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Abstract 

We considered a database of tens of thousands of known organic semiconductors and 

identified those compounds with computed electronic properties (orbital energies, 

excited state energies and oscillator strengths) that would make them suitable as non-

fullerene electron acceptors in organic solar cells. The range of parameters for the 

desirable acceptors is determined from a set of experimentally characterized high-

efficiency non-fullerene acceptors. This search leads to approximately 30 lead 

compounds never before considered for organic photovoltaic applications. We then 

proceed to modify these compounds to bring their computed solubility in line with 

that of the best small-molecule non-fullerene acceptors. A further refinement of the 

search can be based on additional properties like the reorganization energy for 

chemical reduction. This simple strategy, which relies on a few easily computable 

parameters and can be easily expanded to a larger set of molecules, enables the 

identification of completely new chemical families to be explored experimentally. 
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Many non-fullerene acceptors (NFAs) have been widely used to blend with a 

variety of donor materials and produced the best power conversion efficiency (PCEs) 

of approaching 18% and over 14% for polymer-based and small-molecule-based 

single-junction devices, respectively, far beyond those of the best fullerene-based 

counterparts.1-3 The results raise the hope of reaching PCE of >20% for organic 

photovoltaic (OPV) cells in the not-so-distant future.4 However, these achievements 

have mostly been driven by trial and error, naturally accompanied by high cost and the 

preference for molecular designs obtained by small modifications within the same 

families of compound that tend to have high efficiency.5-8 The ideal contribution of 

theory should be the proposal of completely novel families of compounds that can 

introduce more radical changes in design to accelerate progress beyond what is 

achievable through incremental changes.  

Different groups have explored the common properties for high-efficiency NFAs. 

Yi et al.9 have found that a large oscillator strength (f ≈ 3) and a moderate energy gap 

between singlet and triplet ΔEST (0.4−0.5 eV) are present in state-of-the-art A−D−A 

small molecules (ITIC, IT-4F, and Y6). Some of us proposed on the basis of physical 

arguments10 and later verified on a diverse set acceptors11 that a small energy gap 

between LUMO and LUMO+1 (< 0.3 eV) is beneficial for high PCE solar cells. Firdaus et 

al. found that balanced electron and hole mobilities of > 10−3 cm2V−1s−1 in combination 

with low nongeminate recombination rate constants of 10−12 cm3s−1 could lead to 

relatively high PCE values in OPV cells.12 It was reported that the balanced ambipolar 

charge transport and long exciton diffusion lengths are observed in high-performance 

NFAs compared to fullerene derivatives.13 Also, Armin et al. have reported that NFAs 

show many different properties including narrower optical gap, lower energetic 

disorder and better planarity compared to fullerene derivatives.14  

The main hypothesis of this work is that novel families of non-fullerene acceptors 

should be similar to the best known non-fullerene acceptors in terms of the most 

relevant electronic properties (assuming that similar donors are employed, for optimal 

energy level alignment). To enable the identification of novel molecules from a large 

set, we consider computed properties so that a molecule proposed as an acceptor for 

OPV has electronic properties within the same range found for known efficient 

electron acceptors. The electronic properties that we consider are the ground-state 

orbital energy of HOMO (EHOMO) and LUMO (ELUMO), the energy gap between LUMO 

and LUMO+1 (ΔELL+1 whose relevance was proposed in ref. 11), the energy gap 
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between singlet (S1) and triplet (T1) state ΔES1T1 (proposed as an important parameter 

in ref. 9), and the oscillator strength fmax of the excited state with strongest absorption 

of the three lowest states, as the ability to absorb radiation is one of the main 

advantages of novel acceptors with respect to their fullerene-based couterparts.15 An 

additional property of interest is the reorganization energy  for electron transport, as 

we expect materials with smaller tofacilitate higher electron mobility.16-18 Finally, 

possibly the most elusive yet important property is the solubility of the acceptor (and 

miscibility with the donor). This is not an electronic property and, if a molecule with 

suitable electronic properties is found, it is relatively easy to modify their solubility 

properties by chemical substitution with groups that do not alter these key parameters. 

We note that identifying candidates with electronic and physical properties close to 

the best candidates is akin to the intuitive experimental process of materials discovery 

and is, in essence, the underlying hypothesis of many recent papers that have explored 

machine learning to discover new OPV materials.19-22 In this work, however, we will 

directly search for such “mimic” without building an explicit data-centric model. 

