

UNIVERSITI PUTRA MALAYSIA

IN-VITRO SYNERGESTIC EFFECTS BETWEEN BIFIDOBACTERIUM PSEUDOCATENULATUM G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

MUHAMMAD ANAS BIN OTHAMAN

FSTM 2009 24

IN-VITRO SYNERGESTIC EFFECTS BETWEEN *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

MUHAMMAD ANAS BIN OTHAMAN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2009

IN-VITRO SYNERGESTIC EFFECTS BETWEEN BIFIDOBACTERIUM PSEUDOCATENULATUM G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

By

MUHAMMAD ANAS BIN OTHAMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2009

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

IN-VITRO SYNERGESTIC EFFECTS BETWEEN BIFIDOBACTERIUM PSEUDOCATENULATUM G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

By

MUHAMMAD ANAS BIN OTHAMAN

September 2009

Chairman:Professor Mohd Yazid Abdul Manap, PhDFaculty:Food Science and Technology

The eagerness in finding the most effective probiotic strain has attracted many investigations. *Bifidobacterium pseudocatenulatum* G4, strain isolated from free-living infant was reported to have characteristics as probiotic candidate. Meanwhile, inulin is a known natural source of carbon that can act as a prebiotic substance. The consumption of probiotic, prebiotic, and its combination (synbiotic) was reported to have the ability to alter microbial composition in human gastrointestinal tract (GIT). In this study, the effects of *B. pseudocatenulatum* G4 (probiotic), inulin (prebiotic) and its combination (synbiotic) towards the human GIT microbial composition were evaluated *in vitro*. The effects of inulin incorporated in chocolate products as one of its ingredients were also tested. Real-time PCR assay with selected genus- and species-specific primers were used as a tool in identification and enumeration of selected bacterial strain in fermentation of mixture of bacteria from human faecal sample while dilution and plate count technique was used to enumerate the bacterial cell in fermentation of pure culture bacteria. The morphology of the tested *Bifidobacterium* strains was observed and the species was

confirmed by molecular method targeting 16S rRNA gene. In pure culture batch fermentation of tryptone peptone yeast (TPY) medium supplemented with 0.5% inulin, B. *pseudocatenulatum* G4 grew at the growth rate of $0.53 \pm 0.06 \log_{10} h^{-1}$ as compared to other Bifidobacterium strains namely B. breve ATCC 15700, B. longum BB536, and B. *infantis* ATCC 15697 which grew at $0.45 \pm 0.04 \log_{10} h^{-1}$, $0.31 \pm 0.08 \log_{10} h^{-1}$, and 0.72 $\pm 0.03 \log_{10} h^{-1}$, respectively. The same amount of inulin was then introduced into darkand milk chocolate and caused B. pseudocatenulatum G4, B. breve ATCC 15700, B. longum BB536, and B. infantis ATCC 15697 to grow at 0.54 ± 0.06, 0.44 ± 0.04, 0.36 ± $0.05, 0.73 \pm 0.02 \log_{10} \text{h}^{-1}$ for dark chocolate and $0.57 \pm 0.05, 0.46 \pm 0.03, 0.41 \pm 0.04$, $0.75 \pm 0.01 \log_{10} h^{-1}$ for milk chocolate respectively. Some of the chocolate ingredients had also influenced the growth of B. pseudocatenulatum G4. The addition of 0.5% of cocoa liquor in TPY medium caused B. pseudocatenulatum G4 to grow at 0.29 ± 0.03 \log_{10} h⁻¹, and isomalt at 0.59 ± 0.05 \log_{10} h⁻¹ compared to TPY medium without any additional carbon source which grew at $0.19 \pm 0.02 \log_{10} h^{-1}$, while the addition of cocoa butter did not support the growth of B. pseudocatenulatum G4. In 24 hours batch fermentation of human faecal bacteria, B. pseudocatenulatum G4 (Probiotic) showed its probiotic effects by inhibiting the growth of Salmonella and Enterococcus faecalis. The addition of inulin (Prebiotic) selectively supported the growth of Bifidobacterium and Lactobacillus as well as inhibits the growth of Bacteroides, Salmonella, and E. faecalis. The synbiotic combination of B. pseudocatenulatum G4 and inulin (Synbiotic) showed a synergestic effect as they reduced the number of Bacteroides, Salmonella, and E. faecalis better than Probiotic or Prebiotic alone. Synbiotic chocolate preparations (DCsynbiotic and MCsynbiotic) showed better synergestic effect with B. pseudocatenulatum G4

