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Gaussian tracking with Kent-distributed
direction-of-arrival measurements
Ángel F. García-Fernández, Simon Maskell, Paul Horridge, Jason Ralph

Abstract—This paper presents a Gaussian tracking algorithm
with direction-of-arrival (DOA) measurements modelled via the
Kent distribution. The key aspect of the algorithm is that the Kent
distribution directly models the specific characteristics of DOA
measurements in the 3-D space, and can account for different
uncertainties in azimuth and elevation, which the von Mises-
Fisher distribution cannot. At each update step, the algorithm
performs iterated statistical linear regressions. We provide two
implementations of the algorithms, one based on sigma-points
and the other on analytical linearisation. The effectiveness of the
approach is evaluated via numerical simulations.

Index Terms—Tracking, direction-of-arrival, Kent-
distribution, posterior linearisation.

I. INTRODUCTION

Target tracking and localisation based on noisy direction-of-
arrival (DOA) measurements is important in many applications
such as advanced vehicular systems, mobile communication
systems and sonar [1]–[4]. This problem is usually posed in
a Bayesian framework in which the objective is to calculate
the posterior density, which refers to the density of the current
state given current and past measurements, as it contains all
information of interest [5].

In non-linear/non-Gaussian systems, the posterior does not
have a closed-form expression and must be approximated. For
these systems, it is appealing to develop computationally effi-
cient Gaussian filters, which provide a Gaussian approximation
to the posterior with a suitable performance. Examples of these
Gaussian filters are the extended Kalman filter (EKF) and
sigma-point Kalman filters, e.g. the unscented Kalman filter
(UKF) [5], [6].

This paper focuses on the development of Gaussian filters
with DOA measurements in a 3-D space. The above-mentioned
Gaussian filters can be applied in this scenario by modelling
DOA measurements, parameterised by azimuth and elevation
angles, as Gaussian densities. However, these methods do not
take into account the intrinsic characteristics of angular data
[7]. Specifically, the use of standard sums and subtractions,
which are required in the update step of the Gaussian filters,
can be problematic with angular data [7], [8]. For example,
the direct average of the azimuths 170º and -170º is 0º, but
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it should be 180º [7], and its direct difference is 340º, but it
should be 20º. The result is that these Gaussian filters do not
work well near azimuth angles close to 180º or DOAs near the
poles. A solution to this problem is to perform angular sums
and subtractions in sigma-point Kalman filters [9]. Another
option to deal with Gaussian DOA measurements is to perform
a pseudo-linearisation [10].

While the above methods can work well, their main draw-
back is to model DOA data with a Gaussian distribution, which
is not completely suitable as it is not really a distribution
for angular data [7]. A more principled approach is to use a
mathematically rigorous probability distribution for directions
of arrival, as in the directional statistics discipline [7], and
develop Gaussian filters for this type of data. A Gaussian
filter with von Mises-Fisher (VMF) distributed measurements
was developed in [11]. The VMF distribution properly models
DOA measurements but has the disadvantage that the noise in
azimuth and elevation must be alike.

In this paper, we address this limitation of the VMF DOA
model and propose the modelling of DOA measurements with
the Kent distribution [12]–[14]. The Kent distribution is the
spherical analogue of the bivariate Gaussian distribution and
can model different noise variances in azimuth and elevation.
Following [15], we then develop a Gaussian filter based
on Kent DOA measurements and statistical linear regression
(SLR), for which it is required to use the conditional mean
and covariance matrix of the Kent distribution. The use of
iterated SLRs in the update generally improves performance
of Gaussian filters, especially, for low measurement noise and
high nonlinearities [16]. We propose two filter implementa-
tions, one based on sigma-points and the other based on first-
order Taylor series linearisation.