Virtual screening has been used by many authors in the domain of organic 

electronics22-28 and, specifically, in the identification of novel non-fullerene 

acceptors26-28, sometime in combination with machine learning methods22, 23, 29-31. To 

the best of our knowledge, all previous attempts focused on the study of structures 

obtained as modification of known motifs30, 32-35, combination of known oligomers36 

or more advanced generative models based on prior knowledge of the best 

candidates26, 37. In all these cases, the findings are bound to fall within the same class 

of molecules and, depending on the approach for generation, they are not guaranteed 

to yield molecules that are easy to synthesize. Here we follow an approach that is 

opposite in two ways: (i) we look into a dataset not based on organic electronics and 

we deliberately exclude from further consideration molecules belonging to known 

classes. We are able to identify very different lead compounds rather than promising 

modifications of what is known. (ii) The molecules in our screening have been 

synthesized (they have a documented synthetic pathway) and are sufficiently stable in 

solid state form to enable their crystallographic characterization. Our proposed 

molecules are therefore more likely to constitute a viable suggestion for experimental 

validation. An additional advantage in considering an unbiased dataset is the physical 

insight that this can provide. As we set different criteria for the ideal candidates based 

on experimental benchmarks, we can identify which criteria are more stringent (i.e. 

more rare) in a generic data set, an information that can be used in translating the 
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virtual screening results into design principles. 

The structure of this work is summarized in Figure 1. We first characterize the 

electronic properties of several benchmark NFAs and we use their properties as 

reference to select molecules from a large database of molecular semiconductors 

derived from the Cambridge Structural Database (CSD38). After removing known NFAs 

and performing more accurate evaluation of their properties, we tune the solubility of 

the best candidates to match those of the known high efficiency NFAs.  

 

 

Figure 1. Outline of the virtual screening protocol followed in this work. 

 

To identify an initial range of electronic properties for NFAs we considered the 35 

molecules with PCE > 5% reported in a 2017 work,11 and computed the electronic 

properties at the M062X/def2-TZVP level, on the optimized geometry at the 

BLYP35/def2-SVP level (these choice are to be consistent with available data on a large 

dataset of molecular semiconductors,39 see below). The ELUMO, fmax and EHOMO values 

of these acceptors are in the range of (-3.32 eV, -2.13 eV), (0.09, 3.54), and (-7. 48 eV, 

-5.88 eV), respectively. The ΔES1T1 and ΔELL+1 values of NFAs are in the range of (0.65 

eV, 1.30 eV) and (0, 0.59 eV), respectively. To verify these criteria, the properties of 

seven recent high-performance molecules (Y6,2 ITIC-0F,40 IDIC,41 ITIC-Th,42 ITIC-4F,40 

IDTBR43 and IDT2Se-4F44) were calculated at the same level. The results, summarized 

in Table 1, show the following ranges for these top examples: -3.21 eV < ELUMO < -2.81 

eV, -6.91 eV < EHOMO < -6.36 eV, 2.45 < fmax < 3.32, 0.70 eV < ΔES1T1 < 0.79 eV and 0.17 

eV < ΔELL+1 < 0.44 eV. These ranges are consistent with those determined from the 2017 

dataset but overall narrower. We define novel acceptors to be sufficiently similar to 
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known efficient electron NFAs if all their five electronic parameters (ELUMO, 

ΔES1T1, EHOMO, ΔELL+1, fmax) are within the same range found in acceptors collected in 

the dataset of ref. 11 and with experimental PCEs larger than a 5% cut-off (a range that 

also includes all recent acceptors in Table 1). This definition is convenient because one 

can easily broaden or narrow the search, and therefore the criteria of similarity, by 

changing the value of this PCE cut-off. In general, a dataset of computed properties for 

experimentally characterized solar cell is very valuable regardless of the specific virtual 

screening approach.  

 

Table 1. The calculated properties (EHOMO, ELUMO, ΔELL+1, E(S1) and E(T1), ΔES1T1 and int in eV) of 

latest reported high-performance NFAs. 

