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Abstract  45 

Acoustofluidic devices based on surface acoustic waves (SAWs) have been widely applied in 46 

biomedical research for the manipulation and separation of cells. In this work, we develop an 47 

accessible manufacturing process to fabricate an acoustofluidic device consisting of a SAW 48 

interdigital transducer (IDT) and a polydimethylsiloxane (PDMS) microchannel. The IDT is 49 

manufactured using a flexible printed circuit board (FPCB) pre-patterned with interdigital 50 

electrodes (IDEs) that is mechanically coupled with a piezoelectric substrate. A new microchannel 51 

moulding technique is realised by 3D printing on glass slides and is demonstrated by constructing 52 

the microchannel for the acoustofluidic device. The flexible clamping mechanism, used to 53 

construct the device, allows the reconfigurable binding between the IDT and the microchannel. 54 

This unique construction makes the acoustofluidic device capable of adjusting the angle between 55 

the microchannel and the SAW propagation, without refabrication, via either rotating the IDT or 56 

the microchannel. The angle adjustment is demonstrated by setting the polystyrene microsphere 57 

aggregation angle to -5°, 0°, 6°, and 15°. Acoustic energy density measurements demonstrate the 58 

velocity of microsphere aggregation in the device can be accurately controlled by the input power. 59 

The manufacturing process has the advantages of reconfigurability and rapid-prototyping to 60 

facilitate preparing acoustofluidic devices for wider applications. 61 

Introduction 62 

Acoustofluidic devices have attracted great interest in label-free manipulations of micro-1 and 63 

nano- particles2 owning to their considerable biocompatibility and precision. They have been 64 

demonstrated in biomedical applications for separation (exosomes3–5, tumour6, and inflammatory7 65 

cells), manipulation (cell interaction8, single cells9, and Caenorhabditis elegans10), and stimulation 66 

of cells11. 67 

Surface acoustic wave (SAW) devices are almost independent from the microchannel material 68 

in terms of acoustic properties compared to bulk acoustic wave devices12. This feature makes them 69 

easy to fabricate for high-frequency applications (MHz-GHz)3,13 and integrate with other systems, 70 

such as microfluidics. SAW devices are conventionally fabricated by patterning interdigital 71 

transducers (IDTs) on a piezoelectric substrate14, which convert radio frequency (RF) signals into 72 

SAWs propagating on the surface of the substrate. When the SAW meets a liquid medium, it 73 

diffracts into the medium and generates a time-averaged pressure distribution that can be utilised 74 

to precisely manipulate micro-objects15. Standing SAW (SSAW) devices, constructed by a pair of 75 

opposite IDTs working on the same frequency, are primarily used in acoustofluidic applications16. 76 

A great diversity of manipulation and actuation can be achieved by setting up the IDT structure to 77 

create, for example, tilted-angle SSAW devices17,18 and 2D- and 3D-patterning tweezers8,19–21. 78 

However, IDTs manufactured through conventional techniques, such as photolithography, are 79 

permanently patterned on the piezoelectric substrate. Polydimethylsiloxane (PDMS) 80 

microchannels, used to accommodate biological samples in acoustofluidic systems, also use the 81 

photolithography process involving cleanroom facilities. Thus, acoustofluidic devices capable of 82 

manufacturing and reconfiguring in general laboratories, using off-the-shelf components, are 83 

highly desired. 84 

A new fabrication technique, developed by our group, has successfully fabricated the IDTs 85 

without the use of a cleanroom for the manipulation of microparticles and cancer cells22. The IDTs 86 

were manufactured by mechanically clamping a rigid printed circuit board (PCB) pre-patterned 87 

with interdigital electrodes (IDEs) onto a piezoelectric substrate. This technique has been 88 
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benchmarked against a device made by conventional photolithography in terms of frequency 89 

response, droplet transportation, and cell manipulation. The PCB-based IDT has the advantage of 90 

replacing piezoelectric substrates by simply disassembling the mechanically clamped structure, 91 

with no need to remanufacture the IDT. Another IDT made by flexible PCB (FPCB) pre-patterned 92 

with IDEs demonstrated similar performance with advantages of dynamic flexing, less weight, and 93 

better heat dissipation23. 94 

A development process with low requirement on facilities and operation of the device using a 95 

portable control unit can better support broadening the use of the acoustofluidic devices. Herein, 96 

we present a novel development technique for both the IDTs and the microchannel, we call it 97 

