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Lay summary 18 

A single HIV virus is usually transmitted. HIV then replicates, making errors, and over time genetic 19 

diversity increases. We found that time since HIV infection can be estimated from within-patient HIV 20 

genetic diversity, even when patients are on treatment.  21 

Abstract 22 

Background 23 

HIV-1 genetic diversity increases during infection and can help infer the time elapsed since infection. 24 

However the effect of antiretroviral treatment (ART) on the inference remains unknown. 25 

Methods 26 

Participants with estimated duration of HIV-1 infection based on repeated testing were sourced from 27 

cohorts in Botswana (n=1944). Full-length HIV genome sequencing was performed from proviral DNA. 28 

We optimized a machine learning model to classify infections as < or >1 year based on viral genetic 29 

diversity, demographic and clinical data.  30 

Results 31 

The best predictive model included variables for genetic diversity of HIV-1 gag, pol and env, viral load, 32 

age, sex and ART status. Most participants were on ART. Balanced accuracy was 90.6% (95%CI:86.7%-33 

94.1%). We tested the algorithm among newly diagnosed participants with or without documented 34 

negative HIV tests. Among those without records, those who self-reported a negative HIV test within <1 35 

year were more frequently classified as recent than those who reported a test >1 year previously. There 36 
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was no difference in classification between those self-reporting a negative HIV test <1 year, whether or 37 

not they had a record.  38 

Conclusions 39 

These results indicate that recency of HIV-1 infection can be inferred from viral sequence diversity even 40 

among patients on suppressive ART.  41 

Key words 42 

HIV, NGS, stage of infection, early HIV infection, genetic diversity, ART, HIV treatment 43 

Introduction 44 

Accurate inference of HIV-1 infection stage is crucial for estimating HIV incidence and to evaluate the 45 

population-level effectiveness of antiretrovirals and other interventions. Identifying recent HIV 46 

infections is also critical to estimating their contribution to onward transmission [1-6]. The Fiebig staging 47 

system classifies early HIV infection based on a combination of diagnostic assay results, including tests 48 

for viral RNA and the p24 viral antigen [7]. Then, in the first few months of infection, time since 49 

seroconversion can be estimated based on serological assays, which measure the type and strength of 50 

immune responses. After infection, HIV-specific antibodies increase, and antibody test cut-offs can 51 

distinguish between recent and chronic infections [8, 9]. However, the window period for detecting 52 

recent infections using serological assays is limited to around four months, after which antibody levels 53 

reach a plateau [8, 9]. Furthermore, many factors influence the performance of serological assays, 54 

including country of origin, race/ethnicity, disease progression [10] and importantly, HIV-1 subtype [9]. 55 

Thus, there is a rationale for developing complementary methods for identifying recent infections. 56 
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Sequencing data can be used to estimate HIV genetic diversity within hosts, and so genetic sequences 57 

may provide an alternative biomarker to inform stage of HIV infection [11-13]. Most HIV infections are 58 

established by a single founder virus and viral diversity within a host increases over time [14]. Therefore 59 

the number of ambiguous nucleotide bases produced by population-based sequencing can be used to 60 

distinguish recent from chronic infections [11, 12]. Next-generation sequencing (NGS) enables precise 61 

identification of viral haplotypes and calculation of viral population diversity within hosts. Pairwise 62 

diversity estimates derived from NGS thus yield a more accurate estimation of time since infection [13, 63 

15]. Accumulation of genetic diversity also indicates time since infection with the Hepatitis C virus (HCV) 64 

[16]. 65 

Most published studies seeking to identify recent infections have been conducted on samples from 66 

recent diagnoses, known to be antiretroviral therapy (ART) naïve. However, in population-based 67 

cohorts, thousands of individuals have been sequenced without knowledge of infection timing or 68 

treatment initiation [17]. For example, the PANGEA consortium has sequenced HIV from over 18,000 69 

individuals across sub-Saharan Africa. In Botswana, one of the PANGEA sites, initiation of treatment at 70 

diagnosis (universal ART) was rolled out from 2016 onwards and over 6,000 individuals have been 71 

sequenced through PANGEA. Classifying those infections as recent or chronic is important for 72 

downstream analysis of incidence trends and transmission patterns. Because many PANGEA participants 73 

were on fully suppressive ART, it was not always possible to generate HIV sequences from viral RNA in 74 

plasma; instead viral sequences were generated from proviral DNA. An additional question is whether 75 

changes in viral diversity are maintained among treated patients within proviral DNA sequences to the 76 

extent that diversity-based metrics for identifying recent infections can still be applied. 77 

We determined whether HIV infections could be classified as being more recent or older than 1 year 78 

based on NGS sequence diversity metrics, among a cohort of participants in Botswana, the majority of 79 

whom were on ART and many sequenced from proviral DNA. 80 
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Methods 81 

Data 82 

Participant data were obtained from three different cohorts that included participants with duration of 83 

infection known to be less or more than 1 year and for whom full genome NGS sequences were 84 

available. NGS was performed by the BioPolymers Facility at Harvard Medical School 85 

