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Antimony selenide (SbySes) possesses great potential in the field of photovoltaics (PV) due to
its suitable properties for use as a solar absorber and good prospects for scalability. Previous
studies have reported the growth of a native antimony oxide (Sb,O3) layer at the surface of SbySes
thin films during deposition and exposure to air, which can affect the contacting between SbySes
and subsequent layers. In this study, photoemission techniques were utilised on both SbySe; bulk
crystals and thin films to investigate the band alignment between Sb,Ses and the Sb,O3 layer. By
subtracting the valence band spectrum of an in situ cleaved SbySes bulk crystal from that of the
atmospherically contaminated bulk crystal, a valence band offset (VBO) of -1.72 eV is measured
between SbySes and Sby,O3. This result is supported by a -1.90 eV VBO measured between SbyO3
and SbySes thin films via the Kraut method. Both results indicate a straddling alignment which
would oppose carrier extraction through the back contact of superstrate PV devices. This work
yields greater insight into the band alignment of Sb,O3 at the surface of SbySes films, which is

crucial for improving the performance of these PV devices.

I. INTRODUCTION

SbySe; has attracted much attention in recent years
for its potential as an absorber layer in photovoltaics
(PV) and photocatalysis. It has experienced a rapid rise
in PV performance, from ~2% to nearly 10% in only a
few years [1, 2]. The material has a very high absorption
coefficient and a band gap of 1.18 eV, making it a good
candidate for use in PV [3, 4]. Furthermore, Sb and Se
are Earth-abundant and low-cost [5], and Sb,Se; can be
fabricated via a wide variety of scalable methods [6-10].
Sb,Se; also attracts great interest due to its unusual
1D nanoribbon structure and 5s? lone pair of electrons
[3, 11, 12]. This structure means that strong, covalently
bonded 1D nanoribbons are bound by weaker van der
Waals interactions in two dimensions.

Several studies have evidenced the formation of an
Sb,05 contaminant layer on the surface of Sb,Se; thin
films and crystals alike [12-14]. This has attracted
interest from a PV perspective due to the implications
of an intermediate layer between the Sb,Se; and a back
contact layer for charge transport/extraction in super-
strate devices [13, 15](and could also have implications
for heterojunction formation in substrate devices). This
relies heavily on both the conductivity of the Sb,0O4
interlayer and the band alignments between SbySes,
Sb,05 and the metal contact. However, a full under-
standing of this oxide is difficult due its contaminant
nature. Band alignment estimates from natural band
positions with respect to the vacuum level are avoided
here as they do not account for any charge transfer at
the real interface and natural alignment measurements

using photoemission are difficult for very wide band gap
materials. Furthermore there is significant variation
in the reported ionisation potential of Sb,O5 in the
literature [16, 17]. Previously, attempts have been made
to reproduce the effects of the native oxide through
deposition of an ultra-thin Sb,O5 film at the back
surface [15], however a clearer analysis is possible using
bulk crystals.

The aforementioned crystal structure of SbySe; means
that, in two spatial directions, highly oriented bulk crys-
tals can be easily cleaved or exfoliated to expose a pristine
surface. In this study, bulk crystals with natively grown
oxide were cleaved in-situ to allow photoemission mea-
surements of the valence band both with and without
this surface contamination. A valence band subtraction
method was used to measure the VBO between these
two layers without having to destructively remove the
contamination or attempt to reproduce it with another
method. This subtraction method was used previously
by Fleck et al. but no quantitative analysis was carried
out [15]. Additionally, thermally evaporated thin films
are used to measure the band alignment between Sb,O4
and close space sublimation (CSS) grown Sb,Se; via the
Kraut method (a common technique used to determine
valence band offsets between materials) for comparison
[18].

II. METHODS

The Sb,Se; bulk crystals were fabricated via the
Bridgman melt-growth technique using a single-zone



vertical furnace. A sealed ampoule containing manually
ground Sb,Se; granules (5N purity, Alfa Aesar) was
placed with the bottom tip in line with the peak of the
temperature profile in the furnace and heated to 620°C
to melt the source material. It was then held for around
6 hours to allow full melting and homogenisation of
the powder. The ampoule was then lowered through
the natural temperature gradient of the furnace at
0.6°C/mm towards the lower, open end of the furnace
(at room temperature), at a rate of 1.15 mm/hour for
7 days. The ampoule was rotated slowly throughout to
ensure homogeneous heating. A more detailed descrip-
tion of the process and characterisation of the crystals is
provided elsewhere [12, 19-22].

