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 Abstract: There is a growing research interests in hybrid optical and microwave wireless 

communications, which could be adpted in the next generation wireless networks. In this paper, 

based on the decode-and-forwardrelaying protocol and statistical behavior of the overall link’s 

signal-to-noise-ratio, we consider six different practical scenarios by dering closed-form 

expressions for the outage and the bit error probabilities. Using Monte Carlo simulation we verify 

the predicted results. It is demonstrated that, decreasing the semi-angle of LED or increasing the 

filed of view of VLC receiver enhance the performance. 
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1  Introduction 

 Recently, the lack of sufficient spectrum in radio frequency (RF)-based wireless systems 



has shifted the focus to the complementary technology of optical wireless communications 

(OWC). OWC systems offer almost the same badwidth (i.e., data throughput) as the more 

established optical fiber communications (OFC), but with much reduced deployment cost and 

complexcity, since there are no need for cabeling, digging the roads, etc. [1]. In addition, OWC 

systems used in indoor and outdoor environments offer secure, safe and high data rates compared 

with RF wireles technologies [2]. In outdoor applications, OWC (mostly the free space optics and 

visible/infrared for the last mile and last meter access networks) can be used between base stations 

(BSs, BS and base station controllers (BSCs),  BSC and mobile switching centers (MSCs) in the 

fifth generation (5G) cellular systems and beyond. 

In certain application, the combination of RF, FSO and visible light communications 

(VLC) can be used in a cascaded (series) or parallel configurations to deliver high quality and 

high-speed connectivities between the transmiting and receiving end users. Such hybrid systems 

are adopted in the cooperative communications with two most widely used protocols, which are 

amplify-and-forward (AF) and decode-and-forward (DF) [3]. In [4], the performance of a hybrid 

RF-VLC relaying system considering Raician fadging channel was theoreticall investigated, and 

using Monte Carlo simulations, it was shown that there is a certain outage probability (OP) floor 

at higher signal to noise ratio (SNR) levels. The outage performance of a mixed RF/FSO-VLC 

system using a DF relay was analyzed in [5]. Assuming Gamma-Gamma turbulence channel and 

Rayleigh fading for the FSO and RF links, respectively the link with the maximum SNR is selected, 

with improved performance comparedg with FSO-VLC. In [6], theoretical investigation of the OP 

and biet error rate (BER) of a RF/VLC downlink employing a fixed gain AF relaying over Rayleigh 

fading channel was reported. Results showed outage probability improvement for transmission 

and reception angle of up to 45o. In [7], a FSO-VLC DF relay link with cascaded dual-hop was 

reported by deriving close-form expressionse derived for OP and BER assuming a Gamma-

Gamma turbulence channel, with validation of predicted results by means of Monte Carlo 

simulations. It was showed that, the link performance improved by increasing the semi-angle of 

the light emititing diode (LED) or the filed of view (FOV). A hybrid VLC-RF link using channel 

state information (CSI) with assisted AF and DF protocols was presented in [8], where the exact 

and asymptotic expressions for the OP and BER over Nakagami-𝑚𝑚 fading channel were derived. 

In [9], the performance of dual-hop mixed RF-FSO system with co-channel interference (CCI) 

was studied, where RF and FSO links were subjected to Nakagami-𝑚𝑚  fading and double 



generalized Gamma (DGG) turbulence channels, respectively. The exact and asymptotical 

expressions for the OP and BER were derived and showed that, there are BER floor level for both 

cases of fixed gain and CSI-assisted relay schemes with constant average SNR values for the RF 

and FSO links, respectively. Finally, in [10] the performance of dual-hop mixed FSO-RF with the 

CSI-assisted AF, fixed gain AF and DF protocols was investigated by deriving expressions for the 

OP, BER and ergodic capacity over the extended generalized-𝐾𝐾 (EGK) and DGG fading channels. 

It was shown that, foe a fixed SNR for the RF link the diversity order of CSI-assisted protocol is 

equal to zero, i.e., no improvemment in the system performance.  