compared to Synbiotic when *Bifidobacterium* increased at 1.64 log_{10} (DCsynbiotic) and 1.67 log_{10} cells/ml (MCsynbiotic) from the initial counts. *Lactobacillus* also increased its cell number higher than Synbiotic treatment. Nevertheless, synbiotic chocolate preparations also gave a positive result towards the growth of potential pathogenic bacteria when compared to Synbiotic. However, the inhibition pattern still can be observed on *Salmonella* and *E. faecalis* when compared to glucose (control). The antimicrobial action was largely due to the pattern of lactic and acetic acid production in fermentation. Here, the synbiotic approach was more efficient than prebiotic or probiotic alone to modulate the human GIT microbial composition and *B. pseudocatenulatum* G4 with inulin is a compatible synbiotic pair to perform the function.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN SINERGISTIK *IN-VITRO* DI ANTARA *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 DAN INULIN TERHADAP KOMPOSISI MIKROB DALAM SALURAN GASTRO-USUS MANUSIA

Oleh

MUHAMMAD ANAS BIN OTHAMAN

September 2009

Pengerusi	:	Professor Mohd Yazid Abdul Manap, Ph D
Fakulti	:	Sains dan Teknologi Makanan

Keinginan untuk mencari strain probiotik yang paling berkesan telah menarik minat banyak penyelidikan. *Bifidobacterium pseudocatenulatum* G4, strain yang dipencilkan dari najis bayi telah dilaporkan mempunyai ciri-ciri sebagai calon probiotik. Manakala inulin sedia kala diketahui sebagai sumber karbon yang boleh bertindak sebagai bahan prebiotik. Pengambilan produk probiotik, prebiotik dan kombinasinya (sinbiotik) telah dilaporkan mempunyai kebolehan untuk merubah komposisi mikroorganisma di dalam saluran usus manusia. Oleh itu, dalam kajian ini, kesan *B. pseudocatenulatum* G4 (probiotik), inulin (prebiotik) dan kombinasinya (sinbiotik) terhadap komposisi mikroorganisma di dalam saluran usus manusia telah dinilai secara *in vitro*. Kesan inulin yang telah dicampurkan ke dalam produk coklat sebagai salah satu bahan ramuan dalam pembuatannya juga telah diuji. Reaksi rantaian polimerase-masa nyata (real-time PCR) bersama pemula (primer) spesifik kepada genus dan spesis bakteria terpilih telah digunakan sebagai alat untuk mengenal pasti dan mengira jumlah bakteria terpilih dalam

