# Nowhere to escape – Diversity and community composition of ferns and lycophytes on the highest mountain in Honduras

| Journal:                      | Journal Of Tropical Ecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | JTE-20-135.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Manuscript Type:              | Research Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author: | 06-Apr-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Complete List of Authors:     | Reyes-Chávez, Johan ; Zamorano University, Centro Zamorano de<br>Biodiversidad; Edge Hill University, Biology<br>Quail, Megan ; Edge Hill University, Biology<br>Tarvin, Stephanie; Edge Hill University, Biology<br>Kessler, Michael; University of Zurich, Systematic Botany<br>Batke, Sven; Edge Hill University, Biology; Zamorano University, Centro<br>Zamorano de Biodiversidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Keywords:                     | Altitudinal gradients, Celaque, CENTRAL AMERICA, Climate change, Cloud forest, EPIPHYTES, Mid-elevation peak, SPECIES RICHNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Abstract:                     | IPCC predictions for Honduras indicate that temperature will increase by<br>up to 3-6°C and precipitation will decrease by up to 7-13% by the year<br>2050. To better understand how fern and lycophyte communities might<br>be affected by climate change, we comprehensively surveyed the<br>community compositions of ferns and lycophytes at Celaque National<br>Park, the highest mountain in Honduras. We surveyed a total of 80<br>20x20m2 plots along an altitudinal gradient of 1249-2844m a.s.l.,<br>identifying all species and estimating their abundances. We recorded a<br>total of 11,098 individuals from 160 species and 61 genera. Community<br>composition was strongly influenced by changes in altitude, precipitation,<br>and the abundance of bryophytes (a proxy for air humidity). Of the 160<br>species, 63 are expected, under a RCP2.6 scenario for the year 2050, to<br>shift their range fully or partially above the maximum altitude of the<br>mountain. Of these, 65.1% are epiphytes. We found that species with<br>narrow altitudinal ranges at high altitudes were more at risk. Our study<br>indicated that conservation efforts should prioritise higher altitudinal<br>sites; focusing particularly on preserving the vulnerable epiphytic fern<br>species, which are likely to be at greater risk. |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# SCHOLARONE<sup>™</sup> Manuscripts

#### 

# Nowhere to escape – Diversity and community composition of ferns and lycophytes on the highest mountain in Honduras

Johan Reyes-Chávez<sup>1,2</sup>, Megan Quail<sup>2</sup>, Stephanie Tarvin<sup>2</sup>, Michael Kessler<sup>3</sup> and Sven P. Batke<sup>1,2\*</sup>

<sup>1</sup>Centro Zamorano de Biodiversidad, Departamento de Ambiente y Desarrollo, Escuela Agrícola Panamericana, Francisco Morazán, Honduras

<sup>2</sup> Biology Department, Edge Hill University, Ormskirk, L39 4QP, United Kingdom

<sup>3</sup>Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland

\*Author for correspondence: <u>sven.batke@edgehill.ac.uk</u>

Running title: Fern diversity along altitudinal gradient in Honduras

**Keywords:** Altitudinal gradients, Celaque, Central America, Climate change, Cloud forest, Epiphytes, Mid-elevation peak, Species richness

#### Abstract

IPCC predictions for Honduras indicate that temperature will increase by up to 3-6°C and precipitation will decrease by up to 7-13% by the year 2050. To better understand how fern and lycophyte communities might be affected by climate change, we comprehensively surveyed the community compositions of ferns and lycophytes at Celaque National Park, the highest mountain in Honduras. We surveyed a total of 80 20x20m<sup>2</sup> plots along an altitudinal gradient of 1249-2844m a.s.l., identifying all species and estimating their abundances. We recorded a total of 11,098 individuals from 160 species and 61 genera. Community composition was strongly influenced by changes in altitude, precipitation, and the abundance of bryophytes (a proxy for air humidity). Of the 160 species, 63 are expected, under a RCP2.6 scenario for the year 2050, to shift their range fully or partially above the maximum altitude of the mountain. Of these, 65.1% are epiphytes. We found that species with narrow altitudinal ranges at high altitudes were more at risk. Our study indicated that conservation efforts should prioritise higher altitudinal sites; focusing particularly on preserving the vulnerable epiphytic fern rien species, which are likely to be at greater risk.

### Introduction

Mountains are ideally suited to study the effect of climate change on species distributions due to their rapid variability of climate over short altitudinal distances (Kessler et al. 2016, Rogora et al. 2018). In addition, these geographic features often harbour a very diverse and unique assemblage of fauna and flora and form regional biodiversity hotspots of high conservation importance (Lomolino 2001). Many of these species have discrete altitudinal distributions, determined partially by their biology and the historical distribution of each species, amongst other factors (Watkins et al. 2006). Current evidence suggests that plant species ranges have seen an average increase of approximately 30-36m upwards along altitudinal gradients over

#### Journal Of Tropical Ecology

the last 10 years, an affect that can be attributed to climate change (Jump *et al.* 2012, Lenoir *et al.* 2008, Morueta-Holme *et al.* 2015). Projections suggest that under a 1.5 °C increase scenario we can anticipate further upward shifts in altitude and a loss of >50% of the geographic range of 8% of plant species by the year 2030 (IPCC 2018). Tropical locations, in particular, are believed to show exacerbated effects of climate change on altitudinal distribution patterns, largely due to the narrow optimal temperature ranges of tropical species (Feeley & Silman 2010), with beneficial effects for some species and detrimental results for others (Gibson-Reinemer & Rahel 2015).

Upslope shifts have potentially negative implications for future diversity, by increasing the risk of extinction for species that occupy high altitude sites and that have a narrower range size (Colwell *et al.* 2008). As such, altitudinal distribution patterns have been studied for several decades, with particular focus on tropical forest vegetation (Cardelus *et al.* 2006, Ibisch *et al.* 1996, Kessler 2001, Kidane *et al.* 2019, Krömer *et al.* 2005, Rahbek 1995, Richards 1952, Wolf 1993, Zhou *et al.* 2019). However, many Central and South American studies have mostly focused on countries such as Costa Rica (Stroud & Feeley 2017), whilst other areas, including Honduras, have been largely neglected, making generalisations on the effect of climate change on species altitudinal distributions difficult. In particular, the limited attention that Honduras has received has also been restricted to a small number of taxonomic groups. The greatest concentration of these studies in Honduras has focused on birds (Jones *et al.* 2020, Neate-Clegg *et al.* 2018), with fewer studies investigating invertebrates (Anderson & Ashe 2000) and plants (Imbach *et al.* 2013).

Ferns and lycophytes are especially vulnerable to increased temperatures and decreased precipitation, which are both predicted under future climate change, and their responses to these conditions will likely differ between terrestrial and epiphytic species (Mandl *et al.* 2010). As a result, this climate sensitive, globally distributed and diverse group of plants, has received

substantial attention in the literature on global altitudinal distribution pattern studies; both directly (Kessler *et al.* 2001, Kluge & Kessler 2011, Mandl *et al.* 2010, Watkins *et al.* 2006) and indirectly (Sánchez-González *et al.* 2010). However, there is still a severe lack of available distribution data for ferns and lycophytes from some Central American countries such as Honduras, and there is currently no specific distributional data available for epiphytic ferns and lycophytes from anywhere in Honduras. For example, epiphytes until now have only been exclusively studied in Honduras in the context of disturbance events (Batke & Kelly 2015) and biogeographical comparisons (Batke *et al.* 2016). This is a concerning realisation when considering that Honduras contains a high percentage of vascular epiphytes relative to the overall flora of the country (e.g. >30% of 908 vascular plant species in Cusuco National Park), and compared to other Central America countries (Batke *et al.* 2016).

In contrast to the geographical limitations of plant altitudinal distribution research in Honduras, the theory behind the migration of plants upwards along altitudinal gradients has been wellestablished elsewhere. It is believed that climate warming offers more optimal conditions that favour the establishment and survival of plant species at the upper limits of their temperature ranges (Adams & Kolb 2005); effectively resulting in an upslope 'march'. Other theories have also been used to explain upslope plant shifts, such as the synchronous 'lean' response, although these hypotheses are not mutually exclusive and may occur in sequence or combination (Breshears *et al.* 2008). However, the individual response of particular plant groups has been shown to vary greatly (Grau *et al.* 2007, Grau *et al.* 2011, Wolf *et al.* 2016). For example, epiphytes, which are restricted to life in the canopy, are often separated from the terrestrial soil environment (Zotz & Hietz 2001, Zotz *et al.* 2001) and have been suggested to therefore respond very differently compared to terrestrial plants (Nervo *et al.* 2019); particularly as epiphytes are also highly sensitive to changing climate conditions (Ellis 2013, Ellis & Coppins 2007, Ellis & Coppins 2009, Ellis & Coppins 2010, Hsu *et al.* 2012, Zotz &

#### Journal Of Tropical Ecology

Bader 2009). Thus, the lack of altitudinal distribution data on terrestrial and epiphytic ferns and lycophytes from Honduras, currently prevents us to compare plant distributional responses to predicted changes in future climate to other biodiversity hotspots (Marchese 2015, Myers *et al.* 2000).

To improve our understanding of fern community assemblages across the greatest altitudinal range in Honduras, in this study we (1) investigated for the first time how species richness, diversity and community composition patterns of ferns and lycophytes changes along an altitudinal gradient on the highest mountain in Honduras, (2) tested whether there are differences within these patterns between epiphytes and terrestrial species, (3) attempted to identify the underlying environmental factors that drive these patterns, and (4) identified which species are likely to be at greater risk under predicted changes in climate. It is hoped that the data from this study can help us to better understand and generalise the effect of future changes in climate on plant distributions in tropical mountain forests.

#### Methods

#### Study site

Celaque Mountain National Park (14°32′08″N, 88°42′26″W) is located within the western region of Honduras, between the departments of Copán, Lempira and Ocotepeque (Figure. 1). The term 'Celaque' comes from the Lenca word "Celac", which means "cold water" or "ice water" and is a reference to the large quantity of flowing water in the park (Flores *et al.* 2012). The protected area contains the highest mountain in Honduras, with an altitude of 2849m above sea level (a.s.l.).

ele.

The topography in Celaque is rugged with sandy and shallow soils (Archaga 1998). The vegetation community classification has not been well defined, but it has been broadly

described as *Pinus-Quercus* (pine-oak) forest at lower altitude and transitional mixed broadleaf/pine montane forest at middle to upper altitude. Above 2200m the transitional forest gives way to mainly broadleaved species (Archaga 1998, Southworth *et al.* 2004). Celaque is believed to be one of the most biologically important sites for plants in Honduras, due to its high degree of endemism and diversity (Hermes *et al.* 2016, ICF 2016). With 217 species recorded to date, ferns species are particularly abundant in Celaque. It is believed to be the most species rich nature reserve in the country for this group (Chávez *et al.* 2020, Reyes-Chávez *et al.* 2018, Rojas-Alvarado 2012, Rojas-Alvarado 2017), with two of the seven known Honduran endemic fern species occurring there.

#### Plot selection

We surveyed a total of 80 20x20m<sup>2</sup> (400m<sup>2</sup>) plots between August 2018 and July 2019, along an altitudinal gradient of 1595m (1249-2844m a.s.l) (Figure 1). Every 100m in altitude, we selected five plots using a stratified random design, focusing on the most representative forest types including ravines and riparian zones, but excluding canopy gaps, landslides, or other highly disturbed areas where possible. Between 2200m and 2400m, the topography of Celaque was very steep (an approximate slope of 60%), which made it unsafe to sample plots at 2300m. In each plot, we surveyed fern and lycophyte richness and abundance (by counting every individual in each plot) following Kessler & Bach (1999) and Karger *et al.* (2014). For species with long rhizomes, individuals were counted by identifying clumps, which most likely represented genets. We collected epiphytes by searching for low hanging individuals or fallen branches, as well as a visual search using binoculars from a suitable vantage point.

We identified all ferns and lycophytes to species. Where necessary, we collected voucher specimens for further analysis and verification. In the case of the genus *Elaphoglossum* Schott

ex J. Sm., we collected a sample of each morphospecies for closer laboratory examination and counted the number of each type found in each plot.

For each plot we measured inclination using a clinometer and estimated the amount of soil covered by plants or rocks and total cover of bryophytes on canopy branches as a proxy for air humidity (Karger *et al.* 2012). Percentage soil covered by plants or rocks and total bryophyte cover were visually estimated in the field to the nearest 5%. All estimations were carried out by the same individual.

All the samples were deposited at EAP herbarium of Zamorano University, Honduras. Collections were identified using *Flora Mesoamericana* (Moran 1997), *The Pteridophytes of Mexico* (Mickel & Smith 2004) and other relevant publications (Gonzales & Kessler 2011, Rojas-Alvarado 2003). We followed PPGI (2016) and Hassler & Schmitt (2020) for species classification.

#### Data analysis

A digital elevation model (DEM) of the park was created using a 50m contour map. The model was created using scene in ArcGIS 10.8 (ESRI 2020).

The community data was visualised using Nonmetric Multidimensional Scaling (NMS) and Simpson diversity was calculated with the R 'vegan' package (R Developing Core Team 2020). To identify the most important response variable that affected Simpson diversity and fern/lycophyte community composition in Celaque, the Simpson diversity and NMS community scores were correlated in a random/mixed-effects meta-regression model with all response variables. We used the 'glmulti' package in R for this analysis (R Developing Core Team 2020). We fitted the meta-regression model separately for NMS axis 1 and 2. In addition, Simpson diversity was also separately fitted for epiphyte and terrestrial species. The relative model average importance of each variable was plotted and the best-fit model selected using Akaike's Information Criterion (AIC) (Batke & Kelly 2014). We used a 0.8 cut-off to differentiate between important and less important variables (Calcagno & de Mazancourt 2010). In order to assess the richness distribution of terrestrial and epiphytic species along an altitudinal gradient, a spline regression was fitted with a series of polynomial segments using R (Bruce *et al.* 2020, R Developing Core Team 2020).

We extracted current temperature and precipitation data for Celaque from Karger *et al.* (2017) and climate predictions for temperature and precipitation for western Honduras for the years 2050 and 2100 for RCP2.6 and RCP8.5 from the *Fifth Assessment Report* (IPCC 2014). To assess altitudinal shifts, as expected from warming and decreases in precipitation, we calculated the lapse rates following Burt & Holden (2010). For each species, we used the rearranged fitted linear equations for the temperature and quadratic equations for the precipitation projections (i.e. solving for x), to calculate altitudinal changes for temperature and precipitation of each climate scenario and year respectively. We then calculated the number of species that lost all or some of their altitudinal range for each year and climate change scenario. A full loss of range was defined when the minimum altitude of a given species exceeded that of the highest point of the mountain (i.e. 2849m).

#### Results

We recorded a total of 11,098 individual ferns and lycophytes from 160 species and 61 genera (Supplementary Material - Table 1). Of the 11,098 individuals, 7,036 were epiphytes (78 species) and 4,062 were terrestrial plants (82 species). The five species with the highest abundance were *Elaphoglossum latifolium* (Sw.) J. Sm. (527 individuals), *Blechnum occidentale* L. (394 individuals), *Niphidium crassifolium* (L.) Lellinger (393 individuals), *Pecluma dulcis* (Poir.) F.C. Assis & Salino (370 individuals) and *Polypodium fissidens* Maxon

#### Journal Of Tropical Ecology

(361 individuals). When analysing both life-forms together, species richness were highest at high altitudinal sites (~2000 - 2600m) (Figure 2A). The same pattern was found for epiphytes whereas terrestrial species had highest richness around ~2000m, showing a hump-shaped relationship with altitude (Figure 2A).