In this work, we consider five practical scenarios of RF-FSO-VLC, FSO/RF-VLC, FSO-

RF/VLC, RF/VLC-RF, VLC-RF-RF/VLC and FSO/RF-RF-RF/VLC systems and investigate their 

performance assuming DGG turbulence, Nakagami-𝑚𝑚 fading and circular uniform distribution for 

the FSO, RF and VLC links, respectively(s). Assuming both heterodyne detection (HD) and 

intensity modulation/direct detection (IM/DD) for the FSO link, we derive closed-form 

expressions for the OP and BER for each scenario in terms of Fox-H function. We show that, the 

RF/VLC-FSO offers the best performance among dual-hop systems, while RF-FSO has the worst 

performance. We also demonstrate that, RF-VLC-FSO has the best performance among triple-hop 

systems, while RF-FSO/RF-VLC display the worst performance.  

 

The rest of the paper is organised as follow. In Section II, we introduce the system model 

and fading statistics under consideration. In Section III, we derive expressions for OP and BEP 

under the assumption of DF relaying. In Section IV, we present numerical results and finally 

conclude in Section V. 

2  System Model and Fading Statistics 

 

2.1  RF Link 

 The fading distribution of the RF link follows Nakagami-𝑚𝑚 model, with the probability 

density function (PDF) given by:  

 𝑓𝑓𝛾𝛾RF(𝛾𝛾) = 𝛼𝛼𝑚𝑚RF𝛾𝛾𝑚𝑚RF−1

Γ(𝑚𝑚RF)
𝑒𝑒−𝛼𝛼𝛾𝛾 (1) 

 where 𝛼𝛼 = 𝑚𝑚RF
𝛾𝛾RF

, 𝛾𝛾RF  is the average SNR  per symbol and Γ(𝑚𝑚) = ∫∞0 𝑒𝑒−𝑡𝑡𝑡𝑡𝑚𝑚−1 𝑑𝑑𝑡𝑡  is the 

Gamma function (GF) [11, Eq. (8.310.1)]. By utilizing [11, Eqs. (8.350.1, 8.350.2)] we can write 



the cumulative distribution function (CDF) as [12, Eq. (9)]:  

 𝐹𝐹𝛾𝛾RF(𝛾𝛾) = Υ(𝑚𝑚RF,𝛼𝛼𝛾𝛾)
Γ(𝑚𝑚RF)

= 1 − Γ(𝑚𝑚RF,𝛼𝛼𝛾𝛾)
Γ(𝑚𝑚RF)

 (2) 

 where Γ(𝑏𝑏, 𝑥𝑥) = ∫∞𝑥𝑥 𝑒𝑒−𝑡𝑡𝑡𝑡𝑏𝑏−1 𝑑𝑑𝑡𝑡  and Υ(𝑏𝑏, 𝑥𝑥)  are the upper and lower incomplete GFs, 

respectively [11, Eq. (8.350.2)].  Assuming, 𝑚𝑚RF is an integer and utilizing [11, Eqs. (8.354.1, 

8.352.4)], (2)  can be rewritten as:  

 𝐹𝐹𝛾𝛾RF(𝛾𝛾) = 1 − exp(−𝛼𝛼𝛾𝛾)∑𝑚𝑚RF−1
𝑖𝑖=0

1
𝑖𝑖!

(𝛼𝛼𝛾𝛾)𝑖𝑖 (3) 

 The RF receiver (RF) selects the link with the maximum instantaneous SNR (i.e., ΓRFmax =

max�ΓRF𝑘𝑘� for 𝑘𝑘 = 1, . . . ,𝐾𝐾. The CDF of ΓRFmax is then written as:  

 𝐹𝐹ΓRFmax(𝛾𝛾) = ∏𝐾𝐾
𝑘𝑘=1 𝐹𝐹ΓRF𝑘𝑘(𝛾𝛾) (4) 

  

2.2  FSO Link 

 FSO links are subject to the independent and non-identically distributed (i.n.i.d.) DGG 

fading distribution with pointing error impairments. 𝛾𝛾 denotes the instantaneous SNR with the 

PDF and CDF, respectively specified in [10, Eqs. (19, 20)], which is given as:  