(https://genome.med.harvard.edu/) and through collaboration with the PANGEA HIV consortium [17, 86 

18] (www.pangea-hiv.org) using Illumina platforms MiSeq and HiSeq, as previously described [19-21]. 87 

Assembly and alignment methods for these samples have been detailed elsewhere [22]. Sequences 88 

were subtyped using REGA [23]. We used sequences from a single time point for each participant. 89 

Samples were collected across three studies: BHP012 [24], Mochudi [25] and the Botswana Combination 90 

Prevention Project (BCPP) [25]. The BHP012 study ran from 2004 to 2008 and screened participants for 91 

HIV infection by a combination of EIA and HIV-1 RNA testing to recruit recently infected patients based 92 

on the estimated date of seroconversion [24]. Participants from the Mochudi study were tested for HIV-93 

1 antibodies annually from 2010 to 2013, and seroconverters were identified based on a negative then a 94 

positive test [25]. Most data originated from BCPP, a community-randomised trial conducted from 2013 95 

to 2018 across 30 villages in Botswana [26]. We classified BCPP infections as recent if participants had a 96 

documented negative HIV test less than a year before their positive diagnosis at the beginning of the 97 

trial or if participants seroconverted during the trial with a documented negative test less than 1 year 98 

prior. BCPP infections were classified as chronic if participants were HIV positive at enrolment and had 99 

documented evidence of a positive HIV test >1 year before the trial. Demographic and clinical data were 100 

available for most participants, including age, sex, viral load, sample date and ART status. Because 101 

sample dates were so strongly associated with cohort of sampling, we did not include them as a 102 

predictor in our models. 103 
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HIV sequences and associated epidemiological and clinical data utilised within the study are available 104 

upon request to the PANGEA consortium (https://www.pangea-hiv.org/). 105 

Calculating genetic diversity 106 

We calculated the genetic diversity at each site in the HIV genome using two statistics: Entropy, denoted 107 

H, and the mean pairwise difference, denoted 𝜋. These are defined: 108 

𝐻 = − ∑  𝑥 𝑙𝑜𝑔 𝑥

4

𝑘=1

 109 

and  110 

𝜋 = 1 − ∑  𝑥2

4

𝑘=1

 111 

Where 𝑘 takes the value of each nucleotide in turn (A, C, T G) and 𝑥 takes the relative frequency of each 112 

nucleotide in turn. For each gene (gag, pol and env) we then calculated average entropy and 𝜋, 113 

eliminating sites with coverage <100 after deduplication. Entropy and 𝜋 were log-transformed for 114 

analysis.  115 

Logistic regression and machine learning (xgboost) models 116 

All analyses were performed in R 3.6.1, using the packages caret [27], pROC [28] and xgboost [29]. We 117 

split our data repeatedly into training (70%) and testing (30%) datasets to evaluate a series of logistic 118 

regression models. Predictors included: log entropy and/or log 𝜋 for each gene (gag, pol, env), gender, 119 

age, log viral load, and ART status. We ran models with and without interactions between diversity and 120 

ART status and interactions between diversity and viral load. We then evaluated the ability of each 121 

model to predict the probability of being recent (0-1) for each sample, by calculating sensitivity, 122 

specificity and balanced accuracy for a range of thresholds. Models were optimised for balanced 123 
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accuracy (which optimises the sum of sensitivity and specificity to improve identification across both 124 

classes) and we assessed the robustness of estimates through cross validation (1000 replicates).  125 

Next, we fitted the xgboost machine learning algorithm, again predicting probability of recency and 126 

including diversity metrics and/or demographic and clinical predictors. We compared performance (as 127 

measured by balanced accuracy) of the xgboost models through cross-validation (1000 replicates). 128 

Reliability of self-reported HIV testing history 129 

Our classifier was then evaluated on a separate dataset. At enrolment, BCPP participants were asked 130 

when they had last been tested for HIV (if at all), what the test result was, and whether they had a 131 

record of that result. Using our best-fit prediction algorithm, we predicted recency for three groups of 132 

participants: A) those with recorded evidence of a negative test within the last year (note that these 133 

individuals were removed from the training dataset for this iteration of the model), B) those who self-134 

reported a negative HIV test within the last year but had no record and C) those who self-reported a 135 

negative HIV test more than a year ago but had no record. We then compared the frequencies of 136 

predicted recent and chronic infections between groups A and B and groups B and C using fisher’s exact 137 

test. Because the xgboost model generates for each sample the probability of recency rather than a 138 

binary prediction, we also compared the probability distributions between both pairs of groups using 139 

the Kolmogorov Smirnov (KS) test.  140 

Results 141 

Genetic diversity is affected by stage of infection and ART status 142 

Stage of infection could be classified as < or >1 year for 1944 participants: 209 recent (20% on ART) and 143 