Three thin film samples were used in this work to
carry out the Kraut method. A thick film of each
material (SbySes & SbyO4) was required to measure core
level and VBM binding energy as well as an ’interfacial’
sample - a thin layer of Sb,O5 on Sb,Se; to measure core
level binding energies. A ~2 pm thick SbySe; film was
deposited via CSS onto solution processed TiO, films
on FTO-coated glass substrates (matching the usual
solar cell structure [6, 19]). A two stage process was
used - 2 minutes with a source temperature of 390°C,
substrate heating at 360°C and a pressure of ~0.05 Torr
followed by 15 minutes with a source temperature of
470°C at a pressure of 10 Torr. A ~75 nm thick film
of Sb,O4 was deposited via thermal evaporation onto
a fluorine doped SnO, (FTO) coated glass substrate.
A thin Sb,0O4 film was deposited onto SbySe; for the
interface measurement. Sb,O5 thickness was limited to
22 nm, as determined using atomic force microscopy
and the Sb,Se; layer was identical to the thick Sb,Seq
sample.  More detailed descriptions of the process
and characterisation of the films has been carried out
elsewhere [6, 23, 24].

Hard x-ray photoemission spectroscopy was carried out
at the 109 beamline at the Diamond Light Source facil-
ity. An x-ray energy of 5.921 keV was selected using
a double-crystal Si(111) monochromator followed by a
Si(004) channel-cut crystal. The energy resolution was
250 meV, determined by fitting a Gaussian-broadened
Fermi-Dirac distribution to the Fermi edge of a gold ref-
erence sample. A Scienta Omicron EW4000 high-energy
analyser was used to acquire the data, with an accep-
tance angle of £28°. All spectra were calibrated using the
Fermi level of a Au reference sample. Following the ini-
tial, as-received measurement, the crystals were cleaved
in-situ to expose a pristine (010) surface (in the Pbnm
space group setting [25]), as demonstrated by Hobson
et al. and Don et al. in previous works by our group
[12, 19]. All peak positions from curve fitting are re-
ported with an error of +0.05 eV. HAXPES core level
spectra were curve fitted using CASAXPS software with
Voigt lineshapes after subtracting a Shirley background
[26].
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FIG. 1: (a) Valence band spectra of (red) cleaved
SbySes crystal and (blue) uncleaved SbhySes crystal and
(b) valence band spectra of (green) Sb,O4 thin film and
(black) valence band subtracted SbyOg. All spectra are

shown with linear fits and measured VBM energies.
Data for part (a) is reproduced with permission from
J. Mater. Chem. C 8, 12615 (2020). CC-BY 4.0.

III. RESULTS

The valence band spectra of a highly-oriented bulk
crystal material can provide a wealth of information
about its electronic properties. Figure la shows the
valence band spectra of an Sb,Se; bulk crystal both
prior to and after in situ cleaving to remove any
surface contamination. Straight line fits are used to
determine the energy position of the leading edge - this
energy is representative of the separation between the
valence band maximum (VBM) and the Fermi level
and henceforth any reference to VBM is a reference
to the energy separation between the valence band
and Fermi level. The results of this fit are a valence
band to Fermi level separation of 0.88 eV and 0.97 eV
for the uncleaved and cleaved Sb,Se; crystals respec-
tively. This difference has significant implications for
PV technology, as has been discussed in other works [15].

Figure la shows the valence band spectra of the
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FIG. 2: Band alignment between (a) SbySe; bulk crystal and its native Sb,O5 determined by valence band
subtraction and (b) close space sublimation-deposited SbySe; and a thermally evaporated Sb,O4 thin film
determined using the Kraut method. Conduction band energies have been determined by adding the known band
gap values for Sb,Se; and SbyO4 of 1.18 eV and 4 eV.