 𝑓𝑓𝛾𝛾FSO(𝛾𝛾) = 𝐴𝐴3𝑣𝑣
𝛾𝛾
𝐻𝐻𝑟𝑟,𝑢𝑢
𝑢𝑢,0 �𝐶𝐶

1/𝑣𝑣𝛾𝛾
𝜇𝜇

�
(𝜅𝜅3; 𝑣𝑣−11𝑟𝑟)
(𝜅𝜅4;𝑣𝑣−11𝑢𝑢)� (5) 

𝐹𝐹𝛾𝛾FSO(𝛾𝛾) = 1 − 𝐴𝐴3𝐻𝐻 𝑟𝑟+1,𝑢𝑢+1
𝑢𝑢+1,0 �𝐶𝐶

1/𝑣𝑣𝛾𝛾
𝜇𝜇

|
[1, 𝜅𝜅3]; [1, 𝑣𝑣−11𝑟𝑟]
[0, 𝜅𝜅4]; [1, 𝑣𝑣−11𝑢𝑢]�  

 (6) 

 where 𝐻𝐻 𝑝𝑝,𝑞𝑞
𝑚𝑚,𝑛𝑛[. ]  is Fox-H function defined in [13, Eq. (1.2)], 𝐴𝐴3 =

𝜉𝜉2𝜎𝜎𝛽𝛽1−
1
2𝜆𝜆𝛽𝛽2−

1
2(2𝜋𝜋)1−

𝑟𝑟(𝜆𝜆+𝜎𝜎)
2 𝑟𝑟𝛽𝛽1+𝛽𝛽2−2

𝛼𝛼2𝜆𝜆Γ(𝛽𝛽1)Γ(𝛽𝛽2)
, 𝜉𝜉 = 𝑤𝑤𝑒𝑒

2𝜎𝜎𝑠𝑠
 is the ratio between the equivalent beam width at the Rx 

and the pointing error displacement standard deviation (i.e., jitter), and 𝜇𝜇𝑖𝑖 is the average electrical 

SNR of the 𝑖𝑖th FSO link. Here, 𝛼𝛼1, 𝛼𝛼2, 𝛽𝛽1, 𝛽𝛽2, Ω1 and Ω2 are identified using the variance of 

the small and large scale fluctuations of the laser beam [14]. 𝜆𝜆 and 𝜎𝜎 are positive integers such 

that 𝜆𝜆
𝜎𝜎

= 𝛼𝛼1
𝛼𝛼2

.  

Other parameters are defined as 𝑢𝑢 = 𝑟𝑟(1 + 𝜆𝜆 + 𝜎𝜎) , 𝑣𝑣 = 𝛼𝛼2𝜆𝜆 , 𝐶𝐶 = � 𝐴𝐴2ℎ𝑣𝑣