1735 chronic (93% on ART) participants. Most participants originated from the BCPP trial [26], 144 

supplemented by seroconverters from BHP012 (n=39) [8] and Mochudi (n=16) [9]. Most sequences were 145 
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subtype C (1875/1943, 96.5%), remnant sequences were subtypes A1, B, F1 and C recombinants. There 146 

was a marked difference in age between participants with recent vs chronic infections (Table 1). 147 

There was a statistically significant difference in genetic diversity between recent and chronic infections, 148 

as estimated through entropy or π (Figure 1, KS test D=0.47, p<10-16). Nonetheless, there was 149 

considerable overlap in diversity distributions, particularly among individuals on ART (Figure 1). In 150 

addition, the range of diversity among recent infections was substantial, reflecting the divergent cohorts 151 

from which these data were obtained. As expected, individuals with chronic infections on ART had lower 152 

genetic diversity than individuals with chronic infections who were not on ART (log mean entropy = -153 

3.56 vs -3.50, KS test p=0.02). Identical patterns were observed if participants were split by viral 154 

suppression rates (Supplementary Figure 1), reflecting viral suppression rates >95% (1595/ 1662) among 155 

treated patients. 156 

ART status and diversity are most important for predicting stage of infection  157 

We compared four models: 1) a model including measure of diversity only (for gag, pol and env), 2) a 158 

model including demographic and clinical predictors only (age, sex, ART status, viral load), 3) a model 159 

including measures of diversity and ART status, and 4) a model including all available predictors. 160 

Diversity calculated using entropy performed slightly better than diversity calculated using π (data not 161 

shown), as demonstrated previously [30], henceforth we present results only for entropy. In the 162 

complete dataset, 89.2% of samples were from chronic infections, meaning that a model predicting all 163 

samples to be chronic would have an accuracy of 89.2%. This number represents the “no information 164 

rate”. The model based on diversity alone did not predict recency any better than the no information 165 

rate, but all three other models performed significantly better than the no information rate (Figure 2A.). 166 

We selected the best model based on balanced accuracy (Figure 2B.), which corrects for the difference 167 

in size of the two classes by maximising both sensitivity and specificity instead of maximising the overall 168 
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rate of correct calls. The model with the highest balanced accuracy included all predictors: log entropy 169 

for each of gag, pol and env, age, sex, log viral load and ART status as well as interaction terms for 170 

diversity and ART status and diversity and viral load, and its specificity was significantly higher than that 171 

of the other models (Figure 2D.). This latter result indicates than demographic and clinical predictors 172 

other than ART were particularly informative for correctly classifying chronic infections. The gag region 173 

contributed most substantially to the model, followed by pol, but inclusion of all three regions 174 

performed best (data not shown). Over 1000 cross-validation replicates, the accuracy of the best model 175 

was 93.2% (95%CI: 90.0%-96.2%), balanced accuracy was 90.6% (95%CI: 86.7%-94.1%), sensitivity was 176 

93.9% (95%CI: 89.9%-97.6%) and specificity was 87.4%% (95%CI: 78.6%-94.8%). The balanced accuracy 177 

of this final model was significantly higher than the balanced accuracy of the next best model, 178 

containing only diversity and ART (balanced accuracy = 87.6%; t-test, p<10-16). 179 

xgboost can predict stage of infection for incomplete cases 180 

Next, we compared the best performing logistic regression model to a machine learning model (xgboost) 181 

with the same predictor variables: log entropy for each of gag, pol and env; age, sex, log viral load and 182 

ART status. Note that xgboost does not require interaction terms to be detailed explicitly. Models were 183 

compared through 200 cross-validation replicates. When optimised for balanced accuracy, the 184 

regression and machine learning models performed comparably, with no difference in balanced 185 

accuracy, sensitivity slightly higher for the machine learning model and specificity slightly higher for the 186 

regression model (Figure 3A-C). However, demographic and clinical data were not complete for every 187 

participant included and sequence data were not always available for every gene. Where data were 188 

missing, the logistic regression model failed to make predictions (Figure 3D). We were able to fit 189 

regression model variants, removing one predictor (including one gene region) at a time and the model 190 

still predicted accurately for those samples that were missing information (data not shown), but such a 191 
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procedure is time intensive. The xgboost model had good prediction accuracy even for participants with 192 

missing data, although missing data is not explicitly imputed. 193 

The sensitivity, specificity and accuracy statistics in the logistic regression model do not consider cases 194 

for which no prediction is made. Our test datasets comprised ~582 cases, and for a typical model run, 195 

the logistic regression model could not predict for around 10.01% of cases (Figure 3). xgboost performed 196 

well in predicting stage of infection among participants with and without missing data (data not shown). 197 

Splitting the data by treatment status improves recency prediction 198 

Next, we assessed the sensitivity and specificity of our final model in predicting stage of infection in ART-199 

treated versus ART-naive cases. We examined the distribution of model statistics based on 200 cross-200 

validation tests. Although overall sensitivity and specificity for this model were high, specificity among 201 

the ART-naïve group was low (34.1%,  Supplementary Figure 2), meaning that the model was not good 202 

at identifying ART-naïve chronic infections. Similarly, our ability to correctly classify recent infections 203 

among ART-treated individuals, was sub-par (sensitivity = 64.6%,  Supplementary Figure 2). In both 204 

cases, numbers within these groups were small as a proportion of total chronic infections (99/1735; 205 