Current altitudinal range sizes did not differ significantly between epiphytes and terrestrial plants (p>0.05). However, range sizes were proportionally smaller at low and high altitudinal sites compared to middle altitudinal sites (not shown).

Community composition in Celaque National Park was strongly influenced by changes in altitude. Higher altitude sites were floristically different compared to low altitude sites. An NMS ordination (stress = 0.19) clearly illustrated a transitional change in community similarity along axis 1 (Figure 2B), which was strongly driven by altitude, bryophyte cover and precipitation (Figure 3A & B; Table 1).

Similarly, Simpson diversity for epiphytes positively correlated to a high abundance of bryophytes, low cover of ground vegetation and low temperatures. It needs to be noted that although ground vegetation cover was an important model factor, it was non-significant for the best-fit model (Figure 3C; Table 1). Terrestrial species diversity on the other hand were positively correlated to high rain fall, high bryophyte cover and low canopy height, however, only precipitation was statistically significant in the best-fit model for terrestrial species (Figure 3D; Table 1). Bryophyte cover was positively correlated with altitude (F=14.22, R<sup>2</sup>-adj=0.55, p<0.01).

Based on IPCC predictions for western Honduras, we are expected to see a temperature increase between 3-6 °C and a precipitation decrease between 7-13% (Figure 4). Of the 160 species identified, between 7 and 32 species are expected to shift their ranges above the maximum altitude (2849m) of the highest mountain in Honduras (Supplementary Material

Table 1; Table 2; Figure 5). Generally, epiphytes were more negatively affected at high altitudinal sites compared to terrestrial species due to their narrower range sizes at high altitude and negative association with higher air temperatures (Table 1; Figure 3C). The percentage mean altitudinal range lost was between 10-18% higher in epiphytes compared to terrestrial ferns. For example, of the eight known Hymenophyllaceae Mart. (filmy ferns) epiphytes found in this study, four would lose 100% of their suitable habitat range, whereas another two would lose between 9-87% of their range.

#### Discussion

There has been limited research into the altitudinal distribution patterns of epiphytic and terrestrial fern and lycophytes along mountain ranges, especially in the context of climate change. To our knowledge, our study is the first to explore these changing patterns in Honduras. Understanding plant distribution patterns and identifying the most vulnerable species under future predicted change in climate along altitudinal gradients is important, as it has been shown that high altitude species are particularly vulnerable under rising atmospheric temperatures (Freeman *et al.* 2018). Increased atmospheric temperatures and decreased water availability from changes in precipitation and cloud formation, has been suggested to exacerbate species losses in high altitudinal sites (Still *et al.* 1999), due to a loss in suitable habitat conditions for those species that have a small-high altitudinal range. These changes in climate are particularly relevant to mountain systems, which exhibit rapid changes in environmental conditions across an altitudinal gradient (Rogora *et al.* 2018), relative to their specific geographic region (Kessler *et al.* 2016), with evidence to suggest that mountains offer an 'elevator to extinction' for high elevation species (Freeman *et al.* 2018).

Page 11 of 36

#### Journal Of Tropical Ecology

Previous studies that investigated the effect of climate change on plant distributions in mountains have often focused on non-tropical mountain biomes, including temperate (Allen & Lendemer 2016, Janssen *et al.* 2019), Mediterranean (Di Nuzzo *et al.* 2021), alpine (Saiz *et al.* 2021) and subtropical localities (Song *et al.* 2012). Fewer studies have specifically focused on tropical locations (Acevedo *et al.* 2020, Hsu *et al.* 2014, Pouteau *et al.* 2016), and with even less data are available for biodiversity hotspots in Central or South America (Acevedo *et al.* 2020). In addition, the altitudinal distribution of selected groups of epiphytes in these understudied tropical montane regions; specifically for epiphytic ferns and lycophytes, remain vastly under-explored (Pouteau *et al.* 2016), making comparisons difficult between Honduras and other localities.

We document here, for the first time, the altitudinal distribution patterns of epiphytic and terrestrial ferns in Honduras- along the highest mountain in this country. Our study shows that epiphytes along this mountain exhibit small-high altitudinal ranges. This narrow range has important implications for epiphyte survival; resulting in a greater risk of extinction under future predicted changes in climate, as the ranges of some of these species are likely to shift beyond the maximum elevation of the mountain. For instance, we found that, although species of both epiphytic and terrestrial life-forms with narrow range sizes are at high risk in Celaque NP under future IPCC predictions for Honduras, epiphytes were more vulnerable. This is attributed to the higher species richness and abundance of epiphytes at high altitude plots (ca. 2466-2866m) under current climate conditions, compared to terrestrial species, which had a higher abundance and richness at mid-altitude. As a result, of the 63 species identified to be at risk (partial or total loss of range) under RCP2.6 for the year 2050, 65.1% were epiphytic taxa, despite epiphytes making up less than 50% of all species recorded. The higher richness in epiphytes at high elevation sites is thus likely to make them more vulnerable to change in climate conditions, due to their differences in response to environmental conditions compared

to terrestrial species (Benzing 1990) and their closer range-proximity to the maximum elevation of the mountain. Similar results were reported from studies on other vascular and non-vascular species (Zotz & Bader 2009). For instance, many epiphytic ferns are anchored in the forest canopy with no direct connection to the terrestrial soil environment; relying on dead organic canopy matter for nutrients and rain or atmospheric water vapour for moisture input (Benzing 1998, Foster 2001, Hsu *et al.* 2014, Zotz & Bader 2009). Terrestrial species on the other hand are intimately connected to the forest soil through their root system and thus rely much less on atmospheric moisture and canopy organic substrata for their water requirements and nutrient uptake.

Our study demonstrated that 7-31 species of lycophytes and ferns are likely to lose 100% of their range between 2050 and 2100. Epiphytic ferns, however, are likely to have a higher loss of species compared to terrestrial ferns, due to their higher predicted range loss (i.e. 10-18% more than terrestrial species). Global simulation of 2°C increase in temperature by 2100, has been predicted to result in the loss of over half the range of 16%-57% of plant species (Smith *et al.* 2018, Warren *et al.* 2018), suggesting that our findings are for some species above the global average. We found that particularly, epiphytic ferns that require a continuous water supply, such as species of the genus *Hymenophyllum* Sm. (Hymenophyllaceae), are predicted to be of greater risk. *Hymenophyllum* species are found abundantly in humid tropical forests and have been characterised as shade plants, which are well adapted to low light but require ample water supply (Evans 1964, Richards & Evans 1972). These species are considered good indicators of high atmospheric humidity (Hietz & Hietz-Seifert 1995) and due to their dependency on moist habitats, are extremely sensitive to water loss because of their single layer cell structure and lack of a well-developed cuticle and stomata (Proctor 2003).

The higher species richness of epiphytes at a higher altitude in Honduras, is likely the result of increased precipitation and more continuous water supply (McAdam & Brodribb 2012, Nervo

#### Journal Of Tropical Ecology

*et al.* 2019). Epiphytic species that are sensitive to water availability appeared to favour higher altitudinal sites, with lower temperature conditions, increased cloud formation and a supply of fine and frequent precipitation compared to low altitudinal sites (Bhattarai *et al.* 2004, Frahm & Gradstein 1991). This was demonstrated by the change in community composition along the altitudinal gradient, with a higher prevalence of epiphytic bryophytes at higher altitudinal plots in our study. Thus, future predicted changes in climate may alter the suitability of these conditions for climate-sensitive epiphytes in Honduras, both directly by changes in climate and indirectly by likely decreases in moisture availability through the bryophyte branch communities. Bryophytes, specifically, can be important for the survival of epiphytic ferns, as increased bryophyte cover facilitates epiphyte establishment (Winkler *et al.* 2005) as well as water interception and storage (Ah-Peng *et al.* 2017, Oishi 2018). In addition, water availability is an important aspect in the fern life cycle as well as for the survival of mature plants, which have less specific stomatal control than angiosperms (McAdam & Brodribb 2013).

Comparisons with previous studies of altitudinal distribution patterns in relation to climate change are challenging, due to the complete lack of studies within Honduras and limited studies that investigated tropical epiphytic ferns and lycophytes. Interestingly, we found that epiphyte richness was particularly high at high elevation sites, which we believed was one of the key driving factors for epiphytes exhibiting a higher range loss compared to terrestrial species under future predicted changes in climate. In comparison, other studies that investigated vascular epiphyte richness along mountains, often found a mid-elevation peak in species richness (Hsu *et al.* 2014, Pouteau *et al.* 2016). Therefore, it is likely that the underlying distribution patterns of ferns and lycophytes at a given site will ultimately determine the severity of climate change on the specific life-form ranges (e.g. epiphytes versus terrestrial species).

In conclusion, higher temperatures under future predicted climate change may contribute to increases in total canopy evapotranspiration (Calanca et al. 2006, Jung et al. 2010), particularly at higher altitudinal sites. With climate change forecasts predicting rising global temperatures and decreases in precipitation (IPCC 2014), tropical montane forests are likely to experience reductions in cloud immersion due to a shift in cloud layers (Foster 2001, Karmalkar et al. 2011, Lawton et al. 2001, Still et al. 1999). These indirect effects of changing climatic conditions have the potential to exacerbate epiphyte species up-wards range shifts in the tropical montane forests of Honduras (Nadkarni & Solano 2002), as demonstrated in our study. To minimise the potential negative effect of these up-wards range shifts under future changes in climate, at least at a local and regional level, current conservation strategies in Honduras would require drastic conservation interventions (e.g. assistant migration and ex-situ conservation methods) in order to ensure the survival of many of these high-altitude species. However, a lack of robust information on the distribution of ferns across most of Honduras exacerbates the problem. This issue must be addressed as climate change induced species responses will ultimately affect plant community composition and distributions in Honduras and elsewhere. The highest mountain in Honduras studied here, has and will in the future, provide insight for the first time into how quickly plant communities will respond to changes in climate. Our study has already indicated that specifically high-altitude fern communities in Celaque will change and/or disappear, and it is likely that similar responses threaten species elsewhere.

## Funding

This project was supported by the Rufford Foundation (grant number 23585-1), by Idea Wild with an equipment grant to JRC and by an Edge Hill University Research Invest Fund to SPB.

# Acknowledgments

We are incredibly grateful to the MAPANCE management team, especially to Hermes Vega for the logistic support during the field trips. We would like to thank Eric van den Berghe and Rina Díaz-Maradiaga from the EAP Herbarium at Zamorano University, Thom Dallimore from Edge Hill University and Klaus Wiese from the Universidad Nacional Autónoma de Honduras for their invaluable advice during the project. We would like to thank Farlem España, Enrique Segura, Juan Rodriguez, Ali Rubio, Nicole Sikkafy, Lodwin Onil and Cristopher Antunez for their help during the data collection.

# References

ACEVEDO, M. A., BEAUDROT, L., MELÉNDEZ-ACKERMAN, E. J. & TREMBLAY, R. L. 2020. Local extinction risk under climate change in a neotropical asymmetrically dispersed epiphyte. *Journal of Ecology* 108(4):1553-1564.

ADAMS, H. D. & KOLB, T. E. 2005. Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. *Journal of Biogeography* 32(9):1629-1640. AH-PENG, C., CARDOSO, A. W., FLORES, O., WEST, A., WILDING, N., STRASBERG, D. & HEDDERSON, T. A. J. 2017. The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. *Journal of Hydrology* 548:665-673.

ALLEN, J. L. & LENDEMER, J. C. 2016. Climate change impacts on endemic, highelevation lichens in a biodiversity hotspot. *Biodiversity and Conservation* 25(3):555-568. ANDERSON, R. S. & ASHE, J. S. 2000. Leaf litter inhabiting beetles as surrogates for establishing priorities for conservation of selected tropical montane cloud forests in Honduras, Central America (Coleoptera; Staphylinidae, Curculionidae). *Biodiversity & Conservation* 9(5):617-653.

ARCHAGA, V. 1998. Descripcion fisica y caracterizacioñ del Parque Nacional Montaña de Celaque. Pp. 15. AFE-COHDEFOR y GTZ, Santa Rosa de Copañ. 15 pp.

BATKE, S., CASCANTE-MARÍN, A. & KELLY, D. L. 2016. Epiphytes in Honduras: a geographical analysis of the vascular epiphyte flora and its floristic affinities to other Central American countries. *Tropical Ecology* 57(4).

BATKE, S. P. & KELLY, D. L. 2014. Tree damage and microclimate of forest canopies along a hurricane-impact gradient in Cusuco National Park, Honduras. *Journal of Tropical Ecology* 30(5):457-467.

BATKE, S. P. & KELLY, D. L. 2015. Changes in the distribution of mechanically dependent plants along a gradient of past hurricane impact. *AoB Plants*.

BENZING, D. H. 1990. Vascular epiphytes - general biology and related biota. Cambridge University Press, Cambridge. 376 pp.

4

5

6

7

8

9

BENZING, D. H. 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change 39(2):519-540. BHATTARAI, K. R., VETAAS, O. R. & GRYTNES, J. A. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31(3):389-400. BRESHEARS, D. D., HUXMAN, T. E., ADAMS, H. D., ZOU, C. B. & DAVISON, J. E. 2008. Vegetation synchronously leans upslope as climate warms. Proceedings of the National 10 Academy of Sciences 105(33):11591-11592. 11 BRUCE, P., BRUCE, A. & GEDECK, P. 2020. Practical statistics for data scientists: 50+ 12 essential concepts using R and Python. O'Reilly Media. 13 BURT, T. & HOLDEN, J. 2010. Changing temperature and rainfall gradients in the British 14 Uplands. Climate Research 45:57-70. 15 CALANCA, P., ROESCH, A., JASPER, K. & WILD, M. 2006. Global warming and the 16 17 summertime evapotranspiration regime of the alpine region. *Climatic Change* 79(1):65-78. 18 CALCAGNO, V. & DE MAZANCOURT, C. 2010. glmulti: an R package for easy 19 automated model selection with (generalized) linear models. Journal of statistical software 20 34(12):1-29. 21 CARDELUS, C. L., COLWELL, R. K. & WATKINS, J. E. 2006. Vascular epiphyte 22 distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology 23 94(1):144-156. 24 25 CHÁVEZ, J. D. R., MARADIAGA, R. F. D. & RODRÍGUEZ, H. L. V. 2020. New records 26 and notes on the genus Phanerophlebia (Dryopteridaceae) in Honduras. Acta Botanica 27 Mexicana (127). 28 COLWELL, R. K., BREHM, G., CARDELÚS, C. L., GILMAN, A. C. & LONGINO, J. T. 29 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. 30 Science 322(5899):258-261. 31 32 DI NUZZO, L., VALLESE, C., BENESPERI, R., GIORDANI, P., CHIARUCCI, A., DI 33 CECCO, V., DI MARTINO, L., DI MUSCIANO, M., GHEZA, G. & LELLI, C. 2021. 34 Contrasting multitaxon responses to climate change in Mediterranean mountains. Scientific 35 *reports* 11(1):1-12. 36 ELLIS, C. J. 2013. A risk-based model of climate change threat: hazard, exposure, and 37 vulnerability in the ecology of lichen epiphytes. *Botany* 91(1):1-11. 38 ELLIS, C. J. & COPPINS, B. J. 2007. Changing climate and historic-woodland structure 39 40 interact to control species diversity of the 'Lobarion' epiphyte community in Scotland. 41 Journal of Vegetation Science 18(5):725-734. 42 ELLIS, C. J. & COPPINS, B. J. 2009. Quantifying the role of multiple landscape-scale 43 drivers controlling epiphyte composition and richness in a conservation priority habitat 44 (juniper scrub). Biological Conservation 142(7):1291-1301. 45 ELLIS, C. J. & COPPINS, B. J. 2010. Integrating multiple landscape-scale drivers in the 46 lichen epiphyte response: climatic setting, pollution regime and woodland spatial-temporal 47 48 structure. Diversity and Distributions 16(1):43-52. 49 ESRI. 2020. ArcGIS. ESRI (Environmental Systems Resource Institude), Redlands, 50 California. 51 EVANS, A. M. 1964. Ameiotic alternation of generations: a new life cycle in the ferns. 52 Science 143(3603):261-263. 53 FEELEY, K. J. & SILMAN, M. R. 2010. Biotic attrition from tropical forests correcting for 54 55 truncated temperature niches. Global Change Biology 16(6):1830-1836. 56 FLORES, E., SÁNCHEZ, A., CASTELLANOS, N., ÁVILA, R., ZELAYA, E. & PAZ, G. 57 2012. Plan de Manejo Parque Nacional Montaña de Celaque periodo 2012-2016. Pp. 173. 58 Mancomunidad de Municipios del Parque Nacional Montaña de Celaque (MAPANCE), 59 60

