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ABSTRACT 

Longitudinal fields of quantized Laguerre-Gaussian modes are derived and studied with respect to the paraxial parameter 

0
kw . Generally these longitudinal fields are ignored in the paraxial approximation, however it shown how they can be 

become important even for relatively large values of 
0

kw . This is in contrast to unstructured laser light, e.g. a Gaussian 

beam, where the magnitude of longitudinal components only become important under strong-focusing of the source. The 

unique effects stem specifically from the optical angular momentum, both orbital and spin, of optical vortex light, and 

include spin-orbit interactions in freely-propagating circularly-polarized vortices in free-space. The contribution that 

longitudinal fields make to the rate of single-photon absorption is calculated, highlighting that for optical vortices they 

cannot be neglected in general. 

Keywords: Non-paraxial optics, twisted light, optical vortex, spin-orbit interactions of light, optical orbital angular 

momentum, light-matter interactions 

 

1. INTRODUCTION 

 

Exact plane-wave solutions to the Maxwell and Helmholtz equations are most commonly utilized to provide a theoretical 

understanding of light-matter interactions1. Beyond these completely transverse plane-wave solutions, the Helmholtz wave 

equation also permits ‘laser beam’ solutions, e.g. Gaussian modes, however, these and the ensuing solutions to the Maxwell 

equations are only approximate. A key property of such solutions is that they are not strictly transverse in free space, and 

the electric and magnetic fields generally must have non-zero components parallel to the direction of propagation to ensure 

0 E  and 0 B  2: viz longitudinal fields. 

Lax et al3 highlighted how the paraxial solutions to the scalar wave equation consist of a purely transverse zeroth-order 

field (we denote T0) and smaller, first-order, longitudinal components (L1) whose magnitude for Gaussian-type beams 

depends on the paraxial factor  
1

0


kw  where 2 k  is the wave number  and 

0w  the beam waist at the focal point.  

Therefore, it is understood that the importance of longitudinal fields for general laser modes are correlated to the degree 

of focusing, where strongly-focused beams exhibit larger longitudinal components in their electromagnetic fields.  

A realization that has led to a highly active area of modern optics is that longitudinal components to the total fields are not 

simply just quantitative corrections to T0 fields but can exhibit highly distinct properties that influence propagation 

characteristics of the light or the ensuing interactions with matter. Focused circularly-polarized Gaussian beams for 

example can induce orbital motion of trapped particles due to the spin-to-orbital angular momentum conversion4,5.  

Twisted light beams or optical vortices are an extremely well-studied type of structured laser light due to their rich angular 

momentum properties. For paraxial vortex modes, the individual photons can exhibit a spin angular momentum (SAM)

 , where 1   , as well as additional units of orbital angular momentum (OAM) , where  ,  per photon. Most 
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studies have been concerned with the angular momentum properties of non-paraxial and longitudinal fields of twisted light, 

such as spin-orbit interactions of light (SOI) and the transfer to particles to cause mechanical motion 6–8. The application 

of twisted light in spectroscopic applications is a burgeoning area of research 9. The potentially unique role that longitudinal 

fields can play in these applications has previously been highlighted for highly-focused Laguerre-Gaussian (LG) 

beams10,11,  and the transfer of optical OAM to an atom can only be correctly accounted for quantitatively if longitudinal 

fields of the input optical vortex are accounted for12.  

Here we derive the quantum electromagnetic field mode operators for LG beams that include L1 components in addition 

to the T0 fields. We highlight numerically that there are two distinct factors that influence the magnitude of longitudinal 

fields of optical vortices; firstly the well-known fact that a larger degree of focusing increases the longitudinal fields 

through a paraxial parameter  
1

0


kw weighting factor; but secondly that the angular momenta of optical vortices produces 

longitudinal fields that cannot be neglected for paraxial beams, highlighting both the quantitative and qualitative necessity 

of their inclusion.    

 

 

2. LONGITUDINAL COMPONENT OF A QUANTIZED LG MODE 

 

In the Power-Zienau-Woolley (PZW) formulation of quantum electrodynamics (QED)13,14 the electromagnetic field 

operators that couple to matter are the electric displacement field  
d r  and magnetic field  b r . The superscript   on 

 
d r  is with reference to the fact that for a neutral system 0 d 15, and highlights that in the PZW formulation of 

QED all coulombic interactions are mediated by transverse photons16.  