II. THE KENT DISTRIBUTION

Let S2 =
{
z : zT z = 1, z ∈ R3

}
denote the unit sphere

on R3. The Kent distribution on S2, also called 5-parameter
Fisher-Bingham (FB5) distribution, has the following param-
eters: concentration parameter κ ≥ 0, ovalness parameter β,
such that 0 ≤ β < κ/2, and a 3 × 3 orthonormal matrix
Γ = [γ1, γ2, γ3] where γi is the i-th column vector with
‖γi‖ = 1. Vector γ1 represents the mean direction or pole,
γ2 the major axis and γ3 the minor axis. For z ∈ S2, the
density, w.r.t. the Lebesgue measure in R3, is [12]

K (z;κ, β,Γ)

=
1

c (κ, β)
exp

(
κγT1 z + β

[(
γT2 z

)2 − (γT3 z)2]) (1)



where the normalising constant is

c (κ, β) = 2π

∞∑
j=0

Γ
(
j + 1

2

)
Γ (j + 1)

β2j
(κ

2

)−2j− 1
2

I2j+1/2 (κ) (2)

where Ia (·) is the modified Bessel function of the first kind
and order a, and Γ (·) is the Gamma function. If β = 0, the
Kent distribution reduces to the VMF on S2. A visualisation
of (1) for varying κ and β can be found in [13, Fig. 2].

A. Mean and covariance matrix

For notational simplicity, we drop the dependence of c (·)
on κ and β, and denote the partial derivatives, evaluated at κ
and β, as

cκ =
∂c

∂κ
, cβ =

∂c

∂β
, cκκ =

∂2c

∂κ2
. (3)

The mean and covariance matrix of the Kent distribution
with density (1) are [12], [13]

E [z] = Γ
[cκ
c
, 0, 0

]T
=
cκ
c
γ1, (4)

C [z] = ΓΛΓT , (5)

Λ = diag

([
cκκ
c
−
(cκ
c

)2
,
c− cκκ + cβ

2c
,
c− cκκ − cβ

2c

])
.

(6)

To calculate (4) and (5), we first approximate the logarithms
of the normalising constant and its derivatives (3) using the
methods in [13], [17]. Then, we calculate

cκ
c

= exp (log cκ − log c) ,

cκκ
c

= exp (log cκκ − log c) ,

cβ
c

= exp (log cβ − log c) ,

which can be used to obtain (4) and (5). How to improve
numerical accuracy for large κ is explained in the Appendix.

III. GAUSSIAN FILTERS WITH KENT MEASUREMENTS

This section proposes two Gaussian filters with Kent-
distributed measurements. The Bayesian update is explained
in Section III-A. How to obtain a Gaussian posterior based
on linearisation of the measurement is explained in Section
III-B. Section III-C explains how to perform SLR for Kent
measurements via sigma-points and first order Taylor series.
The Gaussian filters resulting from iterated SLRs are explained
in Section III-D.

A. Bayesian update

A target state is x ∈ Rnx and has a Gaussian prior density

p (x) = N (x;x, P ) , (7)

where N (x;x, P ) denotes a Gaussian density with mean x
and covariance matrix P evaluated at x.

We observe the target with a measurement z =[
(z1)

T
, ...., (zm)

T
]T

that consists of m DOA measurements

so zj ∈ S2 j = 1, 2, ...,m. We assume that, given the target
state, the measurements are independent so

p (z |x ) =

m∏
j=1

p (zj |x ) . (8)

The DOA measurements follow a Kent distribution

p (zj |x ) = K (zj ;κ, β,Γj (x)) , (9)
Γj (x) = [γj,1 (x) , γj,2 (x) , γj,3 (x)] (10)

where, for simplicity, we have considered that κ and β do
not depend on x or j. How to choose Γj (x) for line-of-sight
propagation will be explained in Section IV.

The update step uses Bayes’ rule to calculate the posterior

p (x |z ) ∝ p (z |x ) p (x) , (11)

where ∝ stands for proportionality. There is no closed-form
expression for the posterior and it must be approximated.

B. Gaussian filtering

The relation between zj and x, which is provided by the
likelihood (9), can be written as a measurement equation

zj = gj(x) + ηj (x) , (12)

where gj(x) = E [zj |x], which is a nonlinear transformation
of x, and ηj (x) is a zero-mean noise with covariance matrix
Rj (x) = C [zj |x] conditioned on x. Noise ηj (x) is uncorre-
lated with x and gj(x).