| 2        |                                                                                                    |
|----------|----------------------------------------------------------------------------------------------------|
| 3        | Instituto de Conservación Forestal (ICF). Deutsche Gesellschaft Fur Internationale                 |
| 4        | Zusammenarbeit (GIZ) 173 nn                                                                        |
| 5        | EOSTER P 2001 The notential negative impacts of global climate change on tronical                  |
| 6        | montone cloud forests. Erwik Science Druinus 55(1,2):72,106                                        |
| 7        | montane cioud ioresis. Earth-Science Reviews 55(1-2):75-106.                                       |
| 8        | FRAHM, JP. & GRADSTEIN, S. R. 1991. An altitudinal zonation of tropical rain forests               |
| 9        | using byrophytes. <i>Journal of Biogeography</i> 18(6):669-678.                                    |
| 10       | FREEMAN, B. G., LEE-YAW, J. A., SUNDAY, J. M. & HARGREAVES, A. L. 2018.                            |
| 11       | Expanding, shifting and shrinking: The impact of global warming on species' elevational            |
| 12       | distributions Global Ecology and Biogeography 27(11).1268-1276                                     |
| 13       | GIBSON-REINEMER D K & RAHEL F I 2015 Inconsistent range shifts within species                      |
| 14       | highlight idiogrammatic regnonses to alimate warming <i>PL</i> of <i>ONE</i> 10(7):00122102        |
| 15       | CONTAINED L & KEGGLED M 2011 A                                                                     |
| 16       | GUNZALES, J. & KESSLER, M. 2011. A synopsis of the Neotropical species of Sticherus                |
| 17       | (Gleicheniaceae), with descriptions of nine new species. <i>Phytotaxa</i> 31(1):1-54.              |
| 18       | GRAU, O., GRYTNES, JA. & BIRKS, H. J. B. 2007. A comparison of altitudinal species                 |
| 19       | richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal        |
| 20       | of Biogeography 34(11):1907-1915.                                                                  |
| 21       | GRAU O NINOT J FONT X FERRÉ A & GRYTNES J-A 2011 Trends in                                         |
| 22       | altitudinal distribution of plant diversity in the Catalan Pyrenees Pp 171-180 Actes del IX        |
| 23       | additional distribution of plant diversity in the Catalan 1 yrences. 1 p. 171-100. Actes act IX    |
| 24       | ULASSIED M. & SCHMITT D. 2020 Charlelist of Forma and Lossenhotes of the World                     |
| 25       | HASSLER, M. & SCHMITT, B. 2020. Checklist of Ferns and Lycophytes of the world.                    |
| 20       | Botanical Garden of the Karlsruhe Institute of Technology,                                         |
| 28       | https://worldplants.webarchiv.kit.edu/ferns/statistics.php.                                        |
| 29       | HERMES, V., CETZAL-IX, W., EDGAR, M. & ROMERO-SOLER, K. 2016. Nuevos                               |
| 30       | registros para la flora de Honduras y el Parque Nacional Montaña de Celaque. Acta Biologica        |
| 31       | Colombiana 21(3):635-644.                                                                          |
| 32       | HIETZ P & HIETZ-SEIFERT U 1995 Composition and ecology of vascular epiphyte                        |
| 33       | communities along an altitudinal gradient in central Veracruz Mexico, <i>Journal of Vegetation</i> |
| 34       | Science 6(4):487 408                                                                               |
| 35       | USU D C C OOSTEDMELLED I C D & WOLF I II 2014 Adaptation of a mid-                                 |
| 36       | HSU, K. CC., OUSTERMEIJER, J. G. B. & WOLF, J. H. 2014. Adaptation of a widespread                 |
| 37       | epiphytic tern to simulated climate change conditions. <i>Plant ecology</i> 215(8):889-897.        |
| 38       | HSU, R. CC., TAMIS, W. L. M., RAES, N., DE SNOO, G. R., WOLF, J. H. D.,                            |
| 39       | OOSTERMEIJER, G. & LIN, SH. 2012. Simulating climate change impacts on forests and                 |
| 40       | associated vascular epiphytes in a subtropical island of East Asia. Diversity and Distributions    |
| 41       | 18(4):334-347.                                                                                     |
| 42       | IBISCH P. L. BOEGNER A NIEDER I & BARTHOLOTT W 1996 How diverse are                                |
| 43       | neotropical epiphytes? An analysis based on the 'Catalogue of the flowering plants and             |
| 44       | aumnosporms of Doru! Ecotronica 2:12.29                                                            |
| 45       | gynniospernis of Peru. Ecoiropica 2.13-26.                                                         |
| 46       | ICF. 2016. Plan de Manejo del Parque Nacional Montana de Celaque 2016-2027. Pp. 87.                |
| 47       | ICF, MAPANCE, Gracias, Lempiras. 87 pp.                                                            |
| 48       | IMBACH, P. A., LOCATELLI, B., MOLINA, L. G., CIAIS, P. & LEADLEY, P. W. 2013.                      |
| 49       | Climate change and plant dispersal along corridors in fragmented landscapes of                     |
| 50       | Mesoamerica. Ecology and Evolution 3(9):2917-2932.                                                 |
| 51       | IPCC 2014 Climate Change 2014 impacts adaptation and vulnerability Fifth assessment                |
| 52       | report of the Intergovernmental Panel on Climate Change Cambridge University Press                 |
| 53       | Cambridge United Kingdom and New Vork NV USA 1122 pp                                               |
| 54<br>55 | DOC 2019 Summer for Deliver 1 . M. D. 1. (CA. 1152 pp.                                             |
| 55<br>56 | IFCC. 2018. Summary for Policymakers. in Masson-Deimotte, V., Zhai, P., Portner, HO.,              |
| 50<br>57 | Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R.,        |
| 58       | Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T.,        |
| 50       | Tignor, M. & Waterfield, T. (eds.). Global Warming of 1.5°C. An IPCC Special Report on             |
| 59<br>60 | the impacts of global warming of 1.5°C above pre-industrial levels and related global              |
| 00       |                                                                                                    |

greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, In press.
JANSSEN, P., FUHR, M. & BOUGET, C. 2019. Beyond forest habitat qualities: Climate and tree characteristics as the major drivers of epiphytic macrolichen assemblages in temperate mountains. *Journal of Vegetation Science* 30(1):42-54.
JONES S. F. TOBIAS J. A. EREEMAN R. & PORTUGAL S. J. 2020. Weak asymmetric

JONES, S. E., TOBIAS, J. A., FREEMAN, R. & PORTUGAL, S. J. 2020. Weak asymmetric interspecific aggression and divergent habitat preferences at an elevational contact zone between tropical songbirds. *Ibis* 162(3):814-826.

JUMP, A. S., HUANG, T.-J. & CHOU, C.-H. 2012. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. *Ecography* 35(3):204-210.

JUNG, M., REICHSTEIN, M., CIAIS, P., SENEVIRATNE, S. I., SHEFFIELD, J.,
GOULDEN, M. L., BONAN, G., CESCATTI, A., CHEN, J., DE JEU, R., DOLMAN, A. J.,
EUGSTER, W., GERTEN, D., GIANELLE, D., GOBRON, N., HEINKE, J., KIMBALL, J.,
LAW, B. E., MONTAGNANI, L., MU, Q., MUELLER, B., OLESON, K., PAPALE, D.,
RICHARDSON, A. D., ROUPSARD, O., RUNNING, S., TOMELLERI, E., VIOVY, N.,
WEBER, U., WILLIAMS, C., WOOD, E., ZAEHLE, S. & ZHANG, K. 2010. Recent decline
in the global land evapotranspiration trend due to limited moisture supply. *Nature* 467(7318):951-954.

KARGER, D. N., CONRAD, O., BÖHNER, J., KAWOHL, T., KREFT, H., SORIA-AUZA, R. W., ZIMMERMANN, N. E., LINDER, H. P. & KESSLER, M. 2017. Climatologies at high resolution for the earth's land surface areas. *Scientific Data* 4(1):170122.

KARGER, D. N., KLUGE, J., ABRAHAMCZYK, S., SALAZAR, L., HOMEIER, J., LEHNERT, M., AMOROSO, V. B. & KESSLER, M. 2012. Bryophyte cover on trees as proxy for air humidity in the tropics. *Ecological Indicators* 20(0):277-281.

KARGER, D. N., WEIGELT, P., AMOROSO, V. B., DARNAEDI, D., HIDAYAT, A., KREFT, H. & KESSLER, M. 2014. Island biogeography from regional to local scales: evidence for a spatially scaled echo pattern of fern diversity in the Southeast Asian archipelago. *Journal of Biogeography* 41(2):250-260.

KARMALKAR, A. V., BRADLEY, R. S. & DIAZ, H. F. 2011. Climate change in Central America and Mexico: regional climate model validation and climate change projections. *Climate Dynamics* 37(3):605.

KESSLER, M. 2001. Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. *Biodiversity and Conservation* 10(11):1897-1921. KESSLER, M. & BACH, K. 1999. Using indicator families for vegetation classification in species-rich Neotropical forests. *Phytocoenologia* 29(4):485-502.

KESSLER, M., HERZOG, S. K., FJELDSÅ, J. & BACH, K. 2001. Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes. *Diversity and Distributions* 7(1-2):61-77.

KESSLER, M., KARGER, D. N. & KLUGE, J. 2016. Elevational diversity patterns as an example for evolutionary and ecological dynamics in ferns and lycophytes. *Journal of Systematics and Evolution* 54(6):617-625.

- KIDANE, Y. O., STEINBAUER, M. J. & BEIERKUHNLEIN, C. 2019. Dead end for endemic plant species? A biodiversity hotspot under pressure. *Global Ecology and Conservation* 19:e00670.
- KLUGE, J. & KESSLER, M. 2011. Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica. *Plant Ecology* 212(7):1109-1121.

| 2  |                                                                                                    |
|----|----------------------------------------------------------------------------------------------------|
| 3  | KRÖMER T KESSLER M ROBBERT GRADSTEIN S & ACEBEY A 2005                                             |
| 4  | Diversity patterns of vascular eniphytes along an elevational gradient in the Andes <i>Journal</i> |
| 5  | Diversity patients of vascular opphytes along an elevational gradient in the Andes. <i>Journal</i> |
| 6  | of Biogeography 32(10):1799-1809.                                                                  |
| 7  | LAWTON, R. O., NAIR, U. S., PIELKE, R. A., SR. & WELCH, R. M. 2001. Climatic                       |
| 8  | impact of tropical lowland deforestation on nearby montane cloud forests. Science                  |
| 9  | 294(5542):584-587                                                                                  |
| 10 | LENOID I GÉGOLIT I C MADOLIET D'A DE DILEEDAV D & DDISSE LI 2008 A                                 |
| 11 | LENOIR, J., OLOOUT, J. C., MARQUET, T. A., DE KOTTRAT, T. & DRISSE, H. 2008. A                     |
| 12 | significant upward shift in plant species optimum elevation during the 20th century. Science       |
| 13 | 320(5884):1768-1771.                                                                               |
| 17 | LOMOLINO, M. V. 2001. Elevation gradients of species-density: historical and prospective           |
| 15 | views Global Ecology and Riogeography 10(1):3-13                                                   |
| 15 | MANDI N LEUNEDT M VESSLED M & CDADSTEIN S 2010 A comparison of                                     |
| 10 | MANDL, N., LEHNERT, W., KESSLER, W. & OKADSTEIN, S. 2010. A comparison of                          |
| 17 | alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane        |
| 18 | forests of southern Ecuador. <i>Biodiversity and Conservation</i> 19(8):2359-2369.                 |
| 19 | MARCHESE, C. 2015. Biodiversity hotspots: A shortcut for a more complicated concept.               |
| 20 | Global Ecology and Conservation 3.297-309                                                          |
| 21 | MCADAM S A M & BRODRIBB T I 2012 Stomatal innovation and the rise of seed                          |
| 22 | mendawi, S. A. W. & DRODRIDD, T. J. 2012. Stollatal Innovation and the fise of seed                |
| 23 | plants. Ecology Letters 15(1):1-8.                                                                 |
| 24 | MCADAM, S. A. M. & BRODRIBB, T. J. 2013. Ancestral stomatal control results in a                   |
| 25 | canalization of fern and lycophyte adaptation to drought. <i>New Phytologist</i> 198(2):429-441.   |
| 26 | MICKEL, J. T. & SMITH, A. R. 2004. The Pteridophytes of Mexico. New York Botanical                 |
| 27 | Garden Press USA 727 nn                                                                            |
| 28 | MODAN D. 1007 Elers Massamarianna, Dtaridanhyta, New York Datanical Cardan USA                     |
| 29 | MORAN, R. 1997. FIOIA Mesoamericana - Pteriuophyta. New York Bolanical Garden, USA.                |
| 30 | MORUETA-HOLME, N., ENGEMANN, K., SANDOVAL-ACUNA, P., JONAS, J. D.,                                 |
| 31 | SEGNITZ, R. M. & SVENNING, JC. 2015. Strong upslope shifts in Chimborazo's                         |
| 32 | vegetation over two centuries since Humboldt. Proceedings of the National Academy of               |
| 33 | Sciences 112(41):12741-12745                                                                       |
| 34 | MVEDS N MITTEDMEIED D A MITTEDMEIED C C DAEONSECA C A D R                                          |
| 35 | MITERS, N., MITTERMEIER, K. A., MITTERMEIER, C. U., DA FONSECA, U. A. D. &                         |
| 36 | KENT, J. 2000. Biodiversity hotspots for conservation priorities. <i>Nature</i> 403(67/2):853-858. |
| 37 | NADKARNI, N. & SOLANO, R. 2002. Potential effects of climate change on canopy                      |
| 38 | communities in a tropical cloud forest: an experimental approach. Oecologia 131(4):580-586.        |
| 39 | NEATE-CLEGG M H JONES S E BURDEKIN O JOCOUE M & SEKERCIOĞLU                                        |
| 40 | C H 2018 Elevational changes in the avian community of a Mesoamerican cloud forest                 |
| 41 | $\downarrow$ D: ( $\downarrow$ 50(5) 005 015                                                       |
| 42 | park. <i>Biotropica</i> 50(5):805-815.                                                             |
| 42 | NERVO, M. H., ANDRADE, B. O., TORNQUIST, C. G., MAZURANA, M., WINDISCH,                            |
| 45 | P. G. & OVERBECK, G. E. 2019. Distinct responses of terrestrial and epiphytic ferns and            |
| 44 | lycophytes along an elevational gradient in Southern Brazil. Journal of Vegetation Science         |
| 45 | 30(1):55-64                                                                                        |
| 40 | OICHI V 2018 Evaluation of the water storage conseity of hewenhytes along an altitudinal           |
| 47 | OISHI, 1. 2018. Evaluation of the water-storage capacity of bryophytes along an antitudinar        |
| 40 | gradient from temperate forests to the alpine zone. <i>Forests</i> 9(7):433.                       |
| 49 | POUTEAU, R., MEYER, JY., BLANCHARD, P., NITTA, J. H., TEROROTUA, M. &                              |
| 50 | TAPUTUARAI, R. 2016. Fern species richness and abundance are indicators of climate                 |
| 51 | change on high-elevation islands: evidence from an elevational gradient on Tahiti (French          |
| 52 | Polynesia) Climatic Change 138(1):143-156                                                          |
| 53 | DDCI 2016 A community derived closefication for extent becarby to and former to well f             |
| 54 | r for. 2010. A community-derived classification for extant lycophytes and terms. <i>Journal of</i> |
| 55 | Systematics and Evolution 54(6):563-603.                                                           |
| 56 | PROCTOR, M. C. F. 2003. Comparative ecophysiological measurements on the light                     |
| 5/ | responses, water relations and desiccation tolerance of the filmy ferns <i>Hymenophyllum</i>       |
| 58 | wilsonii Hook and H. tunbrigense (L.) Smith Annals of Botany 91(6):717-727                         |
| 59 |                                                                                                    |
| 60 |                                                                                                    |
|    |                                                                                                    |