Table 1) and of total recent infections (41/209), explaining why the model was unable to accurately 206 

disentangle that group. Balanced accuracy (the mean of sensitivity and specificity) was significantly 207 

improved for both ART-treated and ART-naïve individuals by fitting xgboost models and predicting 208 

recency status separately on ART-naïve and ART-treated individuals (t-test, p<10-16 for both 209 

comparisons, Figure 4) although sensitivity among ART-naïve and specificity among ART-treated were 210 

both reduced (all p<10-16,  Supplementary Figure 2). These models separately achieved 91.4% 211 

sensitivity and 83.7% specificity among ART-treated individuals and 81.4% sensitivity and 86.9% 212 

specificity among ART-naïve individuals. Our models performed better in ART-treated participants than 213 

ART-naïve as our dataset was larger. 214 
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Self-reported HIV testing history in Botswana is reliable 215 

Finally, we applied our xgboost model to classify infections diagnosed at the start of BCPP trial. We set 216 

out to compare predictions between participants who had documented evidence of a prior negative HIV 217 

test within the last year (n=12) , those who reported a negative HIV test within the previous year but 218 

had no record (n=46) and those who reported a negative HIV test more than a year prior but who had 219 

no record (n=114). There were twice as many predicted chronic infections among those self-reporting a 220 

negative HIV test within the last year with no record (19.6%) than among those who did have a record 221 

(8.3%), but the difference was not significant (Fisher test, p=0.42; Table 2). The distribution of predicted 222 

probabilities of recency for those two groups were not significantly different either (KS test, p=0.97;  223 

Supplementary Figure 3A). In contrast, those who self-reported a negative HIV test over than a year ago 224 

were significantly more likely to be classified as chronic than those self-reporting a negative HIV test less 225 

than a year ago (37.7% vs. 19.6%, fisher test, p=0.04; Table 2), and their recency probability distribution 226 

were also significantly different (KS test, p=0.007;  Supplementary Figure 3B). 227 

Discussion 228 

We were able to predict the stage of HIV infection within a cohort including participants receiving ART 229 

with suppressed viral load. Stage of infection could be inferred from proviral DNA sequence diversity 230 

with high accuracy. Our model performed comparably to models using NGS derived measures of genetic 231 

diversity to predict stage of infections among ART-naïve participants [13, 15]. Recent infections were 232 

identified with a sensitivity of 93.9% and a specificity of 87.4%. Among treated participants, genetic 233 

diversity measures (e.g. entropy) displayed overlap between recent and chronic infections but including 234 

clinical and demographic data allowed for the groups to be disentangled. A gradient boosting machine 235 

learning algorithm provided substantial improvements by classifying stage of infection even among the 236 

10% of participants missing one or more predictors. 237 
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Estimating time since infection from HIV sequences relies on the steady accumulation of genetic 238 

diversity within patients after infection. However, after ART initiation, virus replication is suppressed and 239 

sequences from proviral DNA can resemble those present when treatment was initiated [31-33]. As a 240 

consequence, classifying infections as recent or chronic when patients are on ART is challenging. Our 241 

predictive model achieved a balanced accuracy significantly above 50% regardless of ART status. Yet, we 242 

concede that ART interferes with disease staging, whether using clinical or sequenced-based metrics, 243 

and in agreement, fitting models independently to treated and untreated participants improved 244 

predictive ability. Our dataset was skewed, with only a minority of recent infections treated, but such 245 

individuals will become more numerous as treatment expands, thus predicting stage of infection among 246 

this group is of considerable importance. In fact, future studies may include only treated patients; based 247 

on our analyses, staging of infection should still be possible. Additional resolution may require 248 

investigation of longitudinal changes in genetic diversity in treated patients, but the cross-sectional data 249 

to which our model is fitted reflects the types of data currently available. 250 

The ability to distinguish between recent and chronic infections among participants on ART was in part 251 

due to the wealth of demographic and clinical data available from participants in this study; indeed 252 

incorporating this information (and specifically, viral load [34]) has been shown previously to hugely 253 

improve prediction of stage of infection based on viral RNA diversity estimates [35]. Inclusion of CD4 254 

count would further improve predictions [36], but CD4 counts were not available for our cohort because 255 

HIV treatment is now recommended regardless of CD4 count in Botswana. A substantial proportion of 256 

the signal was derived from ART status but including measures of genetic diversity significantly 257 

improved classifications. Consistently with similar analyses [13, 15] we found gag and pol to be the most 258 

informative regions. The env region is likely to better resolve time since infection early on, but rapid 259 

rates of diversification lead to saturation and loss of signal later in infection [30, 37]. In addition, for 260 

highly divergent HIV env sequences, alignment remains problematic, impacting estimates of genetic 261 
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distance. Nonetheless, we concede that while classification accuracy was high in our large dataset, and 262 

high enough for population-based downstream applications, it is insufficient for use as a patient-level 263 

diagnostic test. Furthermore, the fitted predictive model is heavily dependent on clinical and 264 

demographic data, and the ways in which such factors affect disease progression varies across regions 265 