The most utilized of optical vortices are the Laguerre-Gaussian modes, which are solutions to the paraxial equation in 

cylindrical coordinates. As such, longitudinal components are of LG modes are generally neglected under the guise of the 

paraxial approximation. The electric displacement field mode expansion operator for LG modes in the long Rayleigh range 

limit 
Rz z   has previously been derived17, and is given as 
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where k  is the wave number;  ˆ ˆ ix y  is the polarization vector where 1    for left- and right-handed circularly-

polarized light, respectively; 
   

a k  is the annihilation operator;   is the normalization constant  
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 is a radial distribution function where pC  is a 

constant and 
pL  is the associated Laguerre polynomial, and H.c. stands for the Hermitian conjugate. The subscript x,y on 

 ,



x yd r  refers  to the fact the fields are purely transverse to the Poynting vector, which for plane-waves in free space 

exactly conincides with the wave vector k.  

 

 



In the plane-wave solutions commonly used, the total field is simply    ,

  x yr d rd . However, for any beam-like solution 

to the Helmholtz equation, the zeroth-order T0 (1) is only an approximation, and the total field is      ,
ˆ   x y zd rr d rd z

. The most direct method to calculate the L1 components is using the transversality conditions of Maxwell’s equations8,12. 

In order to generate the L1 terms for  
rd  we use Gauss’s Law: 0d  . Thus the z components  

zd r  of the field can 

be determined via  
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Using Cartesian to cylindrical coordinate transformations produces the following mode expansion which now includes the 

additional first-order longitudinal corrections to the zeroth-order transverse field 18: 
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There are some interesting features of (3): For 0 , one of the longitudinal terms is zero, but the other survives, 

highlighting how even longitudinal fields of a circularly-polarized Gaussian beam (i.e 0

0LG ) exhibit a vortex of charge 

one structure in the z direction through the phase factor e i
. This SOI is known to occur in freely-propagating, non-

paraxial beams of light19. Another SOI is evident when the incident beam does have an LG structure and accompnaying 

OAM. For   the longitudinal fields form a vortex of charge 2; whereas for    the beam exhibits a Gaussian 

structure with maximum intensity along the beam axis. This form of parallel and anti-parallel SAM and OAM projections, 

respectively, has been utilized in numerous studies20,21.  

For the vast majority of applications, the electric field is sufficient to describe light-matter interactions. However, magnetic 

interactions can become important in the correct settings, such as in chiral optics22. The magnetic field mode expansion is 

found using a similar approach, but with the aid of 0 b :   
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The first-order longitudinal components of the magnetic field (4) are wholly dependent on the angular momentum 

properties of the light, e.g. according to (4) a linearly-polarized Gaussian beam  , , 0 p  possesses no longitudinal 

magnetic fields, only for strongly-focused light where higher-order terms (second-order and above) contribute do 

longitudinal magnetic fields arise in this case.  

 

 

 



3. INFLUENCE OF PARAXIAL FACTOR 

 

The validity of the paraxial approximation has been questioned by numerous authors previously 23–25, and even with respect 

to optical vortices interacting with atoms12,26,27. These works predominantly concentrated on specific systems. We now 

highlight how the reliance on thetransverse (zeroth-order) is problematic in general for paraxial optical vortices. To aid 

clarity of the analysis as well as to readily yield analytic results, we focus on LG modes where 0p . Furthermore we 

note that these are the most utilized modes in experiments.  

The electric displacement field (3) takes on the following form when 0p  and the differentiation with respect to r is 

carried out (remembering we are working within the long Rayleigh range limit; we have also dropped the obvious 

dependencies for notational clarity): 
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The magnitude of the last longitudinal term is weighted by the factor 2

02r kw , similarly to that of a Gaussian beam, where 

2

0kw  is sometimes referred to as the diffraction length3. This generally small contribution (for weakly-focused beams28) to 

the longitudinals fields is independent of the angular momentum properties of the field, and is exhibited by any field mode 

which possesses a Gaussian factor.  

Interestingly, there are an additional two terms that depend on the angular momentum properties of the beam. First there 

is the contribution dependent on the factor kr  which is the absolute value of the skew angle of the Poynting vector at 

a given location29. If the light also posesses SAM, there is the additional skew-angle-like term dependent on  kr , which 

thus includes the mixing of helicity and topological charge values. The skew angle term dependent on reveals that a 

longitudinal field exists for a non-circularly polarized ( 0  ) LG beam, whilst the second term signififes a SOI of light 

in freely-propagating circularly polarized optical vortices in free-space, a phenomenon highlighted some time ago30 but 

has seemingly received relatively little attention. 

The notion that longitudinal fields for optical vortices may be neglected unless the light is non-paraxial pervades the 

literature, e.g.8,31–33, and is a commonly held misconception, likely stemming from the fact that this is generally true for 

paraxial laser modes that do not possess OAM. The intensity distributions as a function of beam waist of a variety of LG 

modes where the first-order longitudinal fields have been included with the generally used zeroth-order tranvserse fields 

is given in Figure 1 and Figure 2.  