| 2  |                                                                                                |
|----|------------------------------------------------------------------------------------------------|
| 3  | R DEVELOPING CORE TEAM, 2020. R: a language and environment for statistical                    |
| 4  | computing R Foundation for Statistical Computing R Foundation for Statistical Computing        |
| 5  | Vi A ti UDI 14 // D D i to Computing, K Foundation for Statistical Computing,                  |
| 6  | Vienna, Austria. URL <u>http://www.R-project.org/</u> .                                        |
| 7  | RAHBEK, C. 1995. The elevational gradient of species richness: a uniform pattern?              |
| 8  | <i>Ecography</i> 18(2):200-205.                                                                |
| 9  | REVES CHÁVEZ I EARIOLA R & VEGA H 2018 Actualización taxonómica de las                         |
| 10 | KETES-CITAVEZ, J., FADIOLA, K. & VEOA, II. 2018. Actualization taxonomica de las               |
| 10 | pteridofitas y licofitas (helechos) del Parque Nacional Montaña de Celaque, Honduras.          |
| 11 | <i>Revista Rosalia</i> 1(5):26-35.                                                             |
| 12 | RICHARDS P & EVANS G 1972 Biological flora of the British Isles: Hymenophyllum                 |
| 13 | Internal of Foology                                                                            |
| 14 | Journal of Ecology.                                                                            |
| 15 | RICHARDS, P. W. 1952. The Tropical Rain Forest: An Ecological Study (2 edition).               |
| 16 | Cambridge University Press.                                                                    |
| 17 | ROGORA M FRATE L CARRANZA M L FREPPAZ M STANISCI A                                             |
| 18 | DEDTANI I DOTTADIN D DDAMDULA A CANULLO D CADDOCNANI M                                         |
| 19 | DERTANI, I., DUTTARIN, K., DRAMDILLA, A., CANULLU, K., CARDUUNANI, M.,                         |
| 20 | CERRATO, C., CHELLI, S., CREMONESE, E., CUTINI, M., DI MUSCIANO, M.,                           |
| 20 | ERSCHBAMER, B., GODONE, D., IOCCHI, M., ISABELLON, M., MAGNANI, A.,                            |
| 21 | MAZZOLA L MORRA DI CELLA U PAULI H PETEY M PETRICCIONE B                                       |
| 22 | DODDO E DSENNED D DOSSETTI O SCOTTI A SOMMADUCA D                                              |
| 23 | FURNU, F., FSEINNER, K., NUSSETTI, U., SUUTIT, A., SUWIWARUUA, K.,                             |
| 24 | TAPPEINER, U., THEURILLAT, J. P., TOMASELLI, M., VIGLIETTI, D., VITERBI, R.,                   |
| 25 | VITTOZ, P., WINKLER, M. & MATTEUCCI, G. 2018. Assessment of climate change                     |
| 26 | effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines         |
| 27 | Science of the Total Environment 624:1420 1442                                                 |
| 28 |                                                                                                |
| 29 | ROJAS-ALVARADO, A. F. 2003. New taxa, new records and redefined concepts in the                |
| 30 | Elaphoglossum sect. Elaphoglossum subsec. Pachyglossa (Lomariopsidaceae) from Mexico           |
| 31 | and Central America Revista de Biologia Tropical 51(1):1-32                                    |
| 32 | ROIAS ALVARADO A E 2012 Nuevos registros de liconodios (Lyconodionhyte) y                      |
| 32 | KOJAS-ALVAKADO, A. F. 2012. Nucvos registros de incopodios (Lycopodiophyta) y                  |
| 27 | helechos (Pteridophyta) para Honduras y el Parque Nacional Montanas de Celaque. <i>Revista</i> |
| 24 | Biodiversidad Neotropical 2(2):83-92.                                                          |
| 35 | ROJAS-ALVARADO, A. F. 2017. Three new species of ferns (Pteridophyta) from                     |
| 36 | Mesoamerica American Journal of Plant Sciences 8(6):1329-1338                                  |
| 37 | CALT IL DADIECE M. CHIADUCCI A. & NACCIMPENE I 2021 Networks of                                |
| 38 | SAIZ, H., DAINESE, M., CHIARUCCI, A. & NASCIMBENE, J. 2021. Networks of                        |
| 39 | epiphytic lichens and host trees along elevation gradients: Climate change implications in     |
| 40 | mountain ranges. Journal of Ecology 109(3):1122-1132.                                          |
| 41 | SÁNCHEZ-GONZÁLEZ A ZÚŇIGA E Á & TEIERO-DÍEZ I D 2010 Richness and                              |
| 42 | SANCHEZ-OONZAELZ, A., ZONIOA, E. A. & TEJERO-DIEZ, J. D. 2010. Kieliness and                   |
| 43 | distribution patterns of terns and lycopods in Los Marmoles National Park, Hidaigo, Mexico.    |
| 44 | <i>The Journal of the Torrey Botanical Society</i> 137(4):373-379.                             |
| 45 | SMITH, P., PRICE, J., MOLOTOKS, A., WARREN, R. & MALHI, Y. 2018. Impacts on                    |
| 45 | terrestrial biodiversity of moving from a 2 C to a 1 5 C target Philosophical Transactions of  |
| 40 | the Devel Sector A. Mathematical Dhusical and Environment Sciences 27((2)10)-201(045(          |
| 4/ | the Royal Society A: Mathematical, Physical and Engineering Sciences 3/6(2119):20160456.       |
| 48 | SONG, L., LIU, WY. & NADKARNI, N. M. 2012. Response of non-vascular epiphytes to               |
| 49 | simulated climate change in a montane moist evergreen broad-leaved forest in southwest         |
| 50 | China Riological Conservation 152.127-135                                                      |
| 51 | COUTIWODTH I NACENDDA II CADIGON I A 9-THOUED C 2004 A                                         |
| 52 | SUUINWUKIN, J., NAGENDKA, H., CAKLSON, L. A. & IUCKEK, C. 2004. Assessing                      |
| 53 | the impact of Celaque National Park on forest fragmentation in western Honduras. Applied       |
| 54 | <i>Geography</i> 24(4):303-322.                                                                |
| 55 | STILL C I FOSTER P N & SCHNEIDER S H 1999 Simulating the effects of climate                    |
| 56 | shange on transfel montane aloud forests. Nature 200(6720): 600 (10                            |
| 57 | change on nopical montane cloud forests. <i>Nature</i> 598(0/28):008-010.                      |
| 50 | STROUD, J. T. & FEELEY, K. J. 2017. Neglect of the tropics is widespread in ecology and        |
| 50 | evolution: A comment on Clarke et al. Trends in ecology & evolution 32(9):626-628.             |
| 27 |                                                                                                |
| 60 |                                                                                                |

| 2        |  |   |
|----------|--|---|
| 3        |  | v |
| 4        |  | , |
| 5        |  | 4 |
| 6        |  | ľ |
| 7        |  |   |
| 8        |  | ľ |
| 9        |  | J |
| 10       |  | V |
| 11       |  | 2 |
| 12       |  | 1 |
| 12       |  | V |
| 15       |  | ( |
| 16       |  | t |
| 17       |  | V |
| 18       |  | 2 |
| 19       |  | 5 |
| 20       |  | 5 |
| 21       |  |   |
| 22       |  | 1 |
| 23       |  | e |
| 24       |  | 2 |
| 25       |  | 1 |
| 20       |  | ( |
| 28       |  | 2 |
| 29       |  | ŀ |
| 30       |  | 2 |
| 31       |  | ľ |
| 32       |  | 1 |
| 33       |  |   |
| 34       |  |   |
| 35       |  |   |
| 36       |  |   |
| 3/<br>20 |  |   |
| 20       |  |   |
| 40       |  |   |
| 41       |  |   |
| 42       |  |   |
| 43       |  |   |
| 44       |  |   |
| 45       |  |   |
| 46       |  |   |
| 47       |  |   |
| 48       |  |   |
| 49<br>50 |  |   |
| 50       |  |   |
| 52       |  |   |
| 53       |  |   |
| 54       |  |   |
|          |  |   |

WARREN, R., PRICE, J., GRAHAM, E., FORSTENHAEUSLER, N. & VANDERWAL, J. 2018. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 C rather than 2 C. *Science* 360(6390):791-795.
WATKINS, J. E., CATHERINE, C., COLWELL, R. K. & MORAN, R. C. 2006. Species richness and distribution of ferns along an elevational gradient in Costa Rica. *American Journal of Botany* 93(1):73-83.
WINKLER, M., HÜLBER, K. & HIETZ, P. 2005. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. *Annals of Botany* 95(6):1039-1047.
WOLF, A., ZIMMERMAN, N. B., ANDEREGG, W. R. L., BUSBY, P. E. & CHRISTENSEN, J. 2016. Altitudinal shifts of the native and introduced flora of California in

the context of 20th-century warming. *Global Ecology and Biogeography* 25(4):418-429. WOLF, J. H. D. 1993. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the Northern Andes. *Annals of the Missouri Botanical Garden* 80(4):928-960.

ZHOU, Y., OCHOLA, A. C., NJOGU, A. W., BORU, B. H., MWACHALA, G., HU, G., XIN, H. & WANG, Q. 2019. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport's rule depend on different life-forms and phytogeographic affinities. *Ecology and Evolution* 9(8):4495-4503.

ZOTZ, G. & BADER, M. 2009. Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes. Pp. 147-170. Progress in Botany. Springer.

ZOTZ, G. & HIETZ, P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. *Journal of Experimental Botany* 52(364):2067-2078.

ZOTZ, G., HIETZ, P. & SCHMIDT, G. 2001. Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. *Journal of Experimental Botany* 52(363):2051-2056.

Table 1. Random/mixed-effects meta-regression model results for the best fit models, where
NMS axis 1 and 2 and Simpson diversity was modelled as a response variable for different
explanatory variables. AIC was used to select the best fit model for each response variable.

| Response          | Explanatory         |          | Std.   | t-    |         |
|-------------------|---------------------|----------|--------|-------|---------|
| variable          | variables           | Estimate | Error  | value | p-value |
| Axis 1 (AIC=8.69) | Altitude            | 0.0017   | 0.0001 | 16.18 | < 0.01  |
|                   | Bryophyte cover     | 0.0069   | 0.0017 | 3.95  | < 0.01  |
|                   | Percentage cover (- |          |        |       |         |
|                   | 10)                 | -0.0021  | 0.0018 | -1.16 | ns      |
|                   | Precipitation       | 0.0014   | 0.0006 | 2.24  | < 0.05  |
| Axis 2            | Bryonhyte cover     |          |        |       |         |
| (AIC=115.86)      | Bryophyte cover     | -0.0081  | 0.0029 | -2.80 | < 0.01  |
|                   | Rock cover          | -0.0060  | 0.0031 | -1.96 | ns      |
|                   | Percentage cover (- |          |        |       |         |
|                   | 10)                 | -0.0052  | 0.0034 | -1.52 | ns      |
|                   | Precipitation       | -0.0023  | 0.0010 | -2.33 | < 0.05  |
| Simpson           |                     |          |        |       |         |
| epiphytes         | Bryophyte cover     |          |        |       |         |
| (AIC=117.22)      |                     | 0.0157   | 0.0035 | 4.46  | < 0.01  |
|                   | Percentage cover (- |          |        |       |         |
|                   | 10)                 | -0.0064  | 0.0037 | -1.74 | ns      |
|                   | Temperature         | -0.0753  | 0.0311 | -2.42 | < 0.05  |
|                   |                     |          |        |       |         |

| Simpson           terrestrial         Bryophyte cover           (AIC=111.59)         0.0058         0.0030         1.91         ns           Canopy height         -0.0105         0.0082         -1.28         ns           Percentage cover         0.0063         0.0038         1.69         ns           Inclination         0.0076         0.0047         1.63         ns           Precipitation         0.0034         0.0010         3.52         <0.01           4         5         6         7         7         7           9         0         7         7         7         7         7           10         0.0010         3.52         <0.01         1         7           11         0.0010         3.52         <0.01         1         7           12         0.01         0.01         1.01         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |              |                  |         |        |       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|------------------|---------|--------|-------|--------|
| terrestrial       Bryophyte cover       0.0058       0.0030       1.91       ns         (AIC=111.59)       Canopy height       -0.0105       0.0082       -1.28       ns         Percentage cover       0.0063       0.0038       1.69       ns         Inclination       0.0076       0.0047       1.63       ns         Precipitation       0.0034       0.0010       3.52       <0.01         Precipitation       Precipitation       V       V       V       V         Precipitation       Precipitation       Precipitation       V       V       V       V         Precipitation       Precipitation       Precipitation       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Simpson      |                  |         |        |       |        |
| (AIC=111.59)       0.0058       0.0030       1.91       ns         Canopy height       -0.0105       0.0082       -1.28       ns         Percentage cover       0.0063       0.0038       1.69       ns         Inclination       0.0076       0.0047       1.63       ns         Precipitation       0.0034       0.0010       3.52       <0.01         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | terrestrial  | Bryophyte cover  |         |        |       |        |
| Canopy height -0.0105 0.0082 -1.28 ns<br>Percentage cover 0.0063 0.0038 1.69 ns<br>Inclination 0.0076 0.0047 1.63 ns<br>Precipitation 0.0034 0.0010 3.52 <0.01<br>Precipitation 0.0034 0.0010 3.52 *0.01<br>Canopy height 0.0034 0.0010 1.52 *0.01<br>Precipitation 0.0010 1.52 * |    | (AIC=111.59) |                  | 0.0058  | 0.0030 | 1.91  | ns     |
| Percentage cover       0.0063       0.0038       1.69       ns         Inclination       0.0076       0.0047       1.63       ns         Precipitation       0.0034       0.0010       3.52       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |              | Canopy height    | -0.0105 | 0.0082 | -1.28 | ns     |
| Inclination       0.0076       0.0047       1.63       ns         Precipitation       0.0034       0.0010       3.52       <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |              | Percentage cover | 0.0063  | 0.0038 | 1.69  | ns     |
| Precipitation 0.0034 0.0010 3.52 <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |              | Inclination      | 0.0076  | 0.0047 | 1.63  | ns     |
| 4       5       6       7       8       9       10       11       12       13       14       15       16       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |              | Precipitation    | 0.0034  | 0.0010 | 3.52  | < 0.01 |
| 5         6         7         8         9         10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4  |              |                  |         |        |       |        |
| 6         7         8         9         10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  |              |                  |         |        |       |        |
| 0         7         8         9         10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  |              |                  |         |        |       |        |
| 7         8         9         10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U  |              |                  |         |        |       |        |
| 8       9         10       10         11       10         12       13         13       14         15       16         16       11         17       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7  |              |                  |         |        |       |        |
| 9         10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8  |              |                  |         |        |       |        |
| 10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9  |              |                  |         |        |       |        |
| 10         11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _  |              |                  |         |        |       |        |
| 11         12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 |              |                  |         |        |       |        |
| 12         13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 |              |                  |         |        |       |        |
| 13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 |              |                  |         |        |       |        |
| 13         14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |              |                  |         |        |       |        |
| 14         15         16         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 |              |                  |         |        |       |        |
| 15<br>16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14 |              |                  |         |        |       |        |
| 16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 |              |                  |         |        |       |        |
| 16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |              |                  |         |        |       |        |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 |              |                  |         |        |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 |              |                  |         |        |       |        |