[38]. Specifically, our cohorts consisted nearly entirely of subtype C infections diagnosed among 266 

heterosexuals, and consequently, our model may not be directly extrapolatable to populations with 267 

more rapid transmission, for example men who have sex with men or injection drug users. We were not 268 

able to compare sequencing success rates between recent and chronic infections, nor estimate the 269 

sensitivity of the proviral sequencing method, from our sample processing pipeline. Given that the HIV 270 

reservoir is smaller among patients put on treatment early [39], potential undersampling of this group 271 

could introduce a source of bias into our results. 272 

We applied our algorithm to a subgroup of participants newly diagnosed with HIV at the start of the 273 

BCPP trial in Botswana. We found that among those with no HIV test records, those who self-reported a 274 

negative HIV test within the previous year were significantly more likely to be classified as recent 275 

infections by our algorithm than those who reported a negative HIV test more than one year previously. 276 

Meanwhile, there was no significant difference in classification between those self-reporting a negative 277 

HIV test within the previous year, whether or not they had a record. There was a tendency for patients 278 

with a record to be more likely classified as recent, but the difference was not significant. Taken 279 

together, these results suggest that self-reported testing history in Botswana is reliable. Studies 280 

assessing the accuracy of HIV testing history in sub-Saharan Africa have focused on the reliability of 281 

results, rather than on timing. Overall, recent studies have similarly found self-reporting of HIV status to 282 

be reliable [40, 41]; although an earlier study in Malawi concluded that up to 1/3 of HIV positive 283 

individuals may knowingly misreport their HIV status [42]. To our knowledge, ours is the first study that 284 

investigates the reliability of self-reporting of timing of HIV tests. In view of the considerable effort put 285 
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into developing laboratory-based assays for the purpose of recency testing, it is worth emphasising that 286 

self-reporting may also be an increasingly reliable indicator. 287 

In conclusion, identifying recent infections (<1 year) using NGS derived estimates of within-host HIV 288 

genetic diversity appears possible even among individuals on ART if additional demographic and clinical 289 

data are available. As universal test and treat becomes standard practice, future diversity-based 290 

classifiers will increasingly focus on treated populations and will be based on proviral DNA by necessity. 291 

These results could enable the detailed examination of the contribution of recent infections to onward 292 

transmission in Botswana and other PANGEA sites within the context of the 90-90-90 UNAIDS target.  293 

Figure legends 294 

Figure 1: Viaplot of log mean entropy for participants based on stage of infection (chronic and recent) and ART-status (naïve or 295 

treated). Log mean entropy for recent infections [-4.45 (-5.33- -2.70)]  was significantly below that of chronic infections [-3.57 (-296 

5.34- -2.34)]. ART – antiretroviral treatment. Averaged across gag, pol and env. 297 

Figure 2: A. Model accuracy, B. balanced accuracy, C. sensitivity and D. specificity with cross-validation for four models with 298 

different sets of predictors 1) demographic/ clinical predictors only (age, sex, viral load and ART status), 2) diversity (in each of 299 

the three genes) only 3) diversity and demographics and 4) diversity and ART status. Each model was fitted and evaluated 1000 300 

times, splitting the complete data into training (70%) and test (30%) data each time. ART – antiretroviral treatment. The no 301 

information rate for accuracy is the proportion of the dominant class (here, 89%). The equivalent no information rate for 302 

balanced accuracy would be 50%.  303 

Figure 3: A. Sensitivity, B. specificity, C. balanced accuracy and D. percentage of missing predictions for the logistic regression 304 

and machine learning models. Statistics are calculated by fitting the model each time to a training dataset, then evaluating it in 305 

a test dataset. Note that the xgboost model was always able to predict recency even in the absence of some predictors (panel 306 

D). 307 

Figure 4: Balanced accuracy of the predicted stage of infection for participants based on ART status. In the joint model, the 308 

model was fit to all participants regardless of ART status, and ART status was included as a predictor. In the split model, the 309 
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model was fit separately to ART-treated and ART-naïve participants. The split model improved balanced accuracy for both ART-310 

treated and ART-naïve participants (p<10-16).  311 

Acknowledgments 312 

We would like to acknowledge all the researchers and staff at the Botswana Harvard AIDS Initiative, as 313 

well as all the Botswana Combination Prevention Project study participants. We thank two anonymous 314 

reviewers for their constructive insights.  315 

This work was supported in part by the Bill & Melinda Gates Foundation [PANGEA 1:OPP1084362, 316 

PANGEA 2: OPP 1175094]. This work was supported by PEPFAR/CDC (grant numbers U01 GH000447 317 

and U2G GH001911 to the BCPP project) and NIAID (R01 AI083036 for the Mochudi project). We 318 

acknowledge joint Centre funding from the UK Medical Research Council and the Department for 319 