𝑟𝑟(𝜆𝜆+𝜎𝜎)�
𝑟𝑟

, ℎ = 𝐴𝐴1𝐵𝐵1
(1+𝜉𝜉2)𝐴𝐴2

1/𝑣𝑣 , 

𝐴𝐴1 = 𝜉𝜉2𝜎𝜎𝛽𝛽1−
1
2𝜆𝜆𝛽𝛽2−

1
2(2𝜋𝜋)1−

(𝜆𝜆+𝜎𝜎)
2

Γ(𝛽𝛽1)Γ(𝛽𝛽2)
, 𝐴𝐴2 = 𝛽𝛽1𝜎𝜎𝛽𝛽2𝜆𝜆

𝜆𝜆𝜆𝜆𝜎𝜎𝜎𝜎Ω1
𝜎𝜎Ω2

𝜆𝜆 , 𝐵𝐵1 = ∏𝜎𝜎+𝜆𝜆
𝑗𝑗=1 Γ �

1
𝑣𝑣

+ 𝜅𝜅1,𝑗𝑗� , where 𝜅𝜅1,𝑗𝑗  is the 𝑗𝑗 th-



term of 𝜅𝜅1 . 𝜅𝜅1 = [Δ(𝜎𝜎:𝛽𝛽1),Δ(𝜆𝜆:𝛽𝛽2)] , 𝜅𝜅3 = �Δ(𝑟𝑟: 𝜉𝜉
2+𝑣𝑣
𝑣𝑣

)�  comprising of 𝑟𝑟 -term, and 𝜅𝜅4 =

[Δ(𝑟𝑟: 𝜅𝜅2)]  comprising of 𝑢𝑢 -term such that 𝜅𝜅2 = �𝜉𝜉
2

𝑣𝑣
, 𝜅𝜅1�,  [Δ(𝑧𝑧:𝑎𝑎𝑚𝑚)] ≜

Δ(𝑧𝑧:𝑎𝑎1),Δ(𝑧𝑧:𝑎𝑎2). . . ,Δ(𝑧𝑧:𝑎𝑎𝑚𝑚)  and Δ(𝑗𝑗: 𝑥𝑥) ≜ 𝑥𝑥/𝑗𝑗, . . . , (𝑥𝑥 + 𝑗𝑗 − 1)/𝑗𝑗 . 𝑟𝑟  is the detection type 

parameter (i.e., 𝑟𝑟  = 1 and 2 represents HD and IM/DD schemes, respectively), and  1𝑛𝑛 =

[1,1, . . . ,1] comprising of 𝑛𝑛-term. The FSO Rx selects the link with ΓFSOmax = max �ΓFSO𝑗𝑗� for 𝑗𝑗 =

1, . . . ,𝑀𝑀. The CDF of ΓFSOmax is then written as:  

 𝐹𝐹ΓFSOmax(𝛾𝛾) = ∏𝑀𝑀
𝑗𝑗=1 𝐹𝐹ΓFSO𝑗𝑗(𝛾𝛾) (7) 

 

 

2.3  VLC Link 

  

 
Fig.  1: A VLC system model 

   

A tyrpical VLC link is shown in Fig. 1, which comprises of a LED-based transmitter (Tx) 

lamp placed at the ceiling at the height of 𝐿𝐿  from a single mobile end user terminal (i.e., 

photodetector-based Rx).The Tx is modeled using a generalized Lambertian emission pattern with 

the order 𝑚𝑚 = − ln2

lncos�𝜙𝜙1
2
�
., where 𝜙𝜙1/2 is the semi-angle at the half power of LED. Note, The 

maximum radius of a LED cell footprint 𝑟𝑟𝑒𝑒 = 𝐿𝐿tan�𝜙𝜙1/2�. Furthermore, the photodetector Rx is 



characterized by its physical surface area 𝐴𝐴, responsivity 𝑅𝑅𝑝𝑝, gain of the optical filter 𝑈𝑈  and the 

optical concentrator 𝑔𝑔(ψ) = 𝜌𝜌2

sin2(ψFOV)
∏ � 𝜓𝜓

𝜓𝜓FOV
�, where 𝜌𝜌 is the refractive index of the lens at 

the Rx and ψFOV is the FOV of the Rx. Based on aforementioned definitions, the DC channel gain 

of the line of sight path between the Tx and the Rx  in terms of the distance 𝑑𝑑 and the angle 𝜃𝜃is 

given by [2]:  

 ℎVLC = 𝐴𝐴(𝑚𝑚+1)𝑅𝑅𝑝𝑝
2𝜋𝜋𝑑𝑑2

cos𝑚𝑚(𝜑𝜑)𝑈𝑈𝑔𝑔(ψ)cos(ψ)∏ � 𝜓𝜓
𝜓𝜓F𝑂𝑂𝑂𝑂

� (8) 

where ∏ (𝑥𝑥) �1    i𝑓𝑓    𝑥𝑥 ≤ 1
0    i𝑓𝑓    𝑥𝑥 > 1.