The conditional moments gj(x) = E [zj |x] and Rj (x) =
C [zj |x] are

gj(x) =
cκ
c
γj,1 (x) , (13)

Rj (x) = Γj (x) ΛΓTj (x) . (14)

In order to obtain a Gaussian filter for the Kent-distributed
measurements, we perform a linearisation [15], [16]

zj ≈ Ajx+ bj + rj , (15)

where Aj ∈ R3×nx , bj ∈ R3 and rj is a zero-mean noise with
covariance matrix Ωj ∈ R3×3, uncorrelated with x.

Under the assumption that rj is Gaussian, the posterior
becomes Gaussian with mean and covariance matrix

u = x+ PAT
(
APAT + Ω

)−1
(z −Ax− b) , (16)

W = P − PAT
(
APAT + Ω

)−1
AP, (17)

where A =
[
AT1 , ...., A

T
m

]T
, b =

[
bT1 , ...., b

T
m

]T
and Ω =

diag (Ω1, ...,Ωm). The accuracy of the approximated posterior
only depends on how we choose A, b and Ω.

C. Statistical linear regression

SLR is key to making a suitable choice of A, b and Ω.
In a general setting, given a prior density p (·) on x with
mean x and covariance matrix P , SLR finds the best affine



approximation, represented by
(
A+
j , b

+
j

)
, between zj and x

[15](
A+
j , b

+
j

)
= arg min

(Aj ,bj)

E
[
‖gj(x) + ηj (x)−Ajx− bj‖2

]
(18)

= arg min
(Aj ,bj)

E
[
‖gj(x)−Ajx− bj‖2

]
(19)

where the expectation is taken w.r.t. p (·). We have

A+
j = C [x, gj (x)]

T
P−1, (20)

b+j = E [gj (x)]−A+
j x. (21)

The resulting mean square error matrix is

Ω+
j = C [gj (x)] + E [Rj (x)]−A+

j P
(
A+
j

)T
. (22)

Therefore, in order to obtain the SLR, we need to calculate
the moments E [gj (x)], E [Rj (x)], C [x, gj (x)] and C [gj (x)],
where gj (·) and Rj (·) are given by (13) and (14). These
moments can be approximated using sigma-points and first-
order Taylor series, see Algorithms 1 and 2.

Algorithm 1 SLR using sigma-points
Input: Parameters κ and β, function Γj (·), and the first two moments
x, P of a density p (·).
Output: SLR parameters

(
A+
j , b

+
j ,Ω

+
j

)
.

- Select ms sigma-points X1, . . . ,Xms and weights ω1, . . . , ωms
according to x and P [5].
- Transform the sigma-points Hi = Γj (Xi) i = 1, . . . ,ms,
where Hi ∈ R3×3 and H1

i denotes its first column.
E [gj (x)] ≈ cκ

c

∑ms
i=1 ωiH

1
i .

E [Rj (x)] ≈
∑ms
i=1 ωiHiΛ (Hi)T .

C [x, gj (x)] ≈
∑ms
i=1 ωi (Xi − x)

(
cκ
c
H1
i − E [gj (x)]

)T .
C [gj (x)] ≈

∑ms
i=1 ωi

(
cκ
c
H1
i − E [gj (x)]

) (
cκ
c
H1
i − E [gj (x)]

)T
.

- Calculate A+
j , b

+
j ,Ω

+
j using (20), (21) and (22).

Algorithm 2 SLR using first-order Taylor series
Input: Function Γj (·), Jacobian ∇γj,1 (·) (see (10)), parameters κ
and β, and the first two moments x, P of a density p (·).
Output: SLR parameters

(
A+
j , b

+
j ,Ω

+
j

)
.

E [gj (x)] ≈ cκ
c
γj,1 (x), see (10).

E [Rj (x)] ≈ Γj (x) ΛΓTj (x).
C [x, gj (x)] ≈ cκ

c
P (∇γj,1 (x))T .

C [gj (x)] ≈
(
cκ
c

)2∇γj,1 (x)P (∇γj,1 (x))T .
- Calculate A+

j , b
+
j ,Ω

+
j using (20), (21) and (22).