**Table 2.** Number of species per life-forms for each year and climate change scenario that are

19 likely to loss part or all of their range.

| Range |             |        |        |        |        |
|-------|-------------|--------|--------|--------|--------|
| lost  | Life-form   | 2050   |        | 2100   |        |
|       |             | RCP2.6 | RCP8.5 | RCP2.6 | RCP8.5 |
| None  | Epiphyte    | 37     | 37     | 29     | 23     |
|       | Terrestrial | 60     | 61     | 54     | 40     |
|       | Sub-total   | 97     | 98     | 83     | 63     |
| Some  | Epiphyte    | 37     | 37     | 31     | 35     |
|       | Terrestrial | 19     | 18     | 19     | 31     |
|       | Sub-total   | 56     | 55     | 50     | 66     |
| All   | Epiphyte    | 4      | 4      | 18     | 20     |
|       | Terrestrial | 3      | 3      | 9      | 11     |
|       | Sub-total   | 7      | 7      | 27     | 31     |
|       | Total       | 160    | 160    | 160    | 160    |
|       |             |        |        |        | Z      |
|       |             |        |        |        |        |
|       |             |        |        |        |        |
|       |             |        |        |        |        |
|       |             |        |        |        |        |
|       |             |        |        |        |        |

Figure 1. Digital elevation model (DEM) of Celaque National Park. Points show the sample
locations (n=80).

Figure 2. Plot species richness along an altitudinal gradient in Celaque National Park, Honduras (A). Spline regression was fitted with a series of polynomial segments. The mean (solid lines) and standard error (grey shading) are shown only for visualisation purposes. Multidimensional scaling of the community composition data (all life-forms) was used to identify community similarities between altitudinal plots (n=80) (B). Panel B shows a 2dimensional ordination of axis 1 and 2 with individual plots highlighted by different colours based on their altitude (blue to red = low to high altitude).

**Figure 3.** Relative model-averaged importance of terms calculated using a random/mixedeffects meta-regression model for NMS axis 1 (A), axis 2 (B) and Simpson epiphyte (C) and terrestrial diversity (D). The importance for a predictor is equal to the sum of the weights for the models in which the variable appears. The vertical red line is drawn at 0.8 and denotes the cutoff to differentiate between important and less important variables. The model results that are shown for each of the first three variable terms, are the best-fit models following AIC selection. The plus and minus symbols denote the direction of the relationships.

#### Journal Of Tropical Ecology

Figure 4. Mean annual temperature (A) and precipitation (B) for the 80 sample locations at
Celaque National Park, Honduras. Current mean annual temperature and precipitation was
extracted from Karger *et al.* (2017). Climate projections of western Honduras for the years
2050 and 2100 were extracted from IPCC (2014). Current = blue dots; RCP2.6 for 2050 =
green triangles; RCP2.6 for 2100 = yellow squares; RCP8.5 for 2050 = orange pluses; RCP2.6
for 2050 = grey squares with a diagonal cross.

Figure 5. Current and projected species altitudinal ranges for RCP2.4 and 8.5 for the year 2050 and 2100, separated between epiphytic (A) and terrestrial species (B). Each horizontal line represents a single species. For visualization purposes, the species names are not shown on the y-axis for panel A and B. The vertical dashed line shows the maximum altitude of the mountain. Panel (C) shows the density distribution of the percentage altitudinal range lost for each scenario and year, weighted by the number of species. Current = blue; RCP2.6 for 2050 = green; RCP2.6 for 2100 = yellow; RCP8.5 for 2050 = orange; RCP2.6 for 2050 = grey.



Figure 1. Digital elevation model (DEM) of Celaque National Park. Points show the sample locations (n=80).

112x70mm (300 x 300 DPI)



Figure 2. Plot species richness along an altitudinal gradient in Celaque National Park, Honduras (A). Spine regression was fitted with a series of polynomial segments. The mean (solid lines) and standard error (grey shading) are shown only for visualisation purposes. Multidimensional scaling of the community composition data (all life-forms) was used to identify community similarities between altitudinal plots (n=80) (B). Panel B shows a 2-dimensional ordination of axis 1 and 2 with individual plots highlighted by different colours based on their altitude (blue to red = low to high altitude).

254x262mm (300 x 300 DPI)

Best fit: t=-1.52, p>0.05

Best fit: t=-2.34, p<0.05

Best fit: t=-2.8, p<0.01

0.2

Best fit: t=3.52, p<0.01

Best fit: t=1.91, p>0.05

Best fit: t=-1.28, p>0.05

0.4

0.6

0.8

1.0

0.0

0.0

0.2

0.4

0.6

0.8

1.0

D



Cambridge University Press

59 60



Figure 4. Mean annual temperature (A) and precipitation (B) for the 80 sample locations at Celaque National Park, Honduras. Current mean annual temperature and precipitation was extracted from Karger et al. (2017). Climate projections of western Honduras for the years 2050 and 2100 were extracted from IPCC (2014). Current = blue dots; RCP2.6 for 2050 = green triangles; RCP2.6 for 2100 = yellow squares; RCP8.5 for 2050 = orange pluses; RCP2.6 for 2050 = grey squares with a diagonal cross.

296x194mm (300 x 300 DPI)

**C** 

Total no. species

Current
 RCP2.6\_2050
 RCP2.6\_2100
 RCP8.5\_2050

— RCP8.5\_2100

Elevation range lost (%)



**Cambridge University Press** 

# Supplementary material

**Supplementary Table 1.** Species list of ferns and lycophytes from Celaque National Park. Columns summarize the percentage of range lost for each species based on IPCC predictions for the year 2050 and 2100 (RCP2.6 and 8.5 scenarios).

| Species                                                                                                | 2050   |        | 2100   |        |
|--------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|
|                                                                                                        | RCP2.6 | RCP8.5 | RCP2.6 | RCP8.5 |
| Adiantum andicola Liebm.                                                                               | 0      | 0      | 10     | 31     |
| Adiantum concinnum Humb. & Bonpl. ex                                                                   |        |        |        |        |
| Willd.                                                                                                 | 0      | 0      | 0      | 0      |
| <i>Adiantum feei</i> T. Moore ex Fée<br><i>Alansmia cultrate</i> (Willd.) Moguel & M.                  | 18     | 13     | 38     | 56     |
| Kessler                                                                                                | 0      | 0      | 0      | 0      |
| <i>Amauropelta pilosohispida</i> (Hook.) A.R. Sm.<br><i>Amauropelta pilosula</i> (Klotzsch & H. Karst. | 17     | 11     | 41     | 62     |
| ex Mett.) Á. Löve & D. Löve                                                                            | 0      | 0      | 0      | 0      |
| Amauropelta resinifera (Desv.) Pic. Serm. 🍼                                                            | 19     | 15     | 34     | 49     |
| Anemia karwinskyana (C. Presl) Prantl                                                                  | 19     | 15     | 34     | 48     |
| Anemia phyllitidis (L.) Sw.                                                                            | 0      | 0      | 0      | 0      |
| Arachniodes denticulate (Sw.) Ching<br>Ascogrammitis anfractuosa (Kunze ex                             | 0      | 0      | 0      | 0      |
| Klotzsch) Sundue                                                                                       | 0      | 0      | 0      | 0      |
| Asplenium abscissum Willd.                                                                             | 100    | 100    | 100    | 100    |
| Asplenium achilleifolium (M. Martens &                                                                 |        |        |        |        |
| Galeotti) Liebm.                                                                                       | 100    | 100    | 100    | 100    |
| Asplenium auriculatum (Thunb.) Kuhn                                                                    | 0      | 0      | 0      | 0      |
| Asplenium auritum Sw.                                                                                  | 19     | 15     | 34     | 48     |
| Asplenium blepharophorum Bertol.                                                                       | 0      | 0      | 0      | 10     |
| Asplenium fragrans Sw.                                                                                 | 100    | 100    | 100    | 100    |
| Asplenium harpeodes Kunze                                                                              | 0      | 0      | 0      | 0      |
| Asplenium miradorense Liebm.                                                                           | 0      | 0      | 0      | 0      |
| Asplenium monanthes L.                                                                                 | 82     | 65     | 100    | 100    |
| Asplenium praemorsum Sw.                                                                               | 0      | 0      | 0      | 0      |
| Asplenium pumilum Sw.                                                                                  | 16     | 12     | 32     | 47     |
| Asplenium radicans L.                                                                                  | 0      | 0      | 0      | 0      |
| Asplenium serra Langsd. & Fisch.                                                                       | 0      | 0      | 0      | 0      |
|                                                                                                        |        |        |        |        |

58 59

| 2        |                                             |           |     |                      |             |
|----------|---------------------------------------------|-----------|-----|----------------------|-------------|
| 3        | Asplenium uniseriale Raddi                  | 34        | 26  | 64                   | 92          |
| 4        | Asplenium sp. 1                             | 0         | 0   | 0                    | 5           |
| 6        | Austroblechnum lherminieri (Bory) Gasper &  | -         | -   | -                    | -           |
| 7        | V.A.O. Dittrich                             | 0         | 0   | 0                    | 0           |
| 8        | Austroblechnum stoloniferum (Mett. ex E.    |           |     |                      |             |
| 9        | Fourn.) Gasper & V.A.O. Dittrich            | 0         | 0   | 0                    | 0           |
| 10       | Blechnum appendiculatum Willd.              | 13        | 9   | 26                   | 38          |
| 12       | Blechnum falciforme (Liebm) C. Chr          | 19        | 15  | 34                   | 48          |
| 13       | Blechnum glandulosum Kaulf ex Link          | 82        | 64  | 100                  | 100         |
| 14       | Blochnum geuidentale I                      | 02        | 0   | 0                    | 100         |
| 15       | Diechnum Occidentale L.                     | 0         | 0   | 0                    | 0           |
| 16<br>17 | Blechnum polypoalolaes Raddi                | 0         | 0   | 0                    | 0           |
| 17       | Blechnum sp. 1                              | 0         | 0   | 0                    | 0           |
| 19       | Blechnum sp. 2                              | 11        | 2   | 46                   | 80          |
| 20       | Botrypus virginianus (L.) Michx.            | 0         | 0   | 39                   | 77          |
| 21       | Campyloneurum amphostenon (Kunze ex         |           |     |                      |             |
| 22       | Klotzsch) Fée                               | 44        | 34  | 80                   | 100         |
| 23       | Campyloneurum angustifolium (Sw.) Fée       | 0         | 0   | 0                    | 16          |
| 25       | Campyloneurum tenuipes Maxon                | 0         | 0   | 0                    | 0           |
| 26       | Campyloneurum xalapense Fée                 | 0         | 0   | 16                   | 35          |
| 27       | Ceradenia oidiophora (Mickel & Beitel) A.R. |           |     |                      |             |
| 28<br>29 | Sm.                                         | 0         | 0   | 0                    | 36          |
| 30       | Cibotium regale Verschaff. & Lem.           | 82        | 65  | 100                  | 100         |
| 31       | Cochlidium rostratum (Hook.) Maxon ex C.    |           |     |                      |             |
| 32       | Chr.                                        | 13        | 9   | 26                   | 38          |
| 33       | Cochlidium serrulatum (Sw.) L.E. Bishop     | 0         | 0   | 0                    | 0           |
| 34<br>35 | Ctenitis equestris (Kunze) Ching            | 100       | 100 | 100                  | 100         |
| 36       | Ctenitis grisebachii (Baker) Ching          | 0         | 0   | 0                    | 0           |
| 37       | Ctenitis hemslevana (Baker) Copel           | 0         | 0   | 0                    | 0           |
| 38       | Ctenitis leonii A Rojas                     | 82        | 65  | 100                  | 100         |
| 39       | Ctanitis malanosticta (Kunze) Conel         | 0         | 0   | 8                    | 25          |
| 40       | Ctenitis metanosticia (Kunze) coper.        | 0         | 0   | 14                   | 20          |
| 42       | Culaita conjifalia (Hock) Mayon             | 24        | 27  | 1 <del>4</del><br>60 | 00          |
| 43       |                                             | 54<br>1.C | 12  | 02                   | 00          |
| 44       | <i>Cyathea bicrenate</i> Liebm.             | 16        | 12  | 30                   | 43          |
| 45<br>46 | Cyathea sp. 1                               | 0         | 0   | 0                    | 0           |
| 47       | Cyclosorus sp. 1                            | 19        | 15  | 34                   | 49          |
| 48       | Cystopteris fragilis (L.) Bernh.            | 11        | 7   | 24                   | 37          |
| 49       | Dennstaedtia globulifera (Poir.) Hieron.    | 0         | 0   | 0                    | 0           |
| 50       | Dicksonia navarrensis Christ                | 31        | 24  | 57                   | 81          |
| 52       | Didymoglossum reptans (Sw.) C. Presl        | 56        | 44  | 100                  | 100         |
| 53       | Diplazium cristatum (Desr.) Alston          | 0         | 0   | 0                    | 0           |
| 54       | Diplazium franconis Liebm                   | 0<br>0    | 0   | 18                   | 36          |
| 55       | Dinlazium lindhergii (Mett.) Christ         | 14        | 11  | 20                   | <u>⊿</u> 3  |
| 56<br>57 |                                             | 14        | 11  | <i>L</i> J           | <b>-+</b> J |
| 7        |                                             |           |     |                      |             |