Sb,Se; bulk crystal before and after in situ cleaving.
The spectra show some difference in intensity at binding
energies above 3 eV and this difference is particularly
pronounced between 3 and 4 eV. As previously reported
by Don et al. [12], this intensity difference is attributed
to a surface layer of Sb,O, that is known to grow
on the surface of Sb,Se; upon exposure to air. The
two spectra have been normalised to be matching in
intensity at ~1.7 eV [27]. This point was chosen for
the normalisation for two reasons - firstly the shapes of
the valence bands are very similar up to ~2 eV, with
the shape of the spectrum from the uncleaved sample
beginning to differ towards higher binding energy. By
normalising to this point there is no negative intensity
in the difference spectrum [27], with the contribution
from the Sb,O; beginning to show from ~2 eV. This
point also corresponds to the binding energy at which
the Sb 5s orbital has a significant contribution in the
SbySeq density of states [12]. It therefore corresponds to
a peak in the valence band density of states (rather than
background intensity or a peak shoulder/edge), making
it more reliable. Secondly, at this point no contribution
from Sb,05 would be expected (due to its wide band gap
and n-type conductivity), meaning that the intensity at
this point originates solely from Sb,Se; in both spectra.
No energy shift was necessary to align the two samples,
which lent weight to the assumption that the valence
band edge position was representative of the SbySes’s
VBM-Er separation in both the oxidised and pristine
states. By subtracting the cleaved spectrum from the
uncleaved, the remaining intensity, called the difference
spectrum, should originate from this Sb,O4 layer [27].
This is shown by the black circular data points in Figure

1b and will henceforth be referred to as ‘Sb,O5-sub’.

To ascertain whether this method was successful, the
Sb,O4-sub difference spectrum was compared to the
valence band spectrum of a thin film of SbyOj5 (hence-
forth referred to as ‘Sb,O4-film’). This is a thermally
evaporated thin film deposited onto Sb,Se; but with
a thickness of 75 nm. This data is represented by the
green square data points on Figure 1b and shows good
agreement with the Sb,O5-sub data. Both exhibit a peak
in intensity at the edge of the valence band, with another
broader feature at 5-6 eV below the valence band edge.
However, the two spectra do not line up in energy, with
the Sb,O4-film valence band lying roughly 0.5 eV to
higher binding energy than Sb,Os-sub. There is also a
peak in the Sb,O4-sub spectrum at 1 eV, corresponding
exactly with the edge of the Sb,Se; data. This spike is
attributed to a difference in mid-gap states between the
air exposed crystal and the in situ cleaved crystal [28, 29].

Again using linear fits, the VBM energies were
determined to be 3.07 eV and 2.60 eV respectively
for the SbyOs-film and SbyOj-sub. This highlights a
difference between the deposited film and the native
oxide, although whether this is due to a difference in
thickness or has a different origin is unclear (as discussed
below). Using the valence band edge of the Sb,O4-sub,
it is possible to determine the band alignment between
the valence band of Sb,Se; and Sb,O4 contamination.

The band gap of Sb,Se; is well known to be 1.18 eV
[4] while there is a range of reported band gap values
for SbyOs, from ~3.6 eV to ~4 eV [30-32]. For this
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FIG. 3: Core level spectra of the Sb 3d and O 1s region for (a) SbySeq thin film, (b) Sb,O4 thin film and (c)
Sby045/Sb,ySey interfacial sample.

study we have used a DFT calculated band gap of
approximately 4 eV [33]. This was calculated using the
HSEO6 functional which is known to achieve accurate
band gap values and is in line with many values reported
in the literature [30-32]. This is towards the upper
limit of the range reported in the literature but, as will
be shown later, any smaller values within the reported
range would have no bearing on the conclusions of
this work - the nature of the conduction band offset is
the same for all reasonable values of the Sb,O5 band
gap. Using the valence band subtraction method, the
VBO between Sb,Se; and Sb,O5 can be measured as
the difference in the two valence band edge energies
of the uncleaved crystal and the native oxide from the
Sb,O05-sub spectrum. Figure 2a shows the resulting
experimentally determined band alignment between
Sb,Se; and its native oxide. The VBO of -1.72 eV shown
in Figure 2a implies a straddling alignment (where
both the CBM and VBM of one material lie within the
band gap of the other), as would be expected with two
materials of such different band gaps. An uncertainty of
0.14 eV was determined for the linear fitting procedure,
which is not sufficient to change the straddling nature of
the alignment.