 EHOMO ELUMO ΔELL+1 E(S1) fmax E(T1) ΔES1T1 
consensu
s Log Po/w 

int 

Y6 -6.79 -3.21 0.30 2.21 2.45 1.51 0.70 9.27 0.24 

IDT2Se-4F -6.60 -3.09 0.17 2.15 3.32 1.44 0.72 18.80 0.24 

ITIC-0F -6.69 -2.94 0.27 2.33 2.97 1.59 0.75 18.93 0.23 

IDIC  -6.91 -3.06 0.44 2.35 2.53 1.56 0.79 13.27 0.21 

IDTBR -6.36 -2.81 0.20 2.19 2.72 1.42 0.77 19.96 0.25 

ITIC-4F -6.81 -3.11 0.27 2.30 3.01 1.57 0.74 20.07 0.24 

ITIC-Th -6.72 -2.96 0.27 2.34 2.91 1.60 0.75 21.21 0.24 

 

To identify novel NFAs with similar electronic characteristics we considered the 

database of 40k molecular semiconductors presented in ref. 39. Such database was 

constructed using the crystal structure geometry38 of molecules with small HOMO-

LUMO gap and, in this work, the electronic properties have been computed at the 

M06-2X/def2-TZVP level, the same chosen to identify a reasonable electronic property 

range. Recent applications of the database for the identification of molecules for 

singlet fission39, 45 and temperature activated delayed fluorescence46 showed that the 

geometry of the molecule within the crystal is an excellent starting point for an initial 

screening, but geometry optimization should be performed for the most promising 

candidates. The criteria of similarity with existing NFAs are applied sequentially (the 

end result does not depend on the order): 

(i) the condition -3.32 eV < ELUMO < -2.13 eV results in 5159 molecules from 

the initial 40k molecules. This major reduction is expected as only a 

minority of molecules have electron accepting characteristics (a data 

repository47 gives access to the list and key electronic properties of these 

acceptors); 

(ii) the condition fmax > 0.09 further reduced to 2697 molecules; 
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(iii) the condition 0.65 eV < ΔES1T1 < 1.30 eV further reduced the set to 1793 

molecules (it should be noted that the last two conditions require a very 

computationally demanding evaluation of excited states properties of 

both singlet and triplet.); 

(iv) the condition -7.48 eV < EHOMO < -5.88 eV, like the previous two, also has 

a small effect reducing the set to 1116 molecules; 

(v) the condition 0 < ΔELL+1 < 0.59 has a substantial effect, reducing the set to 

just 54 molecules and supporting the idea that the gap between LUMO 

and LUMO+1 energy can help discriminating between good and bad 

electron acceptors.11 

The chemical structures of these 54 molecules, about 0.14% of the total number 

of 40k semiconductor molecules in the semiconductors database derived from the CSD, 

are depicted in Table S1. Among these 54 molecules, two molecules have been 

employed as OSC acceptor materials (identified as PHTLBC02 and IQIDIW02 in Table 

S1). 27 out of 54 molecules identified as promising contain BODIPY, TPA, indole, 

naphthalimide, sub-phthalocyanine, porphyrin, azulene, Benzothiadiazol, and other 

building blocks common in OSC materials (the SI provides a list of references for such 

materials). This is very reassuring from the point of view of the computational protocol. 

The database of 40k molecules does not focus on organic electronic materials and 54 

molecules represent just 0.14% of the database. The 27 molecules that are either 

know OPV acceptors or chemically very similar to known OPV acceptors represent just 

0.1% of the database. The identification of so many “known” acceptors from a 

database that contains very few of them is what provides experimental support to the 

predictions. The more interesting molecules from the point of view of materials 

discovery are 27 molecules that, to the best of our knowledge, do not contain in the 

building blocks reported in OSC (a list is given in Table S2).  

The next step in the screening procedure is to perform geometry optimization of 

the 27 potentially novel NFAs at BLYP35/def2-SVP45 level and re-compute their 

properties again at the M062X/def2-TZVP level. 18 molecules continue to satisfy all 

five criteria after optimization, 9 miss one criterion as seen in Table 2. A diagram 

illustrating how the electronic properties of these 27 candidates are aligned with those 

of known NFA molecules in given in Figure 2. The optimized geometry of these 

molecules are available via ref. 47. 
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Figure 2. Summary of the electronic properties for 27 promising acceptor molecules in Table 2 

(left panel), 7 NFA molecules in Table 1 (central panel) and 35 NFA molecules from ref. 11 (right 

panel). The left panel highlights in yellow the 5 molecules selected for optimal solubility which 

in this diagram are EMONUP, EPOHEY, LOKPOS, MOTSIX and MUJTOB01 from left to right 

respetively. 

