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Abstract The efficient propagation of imprecise prob-
abilities through expensive simulators has emerged to
be one of the great challenges for mixed uncertainty
quantification in computational mechanics. An active
learning method, named Collaborative and Adaptive
Bayesian Optimization (CABO), is developed for tack-
ling this challenge by combining Bayesian Probabilistic
Optimization and Bayesian Probabilistic Integration.
Two learning functions are introduced as engines for
CABO, where one is introduced for realizing the adap-
tive optimization search in the epistemic uncertainty
space, and the other one is developed for adaptive in-
tegration in the aleatory uncertainty space. These two
engines work in a collaborative way to create optimal
design points adaptively in the joint uncertainty space,
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by which a Gaussian process regression model is trained
and updated to approach the bounds of model response
moments with pre-specified error tolerances. The effec-
tiveness of CABO is demonstrated using a numerical
example and two engineering benchmarks.

Keywords Uncertainty quantification · Imprecise
probabilities · Bayesian inference · Adaptive op-
timization · Gaussian process regression · Active
learning

1 Introduction

Uncertainty quantification (UQ) is the process of quan-
titatively characterizing the different sources of uncer-
tainties presented in computer simulations and real-
world engineering applications, and the purpose is to
produce reliable estimations of the output quantities
of interest such as the risk and reliability of complex
systems, and this way to make better data-informed
decisions. In computational mechanics and related ar-
eas, the UQ of model responses has been of special in-
terest due to the extensive uncertainties presented in
structural parameters, initial/boundary conditions and
environmental excitation (see e.g., [1,2]). Although the
data sources can be of diverse variety, uncertainty can
be generally classified into two categories, i.e., aleatory
uncertainty and epistemic uncertainty [3],where the for-
mer one is also known as irreducible uncertainty, and
caused by the intrinsic random natures of events or pa-
rameters, and the latter one is due to the lack of infor-
mation, and can be generally reduced or eliminated by
collecting more information. The aleatory uncertainty
results in the intrinsic random nature of system re-
sponses, and thus the randomness of system failures,
while the epistemic uncertainty prevents the analysts
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from learning the probability distribution of responses
or the probabilities of failure events. Therefore, these
two types of uncertainties need to be properly and sep-
arately characterized by mathematical models for de-
cision making in the face of uncertainty [3]. There are
several different sub-tasks for UQ such as uncertainty
characterization [4,5], forward uncertainty propagation
[6], backward model updating [7,8], uncertainty sensi-
tivity analysis [9], etc., where the uncertainty character-
ization and propagation are the two most fundamental
problems.

Uncertainty characterization aims at developing math-
ematical models for quantitively describing the uncer-
tainties and statistical inference techniques for estimat-
ing the parameters of these models. It has been widely
realized that the classical precise probability model is
not sufficiently general to accommodate input variables,
of which the information is imperfect (scarce,incomplete,
and \ or imprecise) [3,4]. The non-probabilistic models
[5], e.g., interval models and fuzzy set models, have been
developed and widely investigated in the area of struc-
tural reliability [10,11,12,13]. However, it is also real-
ized that these models are more suitable for modeling
the epistemic uncertainty of the constant-but-unknown
variables [14], due to their inability of separating the
aleatory and epistemic uncertainties. For parameters
or events where both kinds of uncertainties are present,
the imprecise probabilities [4], such as probability box
(p-box) [15], evidence theory [16], fuzzy probability [17],
and second-order probability [18], as natural extensions
of the classical probability theory, have received the
most attention due to the capability of separating the
two kinds of uncertainties with unified model frame-
works. One can refer to Refs. [4,19,20] for comprehen-
sive review and comparison of these models. Despite
their appealing feature of separating the aleatory and
epistemic uncertainty, the imprecise probabilities are
still less widely applied than the classical precise prob-
ability model in real-world applications, mainly due
to the demanding computational cost of uncertainty
propagation. Thus, developing efficient numerical algo-
rithms for propagating the imprecise probability mod-
els, with competitive efficiency as those for precise prob-
ability models, through computationally expensive sim-
ulators has been a research frontier of UQ, and received
great attention. This paper concerns the propagation of
the p-box model.

The tasks for uncertainty propagation of imprecise
probabilities involve the estimation of model response
moments, the probability of (rare) events, the density
function of model response, etc., all of which are non-
deterministic due to the imprecision presented in the
probability distribution of model inputs. This topic has

received extensive attention among the past decade.
The most straightforward way for addressing this chal-
lenge commonly involves a double-loop procedure due
to the natural two-layer model structure, and two differ-
ent strategies have been developed following this scheme.
The first strategy performs the outer-loop optimization
in the space of epistemic distribution parameters, and
then for each design point, calculates the responses of
interest (e.g., failure probability and model response
moments) using classical probabilistic analysis methods
such as stochastic simulation [21,22]. Another strategy,
termed as Interval Monte Carlo Simulation (IMCS),
performs outer-loop random sampling to create interval
samples, and then for each interval sample, computes
the bound values of model responses in the inner loop
by using either intrusive method (e.g., interval finite el-
ement analysis) or non-intrusive method (e.g., particle
swarm optimization) [23,24,25,26]. Both of the above
strategies have been applied to the 2014 NASA Langley
UQ challenge problem [22,27]. These methods are less
applicable for problems with computationally expen-
sive simulators as the double-loop numerical procedures
usually require an extensive number of model function
calls. For alleviating the computational cost, surrogate
model methods have also been developed [28,29,30,31],
but aspects of optimal experiment design and the nu-
merical errors associated with these surrogate models
require further investigation.

For alleviating the computational burden caused by
the double-loop schemes, some decoupling strategies
have been developed. For example, the Extended Monte
Carlo simulation (EMCS) is developed based on the
weighting scheme, and shown to be efficient for low-
dimensional imprecise probabilities inputs [32]. A sim-
ilar algorithm based on the weighting scheme has also
been developed in Ref. [33], with a special focus on de-
riving the optimal density for sampling. The operator
norm theory was developed in Ref.[34] for efficiently
estimating the first excursion probability of a linear
structure subjected to imprecise stochastic load, but
this method, in its current form, is not capable of in-
corporating the mixed uncertainties presented in struc-
tural parameters such as Young’s modulus. Recently, a
new methodology framework, named Non-intrusive Im-
precise Stochastic Simulation (NISS), has been devel-
oped for efficiently propagating the imprecise probabil-
ity models and the non-probabilistic models simultane-
ously [6,35]. The most appealing feature of this frame-
work is that only one stochastic simulation is required
for performing the analysis and the numerical errors are
properly addressed. Till now, subset simulation and line
sampling have both been adopted in this framework
for analyzing the probabilities of rare events with p-
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box inputs [36,37,38]. In this framework, the output of
interests are the High-Dimensional Model Representa-
tion (HDMR) components of the probabilistic response
functions, which provide a quantitative and visible rep-
resentation of the relationship between the probabilistic
responses (e.g., the model response moments) and the
imprecise distribution parameters of the p-box inputs.
In this work, the outputs of interest are the bounds of
the model response moments.

The Bayesian numerical analysis [39], including the
Bayesian Probabilistic Optimization (BPO, also known
as Efficient Global Optimization, EGO) [40], the Bayesian
Probabilistic Integration (BPI) [41,42], Bayesian PDE
solution [43], etc., have emerged to be a frontier of sci-
entific computation. The most attractive character is
that the discretization error is regarded as a source
of epistemic uncertainty, and is analytically or semi-
analytically quantified by the variation of the posterior
distribution. In our previous work, an improved NISS
algorithm, named as Non-intrusive Imprecise Proba-
bilistic Integration (NIPI), has been developed for learn-
ing the functional behavior of the model response mo-
ments with respect to the input epistemic parameters
[44]. This method is strongly recommended when the
analysts’ target is to learn the details of the functional
behavior of the probabilistic responses (e.g., model re-
sponse moments) to the epistemic parameters visibly
while the epistemic uncertainty is large. However, in
some applications, the analysts may only concern the
bounds of the probabilistic responses, regardless of the
functional behavior. In this case, the required number
of model function calls can be further reduced, and this
is the main object of this work.