In order to verify the nature of the alignment between
Sb,Se; and SbyOs, the VBO between thin films of
SbySe; and Sb,O5 was measured via the Kraut method.
This method is widely used to directly measure the offset
between the valence bands of one material deposited on
another using equation 1. EZ; denotes the core level
binding energy of material X, E{,( is the binding energy
of the VBM of material X and AEqsp represents the
binding energy separation of two core levels from the
different materials in the interfacial sample.

AEy = (Ecr.®-Ev?) — (Bor*Ev?) + AEc, (1)

By taking advantage of the fact that the band energy
shift that occurs upon interface formation is consistent

for the valence band, conduction band and, importantly,
core-levels, this method allows the true offset to be
determined as long as the top layer is thin enough to
enable the photoelectrons from the substrate layer to
pass through the top layer [18]. The use of HAXPES
allows for depths of ~30 nm to be probed, much greater
than XPS (~10 nm) or UPS (~2 nm) [23]. For this mea-
surement, an Sb,O5 layer was deposited to a thickness
of 22 nm onto a 1.5 pm thick layer of Sb,Se;. Separate,
thicker layers of SbySe; (2 pm) and Sb,O5 (75 nm)
were also used for the measurement. In equation 1, the
energy separation between a core levels and the valence
band edge, (E¢p-Ev), is measured for a thick film of
each material and then the energy separation between
core levels from each material, AEcy, is measured for
the thin interfacial sample.

Figure 3 shows the HAXPES core level spectra of
the Sb 3d and O 1s region for the SbySe;, Sb,O5 and
Sby045/Sb,Se; interface thin films. The spectrum from
the SbySe; film (Figure 3a) is, as expected, dominated
by Sb bonded to Se, with a very small contribution
from Sb bonded to O. This is a result of oxidation of
the surface when the sample was briefly exposed to
air. The signal is so small that it does not indicate a
complete layer of SbyOg, such as the one removed by in
situ cleaving [12]. The spectrum from the SbyO4 film
(Figure 3b) is dominated by Sb bonded to O, as well as
the overlapping O 1s peak. This sample also shows some
trace contamination from metallic Sb at 528.79 eV, likely
a by-product of the deposition process or some slight
oxygen deficiency in the source material. The interfacial
sample (Figure 3c¢) shows signals from both Sb,Se; and
Sb,O4; with the oxide signal dominating as expected
for the uppermost layer. Other core levels used for
the Kraut method calculations as well as valence band
spectra for the thin films are included in Supplementary
Figures S1-S4.

Figure 2b shows the VBO as measured by the Kraut
method. The measured VBO was -1.90 eV, taken as an



average of the different valence band offsets calculated
using different combinations of core level peaks (see Table
S2). The error on the measurement was taken as the
standard deviation of the different calculated values and
was determined to be 0.13 eV. The offset of -1.904-0.13
eV is consistent with that determined by the subtraction
method and would also signify a straddling alignment.
For detailed breakdown of measured peak positions and
valence band offsets see Supplementary Tables S1 & S2.

IV. DISCUSSION

While the two VBO values determined for the native
oxide on SbySe; crystal and the evaporated Sb,O5; on
SbySes film are consistent with each other, there are
several possible reasons for any small differences. These
include how the native oxide forms on the surface, which
occurs under very different conditions from a thermally
evaporated film, and has been shown to be accompanied
by elemental selenium at the surface (equation 2) [15].
Additionally, the crystal surface studied is made up of
only one crystal orientation, whereas the polycrystalline
film’s surface includes multiple different orientations
[6, 19, 34]. Ultimately, however, the two results can
be considered consistent with each other taking into
account the uncertainty on the values, which was taken
as the standard deviation in the calculated values (0.13
eV) for the Kraut method results and as 0.14 eV for the
subtraction method (determined from the uncertainty in
the linear extrapolation of the valence band onsets).