D. Gaussian update via iterated SLRs

This section explains how to approximate the posterior
moments (16) and (17) using iterated SLRs with respect to
the posterior. In Gaussian filtering, a usual way to obtain
a Gaussian approximation to the posterior is to calculate
A, b and Ω using SLR w.r.t. the prior (as in sigma-point
Kalman filters) or using a first-order Taylor series linearisation
around x (as in the extended Kalman filter). For additive
Gaussian measurement noise, the Kullback Leibler divergence
shows that this type of approximation is not accurate for

sufficiently high nonlinearities in relation to the measurement
noise covariance matrix [18].

One can improve performance using an iterative procedure
in which we refine the selection of A, b and Ω at each step,
by performing SLR w.r.t. the current approximation of the
posterior. That is, ideally, we would like to perform the SLR in
the area where the posterior has its mass [11], [16]. In practice,
we start by calculating A1

j , b
1
j ,Ω

1
j using SLR w.r.t. u1 = x,

W 1 = P for all measurements. The posterior moments at
step 2, u2 and W 2, are obtained by substituting A1

j , b
1
j ,Ω

1
j for

j = 1, ...,m into (16) and (17), without changing x and P .
Now, we perform SLR w.r.t. u2 and W 2 to obtain A2

j , b
2
j ,Ω

2
j .

The iterations stop after a fixed number or with a convergence
criterion [11, Alg. 3]. The steps of the resulting iterated
posterior linearisation filter (IPLF) update are indicated in
Algorithm 3.

Algorithm 3 IPLF update with DOA Kent measurements
Input: Prior moments u1 = x, W 1 = P , measurements z1, . . . , zm,
parameters κ and β, function Γj (·) and number J of iterations.
Output: Posterior moments uJ+1, W J+1.

for i = 1 to J do
for j = 1 to m do

- Obtain Aij , b
i
j ,Ω

i
j via SLR w.r.t. ui, W i:

- For sigma-point implementation, run Algorithm 1.
- For Taylor series implementation, run Algorithm 2.

end for
- Compute ui+1, W i+1 using (16) and (17) with

- A =
[(
Ai1
)T
, ....,

(
Aim
)T ]T , b =

[(
bi1
)T
, ....,

(
bim
)T ]T ,

- Ω = diag
(
Ωi1, ...,Ω

i
m

)
.

end for

IV. DIRECTION-OF-ARRIVAL MEASUREMENT MODELLING

This section explains how to model Kent-distributed DOA
measurements based on line-of-sight propagation to be able
to apply the algorithms developed in Section III to tracking
with DOA measurements. This requires the specification of
the parameters of the Kent distribution: Γj (·), κ and β.

In Section IV-A we explain how to choose Γj (·). In Section
IV-B, we explain the relation between the Kent distribution
and the Gaussian distribution. This enables us to choose κ
and β based on the variances in azimuth and elevation of the
measurement, which are related to the antenna beam-width.

A. Choice of Γj (·) for line-of-sight propagation

Given a target state x, we need Γj (x) to obtain p (zj |x ),
see (9). Let us consider a target moving in a 3D space such
that x = [px, vx, py, vy, pz, vz]

T , where [px, py, pz]
T is the

position vector and [vx, vy, vz]
T is the velocity vector. For a

sensor j located at [sx,j , sy,j , sz,j ]
T that measures DOA with

straight line propagation, the true azimuth and elevation are

ϕxj = atan2 (py − sy,j , px − sx,j) , (23)

θxj = arcsin

(
pz − sz,j

‖[px − sx,j , py − sy,j , pz − sz,j ]‖

)
. (24)

Then, matrix Γj (x) in (9) is given by

Γj (x) = Rz
(
ϕxj
)
Ry
(
θxj
)

(25)



where

Rz
(
ϕxj
)

=

 cosϕxj − sinϕxj 0
sinϕxj cosϕxj 0

0 0 1

 , (26)

cosϕxj =
px − sx,j

‖[px − sx,j , py − sy,j ]‖
, (27)

sinϕxj =
py − sy,j

‖[px − sx,j , py − sy,j ]‖
, (28)

is a rotation of an angle ϕxj around the z-axis and

Ry
(
θxj
)