Versatile Acoustofluidic Device (VAD). We also demonstrate the rapid-prototyping and 98 

reconfigurability of VAD for precise manipulation of micro-objects. 99 

Methods and Materials 100 

FPCBs 101 

The FPCB pre-patterned with IDEs, used in the VAD, was externally manufactured 102 

(circuitfly.com) using a standard PCB manufacturing process. The IDEs were made of metal 103 

bilayers (Au/Ni, 30 nm/2 μm) patterned on a 70 μm thick polyester laminate. The IDEs consist of 104 

40 pairs of 10 mm long finger electrodes and have a centre-to-centre finger pitch of 200 μm as 105 

shown in Fig. 1A. The ratio between the finger spacing and finger width is 1:1. A 128° Y-cut 3-106 

inch lithium niobate (LiNbO3) was used as the piezoelectric substrate. The VAD had a Rayleigh 107 

mode frequency of ~19.9 MHz and a 200 µm wavelength. Two coaxial cables were soldered to 108 

the buspads of each FPCB IDEs. Matching networks (MNs) based on an LC circuit are used (Fig. 109 

1B), which are essential in reducing the impedance mismatching between the VAD and the driving 110 

power amplifiers22,23. 111 

 112 

Clamping Mechanism  113 

The VAD required a mechanical jig to hold the main components together, including the FPCB 114 

IDEs and LiNbO3 substrate. As shown in Fig. 1C, the VAD uses a simple clamping mechanism 115 

and consists of the following stacking order from the bottom to the top: heatsink (supports the 116 

entire device and dissipates heat), temperature sensors (measure the IDT temperature), LiNbO3 117 

(produces SAWs), FPCB IDEs (convert RF to SAWs), silicon pads (evenly distribute the clamping 118 

force), localised pressers (apply the clamping force), force-sensitive resistors (FSRs) (measure the 119 

clamping force), FSR roofs (hold and press the FSRs), M5 screws (generate the clamping force) 120 

and main holders (hold the whole structure onto the heatsink). Another structure, which consists 121 

of an acrylic presser and a microchannel presser, is developed to hold the microchannel between 122 

the two IDTs. The FSR roofs, localised pressers, microchannel pressers, and main holders were all 123 

3D printed using a 0.4 mm nozzle and polylactic acid (PLA) filaments.  124 

 125 

The VAD Assembly 126 

The FPCB IDEs, microchannel and LiNbO3 substrate were thoroughly cleaned using isopropyl 127 

alcohol and de-ionised (DI) water, dried using a compressed air duster and checked under the 128 

microscope to ensure that no fibres or dust particles were present on the parts before the final 129 

assembly. All the individual components, shown in Fig. 1C, are placed on the LiNbO3 which is 130 

mounted on the heatsink. A clamping force is created by fastening the two M5 screws on top of 131 

the localised pressers. A vector network analyser (VNA) is used to monitor the reflection 132 
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coefficient (S11) and to confirm when the contact resistance is overcome and an optimal clamping 133 

force is achieved22,23. Fig. 1D shows the final assembled VAD with a portable control unit and an 134 

inset to demonstrate the full assembly including the microchannel on the heatsink. 135 

 136 

Microchannels  137 

The use of a glass-bottom 3D printed mould to prepare the microchannels stands as a novelty 138 

for microchannel manufacturing, with the development flow illustrated in Fig. 2A. (1) A glass 139 

slide (76 mm (W) × 26 mm (L)) is placed on the 3D printer table and held in place using masking 140 

tape. A compensatory offset is applied by using a “Z offset setting” plugin in the 3D printer 141 

software. Glass slides with various thicknesses can be used as the glass-bottom of the mould by 142 

adjusting the offset setting. The 3D printed mould, designed in Solidworks, is directly printed on 143 

the glass slide, (2) removed from the 3D printer table after completion and left to cool. (3) The 144 

glass-bottom 3D printed mould is then placed in a plastic petri dish and filled with PDMS (Sylgard 145 