| Diplazium sp. 1                                                                                      | 0   | 0   | 0   | 0   |
|------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| Diplazium werckleanum Christ                                                                         | 0   | 0   | 0   | 0   |
| Dryopteris nubigena Maxon & C.V. Morton<br>Dryopteris wallichiana yar wallichiana                    | 0   | 0   | 0   | 48  |
| (Spreng.) Hyl.<br><i>Flanhoglossum guatemalense</i> (Klotzsch) T                                     | 0   | 0   | 0   | 0   |
| Moore                                                                                                | 0   | 0   | 0   | 0   |
| Elaphoglossum lanceum Mickel                                                                         | 0   | 0   | 0   | 0   |
| Elaphoglossum latifolium (Sw.) J. Sm.<br>Elaphoglossum lonchophyllum (Fée) T                         | 0   | 0   | 0   | 100 |
| Moore<br>Elaphoglossum mexicanum (E. Fourn.) A.                                                      | 0   | 0   | 0   | 0   |
| Rojas                                                                                                | 0   | 0   | 0   | 8   |
| Elaphoglossum muscosum (Sw.) T. Moore<br>Elaphoglossum paleaceum (Hook. & Grev.)                     | 0   | 0   | 0   | 0   |
| Sledge                                                                                               | 86  | 62  | 100 | 100 |
| Elaphoglossum peltatum (Sw.) Urb.                                                                    | 0   | 0   | 0   | 0   |
| Elaphoglossum sartorii (Liebm.) Mickel                                                               | 0   | 0   | 100 | 100 |
| Elaphoglossum setigerum (Sodiro) Diels                                                               | 15  | 11  | 30  | 44  |
| Elaphoglossum sp. 1                                                                                  | 0   | 0   | 0   | 16  |
| Elaphoglossum sp. 2                                                                                  | 94  | 61  | 100 | 100 |
| Elaphoglossum sp. 3                                                                                  | 0   | 0   | 0   | 0   |
| Elaphoglossum sp. 4                                                                                  | 0   | 0   | 0   | 2   |
| Elaphoglossum squamipes (Hook.) T. Moore                                                             | 0   | 0   | 0   | 0   |
| Elaphoglossum succubus Mickel                                                                        | 9   | 4   | 27  | 44  |
| <i>Equisetum myriochaetum</i> Schltdl. & Cham.<br><i>Gaga angustifolia</i> (Kunth) Fay W. Li &       | 0   | 0   | 22  | 46  |
| Windham<br>Goniopteris nicaraguensis (E. Fourn.) Salino                                              | 0   | 0   | 0   | 0   |
| & T.E. Almeida                                                                                       | 32  | 25  | 59  | 84  |
| Histiopteris incisa (Thunb.) J. Sm.                                                                  | 19  | 14  | 39  | 58  |
| Hymenophyllum crassipetiolatum Stolze                                                                | 0   | 0   | 0   | 9   |
| Hymenophyllum crispum Kunth                                                                          | 0   | 0   | 0   | 0   |
| Hymenophyllum fucoides (Sw.) Sw.                                                                     | 79  | 59  | 100 | 100 |
| Hymenophyllum myriocarpum Hook.                                                                      | 0   | 0   | 0   | 0   |
| Hymenophyllum polyanthos (Sw.) Sw.                                                                   | 87  | 69  | 100 | 100 |
| <i>Hymenophyllum pulchellum</i> Schltdl. & Cham.<br><i>Hymenophyllum tegularis</i> (Desv.) Proctor & | 100 | 100 | 100 | 100 |
| Lourteig                                                                                             | 38  | 18  | 100 | 100 |
| Hymenophyllum trapezoidale Liebm.                                                                    | 0   | 0   | 0   | 0   |
| Jamesonia flexuosa (Kunth) Christenh.<br>Lomaridium ensiforme (Liebm.) Gasper &                      | 0   | 0   | 0   | 19  |
| V.A.O. Dittrich                                                                                      | 0   | 0   | 4   | 26  |