 

Figure 1: Intensity distributions for an LG beam with 1  for a changing beam waist a) the intensity contains only the transverse field components 

b) the total intensity including longitudinal contributions for 0   c) Total intensity for antiparallel OAM and SAM and d) Total intensity for 

parallel OAM and SAM. The range of beam waists used in Figure 1 and 2 correspond to 
04 20 kw . 

 

The range of beam waists used in Figure 1 and 2 correspond to 
04 20 kw , i.e. within the range that a paraxial solution 

to the wave equation yields a correct descritpion of the light 24. Just as it is well-established that longitudinal fields cannot 

be neglected when unstructured (non-OAM) light is very strong- focused because terms dependent on factors like 2

02r kw

become important, Figure 1 shows that certain contributions to longitudinal fields for paraxial optical vortices cannot 

likewise be neglected. 

The importance of these fields are still bound to specific scenarios due to the dependence on the radial distribution function, 

beam waist, optical angular momentum, and in comparison to the zeroth-order transverse fields are weighted by the 

wavelength (inverse wave number).  

Whilst it is true that these terms do indeed become larger the more focused the beam is, Figure 1b and 1c clearly highlights 

how they manifest even in LG modes that are not extremely focused, particularly in the so-called ‘vortex core’ which 

evidently is not truly empty for a range of parameters. Furthermore, if the twisted light is also circularly-polarized the 

effects become more significant than if 0  , and in the case of anti-parallel SAM and OAM the paraxial approximation 

significantly fails for the whole range of values of 
0kw (Figure 1c). As Figure 2 shows, for higher values of the on-axis 

intensity distribution vanishes for paraxial beams, and the total field intensity distribution much more resembles the 

transverse only components, but the transverse only description still differs from the total field, especially for the lower 



values of 
0kw  when 2, 1    as in Figure 2c. Although we have shown that the inclusion of solely zeroth-order 

transverse fields is not in general adequate for paraxial LG modes, it is clear that the paraxial approximation most 

significantly fails quantitatively for 1, 0    and 1, 1   .   

 

 

Figure 2: Intensity distributions for an LG beam with 2  for a changing beam waist (wavelength 729nm) a)-d) correspond to the same conditions 

as those in Figure 1, the range of 
0kw  is also the same. 

 

4. APPLICATION TO ABSORPTION  

 

Single-photon absorption is the simplest optical process, and is therefore an appropriate initial case to investigate the role 

of longitudinal fields in light-matter interactions. We may calculate the matrix element (or quantum amplitude) 
FIM  of 

single-photon absorption in the electric dipole approximation using standard time-dependent perturbation methods, with 

FIM  given by:  1

int 0
   F H I F Id r , where the initial state vector   0, , , ;I n k p E  consists of  n 

photons in the LG mode  , , ,k p and the material in the ground state
0E ; the final state is given by

  1 , , , ;  F n k p E , where the mode has lost a photon and the material now exists in the excited state denoted 

by  ;   is the electric-dipole transition moment operator.  



Using the mode expansion for the electric displacement field operator (3), the matrix element is  
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where we now use suffix notation for tensor quantities and  L/R 1/2 ˆ ˆ2  i i
e x i y  is the polarization vector for circularly 

polarized light. As is standard16, the matrix element is inserted into the Fermi rule to yield the rate   of single-photon 

absorption as: 
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The prime superscripts in (7) denote partial differentiation with respect to r. The first term in square brackets in (7) is the 

standard rate of absorption via the T0 electric field, and it is therefore evident through the multitude of additional terms 

that accounting for longitudinal fields offer numerous additional optical interactions and qualitative corrections to the 

zeroth-order fields. The terms dependent on   stem from the interferences between the transverse and longitudinal fields, 

and if a full beam-profile integration over   is carried out (i.e. 
0 0 2    )  these effects vanish. To render these 

observable the signals stemming from individual nanostructures or sub-domains must be resolved. The final terms are all 

purely longitudinal in nature, and their importance is determined by the factors discussed in the previous section.  