184, Farnell UK), which is prepared according to the manufacturer’s protocol. The dish is placed 146 

onto a hot plate (SD160, Colepalmer) at a temperature of 45 °C to cure for 24 hours, which is 147 

below the 60 °C melting temperature of the PLA. (4) The set PDMS is removed from the mould, 148 

(5) the outer perimeter of the channel is cut and (6) a premade acrylic presser, with the dimensions 149 

of 47 mm (L) × 15 mm (W) × 3 mm (H), is placed on top of the microchannel. (7) The 150 

microchannel is then bolted onto the pre-assembled VAD using a microchannel presser (Fig. 2B). 151 

(8) The M5 nuts on the far edges of the microchannel presser are fastened until resistance is felt 152 

and (9) finally the M3 screws are screwed in to ensure even distribution of the pressing force. 153 

The walls of the microchannel presser (Fig. 2A, step 9 and Fig. 2B) are created to resist 154 

excessive force and prevent it from overbending. These help to keep the force evenly distributed 155 

across the microchannel and not to over compress it. To further prevent deformation, the ratio 156 

between the PDMS and the microchannel height was 55:1. 157 

Two examples of the glass-bottom 3D printed moulds are shown in Fig. 2C, which are single 158 

inlet/outlet and 3-inlet-2-outlet structures, respectively. Five 3D printed moulds were printed on 159 

the same glass slide and measured using a microscope to determine the repeatability of the print. 160 

 161 

Control Unit 162 

To increase the portability of the acoustofluidic system and facilitate on-demand use of the 163 

VAD, a portable control unit that includes a waveform generator, a power amplifier, a 164 

microcontroller, sensors, a display, and a power supply is developed (Fig. 3). 165 

 166 

Coating and Sample Preparation 167 

The microchannels were all coated with 1% (w/w) bovine serum albumin solution for 10 min 168 

and then flushed with DI water. For the microsphere test, 10 µm polystyrene microspheres (Sigma 169 

Aldrich) were used and suspended in a 23% (v/v) glycerol and phosphate-buffered saline solution. 170 

The microsphere suspension was injected into the microchannels through a syringe. 171 

 172 

IDT Alignment Setup and Analysis 173 

The formation of SSAW relies on the alignment of the two IDTs, which can be reflected by the 174 

device’s insertion loss (S21). The smaller the insertion loss, the better the SAW transmission from 175 

one IDT to another. Thus, one can effectively use the VNA to estimate the IDT alignment. This is 176 

demonstrated by connecting two IDTs to the VNA as a two-port network, as shown in Fig 4. The 177 

test keeps one of the IDTs unmoved, as the receiving IDT, while rotating the other IDT, as the 178 
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transmitting IDT. The S11 of the transmitting IDT is measured during this procedure to monitor 179 

how it changes with the rotation. Top view images of the transmitting IDT at different orientations 180 

were captured by an overhead camera, which were then analysed using a customised MATLAB 181 

code that extracted the angle between the two IDTs. Five reference angles, 17°, 11°, 6°, 2°, and 182 

0°, were determined for the S21 readings, which were selected by finding the most observable 183 

change in the S21. 184 

 185 

Acoustic Energy Density Analysis 186 

To characterise the acoustic energy density inside the VAD, a MATLAB code adapted from 187 

Barnkob et al24 was applied to analyse the trajectory of microspheres. In short, image frames 188 

extracted from microscope-captured movies, during the microsphere aggregation process, were 189 

analysed for pixel intensity near the pressure node (PN) line. The last frame of each movie was 190 

used as the maximum intensity frame. The normalised intensity and the relative intensity of each 191 

middle-process frames were then calculated and fit into an expression using a fitting parameter. 192 

Results and Discussion 193 

IDT Alignment 194 

Compared to cleanroom made SSAW devices, the VAD depended on the manual alignment of 195 

the two IDTs to produce an accurate SSAW and form an even distribution of PN and pressure anti-196 

node lines. The S21 peak can be used to establish the angle of the IDTs, where the 0° angle achieves 197 

the maximum S21 peak as shown in Fig. 5A. The S11 of the transmitting IDT shows a dip of -28 dB 198 

when the two IDTs are in parallel (Fig. 5B), which is within an acceptable working range of 199 

conventional SAW devices25. 200 

 201 

Microchannel Characterisation 202 

Fig. 6A shows the average height and width of the 3D printed moulds, i.e. 102.8 ± 11.4 µm 203 