In this work, the BPI and BPO will be combined to
develop a new Bayesian numerical method, called Col-
laborative and Adaptive Bayesian Optimization (CABO),
for efficiently estimating the bounds of model response
moments subjected to distributional p-box inputs. The
method jointly performs adaptive BPO in the epistemic
uncertainty space and adaptive BPI in the aleatory un-
certainty space. Two learning functions, originally de-
veloped for solving the optimization and integration of
deterministic functions respectively, are introduced as
twin engines, and work in a collaborative way to adap-
tively produce optimal design points in the joint un-
certainty space. A Gaussian Process Regression (GPR)
model is then trained and updated in the joint uncer-
tainty space, based on which, the bounds of model re-
sponse moments are analytically derived using Bayesian
inference with the discretization errors summarized by
posterior variances. The developed CABO algorithm
owns several appealing features, which make it effi-
cient and robust for estimating the above-mentioned

bounds. First, the adaptive BPO scheme in the epis-
temic space properly avoids waste of model function
calls in the areas that are not informative for deter-
mining the bounds. Second, the global convergence of
optimizing the bounds in the epistemic space is ensured
by the learning function. Third, the spatial correlation
information revealed by the GPR model is fully uti-
lized for improving the accuracy of integration in the
aleatory space. Forth, the discretization errors for esti-
mating the bounds are explicitly summarized by using
the posterior variance.

The remaining of this paper is organized as follows.
Section 2 describes the mathematical formulation of
the problem to be solved, followed by a brief review
of the NIPI algorithm for estimating the probabilistic
response functions in section 3. Section 4 presents the
new developments, including the two learning functions
and the CABO algorithm. In section 5, a numerical ex-
ample and two engineering benchmarks are introduced
for demonstrating the effectiveness of the CABO algo-
rithm. Section 6 presents the conclusions.

2 Problem statement

Let y = g (x) (abbreviated as g-function) denote the de-
terministic computer simulator of interest, where x =

(x1, x2, · · · , xn) indicates the n-dimensional random in-
put vector, and y refers to the univariate model out-
put. By saying “deterministic” we mean that, given
a deterministic value of the input vector, the model
output has a unique and deterministic value. We also
assume that the simulator of concern is expensive to
run. Based on the above setting, the probability dis-
tribution of the model output is uniquely determined
by that of the input vector. However, in practical ap-
plications, the probability distribution of x, which re-
flects the aleatory uncertainty of x, cannot be pre-
cisely determined due to the lack of information. In this
case, the distribution parameters can be imprecisely es-
timated as, e.g., confidence intervals, which character-
ize the epistemic uncertainty underlying the probabil-
ity distribution of x. We assume throughout this pa-
per that the mixed uncertainty of x is characterized by
distributional imprecise probability models, where the
word “distributional” means that the distribution type
is exactly known, but the values of the distributional
parameters can not be precisely known. Let f (x|θ)
denote the joint probability density function (PDF),
where θ = (θ1, θ2, · · · , θd) is the d-dimensional non-
deterministic distribution parameters, and its (epistemic)
uncertainty is characterized by the hyper-rectangular
[θL,θU ], where θL = (θL1, θL2, · · · , θLd) is the lower
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bound vector, and θU = (θU1, θU2, · · · , θUd) is the up-
per bound vector. One notes that the epistemic uncer-
tainty on θ can also be characterized by more complex
models such as fuzzy sets [17] and subjective proba-
bility distribution [18], if the analysts expect to make a
trade-off between the “risk” and “accuracy” for decision
making. In the former case, the induced imprecise prob-
ability model is called fuzzy probability, while in the
later case, it is called second-order probability model.
In this paper, we only concern the p-box models.

With the above assumptions, any probabilistic char-
acters of the model output y, e.g., the statistical mo-
ments and the cumulative distribution function (CDF),
are functions of θ. In this paper, only the statistical mo-
ments of model output are concerned, and specifically,
we take the response expectation function m (θ) as an
example, which is formulated as:

m (θ) =

∫
Rn

g (x) f (x|θ)dx. (1)

In our previous papers, the estimation of the above
moment function across the full support of θ has been
addressed by developing the NISS and NIPI frameworks
[6,44]. However, in many applications, the analysts are
more interested in the bounds [mL,mU ] of the output
moments as they reflects how much the epistemic un-
certainty underlies the response moments, and provide
conservative estimations of system performances (e.g.,
the mean time to failure of a system). Intuitively, es-
timating the bounds of m(θ) can be computationally
less expensive than estimating the function m(θ) across
the whole support of θ, as for the former, the full infor-
mation on the behavior of m(θ) may not be required.
However, a special development is required to achieve
this target, and this is the specific focus of this paper.
The problem is then mathematically formulated as:


mL = min

θ∈[θL,θU ]
m (θ)

mU = max
θ∈[θL,θU ]

m (θ)
. (2)

Commonly, once the moment function m (θ) is es-
timated, the calculation of the bounds [mL,mU ] can
be quite straightforward. However, the accurate esti-
mation of the function m (θ) across the full support
[θL,θU ] can be computationally much more expensive
than estimating the bounds [mL,mU ] since the former
task requires samples of θ distributed over the whole
support [θL,θU ]. Thus, to address this challenge, we de-
velop a specific algorithm for efficiently estimating the
bounds [mL,mU ] with high accuracy based on Bayesian

numerical analysis. In the next section, we briefly re-
view the NIPI method for estimating the moment func-
tion m (θ).

3 Non-intrusive Imprecise Probabilistic
Integration

The NIPI method is originally developed for estimat-
ing the HDMR components of m (θ) in order to learn
the functional behavior of m (θ) as well as the influence
of each θi on the response moments visibly [44]. Here,
we briefly review this method with the focus on the
inference of the induced GPR model m̂ (θ) for approx-
imating m (θ). In Ref. [44], the closed-form expressions
for the posterior features of m (θ) are not reported, but
they are important for understanding the core develop-
ments in this work. Thus, the following review will be
focused on these closed-form expressions.

For NIPI, an auxiliary density p (θ) needs first to be
attributed for θ (see section 5 for details). After that,
it is required to transform both x and θ into stan-
dard normal variables. This can be realized by, e.g.,
Rosenblatt’s transformation [45]. Denote the transfor-
mation of θ as θ = T (v) and the inverse transformation
as v = T−1 (θ), where v is the independent standard
Gaussian vector of size d. Then, let x = S (u |T (v) )

denote the transformation for x conditional on θ =

T (v), and the corresponding inverse transformation is
u = S−1 (x|T (v)), where u is the independent stan-
dard Gaussian vector of size n. Then a g-function with
arguments w = (u,v) can be defined as:

G (w) = g (S (u |T (v) )) . (3)

Let Π1:n (·) indicate the n-dimensional integral to
the first n input variables of the argument over indepen-
dent Gaussian density weight, then the model output
expectation to v can be formulated as:

M (v) = Π1:n [G (w)] . (4)

Once M (v) has been learned, the model output expec-
tation function to θ is recovered as:

m (θ) = M
(
T−1 (θ)

)
. (5)

The basic idea of BPI is to first train a GPR model
for the integrand, and then infer the resultant poste-
rior probability distribution of the integral [41,42]. This
method has two appealing features. First, the spatial
correlation information which reflects the smoothness
of the integrand is fully integrated for improving the
accuracy of the integration. Second, the variation of the
posterior distribution provides a rationale measure for
the discretization errors. A Gaussian process model is
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assumed for G (w) as GP (b (w) , κ (w,w′)), where b (w)

is the prior mean function, which can be assumed to be
zero, constant or polynomial functions, and it reflects
the prior information on the non-linearity of G (w), and
κ (w,w′) is the prior covariance function (also called
kernel function) which reflects the prior information on
the spatial correlation of G (w) at any two points w

and w′. In this paper, the exponential squared kernel
function is utilized, and it is formulated as [46,47]:

κ (w,w′) = σ2
0 exp

(
−1

2
(w −w′)Σ−1 (w −w′)

⊤
)
,

(6)

where σ2
0 is the hyper-parameter quantifying the magni-

tude of variance (prediction error) at each site, and Σ =

diag
(
σ2
1 , . . . , σ

2
n+d

)
indicates the scale matrix, each com-

ponent of which measures the strength of the correla-
tion along the corresponding coordinate. With this ker-
nel function, the posterior probability distribution of
the integral over Gaussian density weight is still Gaus-
sian, and closed-form expressions can be inferred for
both posterior mean and variance for the integral, where
the posterior variance summarizes the discretization er-
rors. One notes that the other kernels such as Matérn
kernel can also be used to provide more flexibility for
approximating the integrand, however, in this case, the
weight density should be changed to be uniform to en-
sure that both posterior mean and variance can be
expressed in closed form. One can refer to Ref. [41]
for more details. For real world applications, the best
choice of kernel should be determined by the users based
on their understanding on the behaviors of the physi-
cal systems under consideration. For the guidance of
choosing proper kernel, one can refer to chapter 2 of
Ref. [48].