International Development (MR/R015600/1).  320 

Conflicts of interest: EV has an honorary contract with Public Health England (Sep 2020-present) to 321 

conduct work in the Genomic Epidemiology Cell. CF reports grants from the Bill & Melinda Gates 322 

Foundation during the conduct of the study. All other authors report no conflicts of interest. Under the 323 

grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has already 324 

been assigned to the Author Accepted Manuscript version that might arise from this submission. 325 

 326 

  327 



16 
 

Footnotes 328 

Conflicts of interest 329 

EV has an honorary contract with Public Health England (Sep 2020-present) to conduct work in the 330 

Genomic Epidemiology Cell. CF reports grants from the Bill & Melinda Gates Foundation during the 331 

conduct of the study. All other authors report no conflicts of interest. Under the grant conditions of the 332 

Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the 333 

Author Accepted Manuscript version that might arise from this submission. 334 

Funding 335 

This work was supported in part by the Bill & Melinda Gates Foundation [PANGEA 1:OPP1084362, 336 

PANGEA 2: OPP 1175094]. This work was supported by PEPFAR/CDC (grant numbers U01 GH000447 337 

and U2G GH001911 to the BCPP project) and NIAID (R01 AI083036 for the Mochudi project). We 338 

acknowledge joint Centre funding from the UK Medical Research Council and the Department for 339 

International Development (MR/R015600/1).  340 

Presentation of work 341 

This work was presented at the Conference on Retroviruses and Opportunistic Infections in 2020 (virtual 342 

conference, Boston, USA) and at Dynamics ad Evolution of HIV and other Human Viruses in 2020 (virtual 343 

conference, San Diego, USA). 344 

Corresponding author contact information: 345 

Manon Ragonnet-Cronin  346 

MRC Centre for Global Infectious Diseases Analysis  347 

Imperial College London   348 



17 
 

School of Public Health 349 

St Mary’s Hospital, Norfolk Place 350 

London W2 1PG 351 

Phone: (+44) 07482 672 646 352 

Email: manonragonnet@imperial.ac.uk 353 

Alternate corresponding author details 354 

Erik Volz  355 

MRC Centre for Global Infectious Diseases Analysis  356 

Imperial College London   357 

School of Public Health 358 

St Mary’s Hospital, Norfolk Place 359 

London W2 1PG 360 

Phone: (+44) 07454 755 627 361 

Email: e.volz@imperial.ac.uk 362 

References 363 

1. Volz EM, Koopman JS, Ward MJ, Brown AL, Frost SD. Simple epidemiological dynamics explain 364 

phylogenetic clustering of HIV from patients with recent infection. PLoS Comput Biol 2012; 8:e1002552. 365 

2. Pao D, Fisher M, Hue S, et al. Transmission of HIV-1 during primary infection: relationship to sexual 366 

risk and sexually transmitted infections. AIDS 2005; 19:85-90. 367 

mailto:manonragonnet@imperial.ac.uk
mailto:e.volz@imperial.ac.uk


18 
 

3. Fisher M, Pao D, Brown AE, et al. Determinants of HIV-1 transmission in men who have sex with men: 368 

a combined clinical, epidemiological and phylogenetic approach. Aids 2010; 24:1739-47. 369 

4. Brenner BG, Roger M, Routy JP, et al. High rates of forward transmission events after acute/early HIV-370 

1 infection. J Infect Dis 2007; 195:951-9. 371 

5. Ragonnet-Cronin M, Ofner-Agostini M, Merks H, et al. Longitudinal phylogenetic surveillance 372 

identifies distinct patterns of cluster dynamics. J Acquir Immune Defic Syndr 2010; 55:102-8. 373 

6. Brown AE, Gifford RJ, Clewley JP, et al. Phylogenetic reconstruction of transmission events from 374 

individuals with acute HIV infection: toward more-rigorous epidemiological definitions. J Infect Dis 2009; 375 

199:427-31. 376 

7. Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma 377 

donors: implications for diagnosis and staging of primary HIV infection. AIDS 2003; 17:1871-9. 378 

8. Janssen RS, Satten GA, Stramer SL, et al. New testing strategy to detect early HIV-1 infection for use in 379 

incidence estimates and for clinical and prevention purposes. Jama-Journal of the American Medical 380 

Association 1998; 280:42-8. 381 

9. Parekh BS, Hanson DL, Hargrove J, et al. Determination of mean recency period for estimation of HIV 382 

type 1 Incidence with the BED-capture EIA in persons infected with diverse subtypes. AIDS Res Hum 383 

Retroviruses 2011; 27:265-73. 384 

10. Laeyendecker O, Brookmeyer R, Oliver AE, et al. Factors associated with incorrect identification of 385 

recent HIV infection using the BED capture immunoassay. AIDS Res Hum Retroviruses 2012; 28:816-22. 386 

11. Kouyos RD, von Wyl V, Yerly S, et al. Ambiguous nucleotide calls from population-based sequencing 387 

of HIV-1 are a marker for viral diversity and the age of infection. Clin Infect Dis 2011; 52:532-9. 388 