| 4       Chr.       0       0       0       0         6       Marctia interposita Christ       0       0       0       0         7       Maratia interposita Christ       0       0       0       0         8       Rect Moran       0       0       0       0       0         9       R.C. Moran       0       0       0       0       0         11       Melpomene moniliformis (Lag. ex Sw.) A.R.       3       0       0       0       0       0       0       0         12       Sm. & R.C. Moran       0       0       0       0       0       0       0         13       Melpomene xiphopieroides (Liebm.) A.R.       3       0       0       0       0       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0       0       0       0       0         15       Moratia interposita Christ semihirsuta (Klotzsch) Sundue       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3        | Lophosoria quadripinnata (J.F. Gmel.) C.     |     |     |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|-----|-----|-----|-----|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        | Chr.                                         | 0   | 0   | 0   | 0   |
| 7       Marattia interposita Christ       0       0       0       0         8       Megalastrum subincisum (Wild.) A.R. Sm. &       0       0       0       0         9       R.C. Moran       0       0       0       0       0         12       Sm. & R.C. Moran       66       32       100       100         13       Melpomene xiphopteroides (Liebm.) A.R.       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0         15       Moranopteris basiattenuata (Jenman)       100       100       100       100         16       Nycopteris semihirsuta (Klotzsch) Sundue       0       0       0       26         17       Niphidium crassifolium (L.) Lellinger       16       12       30       43         20       Osmunda regalis L.       95       69       100       100         22       Osmunda regalis L.       99       72       100       100         23       Pecluma alfredit (Rosenst.) M.G. Price       0       0       0       0         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6        | Macrothelypteris torresiana (Gaudich.) Ching | 0   | 0   | 0   | 17  |
| 8       Megalastrum subincisum (Willd.) A.R. Sm. &         9       R.C. Moran       0       0       0       0         11       Melpomen enniliformis (Lag. ex Sw.) A.R.       100       100         12       Sm. & R.C. Moran       66       32       100       100         13       Melpomene xiphopteroides (Liebm.) A.R.       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0       0         15       Moranopteris basiattenuata (Jenman)       100       100       100       100       100         16       R.Y.Hirai & J.Prado       100       100       100       100       100         17       12       32       47       32       47         18       Michidum crassifolitum (L.) Lellinger       16       12       30       43         20       Munda regalis L.       95       69       100       100         21       Pecluma alfredii (Rosenst.) M.G. Price       0       0       38       77         23       Banpl. ex Willd.) J. Sm.       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7        | Marattia interposita Christ                  | 0   | 0   | 0   | 0   |
| 9       R.Č. Moran       0       0       0       0         11       Melpomene moniliformis (Lag, ex Sw.) A.R.       Sm. & R. C. Moran       66       32       100       100         12       Sm. & R. C. Moran       0       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0         15       Moranopteris basiatienuata (Jenman)       100       100       100       100       100         16       R.Y.Hirai & J.Prado       100       100       100       100       100         16       Mycopteris semithrisuta (Klotzsch) Sundue       0       0       0       26         17       12       32       47       30       43         20       Salinim (L.) Lellinger       16       12       30       43         21       Osmunda regalis L.       95       69       100       100         22       Osmunda regalis L.       Salino       82       65       100       100         22       Pachuma dulcis (Poir.) F.C. Assis & Salino       82       65       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8        | Megalastrum subincisum (Willd.) A.R. Sm. &   |     |     |     |     |
| Melpomene moniliformis (Lag. ex Sw.) A.R.         Sm. & R.C. Moran       66       32       100       100         Melpomene xiphopteroides (Liebm.) A.R.       Sm. & R.C. Moran       0       0       0         K.Y. Hirai & J.Prado       100       100       100       100       100         Mycopteris semihrissuta (Klotzsch) Sunduc       0       0       0       26         Nephrolepis cordifolia (L.) C. Presl       17       12       32       47         Niphidium crassifolium (L.) Lellinger       16       12       30       43         Osmunda regalis L.       95       69       100       100         Pecluma alfredii (Rosenst.) M.G. Price       0       0       0       0         Salino       82       65       100       100         Pecluma antartwegiana (Hook.) F.C. Assis & Salino       82       65       100       100         Phanerophlebia juglandifolia (Humb. &       0       0       0       0       0         Bonpl. ex Willd.) J. Sm.       0       0       0       0       0       0         Mildi.J. Sm.       0       0       0       0       0       0       0         Mildi.di J. Sm.       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9        | R.C. Moran                                   | 0   | 0   | 0   | 0   |
| 11       Sm. & R.C. Moran       66       32       100       100         13       Melpomen xiphopieroides (Licbm.) A.R.       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0         14       Sm. & R.C. Moran       0       0       0       0       0       0         15       Moranopteris basiattenuata (Jenman)       100       100       100       100       100       100       100         16       R.Y. Hirai & J.Prado       100       100       100       100       26         17       Niphidium crassifolium (L.) Lellinger       16       12       30       43         20       Salino       82       65       100       100         22       Osmunda regalis L.       95       69       100       100         23       Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         24       Pecluma hartwegiana (Hook.) F.C. Assis & Salino       99       72       100       100         25       Bonpl. ex       0       0       0       0       0       10         26       Bonpl. ex Wild.) J. Sm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10       | Melpomene moniliformis (Lag ex Sw) A R       | -   | -   | Ť   | · · |
| 12       Melpomene xiphopteroides (Liebm.) A.R.       100       100       100       100         14       Sm. & R.C. Moran       0       0       0       0         15       Moranopteris basiattenuata (Jenman)       100       100       100       100         16       R.Y.Hirai & JPrado       100       100       100       100       100         16       R.Y.Hirai & JPrado       100       100       100       0       22         17       12       32       47       32       47         18       Niphidium crassifolium (L.) Lellinger       16       12       30       43         22       Osmunda regalis L.       95       69       100       100         23       Pecluma alfredii (Rosenst.) M.G. Price       0       0       0       0         24       Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         24       Pecluma dulcis (Ioir.) J. Sm.       0       0       38       77         25       Bonpl. cx Willd.) J. Sm.       0       0       0       0       0         25       Bonpl. cx Willd.) J. Sm.       0       0       0       0       0 <t< td=""><td>11</td><td>Sm &amp; R C Moran</td><td>66</td><td>32</td><td>100</td><td>100</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11       | Sm & R C Moran                               | 66  | 32  | 100 | 100 |
| 14Sm. & R.C. Moran000015Moranopteris basiattenuata (Jenman)16R.Y. Hirai & J.Prado10010010010017R.Y. Hirai & J.Prado00002618Mycopteris semihirsuta (Klotzsch) Sundue00002619Nephrolepis cordifolia (L.) C. Presl1712324720Niphidium crassifolium (L.) Lellinger1612304321Osmunda regalis L.956910010022Pecluma difectii (Rosenst.) M.G. Price000023Pecluma dideis (Poir.) F.C. Assis & Salino826510010024Pecluma dudeis (Poir.) F.C. Assis & Salino826510010025Pecluma hartwegiana (Hook.) F.C. Assis &997210010026Phenerophlebia juglandifolia (Humb. &000027Bonpl. ex Willd.) J. Sm.000028Philepariturus prishites (Lam.) B. Øllg.000039Phlegmariturus pringlei (Underw. & F.E.000036Phlegmariturus pringlei (Underw. & F.E.10125376036Phlegmariturus saxifolius (Sw.) Å. Löve & D.125376036Pityrogramma tartarea (Cav.) Maxon125376037Löve19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12       | Melnomene xinhonteroides (Liebm) A R         | 00  |     | 100 | 100 |
| Image: Second | 13       | Sm & R C Moran                               | 0   | 0   | 0   | 0   |
| 16R.Y.Hira' & J.Prado10010010010010017Mycopteris semihirsuta (Klotzsch) Sundue0002618Mycopteris semihirsuta (Klotzsch) Sundue0002619Nephrolepis cordifolia (L., C. Presl1712324720Niphidium crassifolium (L.) Lellinger1612304321Osmunda regalis L.956910010022Pecluma alfredii (Rosenst.) M.G. Price000023Pecluma dulcis (Poir.) F.C. Assis & Salino826510010024Pecluma hartwegiana (Hook.) F.C. Assis &997210010025Pecluma hartwegiana (Hook.) F.C. Assis &997210010026Salino997210010010027Bonpl. ex Willd.) J. Sm.0000028Phaerophlebia juglandifolia (Humb. & Bonpl. ex000029Bonpl. ex Willd.) J. Sm.00001331Willd.) J. Sm.00001334Phlegmariurus myrsinites (Lam.) B. Øllg.000035Lloyd) B. Øllg.0001336Phlegmariurus taxifolius (Sw.) Á. Lövc & D.125376036Phlegmariurus taxifolius (Cav.) Maxon125376036<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15       | Moranopteris basiattenuata (Jenman)          | Ŭ   | Ū   | Ũ   | Ũ   |
| 171810010010010018Mycopteris semihirsuta (Klotzsch) Sundue00002619Nephrolepis cordifolia (L.) C. Presl1712324720Niphidium crassifolium (L.) Lellinger1612304321Osmunda regalis L.956910010022Pecluma alfredii (Rosenst.) M.G. Price000024Pecluma dulcis (Poir.) F.C. Assis & Salino826510010025Pecluma hartwegiana (Hook.) F.C. Assis & Salino997210010026Phanerophlebia juglandifolia (Humb. &<br>Bonpl. ex0000027Bonpl. exWilld.) J. Sm.0000028Phanerophlebia in grinites (Lam.) B. Øllg.0000029Phlegmariurus myrsinites (Lam.) B. Øllg.0000036Phlegmariurus taxifolius (Sw.) Á. Löve & D.125376037Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376039Pleopeltis alansmithii (R.C. Moran) A.R. Sm.3326618744Tejero79581001000345Pleopeltis indeniana (Kunze) A.R. Sm. & 3326618746Tejero533910010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16       | R V Hirai & I Prado                          | 100 | 100 | 100 | 100 |
| 18 <i>Nephrolepis cordifolia</i> (L.) C. Presl       17       12       32       47         20       Niphidium crassifolium (L.) Lellinger       16       12       30       43         21       Osmunda regalis L.       95       69       100       100         22       Pecluma alfredii (Rosenst.) M.G. Price       0       0       0       0         23       Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         24       Pecluma hartwegiana (Hook.) F.C. Assis &       99       72       100       100         25       Pecluma hartwegiana (Hook.) F.C. Assis &       99       72       100       100         26       Salino       99       72       100       100         26       Bonpl. ex Willd.) J. Sm.       0       0       0       0         27       Bonpl. ex Willd.) J. Sm.       0       0       0       0         31       Willd.) J. Sm.       0       0       0       0       0         33       Phlegmariurus pringlei (Underw. & F.E.       1       100       0       0       0         34       Phlegmariurus taxifolius (Sw.) Å. Löve & D.       12       5       37 <td< td=""><td>17</td><td>Musentaria semilirauta (Klotzach) Sundua</td><td>0</td><td>0</td><td>0</td><td>26</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17       | Musentaria semilirauta (Klotzach) Sundua     | 0   | 0   | 0   | 26  |
| 19       Nephrolepis corationa (L.) C. Presi       17       12       32       47         20       Niphidium crassifolium (L.) Lellinger       16       12       30       43         21       Osmunda regalis L.       95       69       100       100         22       Osmunda regalis L.       95       69       100       100         23       Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         24       Pecluma hartwegiana (Hook.) F.C. Assis &       38       77       30       100       100         26       Salino       99       72       100       100       100         27       Bonpl. ex Willd.) J. Sm.       0       0       38       77         30       Phlebodium areolatum (Humb. & Bonpl. ex       0       0       0       0         31       Willd.) J. Sm.       0       0       0       0       0         32       Phlegmariurus pringlei (Underw. & F.E.       10       10       0       0       0         33       Lloyd. B. Ollg.       0       0       0       0       33       11       41       47 ejero       79       58       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18       | Mycopieris seminirsuid (Klotzsch) Sundue     | 17  | 10  | 20  | 20  |
| 20       Niphidium crassifolium (L.) Lellinger       16       12       30       43         21       Osmunda regalis L.       95       69       100       100         23       Pecluma alfredii (Rosenst.) M.G. Price       0       0       0       0         24       Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         25       Pecluma hartwegiana (Hook.) F.C. Assis &       99       72       100       100         26       Salino       99       72       100       100         26       Bonpl. ex Willd.) J. Sm.       0       0       38       77         30       Phlebodium areolatum (Humb. & Bonpl. ex       0       0       0       0         31       Willd.) J. Sm.       0       0       0       0       0         33       Phlegmariurus pringlei (Underw. & F.E.       10       0       0       0       13         36       Phlegmariurus taxifolius (Sw.) Á. Löve & D.       12       5       37       60         36       Pitogramma tartarea (Cav.) Maxon       12       5       37       60         37       Löve       19       12       43       66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19       | Nephrolepis cordifolia (L.) C. Presi         | 1/  | 12  | 32  | 4/  |
| 21       Osmunda regalis L.       95       69       100       100         23       Pecluma alfredii (Rosenst.) M.G. Price       0       0       0       0         24       Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         25       Pecluma hartwegiana (Hook.) F.C. Assis &       99       72       100       100         26       Phanerophlebia juglandifolia (Humb. &       99       72       100       100         27       Bonpl. ex Willd.) J. Sm.       0       0       0       0         30       Phlebodium areolatum (Humb. & Bonpl. ex       0       0       0       0         31       Willd.) J. Sm.       0       0       0       0       0         32       Phlegmariurus myrsinites (Lam.) B. Øllg.       0       0       0       0         33       Lloyd) B. Øllg.       0       0       0       0       13         34       Lloyd B. Øllg.       0       0       0       13         35       Lloyd B. Øllg.       0       0       0       13         36       Pityrogramma tartarea (Cav.) Maxon       12       5       37       60         37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20       | Niphidium crassifolium (L.) Lellinger        | 16  | 12  | 30  | 43  |
| Pecluma alfredii (Rosenst.) M.G. Price       0       0       0         Pecluma dulcis (Poir.) F.C. Assis & Salino       82       65       100       100         Pecluma hartwegiana (Hook.) F.C. Assis &       99       72       100       100         Phanerophlebia juglandifolia (Humb. &       99       72       100       100         Phanerophlebia juglandifolia (Humb. &       99       72       100       100         Phanerophlebia juglandifolia (Humb. &       0       0       38       77         Bonpl. ex Willd.) J. Sm.       0       0       0       0         Phlebodium areolatum (Humb. & Bonpl. ex       0       0       0       0         Phelgmariurus myrsinites (Lam.) B. Øllg.       0       0       0       0         Phegmariurus myrsinites (Lam.) B. Øllg.       0       0       0       13         Phegmariurus taxifolius (Sw.) Á. Löve & D.       12       5       37       66         Phegmariurus taxifolius (Sw.) Á. Löve & D.       12       5       37       60         Pheopeltis alansmithii (R.C. Moran) A.R. Sm.       12       5       37       60         Pleopeltis angusta Humb. & Bonpl. ex Willd.       0       0       0       0         Pleopelti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21       | Osmunda regalis L.                           | 95  | 69  | 100 | 100 |
| 24Pecluma dulcis (Poir.) F.C. Assis & Salino826510010025Pecluma hartwegiana (Hook.) F.C. Assis &997210010026Salino997210010027Phanerophlebia juglandifolia (Humb. &997210010028Phanerophlebia juglandifolia (Humb. &00387730Phlebodium areolatum (Humb. & Bonpl. ex000031Willd.) J. Sm.000032Phlegmariurus myrsinites (Lam.) B. Øllg.000033Phlegmariurus taxifolius (Sw.) Á. Löve & D.12436634Phegmariurus taxifolius (Sw.) Á. Löve & D.125376036Pityrogramma tartarea (Cav.) Maxon125376039Pityrogramma tartarea (Cav.) Maxon125376041& Tejero795810010042Pleopeltis alansmithii (R.C. Moran) A.R. Sm.33910010043Pleopeltis angusta Humb. & Bonpl. ex Willd.000044Pleopeltis macrocarpa (Bory ex Willd.)733910010045Tejero0000046Tejero0000047Pleopeltis muenchii (Christ) A.R. Sm.3326618748Kaulf.0000 </td <td>23</td> <td>Pecluma alfredii (Rosenst.) M.G. Price</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23       | Pecluma alfredii (Rosenst.) M.G. Price       | 0   | 0   | 0   | 0   |
| 25Pechuma hariwegiana (Hook.) F.C. Assis &<br>Salino997210010026Panerophlebia juglandifolia (Humb. &<br>Phanerophlebia juglandifolia (Humb. &<br>Bonpl. ex Willd.) J. Sm.00387730Phlebodium areolatum (Humb. & Bonpl. ex<br>Willd.) J. Sm.0000031Willd.) J. Sm.0000032Phlegmariurus myrsinites (Lam.) B. Øllg.<br>Lloyd) B. Øllg.0000034Phlegmariurus myrsinites (Lam.) B. Øllg.<br>Lloyd) B. Øllg.0001335Lloyd) B. Øllg.00001336Phlegmariurus taxifolius (Sw.) Á. Löve & D.<br>Löve1912436637Löve19125376038Pityrogramma tartarea (Cav.) Maxon125376039Pleopeltis alansmithii (R.C. Moran) A.R. Sm.<br>&000341& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.00044Pleopeltis macrocarpa (Bory ex Willd.)10010045Tejero533910010046Tejero000047Pleopeltis muenchii (Christ) A.R. Sm.3326618748Kaulf.0000049Pleopeltis plebeian (Schltdl. & Cham.) A.R.53 </td <td>24</td> <td>Pecluma dulcis (Poir ) F C Assis &amp; Salino</td> <td>82</td> <td>65</td> <td>100</td> <td>100</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24       | Pecluma dulcis (Poir ) F C Assis & Salino    | 82  | 65  | 100 | 100 |
| 26Salino997210010027Salino997210010028Phanerophlebia juglandifolia (Humb. &<br>Bonpl. ex Willd.) J. Sm.00387730Phlebodium areolatum (Humb. & Bonpl. ex0000031Willd.) J. Sm.0000032Phlegmariurus myrsinites (Lam.) B. Øllg.0000033Phlegmariurus pringlei (Underw. & F.E.00001336Phlegmariurus taxifolius (Sw.) Á. Löve & D.125376037Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376039Pleopeltis alansmithii (R.C. Moran) A.R. Sm.000341& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.000343Pleopeltis lindeniana (Kunze) A.R. Sm. &3326618744Kaulf.0000045Pleopeltis muenchii (Christ) A.R. Sm.3326618746Peleopeltis plebeian (Schltdl. & Cham.) A.R.5599000539000000054Pleopeltis plebeian (Schltdl. & Cham.) A.R.555600056 <td< td=""><td>25</td><td>Pechuma hartwegiana (Hook) F C Assis &amp;</td><td>•=</td><td>00</td><td>100</td><td>100</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       | Pechuma hartwegiana (Hook) F C Assis &       | •=  | 00  | 100 | 100 |
| 27       Database $P_{12}$ $P_{10}$ $P_{10}$ 28       Phanerophlebia juglandifolia (Humb. & $O$ $O$ $O$ $O$ 29       Bonpl. ex Willd.) J. Sm. $O$ $O$ $O$ $O$ $O$ 30       Phlebodium areolatum (Humb. & Bonpl. ex $O$ $O$ $O$ $O$ 31       Willd.) J. Sm. $O$ $O$ $O$ $O$ $O$ 32       Phlegmariurus myrsinites (Lam.) B. Øllg. $O$ $O$ $O$ $O$ 33       Phlegmariurus pringlei (Underw. & F.E. $Iovd$ $O$ $O$ $O$ 34       Phlegmariurus taxifolius (Sw.) Á. Löve & D. $Iove$ $Iove$ $Iove$ $Iove$ 37       Löve $Igver$ $Iuver$ $Iuver$ $Iuver$ $Iuver$ $Iuver$ 36       Piteyrogramma tartarea (Cav.) Maxon $I2$ $5$ $37$ $60$ 37       Löve $Iuver$ $Iuver$ $Iuver$ $Iuver$ $Iuver$ 37       Löve $Iuver$ $Iuver$ $Iuver$ $Iuver$ $Iuver$ $Iu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26       | Salino                                       | 99  | 72  | 100 | 100 |
| 28       Infinite function function for the function of the function o                        | 27       | Phanerophlebia juglandifolia (Humb &         |     | 12  | 100 | 100 |
| 29Dop, ex. Will. J. Sh.0000030Phlebodium areolatum (Humb. & Bonpl. ex.000031Willd.) J. Sm.0000033Phlegmariurus myrsinites (Lam.) B. Øllg.000034Phlegmariurus pringlei (Underw. & F.E.0001335Lloyd) B. Øllg.0001336Phlegmariurus taxifolius (Sw.) Á. Löve & D.125376037Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376039Pleopeltis alansmithii (R.C. Moran) A.R. Sm.000341& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.000043Pleopeltis indeniana (Kunze) A.R. Sm. &533910010044Pleopeltis macrocarpa (Bory ex Willd.)441000045Tejero533910010046Tejero0000047Pleopeltis muenchii (Christ) A.R. Sm.3326618750Pleopeltis plebeian (Schltdl. & Cham.) A.R.55700051Pleopeltis sp. 100000556Polypodium fraternum Schltdl. & Cham.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28       | Bonnl ex Willd ) I Sm                        | 0   | 0   | 38  | 77  |
| 30Filebolium areonaum (Hull), et Bohpl, ex31Willd.) J. Sm.00032Phlegmariurus myrsinites (Lam.) B. Øllg.00034Phlegmariurus pringlei (Underw. & F.E.00035Lloyd) B. Øllg.0001336Phlegmariurus taxifolius (Sw.) Á. Löve & D.12436637Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376039Pleopeltis alansmithii (R.C. Moran) A.R. Sm.000341& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.000043Pleopeltis indeniana (Kunze) A.R. Sm. &533910010044Pleopeltis macrocarpa (Bory ex Willd.)000045Tejero533910010046Tejero000047Pleopeltis macrocarpa (Bory ex Willd.)10010048Kaulf.000051Sm. & Tejero000052Sm. & Tejero000053Pleopeltis sp. 1000054Polypodium fissidens Maxon000555Polypodium fraternum Schltdl. & Cham.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29       | Phlabodium graolatum (Humb & Bonnl ex        | Ū   | 0   | 50  | , , |
| 1Wind, J. Sin.000032Phlegmariurus myrsinites (Lam.) B. Øllg.<br>Phlegmariurus pringlei (Underw. & F.E.<br>Lloyd) B. Øllg.000036Phlegmariurus taxifolius (Sw.) Á. Löve & D.<br>T Löve1912436637Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376039Pityrogramma tartarea (Cav.) Maxon125376040Pleopeltis alansmithii (R.C. Moran) A.R. Sm.795810010041& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.000343Pleopeltis angusta Humb. & Bonpl. ex Willd.000044Pleopeltis indeniana (Kunze) A.R. Sm. &533910010045Tejero533910010046Tejero533910010047Pleopeltis macrocarpa (Bory ex Willd.)88848Kaulf.000049Pleopeltis plebeian (Schltdl. & Cham.) A.R.3326618751Sm. & Tejero0000052Polypodium fissidens Maxon00005656Polypodium fraternum Schltdl. & Cham.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31       | Willd ) I Sm                                 | 0   | 0   | 0   | 0   |
| 33Philegmariurus pringles (Lam.) B. Olig.000034Phlegmariurus pringlei (Underw. & F.E.35Lloyd) B. Øllg.0001336Phlegmariurus taxifolius (Sw.) Á. Löve & D.12436637Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376039Pleopeltis alansmithii (R.C. Moran) A.R. Sm.795810010041& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.000343Pleopeltis astrolepis (Liebm.) E. Fourn.000044Pleopeltis macrocarpa (Bory ex Willd.)533910010045Tejero533910010046Tejero0000047Pleopeltis muenchii (Christ) A.R. Sm.3326618750Pleopeltis plebeian (Schltdl. & Cham.) A.R.5153900053Pleopeltis sp. 10000054Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32       | Wind.) J. Sin.                               | 0   | 0   | 0   | 0   |
| 34Philegmariurus pringlei (Underw. & F.E.35Lloyd) B. Øllg.0001336Phlegmariurus taxifolius (Sw.) Á. Löve & D.1912436637Löve1912436638Pityrogramma tartarea (Cav.) Maxon125376040Pleopeltis alansmithii (R.C. Moran) A.R. Sm.125376041& Tejero795810010042Pleopeltis angusta Humb. & Bonpl. ex Willd.000343Pleopeltis astrolepis (Liebm.) E. Fourn.000044Pleopeltis lindeniana (Kunze) A.R. Sm. &533910010045Tejero533910010046Tejero0000047Pleopeltis macrocarpa (Bory ex Willd.)48Kaulf.000048Kaulf.000000050Pleopeltis plebeian (Schltdl. & Cham.) A.R.3326618751Sm. & Tejero00000053Pleopeltis sp. 10000054Polypodium fissidens Maxon00055656Polypodium fraternum Schltdl. & Cham.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33       | Phiegmariurus myrsinites (Lam.) B. Olig.     | 0   | 0   | 0   | 0   |
| 35Lloyd) B. Olig. $0$ $0$ $0$ $13$ $36$ Phlegmariurus taxifolius (Sw.) Á. Löve & D. $37$ Löve19 $12$ $43$ $66$ $38$ Pityrogramma tartarea (Cav.) Maxon12 $5$ $37$ $60$ $40$ Pleopeltis alansmithii (R.C. Moran) A.R. Sm. $12$ $5$ $37$ $60$ $41$ & Tejero $79$ $58$ $100$ $100$ $42$ Pleopeltis angusta Humb. & Bonpl. ex Willd. $0$ $0$ $0$ $3$ $43$ Pleopeltis lindeniana (Kunze) A.R. Sm. & $79$ $53$ $39$ $100$ $100$ $44$ Pleopeltis macrocarpa (Bory ex Willd.) $73$ $79$ $53$ $39$ $100$ $100$ $45$ Tejero $53$ $39$ $100$ $100$ $46$ Tejero $53$ $39$ $100$ $100$ $47$ Pleopeltis macrocarpa (Bory ex Willd.) $70$ $0$ $0$ $0$ $48$ Kaulf. $0$ $0$ $0$ $0$ $0$ $49$ Pleopeltis muenchii (Christ) A.R. Sm. $33$ $26$ $61$ $87$ $50$ Pleopeltis plebeian (Schltdl. & Cham.) A.R. $51$ $0$ $0$ $0$ $51$ $91$ $0$ $0$ $0$ $0$ $0$ $52$ $91$ $0$ $0$ $0$ $0$ $0$ $53$ $91$ $0$ $0$ $0$ $0$ $0$ $54$ $Polypodium fissidens Maxon00005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34       | Phlegmariurus pringlei (Underw. & F.E.       | 0   |     | 0   | 10  |
| 36Philegmarturus taxifotius (Sw.) A. Love & D. $37$ Löve19124366 $38$ Pityrogramma tartarea (Cav.) Maxon1253760 $39$ Pleopeltis alansmithii (R.C. Moran) A.R. Sm.7958100100 $40$ & Tejero7958100100 $42$ Pleopeltis angusta Humb. & Bonpl. ex Willd.0003 $43$ Pleopeltis astrolepis (Liebm.) E. Fourn.0000 $44$ Pleopeltis lindeniana (Kunze) A.R. Sm. &5339100100 $44$ Pleopeltis macrocarpa (Bory ex Willd.)85339100100 $47$ Pleopeltis muenchii (Christ) A.R. Sm.33266187 $49$ Pleopeltis plebeian (Schltdl. & Cham.) A.R.5339000 $51$ Sm. & Tejero00000 $52$ Sm. & Tejero00000 $53$ Pleopeltis splebeian (Schltdl. & Cham.) A.R.53266187 $54$ Polypodium fissidens Maxon00000 $55$ Polypodium fraternum Schltdl. & Cham.0005 $57$ $57$ $57$ $57$ $57$ $57$ $57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35       | Lloyd) B. Ølig.                              | 0   | 0   | 0   | 13  |
| 37Love19124366 $38$ Pityrogramma tartarea (Cav.) Maxon1253760 $39$ Pleopeltis alansmithii (R.C. Moran) A.R. Sm.1253760 $40$ & Tejero7958100100 $41$ & Tejero7958100100 $42$ Pleopeltis angusta Humb. & Bonpl. ex Willd.0003 $43$ Pleopeltis astrolepis (Liebm.) E. Fourn.0000 $44$ Pleopeltis lindeniana (Kunze) A.R. Sm. &5339100100 $44$ Pleopeltis macrocarpa (Bory ex Willd.)5339100100 $47$ Pleopeltis muenchii (Christ) A.R. Sm.33266187 $48$ Kaulf.00000 $49$ Pleopeltis plebeian (Schltdl. & Cham.) A.R.33266187 $52$ Sm. & Tejero00000 $53$ Pleopeltis sp. 10000 $54$ Polypodium fissidens Maxon00026 $57$ Polypodium fraternum Schltdl. & Cham.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36       | Phlegmariurus taxifolius (Sw.) A. Love & D.  | 10  |     | 10  |     |
| 38Pityrogramma tartarea (Cav.) Maxon1253760 $39$ Pleopeltis alansmithii (R.C. Moran) A.R. Sm.7958100100 $41$ & Tejero7958100100 $42$ Pleopeltis angusta Humb. & Bonpl. ex Willd.0003 $43$ Pleopeltis astrolepis (Liebm.) E. Fourn.0000 $44$ Pleopeltis lindeniana (Kunze) A.R. Sm. &7539100100 $45$ Tejero5339100100 $46$ Tejero5339100100 $47$ Pleopeltis macrocarpa (Bory ex Willd.)0000 $48$ Kaulf.00000 $49$ Pleopeltis muenchii (Christ) A.R. Sm.33266187 $50$ Pleopeltis plebeian (Schltdl. & Cham.) A.R.539000 $51$ Sm. & Tejero0000 $52$ Polypodium fissidens Maxon00026 $56$ Polypodium fraternum Schltdl. & Cham.00055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37       | Lôve                                         | 19  | 12  | 43  | 66  |
| 39Pleopeltis alansmithii (R.C. Moran) A.R. Sm. $40$ & Tejero7958100100 $41$ & Tejero7958100100 $42$ Pleopeltis angusta Humb. & Bonpl. ex Willd.0003 $43$ Pleopeltis astrolepis (Liebm.) E. Fourn.0000 $44$ Pleopeltis lindeniana (Kunze) A.R. Sm. & $45$ Tejero5339100100 $46$ Tejero5339100100 $47$ Pleopeltis macrocarpa (Bory ex Willd.) $48$ Kaulf.0000 $49$ Pleopeltis muenchii (Christ) A.R. Sm.33266187 $50$ Pleopeltis plebeian (Schltdl. & Cham.) A.R $51$ Sm. & Tejero0000 $53$ Pleopeltis sp. 10000 $54$ Polypodium fissidens Maxon00026 $57$ Polypodium fraternum Schltdl. & Cham.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38       | Pityrogramma tartarea (Cav.) Maxon           | 12  | 5   | 37  | 60  |
| $10^{-0}_{41}$ & Tejero $79^{-}_{9}$ $58^{-}_{8}$ $100^{-}_{100}$ $42^{-}_{42}$ Pleopeltis angusta Humb. & Bonpl. ex Willd. $0$ $0$ $0^{-}_{3}^{-}_{3}^{-}_{3}^{-}_{4}^{-}_{3}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{4}^{-}_{$                                                                                 | 39<br>40 | Pleopeltis alansmithii (R.C. Moran) A.R. Sm. |     |     |     |     |
| 42Pleopeltis angusta Humb. & Bonpl. ex Willd.000343Pleopeltis astrolepis (Liebm.) E. Fourn.000044Pleopeltis lindeniana (Kunze) A.R. Sm. &7710010045Tejero533910010046Tejero533910010047Pleopeltis macrocarpa (Bory ex Willd.)7710048Kaulf.000049Pleopeltis muenchii (Christ) A.R. Sm.3326618750Pleopeltis plebeian (Schltdl. & Cham.) A.R.3326618751Sm. & Tejero0000053Pleopeltis sp. 10000054Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.000557575757575555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41       | & Tejero                                     | 79  | 58  | 100 | 100 |
| 43Pleopeltis astrolepis (Liebm.) E. Fourn.000044Pleopeltis lindeniana (Kunze) A.R. Sm. &45Tejero533910010046Tejero533910010047Pleopeltis macrocarpa (Bory ex Willd.)000048Kaulf.0000049Pleopeltis muenchii (Christ) A.R. Sm.3326618750Pleopeltis plebeian (Schltdl. & Cham.) A.R.5153900052Sm. & Tejero00000053Pleopeltis sp. 10000054Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.000557 $37$ $37$ $37$ $37$ $37$ $37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42       | Pleopeltis angusta Humb. & Bonpl. ex Willd.  | 0   | 0   | 0   | 3   |
| 44       Pleopeltis lindeniana (Kunze) A.R. Sm. &         45       Tejero       53       39       100       100         46       Tejero       53       39       100       100         47       Pleopeltis macrocarpa (Bory ex Willd.)       0       0       0       0         48       Kaulf.       0       0       0       0       0         49       Pleopeltis muenchii (Christ) A.R. Sm.       33       26       61       87         50       Pleopeltis plebeian (Schltdl. & Cham.) A.R.       33       26       61       87         51       Sm. & Tejero       0       0       0       0         52       Sp. 1       0       0       0       0         53       Pleopeltis sp. 1       0       0       0       26         54       Polypodium fissidens Maxon       0       0       26       55         56       Polypodium fraternum Schltdl. & Cham.       0       0       55         57       57       56       57       56       57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43       | Pleopeltis astrolepis (Liebm.) E. Fourn.     | 0   | 0   | 0   | 0   |
| 45Tejero $53$ $39$ $100$ $100$ $46$ $Pleopeltis macrocarpa$ (Bory ex Willd.) $0$ $0$ $0$ $0$ $0$ $48$ Kaulf. $0$ $0$ $0$ $0$ $0$ $49$ Pleopeltis muenchii (Christ) A.R. Sm. $33$ $26$ $61$ $87$ $50$ Pleopeltis plebeian (Schltdl. & Cham.) A.R. $33$ $26$ $61$ $87$ $51$ Sm. & Tejero $0$ $0$ $0$ $0$ $0$ $53$ Pleopeltis sp. 1 $0$ $0$ $0$ $0$ $0$ $54$ Polypodium fissidens Maxon $0$ $0$ $0$ $26$ $55$ Polypodium fraternum Schltdl. & Cham. $0$ $0$ $0$ $55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44       | Pleopeltis lindeniana (Kunze) A.R. Sm. &     |     |     |     |     |
| $46$ $Pleopeltis macrocarpa$ (Bory ex Willd.) $10^{-1}$ $10^{-1}$ $10^{-1}$ $47$ $Pleopeltis macrocarpa$ (Bory ex Willd.) $0$ $0$ $0$ $0$ $48$ Kaulf. $0$ $0$ $0$ $0$ $0$ $49$ $Pleopeltis muenchii$ (Christ) A.R. Sm. $33$ $26$ $61$ $87$ $50$ $Pleopeltis plebeian$ (Schltdl. & Cham.) A.R. $33$ $26$ $61$ $87$ $51$ Sm. & Tejero $0$ $0$ $0$ $0$ $52$ $Specifies sp. 1$ $0$ $0$ $0$ $0$ $53$ $Pleopeltis sp. 1$ $0$ $0$ $0$ $0$ $54$ $Polypodium fissidens Maxon$ $0$ $0$ $0$ $26$ $55$ $Polypodium fraternum Schltdl. & Cham.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45       | Teiero                                       | 53  | 39  | 100 | 100 |
| 47 $1$ (b) $1$ (c) $1$        | 46       | Pleoneltis macrocarna (Bory ex Willd)        |     | • • |     |     |
| 49Pleopeltis muenchii (Christ) A.R. Sm.3326618750Pleopeltis plebeian (Schltdl. & Cham.) A.R.3326618751Sm. & Tejero000052Pleopeltis sp. 1000053Pleopeltis sp. 1000054Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.00556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47<br>78 | Kaulf                                        | 0   | 0   | 0   | 0   |
| 50Pleopeltis muenchi (Christ) A.R. Shi.5320618750Pleopeltis plebeian (Schltdl. & Cham.) A.R.51Sm. & Tejero00052Pleopeltis sp. 1000054Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.000556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49       | Plaonaltis muanchii (Christ) A R Sm          | 33  | 26  | 61  | 87  |
| 51Sm. & Tejero0000 $52$ Sm. & Tejero0000 $53$ Pleopeltis sp. 10000 $54$ Polypodium fissidens Maxon00026 $55$ Polypodium fraternum Schltdl. & Cham.0005 $56$ $57$ $57$ $57$ $57$ $57$ $57$ $57$ $57$ $57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50       | Plaonaltis nlahajan (Schltdl & Cham) A R     | 55  | 20  | 01  | 07  |
| 52       Sint & Fejero       0       0       0       0       0         53       Pleopeltis sp. 1       0       0       0       0       0         54       Polypodium fissidens Maxon       0       0       0       26         55       Polypodium fraternum Schltdl. & Cham.       0       0       0       5         56       57       57       57       57       57       57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51       | Sm & Tejero                                  | 0   | 0   | 0   | 0   |
| 53Pleopeltis sp. 10000054Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.00055657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52       |                                              | 0   | 0   | 0   | 0   |
| 54Polypodium fissidens Maxon0002655Polypodium fraternum Schltdl. & Cham.00055657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53       | <i>Pieopeitis</i> sp. 1                      | U   | U   | U   | 0   |
| <i>Polypodium fraternum</i> Schltdl. & Cham. 0 0 5<br><i>Polypodium fraternum</i> Schltdl. & Cham. 0 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54       | Polypodium fissidens Maxon                   | 0   | 0   | 0   | 26  |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55<br>56 | Polypodium fraternum Schltdl. & Cham.        | 0   | 0   | 0   | 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57       |                                              |     |     |     |     |