(Mean ± SD) and 451.4 ± 42.6 µm (Mean ± SD), respectively. Of which a 500 µm wide 3D printed 204 

mould is used to produce the microchannel for the following tests (Fig. 6B). The bonding strength 205 

of the assembled microchannel met the high throughput requirement by flushing a sample at a flow 206 

rate of up to 6 mL/min26. 207 

 208 

Acoustic Energy Density within the VAD 209 

The acoustic energy density of the VAD at 0° is registered at 15, 20 and 27 dBm input power, 210 

as the results shown in Figs. 7A-7C, respectively. The time lapse required for 99% of microspheres 211 

to aggregate on the PN line is ~1.9, ~0.6, and ~0.3 sec for the three input powers. The average 212 

acoustic energy density of the powers is shown in Fig. 7D, which indicates that the acoustic 213 

radiation force exerted on the microspheres can be fully controlled by tuning the input power. 214 

 215 

Rotating the IDTs to Adjust the Tilted-Angle 216 

The VAD can offer reconfigurable tilted-angles (angle between the PN lines and the 217 

microchannel) without the need of fabricating new devices. The optimal tilted-angle degree in cell 218 

separation depends on the sample flow rate, where a high tilted-angle is optimal for the flow rate 219 

of 25 µL/min and a low tilted-angle for 50-125 µL/min6
. The ability of VAD to vary the tilted-220 

angle can potentially save considerable manufacturing effort and cost in reconfiguring devices for 221 

versatile and flexible applications. By simply rotating one of the IDTs, we manage to configure 222 
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the PN lines orientation into two tilted-angles, 0° and 6°, illustrated by the microsphere aggregation 223 

shown in Figs. 8A and 8B, respectively. The results demonstrate the ability of the VAD in rapid 224 

reconfiguration of the tilted-angle to tackle different applications. 225 

 226 

Visually Guided Assembly of the VAD 227 

The VAD is tested for whether visually aligning the two opposite IDTs by eye can achieve 228 

similar performance as the VNA guided assembly. The VAD is assembled visually using the FSRs 229 

readings as reference. The alignment quality, represented by the S21, is shown in Fig. 9A. 230 

Comparing with the VNA guided alignments (blue curve), the visually guided alignments (orange 231 

curve) present a smaller S21. Fig. 9B shows the acoustic energy density is slightly higher in the 232 

visually guided assembly. This could be because the distance between the opposing IDTs may 233 

have been reduced during the visual experiments6. Since the IDTs are pushed further forward to 234 

expose their front edge and allow them to be easily visually aligned. 235 

In addition, we collected the microsphere aggregation image for the visually guided assembly, 236 

as shown in Fig. 9C, which achieves a similar pattern as that in the VNA guided assembly (Fig. 237 

8A). Overall, this confirms that the assembling process of the VAD can be achieved by the visual 238 

alignment of the two IDTs without the use of the VNA. 239 

 240 

Rotating the Microchannel  241 

The unique construction of the VAD allows an alternative way to alter the tilted-angle by 242 

rotating the microchannel clamped to the VAD. New microchannel pressers are printed with two 243 

degrees including 15° and -5° to accommodate a wider microchannel as shown in Fig. 10A. These 244 

pressers are utilised to clamp the microchannel and to create the respective inclinations for 245 

aggregating the microspheres, as shown in Fig. 10B. 246 

It is noted that the reconfiguration of the tilted-angles can be achieved by either rotating the 247 

microchannel or the IDTs. It may be preferable to rotate the microchannel as it does not require to 248 

rotate the IDT, which may potentially affect the frequency response of the VAD. 249 

Conclusion 250 

This paper introduced a novel technology to manufacture the SAW-based acoustofluidic 251 

system, including both the SAW IDT and the PDMS microchannel, without the need of a 252 

cleanroom facility. It was demonstrated that a pair of FPCB IDEs were mechanically coupled to 253 

the piezoelectric substrate to produce SSAWs, under the guide of either eyes or the VNA. The 254 