pengiraan kultur dalam piring digunakan untuk mengira sel bakteria dalam fermentasi kultur bakteria tulen. Morfologi kesemua strain bifidobacteria yang dikaji telah diperhatikan dan pengesahan di peringkat spesis pula dilakukan menggunakan teknik molekular yang mensasarkan gen 16S rRNA. Dalam fermentasi sesekelompok kultur tulen media TPY yang dibekalkan dengan 0.5% inulin, kadar pertumbuhan B. *psuedocatenulatum* G4 adalah pada $0.53 \pm 0.06 \log_{10} \text{ jam}^{-1}$. Dalam perbandingan bersama strain bifidobacteria yang lain, B. breve ATCC 15700, B. longum BB536, dan B. infantis ATCC 15697, masing-masing tumbuh pada $0.45 \pm 0.04 \log_{10} \text{ jam}^{-1}$, $0.31 \pm 0.08 \log_{10}$ jam⁻¹, and $0.72 \pm 0.03 \log_{10}$ jam⁻¹. Kemudian, jumlah inulin yang sama dimasukkan ke dalam coklat hitam dan coklat susu dan menyebabkan B. pseudocatenulatum G4, B. breve ATCC 15700, B. longum BB536, dan B. infantis ATCC 15697 masing-masing tumbuh pada kadar 0.54 ± 0.06 , 0.44 ± 0.04 , 0.36 ± 0.05 , $0.73 \pm 0.02 \log_{10} \text{ jam}^{-1}$ untuk coklat hitam dan 0.57 ± 0.05 , 0.46 ± 0.03 , 0.41 ± 0.04 , $0.75 \pm 0.01 \log_{10}$ jam⁻¹ untuk coklat susu. Sebahagian dari bahan-bahan dalam coklat juga mempengaruhi pertumbuhan B. pseudocatenulatum G4. Penambahan likur koko dan isomalt dalam media TPY (0.5%) menjadikan B. pseudocatenulatum G4 membiak, masing-masing pada kadar 0.29 ± 0.03 \log_{10} jam⁻¹, dan 0.59 ± 0.05 \log_{10} jam⁻¹ berbandingkan dengan media TPY tanpa apa-apa sumber karbon yang hanya menunjukkan B. pseudocatenulatum G4 membiak pada kadar $0.19 \pm 0.02 \log_{10} \text{ jam}^{-1}$, manakala penambahan mentega koko pula tidak menyokong pertumbuhan B. pseudocatenulatum G4. Dalam 24 jam fermentasi sesekelompok statik kultur campuran dari najis manusia, B. pseudocatenulatum G4 (Probiotic) telah menunjukkan kesan probiotiknya apabila merencat pertumbuhan Salmonella dan Enterococcus faecalis. Inulin juga menunjukkan kesan prebiotiknya apabila menyokong

pertumbuhan Bifidobacterium dan Lactobacillus secara selektif dan merencat pertumbuhan Bacteroides, Salmonella, and E. faecalis. Kombinasi sinbiotik oleh B. pseudocatenulatum G4 dan inulin menunjukkan kesan sinergistik apabila menurunkan jumlah bilangan Bacteroiodes, Salmonella and E. faecalis lebih baik dari apa yang dilakukan oleh sediaan Probiotic dan sediaan Prebiotic sahaja. Sediaan sinbiotik coklat (DCsynbiotik dan MCsynbiotic) juga menunjukkan kesan sinergistik yang lebih baik bersama B. pseudocatenulatum G4 apabila masing-masing meningkatkan bilangan *Bifidobacterium* sebanyak 1.64 \log_{10} and 1.67 \log_{10} sel/ml daripada kiraan permulaan. Peningkatan sel Lactobacillus juga lebih tinggi jika dibandingkan dengan sediaan Synbiotic. Selain daripada itu, persediaan sinbiotik coklat juga memberi keputusan yang positif terhadap pertumbuhan bakteria patogen apabila dibandingkan dengan sediaan Synbiotic. Walaupun begitu, corak perencatan masih lagi boleh diperhatikan ke atas Salmonella dan E. faecalis apabila dibandingkan dengan glukos (kawalan). Kesan antimikrob yang ditunjukkan dipengaruhi besar oleh corak penghasilan asid laktik dan asid asetik dalam fermentasi. Disini, pendekatan sinbiotik adalah lebih berkesan daripada prebiotik dan probiotik bersendirian dalam mengubahsuai komposisi mikroorganisma di dalam saluran usus manusia dan B. pseudocatenulatum G4 bersama inulin adalah pasangan sinbiotik yang sesuai untuk melakukan tugas ini.

ACKNOWLEDGEMENTS

First of all, I want to give my warmest appreciation to my Chairperson of Supervisory Committee, Prof. Dr. Mohd Yazid bin Abd Manap who had lead and guide me in doing research. A bunch of appreciation also to my co-supervisors, Dr Shuhaimi bin Mustafa and Prof. Madya Dr. Loong Yik Yee for their invaluable advices and guidance throughout my research studies.