12. Ragonnet-Cronin M, Aris-Brosou S, Joanisse I, et al. Genetic Diversity as a Marker for Timing Infection 389 

in HIV-Infected Patients: Evaluation of a 6-Month Window and Comparison With BED. J Infect Dis 2012; 390 

206:756-64. 391 



19 
 

13. Carlisle LA, Turk T, Kusejko K, et al. Viral Diversity Based on Next-Generation Sequencing of HIV-1 392 

Provides Precise Estimates of Infection Recency and Time Since Infection. J Infect Dis 2019; 220:254-65. 393 

14. Shankarappa R, Margolick JB, Gange SJ, et al. Consistent viral evolutionary changes associated with 394 

the progression of human immunodeficiency virus type 1 infection. J Virol 1999; 73:10489-502. 395 

15. Puller V, Neher R, Albert J. Estimating time of HIV-1 infection from next-generation sequence 396 

diversity. PLoS Comput Biol 2017; 13:e1005775. 397 

16. Carlisle LA, Turk T, Metzner KJ, et al. HCV Genetic Diversity Can Be Used to Infer Infection Recency 398 

and Time since Infection. Viruses 2020; 12. 399 

17. Abeler-Dorner L, Grabowski MK, Rambaut A, Pillay D, Fraser C, consortium P. PANGEA-HIV 2: 400 

Phylogenetics And Networks for Generalised Epidemics in Africa. Curr Opin HIV AIDS 2019; 14:173-80. 401 

18. Pillay D, Herbeck J, Cohen MS, et al. PANGEA-HIV: phylogenetics for generalised epidemics in Africa. 402 

Lancet Infect Dis 2015; 15:259-61. 403 

19. Ratmann O, Wymant C, Colijn C, et al. HIV-1 full-genome phylogenetics of generalized epidemics in 404 

sub-Saharan Africa: impact of missing nucleotide characters in next-generation sequences. AIDS Res 405 

Hum Retroviruses 2017; 33:1083-98. 406 

20. Novitsky V, Zahralban-Steele M, McLane MF, et al. Long-Range HIV Genotyping Using Viral RNA and 407 

Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering. J Clin Microbiol 2015; 53:2581-92. 408 

21. Gall A, Morris C, Kellam P, Berry N. Complete Genome Sequence of the WHO International Standard 409 

for HIV-1 RNA Determined by Deep Sequencing. Genome announcements 2014; 2:e01254-13. 410 

22. Ratmann O, Wymant C, Colijn C, et al. HIV-1 full-genome phylogenetics of generalized epidemics in 411 

sub-Saharan Africa: impact of missing nucleotide characters in next-generation sequences. AIDS Res 412 

Hum Retroviruses 2017. 413 



20 
 

23. Pineda-Pena AC, Faria NR, Imbrechts S, et al. Automated subtyping of HIV-1 genetic sequences for 414 

clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other 415 

tools. Infect Genet Evol 2013; 19:337-48. 416 

24. Novitsky V, Woldegabriel E, Kebaabetswe L, et al. Viral load and CD4+ T-cell dynamics in primary HIV-417 

1 subtype C infection. J Acquir Immune Defic Syndr 2009; 50:65-76. 418 

25. Novitsky V, Bussmann H, Logan A, et al. Phylogenetic relatedness of circulating HIV-1C variants in 419 

Mochudi, Botswana. PLoS One 2013; 8:e80589. 420 

26. Makhema J, Wirth KE, Pretorius Holme M, et al. Universal Testing, Expanded Treatment, and 421 

Incidence of HIV Infection in Botswana. N Engl J Med 2019; 381:230-42. 422 

27. Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software 423 

2008; 28:1-26. 424 

28. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and 425 

compare ROC curves. BMC Bioinformatics 2011; 12:77. 426 

29. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM 427 

SIGKDD International Conference on Knowledge Discovery and Data Mining. (New York, NY, USA). 428 