Let D = (W,Y) denote a set of labeled training
data, where W = (U ,V) is the sample matrix of size
N × (n+ d), each row of which is a sample point of
w, U and V are the sample matrix of u and v respec-
tively, and Y is the column vector of model output val-
ues, i.e., Y = G (W). Based on the training data D,
the hyper-parameters involved in b (w) and κ (w,w′)

can be specified by using, e.g., the maximum likelihood
method. Throughout this paper, the noise-free GPR
model is utilized and the training is realized by using
the function “fitrgp” in the Matlab “Statistics and Ma-
chine Learning Toolbox”.

With the g-function G (w) being characterized by a
well-trained GPR model Ĝ (w), the resulting posterior
probability distribution of M (v) is also a GPR model,
and the posterior mean and variance are formulated as

[41,42]:

µM (v) =ED

[
M̂ (v)

]
=Π1:n [b (w)]

+Π1:n

[
κ (w,W)

⊤
]
K−1 (Y − b (W))

(7)

, and

σ2
M (v) =VD

[
M̂ (v)

]
=Π1:nΠ

′
1:n [κ (w, (u′,v))]

−Π1:n

[
κ (w,W)

⊤
]
K−1Π ′

1:n [κ ((u′,v) ,W)] ,

(8)

respectively, where ED [·] and VD [·] refer to the poste-
rior expectation and variance operators taken over the
GPR model trained using D, K indicates the covari-
ance matrix of the training data and is computed as
K = κ (W,W), κ (w,W) refers to the vector of co-
variance between any new point w and the training
sample matrix W, and Π ′

1:n [·] indicates the integral
with respect to u′. In Eqs. (7) and (8), the closed-
form expression of Π1:n [b (w)] is trivial, the integral
Π1:n [κ (w,W)] = Π ′

1:n [κ ((u′,v) ,W)] is further de-
rived as [42,49]:

Π1:n [κ (w,W)] = σ2
0

∣∣Σ−1
u + I

∣∣−1/2

× exp

[
− 1

2vec
{
diag

[
U (Σu + I)

−1 U⊤
]}

− 1
2 (v − V)Σ−1

v (v − V)⊤

]
,

(9)

where Σu indicates a (n× n)-dimensional diagonal ma-
trix with the elements being the squared lengths of u,
Σv is the (d× d)-dimensional diagonal matrix consist-
ing of the squared lengths of v, and vec {diag [·]} refers
to the vectorization operator performed on the diagonal
elements of the argument. The term Π1:nΠ

′
1:n [κ (w, (u′,v))]

in Eq. (8) indicates the integral of κ (w, (u′,v)) with
respect to u and u′ over standard Gaussian density
weight, and its closed-form expression is formulated as
[42,49]:

Π1:nΠ
′
1:n [κ (w, (u′,v))] = σ2

0

∣∣2Σ−1
u + I

∣∣−1/2
. (10)

From Eqs. (7) and (9), the posterior mean µM (v)

can be interpreted as the summation of the prior mean
Π1:n [b (w)] and a linear combination of the kernels be-
tween v and the training data V, where the second
term can be regarded as a calibration (inferred from the
training data) to the prior mean. Eq. (8) implies that
the posterior variance σ2

M (v) is generated by subtract-
ing a positive term (the last term in Eq. (8)) from the
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prior variance Π1:nΠ
′
1:n [κ (w, (u′,v))], where the posi-

tive term being subtracted reflects the amount of (epis-
temic) uncertainty reduction on M (v) that learned
from the training data.

In Eqs. (7) and (8), by replacing v with v = T−1 (θ)

(see Eq. (5)), we can generate the posterior mean µm (θ)

and the posterior variance σ2
m (θ) of the GPR model

m̂ (θ), which is an approximation of the response ex-
pectation function m (θ). Then it is straightforward to
estimate the bounds of m (θ) with, e.g., particle swarm
optimization, by setting the posterior mean µm (θ) as
the objective function. However, due to the epistemic
uncertainty (measured by the posterior variance) pre-
sented in m̂ (θ), the estimated bounds may not be re-
liable. One can increase the reliability of the estimates
by increasing the training data size. However, this in-
discriminate way of increasing data size without consid-
ering the epistemic uncertainty presented in m̂ (θ) and
the behavior of m (θ) may result in a waste of computa-
tional resources since each simulator run can be expen-
sive. For avoiding this, we develop the CABO algorithm
in the next section for adaptively learning the bounds
of the probabilistic response moments with high confi-
dence. For simplicity, the response moment function is
exemplified throughout the paper, and for higher-order
moments, the technical details are exactly the same ex-
cept that one needs to replace the integrand in Eq. (1)
as, e.g., g2 (x), for which the GPR model needs to be
trained. One can refer to our previous work in Ref. [44]
for a detailed discussion.

4 Collaborative and Adaptive Bayesian
Optimization

The estimation of the bounds of the model response
moments involves a double-loop process. In the outer
loop, a numerical optimization procedure is required
for estimating the moment bounds by searching the
global minima and maxima of the response moments
in the epistemic uncertainty space, and then for each
fixed design site of the distribution parameters, a nu-
merical integration procedure is performed in the inner
loop to estimate the corresponding deterministic value
of model response moment. The basic idea of CABO
is illustrated in Figure 1. It involves first training a
GPR model in the joint space of aleatory and epis-
temic uncertainties, and deriving the induced marginal
GPR model in the aleatory space and that in the epis-
temic space respectively. Then, based on the marginal
GPR model in the epistemic space, solve the outer-
loop optimization by BPO, and based on the marginal
GPR model in the aleatory space, compute the inner-
loop integral by BPI. In the BPO scenario, a learning

function LAEI (θ), named as Argumented Expected Im-
provement (AEI) function [50,51], is utilized as the first
engine for adaptively generating the design point θ+

(or v+) for the imprecise distribution parameters θ to
acquire the global optimization points that maximize
(or minimize) the response moment, while in the BPI
scenario, another learning function LPVC (u,v+), called
Posterior Variance Contribution (PVC) function [42], is
used as an engine for adaptively generating experiment
design point x+ (or u+) for the input random variables
x in order to accelerate the convergence of integration.
Thus, these two engines work in a collaborative and se-
quential manner to produce the optimal design point
w+ = (u+,v+) in the joint space. Before presenting
the CABO algorithm, the two engines need to be in-
troduced. One should note that both AEI and PVC
are closed-form functions explicitly and uniquely formu-
lated with the training data and the hyper-parameters
of the GPR model, thus any computations with calling
these two engines do not introduce new g-function calls.

4.1 Engine 1: Argumented Expected Improvement
Function

The AEI function used in the outer-loop BPO is devel-
oped for searching the training point θ+ (or correspond-
ingly v+) in the epistemic space, by adding which to
the training data, the most expected improvement for
searching the minimum (or maximum) value of m (θ)

can be achieved. We take the estimation of the lower
bound mL of m (θ) subjected to θ ∈ [θL,θU ] as an
example to illustrate the developed method.