I also want to extent my gratitude to all the science officers and laboratory assistances in Food Biotechnology laboratory, Basic Biotechnology laboratory (202), HPLC room, and Food Biochemistry Laboratory. Without their help, none of this work would have been possible.

Also special thanks to all my labmates in Food Biotechnology laboratory, Barka, Arizou, Stephnie, Farrah, Nassim, Amir, Paghty, Babak, Farnaz, Ali and also in my Basic Biotechnology Laboratory, Hamim, Huda, Raba'atun, Zarizal, Yamin, Faizah, Khalilah, and Salma, who had always cheered me up and lend their hands whenever I was in trouble, thanks a lot!

Last but not least, I would like to thank my beloved parents who encourage me to further study in this field. The moral support from my lovely wife, Wan Malliati bte Wan Mustafa which kept me focus and work in high spirit. This work is also dedicated to both of my cute and amazing daughter and son, Aina Malliani and Muhammad Aidif.

I certify that an Examination Committee has met on 16th September 2009 to conduct the final examination of Muhammad Anas bin Othaman on his Master of Science thesis entitled "The in-vitro study of synergistic effects between *Bifidobacterium pseudocatenulatum* G4 and inulin on human gastrointestinal tract microbial composition" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master Science degree.

Azizah Abdul Hamid, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nazamid Saari, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Fatimah Abu Bakar, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Ainon Hamzah, PhD

Associate Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

> BUJANG KIM HUAT, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Yazid Abd Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Shuhaimi Mustafa, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Loong Yik Yee, MD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

> HASANAH MOHD GHAZALI, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 January 2010

DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MUHAMMAD ANAS BIN OTHAMAN

Date: 13 November 2009

TABLE OF CONTENTS

ii
v
viii
ix
xi
xiv
XV
xvii

CHAPTER

1	INTI	RODUC	TION	1
2	LITI	ERATU	RE REVIEW	6
	2.1	Huma	n Gastrointestinal Tract (GIT)	6
		2.1.1	Indigenous Microbiota in Human	
			Gastrointestinal Tract	8
		2.1.2	Overview of Fermentation in Human	
			Gastrointestinal Tract	10
	2.2	Probic	otics	12
		2.2.1	History and Definition of Probiotics	12
		2.2.2	Therapeutic Potential and Health Benefits of Probiotics	13
		2.2.3	Probiotic Characteristics	14
	2.3	Bifido	obacteria	15
		2.3.1	Discoveries and Properties of Bifidobacteria	15
		2.3.2	Growth Factors of Bifidobacteria	16
		2.3.3	Physiological Effect of Bifidobacteria	17
	2.4	Bifido	bacterium pseudocatenulatum G4	18
	2.5	Prebic	otics	20
		2.5.1	Definition and Concept of Prebiotics	20
		2.5.2	Prebiotics in Food	22
	2.6	Inulin		24
	2.7	Synbi	otic Prospects and Therapies	26
	2.8	Metho	ods for Testing Probiotic and Prebiotic	28
	2.9	Molec	cular Biological Methods in Bacterial Analysis	28
		2.9.1	Polymerase Chain Reaction (PCR)	33
		2.9.2	Quantitative Real-time Polymerase Chain	
			Reaction (Q-PCR)	34