 

Table 2. The calculated properties (EHOMO, ELUMO, ΔELL+1, ΔES1T1 and int in eV) of the 27 screened 

molecules. The ID number is that which is used in the CSD. The values underlined are those that 

miss the criteria after optimization. 

ID EHOMO ELUMO ΔELL+1 fmax ΔES1T1 
consensus 

Log Po/w 
int 

AQIHAJ -7.25 -2.14 0.29 0.22 1.25 2.67 0.56 

CIYWIQ -7.36 -2.30 0.19 0.38 1.47 4.38 1.69 

CUVTAO -6.46 -2.28 0.51 0.37 2.83 4.90 1.23 

DAWHUH -7.59 -2.46 0.31 0.70 1.15 2.47 0.36 

EMONUP -6.59 -2.25 0.52 0.52 0.93 11.92 0.35 

ENBILO -6.50 -2.25 0.35 0.39 1.18 5.50 0.31 

ENEWIF -7.40 -2.33 0.14 0.67 1.12 3.14 1.29 

EPOHEY -7.13 -2.38 0.57 1.68 0.98 7.39 0.38 

FEYVIQ -7.32 -2.44 0.54 1.04 1.04 3.42 0.27 

HOYVEX -7.02 -1.90 0.49 0.80 1.12 1.51 0.73 

HUMXIX -6.89 -2.41 0.12 0.97 1.17 2.05 0.32 

IDOGAL -6.94 -2.18 0.30 0.56 1.13 3.73 0.39 

IRUQOB -7.41 -2.26 0.53 0.19 0.95 4.13 0.92 

JASVII -6.89 -2.25 0.56 0.14 0.62 7.19 0.87 
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LAFWEV -7.61 -2.66 0.54 0.47 1.12 4.13 1.01 

LOKPOS -7.16 -2.57 0.27 0.42 1.11 13.18 0.31 

MOKCEW -6.86 -2.11 0.11 0.32 1.01 5.20 0.60 

MOTSIX -7.38 -2.33 0.21 0.21 1.21 9.24 0.26 

MUBTEJ -7.37 -2.40 0.61 2.19 1.10 4.52 0.37 

MUJTOB0
1 

-7.19 -2.31 0.11 0.97 1.26 7.76 0.25 

NEFLIU -7.39 -2.13 0.51 0.12 1.44 3.00 0.53 

NEPQIL -7.12 -1.48 0.31 0.03 0.79 5.56 0.36 

PARDAO -6.69 -2.28 0.25 0.58 1.04 3.63 0.68 

UBIKEV -7.71 -2.43 0.46 0.17 0.94 5.00 0.67 

XALVIS -7.47 -2.28 0.00 0.31 1.21 6.49 0.19 

YEGBIW -7.43 -2.33 0.13 0.29 1.43 1.99 0.99 

ZOPBAJ -7.35 -2.70 0.84 0.47 0.84 3.41 0.97 

 

The film-forming properties of the molecules are very critical; however, the 

related simulation methods are very expensive. Therefore, this work considers a 

compromise method to characterize solubility, which is to calculate the lipophilicity of 

the molecule measured by the logarithm of octanol/water partition function (Log Po/w), 

as common in medicinal chemistry applications.48, 49 In the past years, the 

developments of Log Po/w prediction programs have attracted growing interest49-56; 

however, predictive Log P methods themselves have differences in prediction accuracy 

for different molecules49. Thus, the consensus Log Po/w model (generally described as 

consensus Log Po/w) has been adopted to improve the prediction accuracy, which was 

the average of five performing models50 (iLOGP,51 XLOGP3,52 WLOGP,53 MLOGP54 and 

SILICOS-IT55). The values used in this work are the consensus Log Po/w evaluated from 

the SMILES representation of the molecule using the SwissADME tool56. As shown in 

Table 1 and Table 2, among these 27 molecules, there are molecules with lipophilicity 

very close to Y6 and IDIC. However, there are no molecules with similar lipophilicity to 

other NFAs (much more hydrophobic). The number of molecules similar to Y6 (the 

difference is (-2,2)) is 3, and the number of molecules similar to IDIC is 2 in term of 

lipophilicity. The chemical structures of these 5 molecules with good lipophilicity are 

shown in Figure 3. The molecule EPOHEY57 was reported as an n-type field-effect 

transistor. And the molecules MUJTOB01,58 EMONUP,59 MOTSIX60 and LOKPOS61 have 

not been used in OPV devices. 
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Figure 3. Chemical structures of 5 molecules with similar electronic and solubility 

parameters of known high efficiency NFAs.  