Suppose now, based on the current training data
D, the GPR model Ĝ (w) for approximating G (w) is
trained in the joint space, from which a marginal GPR
model m̂ (θ) ∼ GP

(
µm (θ) , σ2

m (θ)
)

in the epistemic
space for approximating m (θ) is inferred by using Eqs.
(7) and (8). Let

θ∗ = arg min
θ∈[θL,θU ]

[µm (θ) + ασm (θ)] (11)

denote the current optimal solution, where α is a pa-
rameter reflecting the degree of risk aversion, and one
can refer to Ref. [50] for more details. In this paper, α is
assumed to be 1. Then we need to find a new point θ, by
adding which to the training data set D, the maximum
reduction of the objective function can be achieved. For
this purpose, we introduce the noise-free version of the
AEI function, originally developed in Ref. [50] for global
optimization, as follow:

LAEI (θ) = ED [max (µm (θ∗)− m̂ (θ) , 0)] . (12)
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Fig. 1 Illustration of the basic rationale of CABO, where the solid lines show the rough algorithm flow, and the dashed line only
indicate the information flow.

The AEI function measures how much the minimum
value of m̂ (θ) can be reduced compared to µm (θ∗) if
the true value of m (θ) at the point θ is learned. The
use of the maximum operator in the above definition
ensures the non-negativity of the AEI function. The
closed-form expression of the AEI function is formu-
lated as [50]:

LAEI (θ) = (µm (θ∗)− µm (θ))Φ

(
µm (θ∗)− µm (θ)

σm (θ)

)
+ σm (θ)ϕ

(
µm (θ∗)− µm (θ)

σm (θ)

)
,

(13)

where Φ (·) and ϕ (·) are the univariate CDF and PDF
of standard Gaussian distribution respectively.

Eq. (13) indicates that, even in the case θ = θ∗,
the value of LAEI (θ) can be non-zero. This property
allows specifying the next training data as θ∗. This is
an appealing property since it can sufficiently reduce
the prediction epistemic uncertainty at the current op-
timal point, and the current design may also have a
high probability of being the optimal design. If we re-
place µm (θ∗) in Eq. (12) with m̂ (θ∗) so as to account
the prediction uncertainty at θ∗, as it is suggested in
Ref. [51], the AEI function will equal to zero if the next
design is equal to θ∗, indicating that no replicate is al-
lowed. This is not a desired property. Thus, given the
definition in Eq. (12), the LAEI (θ) does not equal to
zero even when the next design is specified to be θ∗, as
revealed by Eq. (13).

Searching θ∗ by solving the optimization problem
in Eq. (11) across the full support of θ is usually time-
consuming, yet unnecessary. As suggested by Huang et
al. [50], θ∗ can be generated by minimizing µm (θ) +

ασm (θ) over the previously observed locations of θ.
The next design site θ+ to be added to the training set
D is specified by maximizing the AEI function, i.e.,

θ+ = arg max
θ∈[θL,θU ]

LAEI (θ) . (14)

The AEI function is found to be multimodal in most
cases, thus global optimization algorithms such as par-
ticle swarm is recommended for solving Eq. (14). The
stopping criteria is given as maxθ LAEI (θ) < ∆BPO, or
the normalized one:

maxθ LAEI (θ)

(maxG (wi)−minG (wi))wi∈D
< ∆BPO, (15)

if the magnitude of the g-function value is large, where
∆BPO is a user-defined error tolerance. The value of this
error tolerance can be pre-specified based on the user’s
requirement for the accuracy of locating the maxima
and minima. For example, for the normalized stopping
criteria, it can be specified as 10−3 ∼ 10−2. In the next
subsection, the strategy for deriving the next design
point u+ in the aleatory space, accompanied by v+, is
developed.

4.2 Engine 2: Posterior Variance Contribution
Function

The PVC function aims at specifying the design point
of u, by adding which to the training data set together
with θ+, the most reduction of the posterior variance
σ2
m

(
θ+

)
at the site θ+ can be achieved. This is equiva-

lent to identify a design point of u to minimize the pos-
terior variance σ2

M (v+) of the Gaussian random vari-
able M̂ (v+) ∼ GP

(
µM (v+) , σ2

M (v+)
)
, where v+ =

T−1
(
θ+

)
.
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Based on the GPR model Ĝ (w) trained in the joint
space, a marginal GPR model in the aleatory space
is inferred as Ĝ (u,v+) ∼ GP

(
µG (u,v+) , σ2

G (u,v+)
)
,

whose posterior covariance between two points u and u′

is denoted as covG ((u,v+) , (u′,v+)). Then, from Eq.
(8), the posterior variance σ2

M (v) can be reformulated
as:

σ2
M

(
v+

)
= Π1:n

[
h
(
u,v+

)]
, (16)

where

h
(
u,v+

)
= Π ′

1:n

[
covG

((
u,v+

)
,
(
u′,v+

))]
= Π ′

1:n

[
κ
((
u,v+

)
,
(
u′,v+

))]
− κ

((
u,v+

)
,W

)⊤
K−1Π ′

1:n

[
κ
((
u′,v+

)
,W

)]
.

(17)

Eq. (16) reveals that the posterior variance σ2
M (v+)

is equal to the integral of h (u,v+) over the standard
Gaussian density, thus h (u,v+) actually measures the
contribution of the prediction error of the resulting GPR
model Ĝ (u,v+) at the point u to the posterior variance
σ2
M (v+). Eq. (17) implies that h (u,v+) is defined by

integrating the posterior covariance with respect to u′

over the whole aleatory space, indicating h (u,v+) sum-
marizes the spatial correlation information of the node
u with all the other points in the aleatory space. In-
spired by this fact, the PVC learning function for adap-
tive BPI has been developed in our previous work, and
it is formulated as[42]:

LPVC (
u,v+

)
= ϕn (u)h

(
u,v+

)
, (18)

where ϕn (·) is the joint PDF of n-dimensional stan-
dard Gaussian distribution. By adding the point of u

with the maximum PVC value to the training data set,
it is expected to achieve the maximum reduction of the
posterior variance σ2

M (v+), and thus also the most im-
provement of the accuracy of estimating the inner-loop
integral M (v+). From Eqs. (17) and (18), it is seen that
derivation of the closed-form expression for the PVC
function LPVC (u,v+) requires the closed-form expres-
sions for the two integrals Π ′

1:n [κ ((u,v
+) , (u′,v+))]

and Π ′
1:n [κ ((u′,v+) ,W)], where the second integral

can be generated as Eq. (9) by replacing v with v+,
and the first integral is formulated as [42]:

Π ′
1:n

[
κ
((
u,v+

)
,
(
u′,v+

))]
= σ2

0

∣∣Σ−1
u + I

∣∣−1/2
exp

[
−1

2
u (Σu + I)

−1
u⊤

]
.

(19)

In summary, the next design point u+ of u can
be computed by maximizing the closed-form expression
of the PVC function. It is found that, in most cases,

the PVC function is also multimodal, thus global op-
timization algorithms such as particle swarm are rec-
ommended. Similar to the BPO procedure, a stopping
threshold ∆BPI should be pre-specified for controlling
the accuracy of integration. Usually, it is recommended
to take the value between 1 ∼ 5%, depending on the
users’ requirement on integration accuracy.

4.3 Twin-engine Collaborative and Adaptive Bayesian
Optimization

With the two learning functions as twin engines, the
CABO algorithm is devised, and the flowchart is shown
in Figure 2. We take the computation of the lower
bound of the response expectation as an example, the
procedure is described as follows in detail.

Step 1: Initialization.
Specify the initial sample size N0 (e.g., 20), and then

create the corresponding initial training data set D =

(W,Y) of size N0. Record the number of g-function calls
as N = N0. The initial training sample set W = (U ,V)
can be generated by the following two steps. First, gen-
erate a random sample θ(i) following the auxiliary dis-
tribution p (θ), and then transform this point to a stan-
dard normal sample point by v(i) = T−1

(
θ(i)

)
. Sec-

ond, create a random sample point x(i) by the probabil-
ity distribution f

(
x
∣∣∣θ(i)

)
, and then transform it into a

standard normal sample point using u(i) = S−1
(
x(i)|θ(i)

)
.

With the above procedure, we generate a joint sample
point w(i) =

(
u(i),v(i)

)
, and the corresponding value of

the model response can be computed as y(i) = g
(
x(i)

)
.

In this paper, random sampling is realized using Latin-
Hypercube Sampling (LHS) design [52].