=

 cos θxj 0 − sin θxj
0 1 0

sin θxj 0 cos θxj

 , (29)

cos θxj =
‖[px − sx,j , py − sy,j ]‖

‖[px − sx,j , py − sy,j , pz − sz,j ]‖
, (30)

sin θxj =
pz − sz,j

‖[px − sx,j , py − sy,j , pz − sz,j ]‖
, (31)

is a rotation of an angle −θxj around the y-axis.
Plugging (26) and (29) into (25), we obtain

Γj (x) =

 cosϕxj cos θxj − sinϕxj − cosϕxj sin θxj
sinϕxj cos θxj cosϕxj − sinϕxj sin θxj

sin θxj 0 cos θxj

 .
(32)

The resulting Kent distribution corresponds to the rotation
Γj (x) of a Kent distribution with Γ = I3, which points at
[1, 0, 0]

T and has the major axis parallel to the xy-plane.

B. Relation with the Gaussian distribution

The most commonly used distribution to model DOA mea-
surements is the Gaussian distribution. In this section, we
provide the link between the two distributions, and illustrate
the advantages of the Kent distribution to model DOA mea-
surements. For Γ = I3, the density (1) takes a simplified form

K (z;κ, β, I3) =
1

c (κ, β)
exp

(
κz1 + β

[
z22 − z23

])
(33)

where z = [z1, z2, z3]
T
.

Changing variables to spherical coordinates (ϕ, θ) with 0 ≤
ϕ < 2π and −π/2 ≤ θ ≤ π/2, such that

z = [cosϕ cos θ, sinϕ cos θ, sin θ]
T
,

we have

K (ϕ, θ;κ, β, I3) =
1

c (κ, β)
exp (κ cosϕ cos θ

+β
[
sin2 ϕ cos2 θ − sin2 θ

])
. (34)

We can then use a Laplace approximation to obtain a Gaussian
approximation to (34) [19]. The Taylor series up to second
order of the logarithm of (34) around the maximum (ϕ, θ) =
(0, 0) provides

logK (ϕ, θ;κ, β, I3) ≈ − log c (κ, β) + κ

− 1

2
(κ− 2β)ϕ2 − 1

2
(κ+ 2β) θ2.

(35)

Therefore, the Gaussian approximation becomes [20]

K (ϕ, θ;κ, β, I3) ≈ N
(
ϕ; 0,

1

κ− 2β

)
N
(
θ; 0,

1

κ+ 2β

)
.

(36)

This approximation becomes more accurate for large κ and β
with 0 ≤ β < κ/2. It should also be noted that the elevation
variance is smaller or equal than the azimuth variance.

Therefore, for a Gaussian DOA model centered at (0, 0)
with variances σ2

ϕ and σ2
θ in azimuth and elevation (σ2

θ ≤ σ2
ϕ),

the corresponding κ and β for (33) are

κ =
1

2

(
1

σ2
ϕ

+
1

σ2
θ

)
, β =

1

4

(
1

σ2
θ

− 1

σ2
ϕ

)
. (37)

Equation (37) enables us to select κ and β based on σ2
ϕ and

σ2
θ , which are related to antenna beam-width. If we have a

sensor with σ2
θ > σ2

ϕ, we make a rotation of 90◦ around the x
axis to the Kent distribution (33), such that it becomes Kent-
distributed with parameters κ, β and

Γ = Rx (π/2) , Rx (α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 .
By proceeding analogously to the case Γ = I3, we can obtain
a Gaussian approximation around (ϕ, θ) = (0, 0) to obtain
(36), but with azimuth and elevation interchanged.

To sum up, for large κ and β, and the mode located at
[1, 0, 0]

T , or more generally, on the xy plane, the Kent and
Gaussian distributions behave similarly. However, important
differences arise if the mode is at a different elevation, as
illustrated in the following example.

Example 1. We consider a Kent distribution with κ and
β corresponding to azimuth and elevation variances, σ2

ϕ =

(5π/180)
2 and σ2

θ = (2π/180)
2, see (37). We obtain 10000

samples from this distribution with mode at 0º/0º (azimuth-
elevation), which corresponds to Γ = I3, and with mode at
0º/85º, whose Γ is obtained with (25). The samples1 are shown
in Figure 1 (top). Changing the elevation of the mode implies
a rotation in the distribution. We show 10000 samples from
Gaussian distributions on azimuth/elevation with the same
means and variances in Figure 1 (bottom). For 0º elevation,
the Kent and Gaussian distributions are quite similar, as shown
in this section. For 85º elevation, the Gaussian distribution
undergoes a major transformation w.r.t. 0º elevation. The Kent
distribution is a more accurate model for directional antennas.