.From Fig. 1, we have cos(ψ) = cos(𝜑𝜑) = 𝐿𝐿/𝑑𝑑, where 𝑑𝑑 = (𝑟𝑟𝑡𝑡2 + 𝐿𝐿2)
1
2. Therefore, the channel 

gain can be re-written as:  

 ℎV𝐿𝐿𝐶𝐶 = Ξ(𝑚𝑚+1)𝐿𝐿𝑚𝑚+1

�𝑟𝑟𝑡𝑡2+𝐿𝐿2�
𝑚𝑚+3
2

 (9) 

 where  

 Ξ = 1
2𝜋𝜋
𝐴𝐴𝑅𝑅𝑝𝑝𝑈𝑈𝑔𝑔(ψ) (10) 

 Each user is randomly located in a circle with a uniform distribution with the PDF given as:  

 𝑓𝑓𝑟𝑟𝑡𝑡(𝑟𝑟) = 2𝑟𝑟
𝑟𝑟𝑒𝑒2

    0 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑒𝑒 (11) 

 Employing (9) and (10) and using the theory of random variables (RVs), the PDF of ℎV𝐿𝐿𝐶𝐶  is 

obtained as:  

 𝑓𝑓ℎVLC(ℎ) = 2
𝑟𝑟𝑒𝑒2(𝑚𝑚+3)

(Ξ(𝑚𝑚 + 1)𝐿𝐿𝑚𝑚+1)
2

𝑚𝑚+3ℎ−
2

𝑚𝑚+3−1 (12) 

 For a single VLC link with the instantaneous SNR ΓVLC = 𝛾𝛾VLC  ℎVLC2 , the PDF is given by:  

 𝑓𝑓ΓVLC(𝛾𝛾) =
𝛾𝛾V𝐿𝐿𝐿𝐿

1
𝑚𝑚+3

𝑟𝑟𝑒𝑒2(𝑚𝑚+3)
(Ξ(𝑚𝑚 + 1)𝐿𝐿𝑚𝑚+1)

2
𝑚𝑚+3𝛾𝛾−

𝑚𝑚+4
𝑚𝑚+3 (13) 

 where 𝛾𝛾VLC =
𝜌𝜌2𝑃𝑃𝑜𝑜𝑝𝑝𝑡𝑡2

𝑁𝑁0𝐵𝐵
, γ ∈ [𝜆𝜆min,    𝜆𝜆max] , 𝜆𝜆min = 𝛾𝛾VLC�Ξ(𝑚𝑚+1)𝐿𝐿𝑚𝑚+1�2

�𝑟𝑟𝑒𝑒2+𝐿𝐿2�
𝑚𝑚+3  and 𝜆𝜆max =

𝛾𝛾VLC�Ξ(𝑚𝑚+1)𝐿𝐿𝑚𝑚+1�2

𝐿𝐿2(𝑚𝑚+3) . Here 𝑃𝑃opt represents the LED’s average transmit optical power, 𝑁𝑁0 is noise 

spectral density and 𝐵𝐵 is baseband modulation bandwidth. Then, the CDF of the instantaneous 

SNR of 𝑖𝑖th VLC link for 𝜆𝜆min ≤ γ ≤ 𝜆𝜆max is derived by:  

 𝐹𝐹ΓVLC𝑖𝑖(𝛾𝛾) = 1 + 𝐿𝐿2

𝑟𝑟𝑒𝑒2
− 1

𝑟𝑟𝑒𝑒2
(Ξ(𝑚𝑚 + 1)𝐿𝐿𝑚𝑚+1)

2
𝑚𝑚+3 � 𝛾𝛾

𝛾𝛾VLC
�

−1
𝑚𝑚+3

 (14) 



 For γ ≥ 𝜆𝜆max, 𝐹𝐹ΓVLC𝑖𝑖(𝛾𝛾) = 1. The VLC Rx selects the link with ΓVLCmax = max�ΓVLC𝑖𝑖� for 𝑖𝑖 =

1, . . . ,𝑁𝑁. The CDF of ΓVLCmax is:  

 𝐹𝐹Γ𝑂𝑂𝐿𝐿𝐿𝐿max(𝛾𝛾) = ∏𝑁𝑁
𝑖𝑖=1 𝐹𝐹ΓVLC𝑖𝑖(𝛾𝛾) (15) 

 

 

3  Performance Analysis 

 For analyzing the performance of end-to-end system, we define performance assessment 

metric of OP, which defines the SNR of the end-to-end system falling bellow a predetermined 