Step 2: Train the GPR model.
Train a GPR model Ĝ (w) with D, and derive the

marginal GPR model m̂ (θ) ∼ GP
(
µm (θ) , σ2

m (θ)
)

in
the epistemic space by Eqs. (7) and (8). Since the com-
puter simulator is deterministic, thus the noise-free GPR
model is utilized. For problems with low nonlinearity,
zero or constant mean function is suggested, while for
the highly nonlinear problems, the linear or higher-
order polynomial bases are recommended.

Step 3: Run BPO.
This step involves first computing the current opti-

mal site θ∗ by Eq. (11). For reducing the computational
cost in this step, it is suggested to search θ∗ across
the training data of θ which is included in [θL,θU ],
instead of performing optimization in the whole sup-
port [θL,θU ]. Then, the closed-form expression of the
AEI function can be generated as Eq. (13). By solving
the optimization problem in Eq. (14), we can obtain
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Fig. 2 Flowchart of the twin-engine CABO algorithm.

the next best design site θ+. Since the AEI function is
mostly multimodal (have multiple local maximas) and
the next design point is the global maxima, it is sug-
gested to use global optimization algorithms such as the
particle swarm solver, which can be realized by the ‘par-
ticleswarm’ function in the Matlab Global Optimiza-
tion Toolbox. With this step, we generate the next de-
sign point θ+, the corresponding maximum AEI value
LAEI (θ+

)
, the corresponding GPR prediction µm

(
θ+

)
and the corresponding posterior variance σ2

m

(
θ+

)
. The

posterior Coefficient Of Variation (COV) of the GPR
prediction is then computed by covm

(
θ+

)
= µm

(
θ+

)
/

σm

(
θ+

)
.

Step 4: Judge the stopping criteria.
The stopping criteria for BPO is given as LAEI (θ+

)
<

∆BPO or the normalized one in Eq. (15), and that for
BPI is covm

(
θ+

)
< ∆BPI, where ∆BPO and ∆BPI are

both small thresholds. Here we suggest using a delayed
judgment, which means to stop the algorithm only when
the above two stopping criteria are simultaneously sat-
isfied for several (e.g., two) times in successive steps. If
the stopping criteria are satisfied, end the algorithm; if
not, go to Step 5.

Step 5: Perform BPI.
The design point v+ corresponding to θ+ is com-

puted by v+ = T−1
(
θ+

)
, and then the closed-form ex-

pression of the PVC function can be generated by Eq.
(18). The next design point u+ in the aleatory space is
then computed by maximizing the PVC function. Sim-
ilarly, the PVC function is often multimodal, and the
particle swarm solver is recommended.

Step 6: Enrich the training data set.
With the above steps, we obtain the next design

point w+ = (u+,v+) in the joint space. Computing the
corresponding g-function value y+, the training data set
D is enriched with (u+,v+, y+). Let N = N + 1, go to
Step 2.

■
Although the global algorithms such as particle swarm

solver need to be performed in step 3 and step 5, the
target functions are both in closed form, and thus no
g-function call is required. It is only in step 6 that one
needs to compute the g-function value at the design
point w+ collaboratively produced by the two engines,
thus the algorithm is of high efficiency for expensive
computer simulators.

With the above procedure, the posterior mean and
posterior variance of the lower bound mL can be com-
puted, where the posterior variance summarize the dis-
cretization errors for computing the bound. For com-
puting the upper bound, one needs only to set the initial
training data set as the one obtained for computing the
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lower bound and the target function of the optimization
problem as minus m (θ), then restart the above proce-
dure. In the next section, we introduce one illustrative
example and two real-world engineering examples for
illustrating and demonstrating the advantages of the
CABO method.

5 Test examples

As has been mentioned above, for implementing the
CABO algorithm, an auxiliary probability density p (θ)

needs to be attributed to θ. Following our experience
in Ref. [44], it is assumed that θ follow a uniform dis-
tribution with relaxed support [θl − ϵl,θu + ϵu]. The
values of ϵl and ϵu can be specified to satisfy the follow-
ing two criteria, −2.2 ⩽ Φ−1 (U (θl|θl − ϵl,θu + ϵu)) ⩽
−1.5 and 1.5 ⩽ Φ−1 (U (θu|θl − ϵl,θu + ϵu)) ⩽ 2.2,
where U (·|θl − ϵl,θu + ϵu) indicates the CDF of uni-
form distribution with support [θl − ϵl,θu + ϵu] and
Φ−1 (·) refers to the inverse CDF of standard normal
distribution.

5.1 An illustrative example

The g-function is formulated as:

g (x1, x2) =

4∑
i=1

ci exp
[
−αi1 (x1 − βi1)

2 − αi2 (x2 − βi2)
2
]
,

(20)

where α =

(
2 3 1 4
3 2 4 1

)⊤

, β =

(
−0.5 0.5 −0.5 0.5
−0.5 −0.5 0.5 0.5

)⊤

,

c =
(
1 −1.5 −1.5 2

)⊤, x1 and x2 are independent nor-
mal random variables. The task is to estimate the bounds
[mL,mU ] of the model response expectation. We con-
sider two cases. For case 1, it is assumed that x1 ∼
N

(
θ1, 0.1

2
)

and x2 ∼ N
(
θ2, 0.1

2
)
, where the imprecise

parameters θ1 and θ2 are both bounded by [−1.5, 1.5].
For case 2, it is assumed that x1 ∼ N

(
θ1, θ

2
3

)
and

x2 ∼ N
(
θ2, θ

2
4

)
, where the mean parameters θ1 and

θ2 are still bounded by [-1.5, 1.5], the STandard Devi-
ation (STD) parameters θ3 and θ4 are also assumed to
be imprecise and bounded by [0.05, 0.2]. For this exam-
ple, the linear basis function is assumed for the prior
GPR means.

♦ Results and discussions for case 1
For this case, the closed-form expression of the re-

sponse expectation function m (θ1, θ2) is available, which
is shown in Figure 3, together with the true extreme
points. As can be seen, there exist two local minima
and two local maxima, but there are only one global

minima and one global maxima, which determine the
bounds to be estimated. The purpose of this example is,
on the one hand, to illustrate the details of the training
process of CABO, and on the other hand, to demon-
strate the global convergence of CABO for nonlinear
problems with multiple pairs of local extrema.

The auxiliary probability distributions for θ1 and θ2
are both set to be a uniform distribution with support
[−1.65, 1.65], and then 40 joint samples are generated
with LHS design to initialize the CABO algorithm. The
initial 40 training samples for θ are shown in Figure
4. The stopping criteria for BPO and BPI are set to
be maxθ LAEI (θ) < 2 × 10−3 and covm

(
θ(+)

)
< 1%,

respectively. The CABO algorithm stops only when
the above stopping criteria are satisfied simultaneously
twice in succession. With the above setting, the CABO
algorithm adaptively produces 34 more training points
for estimating the global minimum, and then 27 more
training points for calculating the global maximum.
The adaptively added training points in the epistemic
space are shown in Figure 4, together with the mini-
mum and maximum points. Thus, the total number of
g-function calls is Ncall = 40 + 34 + 27 = 101. The re-
sults of lower and upper bounds estimated by CABO
are reported in Table 1, together with the analytical re-
sults and the results generated by IMCS (see Ref. [23])
for comparison. For implementing the IMCS method,
the size of interval samples is set to be N = 100, and
for each interval sample, the particle swarm algorithm
is utilized for computing the corresponding bounds of
model output, and then the resultant interval samples
of model response are used for computing the bounds
of response expectation [23]. The total number of g-
function calls consumed by IMCS is 6.192× 104, which
is much higher than that of CABO. One notes that the
estimated bounds by IMCS is usually more conservative
than the real bounds. The real bounds of the model
response expectation are determined and only deter-
mined by all the Gaussian distributions bounded by
the p-box model. However, by creating interval samples
with IMCS, a default assumption, that all the possible
CDFs (including those non-Gaussian ones) bounded by
Φ
(
xi| − 1.5, 0.12

)
and Φ

(
xi|1.5, 0.12

)
can be realized,

has been made, which may result in underestimate of
the lower bound and overestimate of the upper bound
[35].