3	MAT	FERIAL	S AND METHODS	37
	3.1	Bacter	ial Cultures and Storage Condition	37
	3.2	Morph	ology Observation and Species Identification	
		of <i>B</i> . ₁	pseudocatenulatum G4	38
	3.3	Ferme	ntation of <i>B. pseudocatenulatum</i> G4 as Pure Culture	38
		3.3.1	Culture Media and Inoculum Preparation	39
		3.3.2	Carbon Sources	40
		3.3.3	Bioreactor Setting and Fermentation Condition	40
		3.3.4	Quantification of Bacteria	42
	3.4	Effect	of Probiotics, Prebiotics and Synbiotics Agents	
		on Bac	cterial Composition of Human GIT (in-vitro)	42
		3.4.1	Fermentation Medium and Carbon Sources	43
		3.4.2	Inoculum Preparation	44
		3.4.3	Fermentation Conditions	45
		3.4.4	Bacterial Composition Analysis	46
		3.4.5	Organic Acids Analysis	46
	3.5	Statist	ical Analysis	47
4	RES	ULT AN	D DISCUSSION	48
	4.1		ological Observation of <i>B. pseudocatenulatum</i> G4	48
	4.2	-	NA Identification Analysis	52
		4.2.1	Extraction, Purity Checking and Quantification	
			of Bacterial DNA.	52
		4.2.2	Gel Documentation of PCR Products	54
		4.2.3	DNA Sequencing and BLAST Analysis	56
	4.3	Ferme	ntation of <i>B. pseudocatenulatum</i> G4	60
		4.3.1	Growth of <i>B. pseudocatenulatum</i> G4 on Inulin	60
		4.3.2	The Influence of Chocolate Ingredients to the	
			Growth of <i>B. pseudocatenulatum</i> G4	68
	4.4	Accura	acy and Specificity of Real-Time PCR Assays	70
		4.4.1	Real-Time PCR Standard	70
		4.4.2	Standard Curves and Melting Curves Analysis	73
	4.5		ntation of Human Faecal Bacteria	83
		4.5.1	Effect of Probiotic, Prebiotic and Synbiotic	83
		4.5.2	Effect of Synbiotic in Cocoa Products	87
		4.5.3	Organic Acids Analysis	90
5	CON	CLUSI	DN	94
REFERENC	CES			97
APPENDIC	ES			132
BIODATA (BIODATA OF STUDENT 133			133

LIST OF TABLES

Page

Table

3.1	TPY media composition	40
3.2	Six batches of fermentation that used human faecal samples as inoculum	43
3.3	The components and concentrations of fermentation medium for human faecal sample	44
4.1	Defination of terms used for the description of bifidobacteria (Oxford, 1989)	48
4.2	NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targetting 16S rRNA of <i>Bifidobactrium pseudocatenulatum</i> G4	57
4.3	NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targetting 16S rRNA of <i>Bifidobactrium longum</i> BB536	57
4.4	NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targetting 16S rRNA of <i>Bifidobactrium breve</i> ATCC 15700	58
4.5	NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targetting 16S rRNA of <i>Bifidobactrium infantis</i> ATCC 15697	58
4.6	Growth rates constant (k) of <i>B. pseudocatenulatum</i> G4, <i>B. infantis</i> ATCC 15697, <i>B. breve</i> ATCC 15700 and <i>B. longum</i> BB536 in TPY medium containing glucose (control), inulin, inulin in dark chocolate, and inulin in milk chocolate	61
4.7	Growth rates of <i>B. pseudocatenulatum</i> G4 in cocoa butter, cocoa liquor and isomalt	69
4.8	Selected bacterial populations after 18 and 24 h of faecal batch culture fermentations with Prebiotic, Probiotic and Synbiotic treatments	84
4.9	Selected bacterial populations after 18 and 24 h of faecal batch culture fermentations with Synbiotic and synbiotic in chocolate (DCsynbiotic and MCsynbiotic) treatments	88