V. SIMULATIONS

This section analyses the performance of the proposed
algorithms in relation to other relevant filters in the literature.
We refer to the proposed filters with J iterations as K-IPLFJ
for the sigma-point implementation and K-IPLFJ (T) for the
first-order Taylor series implementation2 [16]. We have also
implemented the UKF for DOA measurements in [9], which

1We have used the 3D-Directional-SSV package to sample the Kent
distribution: https://github.com/TerdikGyorgy/3D-Simulation-Visualization.

2Matlab code will be available at https://github.com/Agarciafernandez.



Figure 1: Samples from Kent (top) and Gaussian (bottom) distributions
with mode at 0º/0º (azimuth-elevation) (left) and at 0º/85º (right), see
Example 1. The Gaussian distribution has azimuth and elevation vari-
ances σ2

ϕ = (5π/180)2 and σ2
θ = (2π/180)2 and the Kent distribution

matches these variances for 0º elevation. For 0º elevation, the Kent and
the Gaussian distribution are quite similar. For 85º elevation, the Kent
distribution is simply a rotation of the Kent distribution at 0º, as would
happen for a directional antenna that is now pointing upwards. On the
contrary, there is a major change in the shape of the Gaussian distribution.

is referred to as angular UKF (AUKF). We also consider the
IPLF with VMF measurements (VMF-IPLFJ) [11]. These
filters use the unscented transform with weight 1/3 at the
mean [6]. We have also implemented the 3-D instrumental
variable based Kalman filter (IVKF) [10]. In the considered
scenario, the standard EKF and UKF do not perform well due
to the high nonlinearities and the difficulty in handling the
target crossing the −π azimuth boundary and are no longer
considered. In addition, we have implemented a sampling
importance resampling particle filter (PF) [21] with likelihood
(8)-(9) and 10000 particles.

The target state at time k is xk =
[
pkx, ṗ

k
x, p

k
y , ṗ

k
y , p

k
z , ṗ

k
z

]T
where

[
pkx, p

k
y , p

k
z

]T
is its position vector and

[
ṗkx, ṗ

k
y , ṗ

k
z

]T
is

its velocity vector. The target moves with a nearly-constant
velocity model

xk+1 =Fxk + vk, F = I3 ⊗
(

1 τ
0 1

)
, (38)

where I3 is an identity matrix of size 3, ⊗ is the Kronecker
product, τ = 0.5 s is the sampling time and vk is the zero-
mean process noise at time k, whose covariance matrix is

Q = qI3 ⊗
(
τ3/3 τ2/2
τ2/2 τ

)
, (39)

where q = 0.25 m2/s3 is a parameter of the
model. The prior at time 0 is Gaussian with mean
x̄0 = [−100 (m), 5 (m/s), 0 (m), 5 (m/s), 50 (m), 4 (m/s)]

T

and covariance Σ0 = diag
([
σ2
p1, σ

2
v1, σ

2
p2, σ

2
v2, σ

2
p3, σ

2
v3

])
with σ2

p1 = 52 m2, σ2
v1 = σ2

v2 = 1 m2/s2, σ2
p2 = 1502 m2,

σ2
p3 = 42 m2, σ2

v3 = 0.12 m2/s2.
At each time step, the target is observed by m = 2

DOA sensors located at [sx,1, sy,1, sz,1]
T

= [100, 0, 0]
T

(m),
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Figure 2: RMS position errors against time. K-IPLF5 and K-IPLF5(T)
are the best performing filters. The iterated versions of the algorithms
are specially beneficial at the first update due to the large uncertainty in
the prior.