SNR (i.e., threshold SNR), and is given as:  

 𝑃𝑃𝑜𝑜𝑢𝑢𝑡𝑡(𝛾𝛾𝑡𝑡ℎ) = Pr(Γ𝑒𝑒2𝑒𝑒 < 𝛾𝛾𝑡𝑡ℎ) = 𝐹𝐹Γ𝑒𝑒2𝑒𝑒(𝛾𝛾𝑡𝑡ℎ) (16) 

We consider five scenarios with different combinations of the RF, FSO and VLC as shown 

in Fig. 1.  

RF link

VLC link

FSO link
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Figure  1: The system model for Scenarios: (a) I, RF-FSO-VLC, (b) II, RF/FSO-VLC, (C) III, 

FSO-RF/VLC, (d) IV, RF/VLC-RF, and (e) V, VLC-RF-RF/VLC   

 

The end-to-end SNR for Scenarios I to V, respectively are given as:  

 Γ𝑒𝑒2𝑒𝑒𝐼𝐼 = min(Γ𝑉𝑉𝐿𝐿𝐶𝐶max, ΓFSO,ΓRF) (17a) 

Γ𝑒𝑒2𝑒𝑒𝐼𝐼𝐼𝐼 = min(max(ΓFSO, ΓRF),ΓVLCmax) (17b) 

 Γ𝑒𝑒2𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 = min(ΓF𝑆𝑆𝑆𝑆, max(ΓR𝐹𝐹max, ΓV𝐿𝐿𝐶𝐶max)) (17c) 

 Γ𝑒𝑒2𝑒𝑒𝐼𝐼𝑉𝑉 = min(max�ΓR𝐹𝐹1
max,ΓV𝐿𝐿𝐶𝐶max�,ΓR𝐹𝐹2) (17d) 



 Γ𝑒𝑒2𝑒𝑒𝑉𝑉 = min(ΓV𝐿𝐿𝐶𝐶1
max , ΓR𝐹𝐹1 , max�ΓR𝐹𝐹2

max,ΓV𝐿𝐿𝐶𝐶2
max�) (17e) 

Using the RV theory the end-to-end CDFs for  Scenarios I to V, respectively are given  as:  

 𝐹𝐹Γ𝑒𝑒2𝑒𝑒
𝐼𝐼 (𝛾𝛾) = 𝐹𝐹ΓFSO(𝛾𝛾) + 𝐹𝐹ΓRF(𝛾𝛾) + 𝐹𝐹ΓVLCmax(𝛾𝛾) 

 −𝐹𝐹ΓFSO(𝛾𝛾)𝐹𝐹ΓRF(𝛾𝛾) − 𝐹𝐹Γ𝐹𝐹𝐹𝐹𝑂𝑂(𝛾𝛾)𝐹𝐹ΓVLCmax(𝛾𝛾) 

 −𝐹𝐹ΓRF(𝛾𝛾)𝐹𝐹ΓVLCmax(𝛾𝛾) + 𝐹𝐹ΓFSO(𝛾𝛾)𝐹𝐹ΓRF(𝛾𝛾)𝐹𝐹Γ𝑂𝑂𝐿𝐿𝐿𝐿max(𝛾𝛾) (18a) 

 𝐹𝐹Γ𝑒𝑒2𝑒𝑒
𝐼𝐼𝐼𝐼 (𝛾𝛾) = 𝐹𝐹ΓF𝐹𝐹𝑂𝑂(𝛾𝛾)𝐹𝐹ΓR𝐹𝐹(𝛾𝛾) + 𝐹𝐹ΓV𝐿𝐿𝐿𝐿max(𝛾𝛾) 

 −𝐹𝐹ΓF𝐹𝐹𝑂𝑂(𝛾𝛾)𝐹𝐹ΓR𝐹𝐹(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿max(𝛾𝛾) (18b) 

