It was 
concluded that given a specific type of relaying neuron, there 
is an optimal number of devices in order to obtain high 
quality networks. Different noise levels highly affect the 
performance of the networks. 

Concluding, the results obtained show that it is possible 
to create networks with NDs and that their relaying 
capabilities enable the transport of information between two 
endpoints of the network while maintaining good signal 
integrity. 
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