It is seen that CABO requires much less g-function
calls than IMCS, and the computed interval is tighter
than that estimated by IMCS, and has a better agree-
ment with the analytical results. One can also see from
Table 1 that the bounds generated by CABO is [-1.343,
1.337], which show a translation to the analytical bounds
[-1.354, 1.327], although the difference is very small.
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Fig. 3 The analytical response expectation function and the corresponding four extreme points for case 1 of the illustrative
example.

Since the posterior COVs of the estimates are very small
(around 0.1%), this must be caused by the error of find-
ing the extreme points by BPO. This can be easily veri-
fied by the difference between the extreme points gener-
ated by CABO and those generated analytically. One
can further improve the accuracy for computing the
extreme points by setting the threshold ∆BPO to be a
smaller value. For example, as we set ∆BPO as 2×10−4,
the generated bounds are [-1.348, 1.327], which match
better with the analytical results, but the total number
of g-functions is increased from 101 to 149.

Figure 4 shows that both the global maximum and
minimum points are successfully and accurately identi-
fied by the CABO algorithm, and the results in Table
1 also imply that the posterior COVs of the estimated
lower and upper bounds are both much less than the
pre-specified threshold 1%, demonstrating the high ac-
curacy and robustness of the results. It can be seen from
Figure 4 that, the adaptively produced training data
of θ for estimating the lower bound are partly located
around the boundary of the support of θ, which is due
to the large prediction error of the initial trained GPR
model in these areas. Setting the probability distribu-
tion support of θ larger than its real support allows
initial training points to be sampled outside the real

support (see Figure 4), which helps to reduce the GPR
prediction error around the boundary. This is one of
the reasons why we suggest to set the support of the
auxiliary distribution of θ a little bit larger than its real
support.

It is also shown in Figure 4 that the adaptively
added training points for lower bound are located around
the two local pairs of minimum. This is fair since more
training data are required for identifying the global
minimum point. It can also be seen that, during the
training process for the lower bound, there is no train-
ing point around the two local maximum points. This
is because, although the initial GPR model shows large
prediction error in these areas, the (subjective) prob-
ability that these areas contain the minimum point is
extremely low, thus no g-function call is wasted in these
areas. This fact makes the CABO algorithm extremely
efficient for estimating the bounds of the output expec-
tation without the necessity to approximate the output
response moment function with high accuracy across
the whole support of θ. This advantage benefits from
the cooperativity and adaptivity of the two engines.
Based on the 40+34 training samples, the CABO algo-
rithm automatically produces 27 more training points
to accurately identify the global maxima. As can be
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Fig. 4 The training details (in the epistemic space) of the CABO algorithm for estimating the lower, and then, upper bounds,
where the colormap refers to the true function of m (θ1, θ2).

Table 1 Results for case 1 of the illustrative example.

Methods Bounds Extreme points Mean estimates COVs (%) Ncall
1

Analytical mL (-0.568, 0.524) -1.351 − −
mU (0.556, 0.805) 1.327 − −

CABO mL (-0.547, 0.542) -1.343 0.110 40+34=74
mU (0.567, 0.804) 1.337 0.112 74+27=101

IMCS (N = 100) mL − -1.433 < 0.010
6.192× 104

mU − 1.412 < 0.010

1 Ncall indicates the total number of g-function calls. For the lower bound mL computed by CABO, the first
number indicates the number of initial design points, while the second number implies the extra number of
calls for searching the lower bound. For the upper bound mU , the first number indicates the total number of
calls consumed for computing mL, and the second number refers to the extra number of calls for estimating
mU .

shown, those 27 training points are mostly located around
the two local maximum points, and none of them is lo-
cated around the two local minimum points. This fur-
ther improves the high efficiency and high robustness of
the algorithm, as no g-function call will be wasted when
it is not necessary. It is also shown that there are more
training points around the global optimal points, and
this is due to the necessity of improving the integra-

tion accuracy around the optimal points. This is finally
realized with a small number of training points in the
aleatory uncertainty space adaptively identified by the
PVC function. The above facts have comprehensively
demonstrated the superiority of the twin-engine CABO
algorithm.

The training samples in the aleatory space are shown
in Figure 5, together with the colormap plot of the g-
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function. It is shown that the distribution patterns of
the adaptively produced training samples for the lower
and upper bounds are both quite similar to those pro-
duced in the epistemic space shown in Figure 4. Consid-
ering that the variations of the two input variables are
both very small, the design point of x accompanied by
θ+ is specified for minimizing the posterior variance of
the integral m

(
θ+

)
. This can be further illustrated by

the following facts. As shown in Figure 4, most of the
adaptively specified integration points x for estimating
the lower bound mL are located around the area point
[-0.5, 0.5]. Obviously, these points are designed for re-
ducing the posterior variance of the integral m (θ) at
those design points of θ around the global minimum
point. A similar phenomenon can be found for the adap-
tively produced training samples for the upper bound
of m (θ).

Next, we investigate the prediction errors of the
GPR models trained for estimating the lower and upper
bounds. With the 40+34 training data, a GPR model
m̂ (θ) is obtained. The absolute difference between the
posterior mean of m̂ (θ) and the analytical m (θ) is
shown by the top-left graph of Figure 6, and the poste-
rior STD of m̂ (θ) is shown in the top-right graph. Both
graphs show that, when the global minimum point is
identified, the GPR prediction error around this point
is small, but that in the other areas (e.g., around the
two local maximum points) which are not informative
for the lower bound, the prediction error can be large.
The left two graphs in Figure 6 show the absolute dif-
ference and posterior STD of the GPR model trained
with all the 101 training points, and it is shown that
the prediction error around the global maximum point
is extremely small. The above phenomenon highlights
the fact CABO does not seek to minimize the global
error of the GPR surrogate model m̂ (θ), but instead,
makes a good trade-off between accuracy and efficiency
for estimating the bounds of m (θ). This is an appeal-
ing feature when the target is to learn the bounds, in-
stead of the global behavior of m (θ), especially when
the epistemic uncertainty is large.

♦ Results and discussions for case 2
In this case, the dimension of the epistemic space is

four, and it is used to test the performance of CABO for
the situations where both the mean and STD param-
eters are imprecise. The stopping criteria is set to be
the same as that in case 1. The support of the auxiliary
distribution for θ1 and θ2 is set to be [-1.65, 1.65], and
that for θ3 and θ4 is set to be [0.04, 0.21]. Forty training
points randomly generated by LHS design are utilized
for initializing the CABO algorithm, and 100 interval
samples are generated for implementing the IMCS sam-
ples. The results are reported in Table 2, together with

the analytical results for comparison. It is shown that
for both lower and upper bounds, the results computed
by CABO match well with the analytical results, and
the posterior COVs are less than 1%, indicating the
higher accuracy and robustness of CABO. The bounds
estimated by IMCS are also in good agreement with the
true results, but are a little bit more conservative. The
total number of g-function calls consumed by IMCS is
4.42×104, while that of CABO is 143, indicating the
high efficiency of CABO.

5.2 NASA Langley UQ challenge models

Next, we consider the NASA 2014 UQ challenge prob-
lem, which simulates the dynamics of remotely oper-
ated twin-jet aircraft named Generic Transport Model.
One can refer to Refs. [14] and [35] for the details of
this challenge. It is composed of five fixed-discipline
models and eight cross-discipline models, where each
cross-discipline model forms a failure mode. In this pa-
per, we only concern the fixed-discipline models. As the
fifth fixed discipline model involves only one input vari-
able, it is not of interest here. The remaining four fixed-
discipline models are then described by:

yi = gi
(
p5(i−1)+1, p5(i−1)+2, · · · , p5(i−1)+5

)
, (21)

where yi (i = 1, 2, 3, 4) indicate the model outputs of
the four models, each of which has five input variables
p5(i−1)+1 ∼ p5(i−1)+5. In the original setting, some of
the input variables, e.g., p2 and p6, are constant-but-
unknown variables, and are modeled by independent
intervals. In this paper, we don’t concern the interval
models, thus these variables are assumed to be fixed.
The details of the twenty input variables are described
in Table 3. For each of the four models, there are five
input variables, three of which are characterized by p-
box. For the first model, the three p-box models intro-
duce seven imprecise distribution parameters, while for
each of the other three models, six imprecise distribu-
tion parameters are involved. The target is then to esti-
mate the bounds of response expectations for these four
fixed-discipline models, which are termed as [mLi,mUi]

(i = 1, 2, 3, 4) respectively. For all the runs in this ex-
ample, constant basis function is assumed for the GPR
means.