 𝐹𝐹Γ𝑒𝑒2𝑒𝑒
𝐼𝐼𝐼𝐼𝐼𝐼 (𝛾𝛾) = 𝐹𝐹ΓF𝐹𝐹𝑂𝑂(𝛾𝛾) + 𝐹𝐹ΓF𝐹𝐹𝑂𝑂(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿max(𝛾𝛾) 

 −𝐹𝐹ΓF𝐹𝐹𝑂𝑂(𝛾𝛾)𝐹𝐹ΓR𝐹𝐹max(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿max(𝛾𝛾) (18c) 

 𝐹𝐹Γ𝑒𝑒2𝑒𝑒
𝐼𝐼𝑉𝑉 (𝛾𝛾) = 𝐹𝐹ΓR𝐹𝐹1max(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿max(𝛾𝛾) + 𝐹𝐹ΓR𝐹𝐹2(𝛾𝛾) 

 −𝐹𝐹ΓR𝐹𝐹1max(𝛾𝛾)𝐹𝐹ΓR𝐹𝐹2(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿max(𝛾𝛾) (18d) 

 𝐹𝐹Γ𝑒𝑒2𝑒𝑒
𝑉𝑉 (𝛾𝛾) = 𝐹𝐹ΓV𝐿𝐿𝐿𝐿1max (𝛾𝛾) + 𝐹𝐹ΓR𝐹𝐹1(𝛾𝛾) + 𝐹𝐹ΓV𝐿𝐿𝐿𝐿2max (𝛾𝛾)𝐹𝐹ΓR𝐹𝐹2max(𝛾𝛾) 

 −𝐹𝐹ΓV𝐿𝐿𝐿𝐿1max (𝛾𝛾)𝐹𝐹ΓR𝐹𝐹1(𝛾𝛾) − 𝐹𝐹ΓV𝐿𝐿𝐿𝐿2max (𝛾𝛾)𝐹𝐹ΓR𝐹𝐹1(𝛾𝛾)𝐹𝐹ΓR𝐹𝐹2max(𝛾𝛾) 

 −𝐹𝐹ΓV𝐿𝐿𝐿𝐿1max (𝛾𝛾)𝐹𝐹ΓR𝐹𝐹2max(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿2max (𝛾𝛾) 

 +𝐹𝐹ΓV𝐿𝐿𝐿𝐿1max (𝛾𝛾)𝐹𝐹ΓR𝐹𝐹2max(𝛾𝛾)𝐹𝐹ΓV𝐿𝐿𝐿𝐿2max (𝛾𝛾)𝐹𝐹ΓR𝐹𝐹1(𝛾𝛾) (18e) 

 

4  Monte Carlo Simulation 

In this section, we validate the analysis carried out by means of the OP performance for 

the following turbulence parameters (i) DGG strong: 𝛼𝛼1 = 1.8621,𝛼𝛼2 = 1,𝛽𝛽1 = 0.5,𝛽𝛽2 =

1.8,𝛺𝛺1 = 1.5074,𝛺𝛺2 = 0.928 ; (ii) DGG moderate:  𝛼𝛼1 = 2.169,𝛼𝛼2 = 1,𝛽𝛽1 = 0.55,𝛽𝛽2 =

2.35,𝛺𝛺1 = 1.5793,𝛺𝛺2 = 0.9671 ; (iii) DGG weak: 𝛼𝛼1 = 2.1,𝛼𝛼2 = 2.1,𝛽𝛽1 = 4,𝛽𝛽2 = 4.5,𝛺𝛺1 =

1.0676,𝛺𝛺2 = 1.06; (iv) GG strong: 𝛼𝛼1 = 1,𝛼𝛼2 = 1,𝛽𝛽1 = 4,𝛽𝛽2 = 1.71,𝛺𝛺1 = 1,𝛺𝛺2 = 1; and (v) 

GG Moderate: 𝛼𝛼1 = 1,𝛼𝛼2 = 1,𝛽𝛽1 = 5.42,𝛽𝛽2 = 3.79,𝛺𝛺1 = 1,𝛺𝛺2 = 1.     