The rate of absorption given by (7) specifically corresponds to a nanostructure with a fixed orientation with respect to the 

input optical axis. It is clear that that the T0 components can excite electric dipole transitions which must have allowed 

components in x,y-directions, whereas excitation through the pure longitudinal terms excite transitions which must exhibit 

components along the direction of propagation z. A similar scheme was used to map the fluorescence of molecules with 

specific orientations in order to precisely determine of the structure of electromagnetic fields for vector vortex beams 34. It 

is also worthwhile noting that individual contributions to the total rate depend on  , i.e. the handedness of the input 

circular polarization; the sign of , i.e. the handedness of the optical vortex; and the product of the two  . Generally 

materials, such as molecular matter, need to be chiral in order to exhibit differential effects with respect to the sign of   

(optical activity) through higher-order magnetic dipole and electric quadrupole interferences with the electric dipole 

transitions, and are thus usually weak effects 35. The rate (7) tells us that in principle it is possible that photon absorption 

through purely electric-dipole transitions can yield a small differential rate for optical vortices with different helical 

wavefront and polarization handedness. These differential rates that depend on the optical handedness here are comparable 

to standard optical activity of circularly polarized light, but in comparison to these traditional chiroptical interactions that 

probe the local helicity of light, the phenomena here are clearly spatial effects related to a radially varying and optical 

angular momentum-dependent intensity structure36.  

Orientational averaging is done using standard methods37, namely for a second rank tensor 
0 01

3
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The total averaged rate (8) and its individual components are plotted in Figures 3-5 for different combinations of angular 

momentum. It is interesting to note how an orientational average of the individual material particles also leads to the 

interference terms averaging to zero. Clearly the different material transition moment orientational dependences of (7) to 

the transverse and longitudinal fields are also lost. The SOI term dependent on   still survives, so that even randomly 

oriented molecules will still exhibit a small difference in the rate of absorption depending on the polarization and wavefront 

handedness – this is most clear by comparing Figure 4e and 5c for a given position r (though note how the light must 

possess both SAM and OAM in this case).  

It is clear to see that the rate of absorption has an acute dependence on radial position, but also the total rate is altered by 

the longitudinal fields even for paraxial vortices. The results displayed in Figure 3-5 corresponds to a laser beam 

propagating at the limit of the paraxial validity 
0 4kw . Note that Quinteiro et al.12 highlighted how longitudinal fields in 

the specific case of parallel and anti-parallel SAM and OAM had a significant influence on atomic electric quadrupole 

transitions even when 
0 23kw  (see our Figure 1c).  

 

 

Figure 3: Normalised plots of the individual and total contributions to the rate of single-photon absorption (Eq.(8)) for 1, 0  .   ( 0p , 

0 4kw ). 

 



 

Figure 4: Normalised plots of the individual and total contributions to the rate of single-photon absorption (Eq.(8)) for 1, 1   .   ( 0p ,

0 4kw ). 

 

 

 

Figure 5: Normalised plots of the individual and total contributions to the rate of single-photon absorption (Eq.(8)) for 1, 1    .   ( 0p ,

0 4kw ). 

 

 

5. CONCLUSION  

 

LG modes are solutions to the paraxial wave equation, and therefore must strictly be bound to any approximations 

associated with paraxially propagating light. Detailed conditions of where the paraxial approximation fails for general laser 

modes can be found in 24,25. If one wishes to rigorously account for the longitudinal fields of strongly-focused LG beams 

0
4kw  , then either (a) the non-paraxial LG solutions should be utilised38,39, (b) a systematic expansion in paraxial 



parameter in the spirit of previous studies3,40,41 should be performed or (c) explicilt inclusion of the focusing approach with 

high NA 7,20,42,43 should be adopted. Importantly, as we have shown, the other terms dependent on the angular momentum 

properties can be important even for paraxial optical vortices, and their first-order nature means their contributions are 

completely valid within the paraxial regime.  

The field of twisted light and optical OAM has largely been concerned with applications in mechanical nanomanipulation, 

communications, and quantum information studies – only in the last few years have the unique properties of twisted beams 

been implemented in atomic and molecular optics and spectroscopy. Here we have highlighted how in such studies, 

longitudinal fields of optical vortices must be accounted for even for paraxial vortices. Indeed, any application of paraxial 

vortices clearly require the inclusion of longitudinal fields, particularly for low values of  and nanostructures placed 

close to the so-called vortex singularity. The cases which show most deviation from the purely zeroth-order transverse 

field description of LG modes appear to be 1, 0  ; 1, 1   , 2, 1   , particularly the first two. 

Nanostructures with specific orientation with respect to the optical axis have more potential to exhibit larger and more 

interesting effects with the longitudinal fields than systems of randomly oriented structures. Unlike the strongly-focused 

case of non-paraxial beams where the longitudinal components can dominate the transverse fields, here it has been shown 

that for paraxial optical vortices the inclusion of first-order longitudinal fields is still important both qualitatively and 

quantitatively, as they introduce novel optical interactions with matter as well as alter the electromagnetic fields and 

corresponding position-dependent intensity structure.  
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