We implement CABO for the four fixed discipline
models by setting N0 = 20, ∆BPO = 5 × 10−4 and
∆BPI = 0.05. Actually, for all the four runs, it is found
that, when the stopping criteria for BPO is satisfied,
the stopping criteria for BPI is always satisfied. This
case also happens in the first illustrative example. This
is why the posterior COVs are always much smaller
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Fig. 5 Training details (in the aleatory space) of the CABO algorithm for estimating the lower, and then upper bounds, where
the heat map indicates the true function g (x1, x2).

Table 2 Results for case 2 of the illustrative example.

Methods Bounds Extreme points Mean estimates COVs (%) Ncall

Analytical mL (-0.558, 0.521, 0.05, 0.05) -1.411 − −
mU (0.552, 0.802, 0.05, 0.05) 1.390 − −

CABO mL (-0.579, 0.527, 0.05, 0.05) -1.417 0.16 40+51=91
mU (0.552, 0.806, 0.05, 0.05) 1.407 0.04 91+52=143

IMCS (N = 100) mL − -1.433 < 0.010
4.42× 104

mU − 1.412 < 0.010

than the pre-specified threshold. The results of CABO
for the four models are reported in Table 4-7, where
the reference solutions are computed by using the local
NISS method without HDMR decomposition and the
IMCS method. The sample size of NISS is set to be 105

to ensure the high accuracy. For implementing IMCS,
the particle swarm algorithm is utilized for computing
the bounds of response value corresponding to each set
of input interval samples.

We first discuss the results of the first models re-
ported in Table 4. The IMCS is implemented by setting
the size of interval samples as 100 and 1000, and the cor-
responding numbers of g-function calls are 5.334× 104

and 5.7078 × 105 respectively due to the expensive in-
ner loop particle swarm optimization. It can be seen
that the CABO algorithm, initialized with 20 train-

ing points, accurately estimate the lower bound mL1

with 19 adaptively produced design points in the joint
space, and then, with 7 more design points, the algo-
rithm also successfully computes the upper bound mU1

with high accuracy. The posterior COVs of both bounds
are less than 1%, indicating the high robustness of the
mean estimates. The total number of model calls is then
46, implying the high efficiency of CABO. The mean
estimates by IMCS with 100 interval samples are ac-
ceptable, but the COVs are higher than 5%. When the
size of interval samples increases to 1000, much smaller
COVs are achieved. These results show that, in terms
of efficiency, CABO is much more promising than NISS
and IMCS.

From the third columns of Table 4, it can be learned
that for some epistemic parameters such as θ5 and θ6,
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Fig. 6 The errors of the trained GPR models, where the left figures show the absolute error of the posterior means of m̂ (θ1, θ2)
when the lower and upper bounds are specified, respectively, and the right figures show the posterior STDs of the corresponding
GPR models.

the extreme points computed by CABO are not consis-
tent with the reference solution by NISS, this is caused
by the insensitivity of the model response expectation
to these parameters. For illustrating this, we estimate
the first-order HDMR component functions of m (θ) by
the NIPI method in Ref. [44] with 200 training samples
generated by LHS design, and the posterior means and
the posterior 99% confidence intervals are shown in Fig-
ure 7. It is seen that, among the seven epistemic param-
eters, θ1 and θ4 have the largest influence on the model
response expectation, and for these two variables, the
extreme points for both bounds are accurately specified
by CABO, as shown in Table 4.

The results for the remaining three fixed discipline
models are reported in Table 5, Table 6, and Table 7 re-
spectively. It can be easily concluded that, for all these
three models, both lower and upper bounds are accu-
rately and robustly estimated by CABO, and the max-
imum number of model calls is 64, showing the high
efficiency of the CABO algorithm. From the third col-
umn of each table, it can be seen that the specified
extreme points for each dimension by CABO are not
always consistent with the reference solutions, which is
definitely caused by the unimportance of these parame-
ters. For influential epistemic parameters, the specified

extreme points are always identical. For simplicity, we
don’t give more details.

5.3 Thermal stress analysis of jet engine turbine blade

We consider a jet engine turbine blade model appears in
the Matlab Partial Differential Equation (PDE) Tool-
box. The mesh model is shown in the top left corner of
Figure 8. This model concern the maximum von Mises
stress and the maximum displacement of the tip when
the pressure temperature loads are applied simultane-
ously. The pressure loads on the pressure and suction
sides of the blade are denoted as p1 and p2 respectively.
The material of the blade is assumed to be nickel-based
alloy (NIMONIC 90). Four material parameters, i.e.,
Young’s modulus E, the Poisson’s ratio ν, the coef-
ficient α of thermal expansion and the thermal con-
ductivity κ, as well as the two pressure loads, are as-
sumed to be random input variables following indepen-
dent normal distributions with imprecise distribution
parameters shown in Table 8. The temperature bound-
ary on each face is assumed to be constant, and one can
refer to the Matlab PDE toolbox for details. By fixing
the six random input variables at the middle point of
their mean parameters, the deterministic simulations
are carried out for structural analysis with the consid-
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Table 3 Description of input variables of the four fixed discipline models in the NASA UQ challenge.

Inputs Category2 Uncertainty characterization models
p1 III Unimodal Beta, θ1 = µ1 ∈ [0.6783, 0.7097], θ22 = σ2

1 ∈ [0.0387, 0.0397]

p2 II p2 = 0.99

p3 I Uniform, [0, 1]
p4,p5 III Normal, θ3 = µ4 ∈ [3.4493, 4.5812], θ4 = µ5 ∈ [−1.5306,−0.9106], θ25 = σ2

4 ∈
[0.4190, 2.7209], θ26 = σ2

5 ∈ [0.2157, 0.6914], θ7 = ρ ∈ [−0.4370, 0.7008]

p6 II p6 = 0.5

p7 III Beta, θ8 = a ∈ [0.982, 3.537], θ9 = b ∈ [0.619, 1.080]

p8 III Beta, θ10 = a ∈ [7.450, 14.093], θ11 = b ∈ [4.285, 7.864]

p9 I Uniform, [0, 1]
p10 III Beta, θ12 = a ∈ [1.520, 4.513], θ13 = b ∈ [1.536, 4.750]

p11 I Uniform, [0, 1]
p12 II p12 = 0.5

p13 III Beta, θ14 = a ∈ [0.412, 0.737], θ15 = b ∈ [1.000, 2.068]

p14 III Beta, θ16 = a ∈ [0.931, 2.169], θ17 = b ∈ [1.000, 2.407]

p15 III Beta, θ18 = a ∈ [5.435, 7.095], θ19 = b ∈ [5.287, 6.945]

p16 II p16 = 0.5

p17 III Beta, θ20 = a ∈ [1.060, 1.662], θ21 = b ∈ [1.000, 1.488]

p18 III Beta, θ22 = a ∈ [1.000, 4.266], θ23 = b ∈ [0.553, 1.000]

p19 I Uniform, [0, 1]
p20 III Beta, θ24 = a ∈ [7.530, 13.492], θ25 = b ∈ [4.711, 8.148]

2 Category I indicates the random variables with precise distribution parameters; Category II refers to the
constant variables with precisely known values; Category III denotes the random variables characterized by
p-box models.

eration of only pressure loads, and for thermal analysis
applying only the temperature loads, as well as com-
bined analysis with the consideration of both kinds of
loads. The resultant von Mises stress nephograms are
shown in Figure 8. The model output of interest in this
application is the maximum von Mises stress, which
happens in the constrained root, as shown by the last
nephogram in Figure 8. This quantity is of great impor-
tance for predicting the fatigue life of the blade. The six
normal random inputs variables as well as their impre-
cise distribution parameters, denoted as θ1 ∼ θ12, are
described in Table 8. Thus, the dimension of design pa-
rameters for BPO is twelve, and that for the BPI is
six.