Fig. 2 shows the predicted and simulated OP performance versus the SNR for FSO, two 

values of pointing error parameter ξ  and r of 1 and 2 with DGG moderate turbulence, m =1 and 

SNRRF of 20 dB. for the Scenario I. As observed, there is a close match between predicted and 

Monte Carlo simulation results. We further consider 0 0
1/2 60 ,  =60φ ψ= . It is observed that, HD 

achieves lower outage compared with DD, which is as expected. For example, in the case of perfect 



link alignment, to achieve an OP of 110− , the SNR of 9 and 11 dB are required for the HDand DD 

methods, respectively. This performance improvement is achieved at the cost of a more complex 

Rx. It can be also observed that, performance improves as the effect of the pointing error decreases. 

For example, for the DD method, to achieve an 1OP 10−= , 20 dB is required for the perfect 

alignment case while this increases to 23 dB with of the pointing error. 

   
Figure 2: OP versus FSO SNR 

   

Fig. 3 shows the predicted and simulated OP performance versus the semi-angle of VLC, 

for two values of ψ  and L  with DGG moderate turbulence, m =1, SNRRF of 20 dB, 7.35ξ =

and 1r =  for the Scenario II. It can be seen that, OP improves with ψ . For example, for 2mL =

, to achieve an OP of 210− ,a semi-angle of 48o is required for 080ψ = , which increases to 51o for 
060ψ = . It can be also deducted that, the OP performance improves as the height of the room 

decreases. 



   
Figure  3: OP versus semi-angle of LED 

   

Fig. 4 shows the predicted and simulated OP performance versus the SNR for FSO for 

1 2 1 2 1 2, , , , ,α α β β Ω Ω , m =1, SNRRF of 20 dB, 7.35ξ = and 2r =  for the Scenario III. As 

expected, from strong to the moderate atmospheric turbulence, the performance improves. 

Specifically, to achieve an OP= 210− , SNR of 18, 29, 36 and 46 dB are required, respectively for 

DGG strong, DGG moderate, GG strong and GG moderate turbulence conditions. 



   
Figure 4: OP versus FSO SNR 

 

     Fig. 5 shows the predicted and simulated OP performance versus the SNR for RF, four values 

of RF severity parameter m  and r of 1 with GG moderate turbulence, m =1, 80 dB,rµ = 0 =60ψ

0
1/2 60 ,φ = and SNRRF of 20 dB for the Scenario IV. As observed, the SNR values of 8, 11, 18 and 

30 dB, respectively are required for 1,  2, 4, 8m = for the outage of 0.001. As can be seen, by 

increasing m, the OP reduces systematically. In addition, it can be seen that, the relative distance 

between the curves reduces for higher values of m. This implies that its impact becomes 

increasingly less pronounced. 

 



   
Figure 5: OP versus RF SNR 

 

Finally, Fig. 6 shows the predicted and simulated OP performance versus power of VLC 

Tx, two values of semi-angle φ  and N of 1 and 8 with DGG moderate turbulence, m =1, 2r = , 

RF80 dB, 20 dBrµ γ= = and SNRRF of 20 dB for the Scenario V. As expected, increasing the 

number of LEDs enhances the outage performance. For example, to achieve an OP of 210− we 

need 19 dBm transmission power of one LED, while this decreases to 15 dBm in the case of eight 

LEDs. Moreover, if we increase the semi-angle of the VLC link we need more transmit power of 

LEDs. For example, in the case of 8N =  and to achieve 0.01 of BEP, we need 3 dBm of 

transmission power for 020φ = while this increase to 15 dBm for 080φ = . As observed, after a 

certain point, increasing the transmission power of LED has no effect on OP and a saturation takes 

place. 



 
 

Figure 6: OP versus optP  

 
 
 
 

5  Conclusion 

We investigated the performance of dual-hop and triple-hop serial combinations of RF, 

FSO and VLC links. We assumed five different scenarios. We provided closed-from expressions 

for the OP and  examined the accuracy and correctness of the derived expression by means of 

Monte Carlo Simulations. We showed that, increasing RF severity parameter, improvement of 

FSO turbulence conditions, increasing FSO pointing error parameter, decreasing the room height 

and increasing the number of LEDs resulted in improved outage and error performance.  
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