30. Kafando A, Fournier E, Serhir B, et al. HIV-1 envelope sequence-based diversity measures for 429 

identifying recent infections. PLoS One 2017; 12:e0189999. 430 

31. Jones BR, Kinloch NN, Horacsek J, et al. Phylogenetic approach to recover integration dates of latent 431 

HIV sequences within-host. Proc Natl Acad Sci U S A 2018; 115:E8958-E67. 432 

32. Kearney MF, Spindler J, Shao W, et al. Lack of detectable HIV-1 molecular evolution during 433 

suppressive antiretroviral therapy. PLoS Pathog 2014; 10:e1004010. 434 

33. Brodin J, Zanini F, Thebo L, et al. Establishment and stability of the latent HIV-1 DNA reservoir. Elife 435 

2016; 5. 436 



21 
 

34. Moyo S, Vandormael A, Wilkinson E, et al. Analysis of Viral Diversity in Relation to the Recency of 437 

HIV-1C Infection in Botswana. PLoS One 2016; 11:e0160649. 438 

35. Stirrup OT, Dunn DT. Estimation of delay to diagnosis and incidence in HIV using indirect evidence of 439 

infection dates. BMC Med Res Methodol 2018; 18:65. 440 

36. Taffe P, May M, Swiss HIVCS. A joint back calculation model for the imputation of the date of HIV 441 

infection in a prevalent cohort. Stat Med 2008; 27:4835-53. 442 

37. Park SY, Love TMT, Kapoor S, Lee HY. HIITE: HIV-1 incidence and infection time estimator. 443 

Bioinformatics 2018; 34:2046-52. 444 

38. Laeyendecker O, Brookmeyer R, Mullis CE, et al. Specificity of four laboratory approaches for cross-445 

sectional HIV incidence determination: analysis of samples from adults with known nonrecent HIV 446 

infection from five African countries. AIDS Res Hum Retroviruses 2012; 28:1177-83. 447 

39. Bachmann N, von Siebenthal C, Vongrad V, et al. Determinants of HIV-1 reservoir size and long-term 448 

dynamics during suppressive ART. Nat Commun 2019; 10:3193. 449 

40. Rohr JK, Xavier Gomez-Olive F, Rosenberg M, et al. Performance of self-reported HIV status in 450 

determining true HIV status among older adults in rural South Africa: a validation study. J Int AIDS Soc 451 

2017; 20:21691. 452 

41. Xia Y, Milwid RM, Godin A, et al. Accuracy of self-reported HIV testing history and awareness of HIV-453 

positive status among people living with HIV in four Sub-Saharan African countries. medrxiv 2020. 454 

42. Fishel JD, Barrere B, Kishor S. Validity of data on self-reported HIV status and implications for 455 

measurement of ARV coverage in Malawi. In: Development USAfI, ed. DHS Working Papers. Vol. 81. 456 

Calverton, Maryland, USA: ICF International, 2012. 457 

 458 



22 
 

Table 1: Demographic and clinical characteristics of individuals with known recent and chronic infections 459 

  Recent Chronic 

Total  209 1735 

    

Study BCPP 154 1735 

 BHP012 39 0 

 Mochudi 16 0 

    

ART status Treated 41 1621 

 Untreated 168 99 

 NA 0 15 

    

Age Mean (SD) 29.71 (10.33) 42.78 (10.09) 

    

Sex F 162 1322 

 M 47 413 

    

Viral load,  

log10 copies/mL 

Mean (SD) 3.58 (1.27) 1.86 (0.78) 

 NA 6 0 

ART antiretroviral treatment, SD standard deviation. Viral loads were log-transformed before calculating the mean for each 460 

group. Undetectable viral loads, which indicate viral suppression, are recorded as 40 copies/ml, because that is the lower limit of 461 

the viral load assay used. 462 
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Table 2: Recency prediction among three groups: those with evidence of a negative test within the last year (n=12), those who 463 

self-reported a negative HIV test within the last year but had no record (n=46) and those who self-reported a negative HIV test 464 

more than a year ago but had no record (n=114). 465 

Model prediction Negative test <1 year – 

with record 

Negative test <1 year – 

no record 

Negative test >1 year – 

no record 

Chronic >1 year 1 (8.3%) 9 (19.6%) 43 (37.7%) 

Recent <1 year 11 (91.7%) 37 (80.4%) 71 (62.3%) 

 466 

 467 

  468 
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Figure 1469 
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Figure 2471 
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Figure 4 482 
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Supplementary Tables and Figures 485 

 486 

Supplementary Table 2: Sequenced gene region count for individuals with known recent and chronic infections. 487 

  Recent Chronic 

Total  209 1735 

Full genome (gag, pol, env)  195 1607 

gag + pol  4 57 

gag + env  0 9 

env + pol  8 35 

gag only  0 16 

pol only  0 0 

env only  2 11 

 488 

 489 

 490 

 491 

 492 

Supplementary Figure 1  493 

 494 

Supplementary Figure 1: Viaplot of log mean entropy for participants based on stage of infection (chronic and recent), ART-495 
status (naïve or treated) and viral loads (suppressed <200, vs unsuppressed >200) 496 

 497 

 498 
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 499 

 500 

 501 

Supplementary Figure 2 502 

 503 

 504 

Supplementary Figure 2: Sensitivity and specificity of predicted stage of infection for participants based on ART status. In the 505 
joint model, the model was fit to all participants regardless of ART status, and ART status was included as a predictor. In the split 506 
model, the model was fit separately to ART-treated and ART-naïve participants. The split model increased sensitivity and 507 
decreased specificity for ART-treated participants. The effect was reversed in ART-naïve participants (all p<10-16). 508 

 509 

 510 
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 516 

Supplementary Figure 3 517 

 518 

 519 

Supplementary Figure 3: Probability distribution of recency prediction among three groups: those with evidence of a negative 520 
test within the last year (n=12, in red), those who self-reported a negative HIV test within the last year but had no record (n=46, 521 
in blue) and those who self-reported a negative HIV test more than a year ago but had no record (n=114, in green). 522 

 523 