We initialize the CABO algorithm by setting the
thresholds ∆BPO and ∆BPI as 2 × 10−3 and 0.05 re-
spectively and initialize the training data set with 20
random samples generated by LHS design in the joint
space. The prior mean of the GPR model is assumed to
be constant. For BPO, the normalized stopping criteria

in Eq. (15) is utilized. The results are then reported
in Table 9. As can be seen, initialized by 20 training
points, CABO adaptively produces 44 more samples
for estimating the lower bound mL before the stopping
criteria is satisfied. The lower bound is estimated to be
667.961 MPa with the posterior COV being 0.210%, in-
dicating the high accuracy. Then, with one more train-
ing data being added, the stopping criteria for estimat-
ing the upper bound mU is reached, and the posterior
mean and posterior COV of the upper bound are com-
puted to be 1048.930 MPa and 0.657% respectively.

6 Conclusions

This paper has introduced the Bayesian numerical anal-
ysis for bounds estimation of response moments for
computer simulators with the input random variables
characterized by distributional p-box models, and the
CABO algorithm has been developed by combining the
BPI analysis and BPO analysis. It is shown that, by
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Table 4 Results for the first model of the NASA UQ challenge.

Methods Boundss Extreme points (θ1 ∼ θ7) Mean estimates COVs (%) Ncall

CABO mL1 (0.7097, 0.1993, 4.5812, -1.5306,
0.6473, 0.8315, 0.7008)

0.1991 0.46
20 + 19 + 7 = 46

mU1 (0.6783, 0.1967, 3.4493, -0.9106,
1.6495, 0.7441,-0.4370)

0.2408 0.37

NISS mL1 (0.7097, 0.1967, 4.5812, -1.5306,
1.6495, 0.4644, 0.7008)

0.1967 0.83
105

mU1 (0.6783, 0.1993, 3.4493, -0.9106,
1.2197, 0.4644, -0.4370)

0.2415 0.64

IMCS (N = 102) mL1 − 0.1801 7.52
5.334× 104

mU1 − 0.2597 5.21

IMCS (N = 103) mL1 − 0.1810 2.43
5.7078× 105

mU1 − 0.2600 1.69

Table 5 Results for the second model of the NASA UQ challenge.

Methods Boundss Extreme points (θ8 ∼ θ13) Mean estimates COVs (%) Ncall

CABO mL2 (3.5370, 0.6190, 7.4500, 7.8640,
1.5200, 1.5360)

0.8979 0.10
20 + 22 + 22 = 64

mU2 (0.9820, 1.0800, 7.4500, 6.2616,
4.5130, 4.7500)

1.0399 0.09

NISS mL2 (3.5370, 0.6190, 7.4500, 7.8640,
1.5200, 4.7500)

0.8829 2.08
105

mU2 (0.9820, 1.0800, 13.5998, 7.8640,
4.5130, 1.5360)

1.0595 3.72

IMCS (N = 102) mL2 − 0.8886 1.15
3.321× 104

mU2 − 1.0429 0.98

training a GPR model in the joint space of aleatory and
epistemic uncertainties, the induced marginal random
field model in the aleatory space by fixing the epistemic
parameters and the one in the epistemic space gener-
ated by integrating out the aleatory variables are both
Gaussian. Based on this property, the introduced AEI
learning function is found to be effective for search-
ing the global optima in the epistemic space, and the
PVC learning function is shown to be efficient for re-
ducing the discretization error (quantified by posterior
variance) of the numerical integration in the aleatory
space. With these two learning functions as twin en-
gines, CABO realizes the adaptive BPO in the epis-
temic space and the adaptive BPI in the aleatory space
in a collaborative way. The outcomes of CABO include
the lower and upper bounds of the model response mo-

ments as well as their posterior variances. The results
of the illustrative example and the two engineering ap-
plications have demonstrated the efficiency and accu-
racy of the proposed methods. The CABO algorithm is
developed in this work by taking the p-box model as
an example, but it should be mentioned that it is also
applicable to other distributional imprecise probability
models such as the fuzzy probability model, by which
it is expected to provide richer information for decision
making [17].

One notes that the calculation of the maximum val-
ues of both AEI and PVC functions by the particle
swarm algorithm may take some time, but both steps
do not need g-function calls. For high-dimensional prob-
lems, as the Euclid distance used in the GPR kernels is
less informative, the CABO algorithm may not be ap-
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Table 6 Results for the third model of the NASA UQ challenge.

Methods Boundss Extreme points (θ14 ∼ θ19) Mean estimates COVs (%) Ncall

CABO mL3 (0.4120, 2.0680, 2.1690, 1.0000,
5.4350, 6.9450)

1.0522 0.04
20 + 17 + 24 = 61

mU3 (0.7353, 2.0680, 0.9310, 2.4070,
7.0950, 5.2870)

1.0771 0.08

NISS mL3 (0.4120, 2.0680, 2.1690, 1.0000,
5.4350, 6.9450)

1.0534 0.26
2× 105

mU3 (0.4120, 2.0680, 0.9310, 2.4070,
7.0950, 5.2870)

1.0782 0.21

IMCS (N = 102) mL3 − 1.0489 0.25
3.663× 104

mU3 − 1.0789 0.25

Table 7 Results for the forth model of the NASA UQ challenge.

Methods Boundss Extreme points (θ20 ∼ θ25) Mean estimates COVs (%) Ncall

CABO mL4 (1.0600, 1.0000, 4.2660, 0.5530,
13.4920, 8.1480)

0.9399 0.08
20 + 11 + 9 = 40

mU4 (1.6620, 1.0000, 1.0000, 1.0000,
13.4920, 4.7110)

0.9844 0.09

NISS mL4 (1.0600, 1.4880, 4.2660, 0.5530,
9.2329, 8.1480)

0.9358 0.22
2× 105

mU4 (1.6620, 1.0000, 1.0000, 1.0000,
13.4920, 6.8395)

0.9791 0.79

IMCS (N = 102) mL4 − 0.9345 0.15
3.330× 104

mU4 − 0.9889 0.14

plicable and some dimension reduction techniques need
to be properly embedded (for example, see Ref. [53]).
The high dimension of either x or θ will also result
in low efficiency of searching the global maxima of the
two learning functions although they are both in closed
form. If one call of the g-function takes much more
time than the optimization search, this method is still
competitive. However, if the optimization search is less
efficient than calling the g-function, the method may
partly lose its high efficiency. Thus, CABO in its cur-
rent form is recommended for expensive computer simu-
lators with relatively low dimensional aleatory variables
and epistemic parameters. Improvement of CABO for
high-dimensional problems will be specifically treated
in our future work. Besides, the generalization of CABO
for estimating the bounds of probabilities of rare events
as well as the bounds of the distribution function of
model outputs will also be conducted in the future.
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Fig. 7 The first-order HDMR component function of the model response expectation function of the first model of the NASA UQ
challenge computed by NIPI with 200 training data, where the black solid lines indicate the posterior means and the blue boxes
show the 99% posterior confidence intervals.

Table 8 Description of the normal random variables and their imprecise distribution parameters of the turbine blade model.

Variables Description Unit Means STDs
E Young’s modulus Pa θ1 ∈ 227× 109 × [0.9, 1.1] θ7 ∈227×109×[0.01, 0.05]
α coefficient of thermal

expansion
1/K θ2 ∈ 12.7× 10−6 × [0.9, 1.1] θ8 ∈ 12.7× 10−6 × [0.01, 0.05]

ν Poisson’s ratio − θ3 ∈ 0.27×[0.9, 1.1] θ9 ∈ 0.27×[0.01, 0.05]
κ thermal conductivity W/m/K θ4 ∈ 11.5×[0.9, 1.1] θ10 ∈ 11.5×[0.01, 0.05]
p1 Pressure load Pa θ5 ∈ 5× 105×[0.9, 1.1] θ11 ∈ 5× 105×[0.01, 0.05]
p2 Pressure load Pa θ6 ∈ 4.5× 105×[0.9, 1.1] θ12 ∈ 4.5× 105×[0.01, 0.05]
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