[sx,2, sy,2, sz,2]
T

= [−250, 0, 0]
T

(m). Both sensor measure-
ments are Kent-distributed with the parameters κ and β corre-
sponding to σ2

ϕ = (3π/180)
2

rad2 and σ2
θ = (1π/180)

2
rad2

and Γj (·) given by (32). The VMF-IPLF sets its concentration
parameter to κ and disregards β.

We evaluate the filters with J ∈ {1, 5} via Monte Carlo
simulation with Nmc = 1000 runs and 50 different trajectories
of length 100 sampled from the dynamic model. We consider
multiple trajectories to compute the root mean square (RMS)
position errors over different realisations of the dynamic
process. The RMS position errors are shown in Figure 2.
The best performing filters are K-IPLF5, K-IPLF5(T) and the
PF followed by IVKF. K-IPLF1, AUKF and VMF-IPLF5. K-
IPLF1(T) performs the worst. These results show the benefits
of iterations and the use of sigma-points to compute the
SLRs for Gaussian filters. Iterations are specially important
to perform the update at the first time step due to the large
uncertainty in the prior. After the initial time steps, the RMS
error increases with time as the target moves away from the
sensors.

The computational times (ms) to perform one Monte Carlo
run on an Intel core i5 laptop are: 10 (AUKF), 6 (IVKF),
62 (VMF-IPLF(5)), 8 (K-IPLF1(T)), 32 (K-IPLF5(T)), 20 (K-
IPLF1), 83 (K-IPLF5) and 450 (PF). Gaussian filters are faster
than the PF. Among the Gaussian filters, the computational
time is reduced by using non-iterated filters and Taylor series.

VI. CONCLUSIONS

This paper has proposed a Gaussian tracking algorithm
with Kent-distributed DOA measurements with line-of-sight
propagation. The Kent distribution is the spherical analogue
of the bivariate Gaussian distribution and the resulting filters
inherently accommodate the intrinsic characteristics of DOA
data. The algorithm is based on performing iterated SLRs
in the update so that the SLR is done w.r.t. the current
approximation of the posterior.



We have proposed two implementations to perform the
SLRs: one based on analytical linearisation and the other based
on sigma-points. Performing iterated SLRs and the use of
sigma-point generally improves performance. The algorithms
can be directly extended when we additionally receive other
types of measurements, e.g., range or Doppler [11].

The proposed Bayesian update approximation based on
Kent-distributed measurements and iterated posterior linearisa-
tions is performed in a centralised manner, i.e., the algorithm
directly processes all the received measurements. This ap-
proach can be directly extended to a cooperative/decentralised
update using posterior linearisation belief propagation [22].
The Kent distribution and the proposed SLR approximations
can also be used in other cooperative localisation approaches
based on factor graphs and belief propagation [23], [24].

Future work includes the development of tracking algo-
rithms with Kent-distributed DOA measurements subject to
diffraction and non-light-of-sight propagation.

APPENDIX

To calculate (4) and (5), the procedure in [13], [17] involves
the evaluation of In (κ) and

Bn (κ) =
In (κ)

In−2 (κ)
. (40)

For large κ, the evaluation of these functions can lead to
numerical problems. To improve numerical accuracy, we use
the asymptotic expansion of In (κ) for large κ [7, Eq. (10.3.5)]

In (κ) = (2πκ)
−1/2

eκ
(

1− 4n2 − 1

8κ

)
+O

(
κ−2

)
(41)

such that

Bn (κ) ≈ 1 +
2 (1− n)

κ
. (42)

The proof of (42) is as follows. Plugging (41) into (40) yields

Bn (κ) =
(2πκ)

−1/2
eκ
(

1− 4n2−1
8κ

)
+O

(
κ−2

)
(2πκ)

−1/2
eκ
(

1− 4(n−2)2−1
8κ

)
+O (κ−2)

=
8κ− 4n2 + 1

8κ− 4n2 + 16n− 15
+O

(
κ−2

)
.

The first term of the asymptotic expansion (42) can be
calculated as

lim
κ→∞

Bn (κ) =
8κ− 4n2 + 1

8κ− 4n2 + 16n− 15
= 1.

The factor that multiplies 1/κ in the asymptotic expansion
(42) can be calculated as

lim
κ→∞

κ (Bn (κ)− 1) = −2n+ 2.
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