| 3        | Polypodium plesiosorum Kunze                                                | 0   | 0      | 0         | 0       |
|----------|-----------------------------------------------------------------------------|-----|--------|-----------|---------|
| 4<br>5   | Polvpodium pleurosorum Kunze ex Mett.                                       | 11  | 1      | 48        | 83      |
| 6        | Polypodium polypodioides var. aciculare                                     |     |        |           |         |
| 7        | Weath.                                                                      | 0   | 0      | 0         | 0       |
| 8        | Polypodium rosei Maxon                                                      | 23  | 18     | 42        | 60      |
| 9<br>10  | Polypodium sanctae-rosae (Maxon) C. Chr.                                    | 0   | 0      | 0         | 0       |
| 11       | Polvpodium sp. 1                                                            | 0   | 0      | 0         | 0       |
| 12       | Polypodium sp. 2                                                            | 17  | 13     | 31        | 44      |
| 13<br>14 | <i>Polypodium subpetiolatum</i> Hook.                                       | 0   | 0      | 0         | 2       |
| 14       | <i>Polystichum hartwegii</i> (Klotzsch) Hieron.                             | 100 | 100    | 100       | 100     |
| 16       | Polystichum muricatum (L.) Fée                                              | 0   | 0      | 17        | 33      |
| 17       | Polytaenium lineatum (Sw.) I Sm.                                            | 0   | ů<br>0 | 0         | 0       |
| 18       | Pteridium arachnoideum (Kaulf) Maxon                                        | 0   | 0      | 0         | 0       |
| 20       | Ptoridium agudatum (L.) Maxon                                               | 16  | 12     | 28        | 40      |
| 21       | Pteriaium caudaium (L.) Maxoli<br>Dteriaium faci (W. Schaffe, ar Féc) Fault | 10  | 12     | 20<br>100 | 40      |
| 22       | Pteriatum jeet (w. Scharm. ex Fee) Fault                                    | 88  | /0     | 100       | 100     |
| 23       | Pteris orizabae M. Martens & Galeotti                                       | 13  | 10     | 27        | 39      |
| 24       | Pteris pungens Willd.                                                       | 0   | 0      | 0         | 0       |
| 25<br>26 | Pteris vittate L.                                                           | 20  | 15     | 41        | 61      |
| 27       | Sceptridium decompositum (M. Martens &                                      |     |        |           |         |
| 28       | Galeotti) Lyon                                                              | 17  | 8      | 50        | 81      |
| 29       | Scoliosorus ensiformis (Hook.) T. Moore                                     | 0   | 0      | 0         | 5       |
| 30<br>21 | Selaginella cladorrhizans A. Braun                                          | 0   | 0      | 0         | 0       |
| 37       | Selaginella guatemalensis Baker                                             | 0   | 0      | 0         | 0       |
| 33       | Selaginella pallescens (C. Presl) Spring                                    | 0   | 0      | 0         | 0       |
| 34       | Selaginella pulcherrima Liebm                                               | 0   | 0      | 0         | 0       |
| 35       | Selaginella silvestris Asnl                                                 | 39  | 30     | 72        | 100     |
| 36<br>37 | Sernocaulon dissimile (I) A R Sm                                            | 16  | 20     | 68        | 100     |
| 38       | Serpocaulon trisoriala (Sw.) A B. Sm.                                       | 10  | 0      | 0         | 100     |
| 39       | Serpocution trisertule (Sw.) A.K. Shi.                                      | 0   | 0      | 10        | 0<br>(1 |
| 40       | Sucherus sp. 1                                                              | 0   | 0      | 19        | 01      |
| 41       | Terpsichore asplenifolia (L.) A.R. Sm.                                      | 0   | 0      | 0         | 31      |
| 42<br>43 | Thelypteris sp.                                                             | 0   | 0      | 0         | 0       |
| 44       | unknown sp. 1                                                               | 0   | 0      | 0         | 0       |
| 45       | Vandenboschia radicans (Sw.) Copel.                                         | 0   | 0      | 0         | 0       |
| 46       | Vittaria graminifolia Kaulf.                                                | 21  | 17     | 39        | 55      |
| 47       | Woodwardia spinulosa M. Martens &                                           |     |        |           |         |
| 48<br>49 | Galeotti                                                                    | 0   | 0      | 13        | 42      |
| 50       |                                                                             |     |        |           |         |