VAD offers great flexibility in resetting the tilted-angle between the IDTs and the microchannel, 255 

resulting in rotatable PN lines inside the acoustofluidic device. The VAD can accomplish a rapid 256 

acoustofluidic prototyping process as an alternative to the conventional cleanroom process. 257 
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Figure 1. (A) Real-life flexible printed circuit board (FPCB) pre-patterned with interdigital 346 

electrodes (IDEs) with a zoom inset of the interdigital electrodes. (B) Schematic diagram of the 347 

Versatile Acoustofluidic Device (VAD) and a portable control unit, that can drive a cooling fan 348 

and provide radio frequency (RF) signals to drive the two IDTs. The RF signals are amplified by 349 

two 6W power amplifiers (PA1 and PA2). Each IDT is connected to a matching network (MN1 350 

and MN2) for impedance matching. The values of the capacitor (C) and inductor (L) are 68 pF and 351 

470 nH, respectively. The sensing components include two temperature sensors (T1 and T2) and 352 

force-sensitive resistors (FSR1 and FSR2). (C) 3D exploded view of the VAD with an inset 353 

presenting the assembly and components at the localised pressers. (D) The portable control unit 354 

and the VAD with an inset demonstrating the real-life model of the assembled VAD on the 355 

heatsink.  356 
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Figure 2. (A) The development steps of the microchannel using the glass-bottom 3D printed 360 

mould. (B) The microchannel presser with its the pressure points and walls highlighted. (C) Real-361 

life models of the glass-bottom 3D printed mould.  362 
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Figure 3. The respective block schematic demonstrating all the internal and external components 364 

of the control unit. 365 

  366 
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Figure 4. IDT rotation test for investigating the use of the vector network analyser (VNA) to 368 

register the alignment of the IDTs. The transmitting IDT being rotated around its central point, 369 

while the receiving IDT is held fixed.  370 
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(A)  371 

(B)  372 

Figure 5. S-parameters of the VAD during the rotation of one IDT. (A) Average insertion loss 373 

(S21) for each different angle during the rotation. (B) Average reflection coefficient (S11) for each 374 

different angle during the rotation. 375 

  376 
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Figure 6. (A) The 3D printed mould’s average height and width of 102.8 ± 11.4 µm (Mean ± SD) 379 

and 451.4 ± 42.6 µm (Mean ± SD), respectively. (B) Real-life model of a 500 µm wide 380 

microchannel sitting on top of the acrylic presser.  381 
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Figure 7. Acoustic energy density of the VAD with parallel IDTs. (A)-(C) Under the input power 386 

of 15 dBm, 20 dBm, and 27 dBm, the time for 99% of microspheres to reach the PN line is ~1.9, 387 

~0.6, and ~0.3 sec, respectively. (D) The average acoustic energy densities for the three input 388 

powers are 4.6, 9.9, and 36 J/m3, respectively (n = 3). 389 
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Figure 8. Microscope images showing the reconfigurability of the VAD in setting the PN lines to 392 

(A) 0° and (B) 6°. The microspheres are aggregated on the PN lines exhibiting the angle against 393 

the wall of the microchannel. (200 µm scale bar)  394 
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 397 

Figure 9. (A) The S21 of the VAD assembled using the VNA and the visually guided assembly of 398 

the two IDTs. (n = 5) (B) Acoustic energy density of the VAD constructed by the two assembly 399 

methods, VNA and visually, with an acoustic energy of 9.3 ± 1.2 J/m3 (Mean ± SD) and 10.9 ± 400 

2.7 J/m3 (Mean ± SD), respectively. (n = 3) (C) Microsphere aggregation on the PN lines of the 401 

VAD constructed by visually guided assembly (200 µm scale bar).  402 
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Figure 10. Rotating the microchannel to a set tilted-angle. (A) 3D printed 15° and -5° 405 

microchannel pressers. (B) Aggregated microspheres on the PN lines of 15° (left) and -5° (right) 406 

angles, in regard to the microchannel wall (450 µm scale bar). 407 

 408 