2Sb,Ses + 30, — 2Sb,04 + 3Se, 2)

These results have implications for Sb,Ses’s use as a
PV material due to the great difficulty in avoiding Sb,O4
formation at the back surface, as reported by Fleck et
al. [15]. The presence of Sb,O5 between the Sb,Ses
layer and the back contact had a significant effect on the
degree of ‘rollover’ (a feature in J-V curves indicative of
a back contact potential barrier) in Sb,Se; solar cells
and the formation of Ohmic contacts. Attempts to
remove this Sb,O5 contamination have also been shown
to have mixed effects on the performance of the PV
devices [13, 14]. Fleck et al. also attempted to replicate
the effects of Sb,0O5 contamination by depositing ultra-
thin films of Sb,05; onto the back contact via thermal
evaporation. They reported that a thin layer of Sb,04
could suppress recombination at the interface between
Sb,Se; and Au provided the holes could tunnel through
the Sb,O4 layer. Thicker layers of Sb,O4, even up to 5
nm, were found to be detrimental to device performance.
This is supported by the conclusions of this work, which
shows that any significant thickness of Sb,05; would
provide a significant barrier to hole transport through
the back contact due to the magnitude of the negative

VBO.
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FIG. 4: Orbital energies of Sb and the chalcogenide
series. Data taken from Ref. 35.

The significant offset between the two valence bands
can be explained by looking in greater detail at the
valence orbital density of states for the two materials.
Antimony chalcogenides are known to exhibit strong
cation s - anion p orbital mixing, leading to the existence
of a stereochemically-active lone pair of electrons at the
valence band edge [12, 36]. The mixing of the cation s
states with the anion p states results in the formation
of bonding and anti-bonding states. The anti-bonding
states in turn hybridise with the cation p orbitals to form
bonding and anti-bonding states that make up the edges
of the valence and conduction bands respectively. The
configuration energies of the anion p-orbitals therefore
play a significant role in determining the position of
the valence band maximum on an absolute energy
scale and this has been shown to result in a lower
ionisation potential in materials containing these lone
pairs compared to those without. Both SbySe; and
Sb, 04 are predicted to undergo this lone pair formation
(experimentally evidenced for Sb,Se; by Don et al.
[12]) but, as shown in Figure 4, there is a significant
‘jump’ in the orbital energies when going from sulphur
to oxygen in the chalcogenide series, with the selenium
orbital energies being similar to those of sulphur [35].
The valence band of Sb,O5 would therefore be expected
to sit significantly lower (or have a higher ionisation
potential) than that of SbySe;, as seen experimentally
in this work.

V. CONCLUSIONS

The band alignment between Sb,O5; and Sb,Se; was
measured via two methods. The first method subtracted
the valence band spectra of a native oxide-contaminated



from an in situ cleaved bulk Sb,Se; crystal, while the
second utilised the Kraut method for a thermally evap-
orated Sb,0O5 film on a polycrystalline Sb,Se; grown
by close space sublimation. A VBO of -1.7240.14 eV
was measured via the valence band subtraction method
between an Sb,Se; crystal and the contaminant native
Sb, 05 layer, leading to a straddling alignment. This
is supported by a similar result obtained by the Kraut
method, which yielded a VBO of -1.90+0.13 eV between
a Sb,O4 thin film grown on Sb,Se;. The small difference
in the two valence band offsets, however, may be due to
differences in the electronic properties of the thermally
evaporated film and the native oxide contamination as
well as the different Sb,Se; surfaces. The magnitude
of the VBO can be explained by examining the orbital
energies of the chalcogenide series. Due to the presence
of a stereochemically active lone pair at the valence
band edge, the chalcogenide p orbital plays a major
role in determining the band edge position of the
series. As such, there is a significant drop in p orbital
energy and increase in ionisation potential moving up
the chalcogenide series from selenium and sulphur to
oxygen. These results further the understanding of the
crucial interface at oxidised Sb,Se; surfaces, and this
novel band alignment information can be used to further

Sb,Se, device performance.
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