 

The database used for the screening of alternative NFAs is based on crystalline 

molecular materials, so it tends to contain more rigid molecules as those with long 

saturated chains (which increase solubility and lipophilicity) are more difficult to 

crystallize. On the other hand, the screening of such database remains very useful 

because the main electronic properties are not modified by adding saturated chains 

to the structure and these modifications are generally easy from the synthetic point of 

view. It is therefore possible to design suitable candidates by starting from a molecule 

with the correct electronic properties and modify it by adding side chains (alkyl, alkoxy 

were chosen according to refs 62-64) to approach the desired (computed) solubility 

parameters. For example, the consensus Log Po/w of molecule HUMXIX is 2.05, which 

is the farthest one from that of Y6 (9.27) or any other NFA molecules. However, after 

alkylation, comparable lipophilicity with Y6 and IDIC (9.33 vs. 9.27, 13.10 vs. 13.27) 

could be obtained, as illustrated in Figure 4. Using this approach, all 27 molecules of 

Table 2 can be tuned to have appropriate Log Po/w. Of course, this approach is unable 

to guarantee that the bulk heterojunction has the correct microstructure in terms of 

domain size of donor and acceptor phase but it alleviates the problem present in 

virtual screenings ignoring properties that are not deriving from the electronic 

structure.  
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R Log Po/w 

 2.05 

 

9.33 

 

13.10 

 

14.12 

 

Figure 4. The calculated consensus Log Po/w of molecule HUMXIX and several modified 

molecules. 

 

A final property that can be considered for the selection of the best NFAs from 

this screening is the internal reorganization energy for the chemical reduction, defined 

as 
          

   
- - - -

intλ = E M - E M + E M - E M
, where 

 E M
 and 

 -E M
are the neutral 

state energies at the optimal ground geometry (M) and anion geometry (M-), 

respectively, while 
 - -E M

  and 
 -E M

 refer to the energies of the anion at the 

optimal anion and neutral geometries, respectively. It is expected that int is small for 

materials with larger electron mobilities.16-18 This property is computationally too 

expensive to evaluate on an initial dataset of tens of thousands of molecules but it can 

be used to further select the best candidates. It was reported in Table 1, for reference 

NFA compounds, and Table 2 for all 27 novel NFAs found after the first layer of the 

screening. The values of int in Table 1 spans a narrow range between 0.21 and 0.25 

eV (also because that data set is quite limited). Of the 5 molecules with ideal solubility 

and electronic properties in Figure 3, two values are very close to this range (0.25 and 

0.26 eV for MUJTOB01 and MOTSIX), and three have slightly larger but still comparable 

values (0.31, 0.35 and 0.38 eV for LOKPOS, EMONUP and EPOHEY). Of the 27 

molecules in Table 2 whose Log Po/w can be adjusted to match the best NFAs, 8 have 

int ≤ 0.35 eV, i.e., approximately 30% of the molecules identified with this screening 
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method have suitable internal reorganization energy. It is therefore appropriate to 

apply this more expensive but not very selective criterion at the end of the procedure. 

In conclusion, we have proposed an approach to identify completely new 

acceptors to be used in organic solar cells based on selecting, from an unbiased set of 

known 40k molecular semiconductors, a set of molecules sharing all key electronic 

properties with the best known non-fullerene acceptors. We show that it is possible 

to either select molecules which also share similar solubility character or to modify the 

candidates to tune their solubility. A final refinement of the prediction was introduced 

by considering the role of the reorganization energy. The approach can be generalized 

to identify candidates for any property and is naturally expanded starting from a larger 

database of initial compounds. If the initial database is not biased toward a certain 

property, like in this case, it is more likely to find completely new lead compounds to 

explore. 

 

Supporting information  

Computational detail for the identification of the 54 molecules. Chemical structures of 

the 54 and 27 molecules selected in two stages of the screening. References to works 

reporting acceptors deemed not novel. Data for 5159 acceptor molecules and 

optimized geometry of 27 candidates available in machine readable format from ref. 

47.  
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