LIST OF FIGURES

Figure		Page
2.1	The parts of the human gastrointestinal tract	7
2.2	Electron Micrograph of B. pseudocatenulatum G4	19
3.1	1 L double jacketed vessels bioreactor, model BIOSTAT [®] Q autoclavable multi fermentor system with DCU-3 local controller, B. Braun Biotech International, Melsungen, Germany	41
3.2	Universal bottles (20 ml) that were used as a fermentation vessel (standing culture)	45
4.1	The image of <i>B. pseudocatenulatum</i> G4 after Gram stained under compound light microscope	50
4.2	The image of <i>B. longum BB536</i> after Gram stained under compound light microscope	50
4.3	The image of <i>B. infantis</i> ATCC 15697 after Gram stained under compound light microscope	51
4.4	The image of <i>B. breve</i> ATCC 15700 after Gram stained under compound light microscope	51
4.5	The image of gel electrophoresis of bacterial genomic DNA after extracted from the cells	53
4.6	The image of gel electrophoresis of PCR products using <i>Bifidobacterium</i> genus-specific primers	55
4.7	a) Growth and b) Acidifying activity of 4 <i>Bifidobacterium</i> strains in TPY medium containing glucose (control) as carbon source	62
4.8	a) Growth and b) Acidifying activity of 4 <i>Bifidobacterium</i> strains in TPY medium with inulin as a carbon source	63
4.9	a) Growth and b) Acidifying activity of 4 <i>Bifidobacterium</i> strains in TPY medium with dark chocolate fortified with inulin as a carbon source	66
4.10	a) Growth and b) Acidifying activity of 4 <i>Bifidobacterium</i> strains in TPY medium with milk chocolate fortified with inulin as a carbon source	67

4.11	Blue and white colonies of the <i>E. coli</i> JM 109 (competence cells) on LB agar containing amphicilin, IPTG and X-Gal	71
4.12	Gel electrophoresis of PCR products from plasmid DNA that carry target sequences of selected genus and species of human intestinal microorganism	72
4.13	Amplification plot with threshold line (a) and standard curve (b) for <i>Bifidobacterium</i> spp generated by real-time PCR machine	74
4.14	Amplification plot with threshold line (a) and standard curve (b) for <i>Lactobacilluss</i> spp generated by real-time PCR machine	75
4.15	Amplification plot with threshold line (a) and standard curve (b) for <i>Bacteroides</i> spp generated by real-time PCR machine	76
4.16	Amplification plot with threshold line (a) and standard curve (b) for <i>Salmonella</i> spp generated by real-time PCR machine	77
4.17	Amplification plot with threshold line (a) and standard curve (b) for <i>E. faecalis</i> spp generated by real-time PCR machine	78
4.18	Post-amplification melting curve analysis of a) <i>Bifidobacterium</i> , b) <i>Lactobacillus</i> , c) <i>Bacteroides</i> , d) <i>Salmonella</i> , and e) <i>E. faecalis</i>	81
4.19	Production of lactic acid (dotted black bars) and acetic acid (vertical lines bars) at 0, 18 and 24 h in batch cultures fermentation of human faecal microbiota with Synbiotic, Probiotic, Prebiotic, DCsynbiotic, and MCsynbiotic treatments	91

LIST OF ABBREVIATIONS

°C	Degree Celsius
k(h ⁻¹)	growth rate constant
μL	Micro liter
μΜ	Micro molar
ATCC	American Type Culture Collection
BLAST	Basic Local Alignment Search Tool
bp	Base pair
cfu	Colony forming unit
cn	Copy number
CO_2	Carbon dioxide
DNA	Deoxyribonucleic acid
1. 1995	
dNTP	Deoxyribonucleotide triphosphate
dNTP DP	Deoxyribonucleotide triphosphate Degree of polimerization
DP	Degree of polimerization
DP EDTA	Degree of polimerization Ethylenediaminetetraacetic acid
DP EDTA EtBr	Degree of polimerization Ethylenediaminetetraacetic acid Ethidium Bromide
DP EDTA EtBr e.g	Degree of polimerization Ethylenediaminetetraacetic acid Ethidium Bromide <i>Example gratia</i> (for example)
DP EDTA EtBr e.g <i>et al.</i>	Degree of polimerization Ethylenediaminetetraacetic acid Ethidium Bromide <i>Example gratia</i> (for example) Et cetera (and company)
DP EDTA EtBr e.g <i>et al.</i> FOSHU	Degree of polimerization Ethylenediaminetetraacetic acid Ethidium Bromide <i>Example gratia</i> (for example) Et cetera (and company) Foods for Special Health Use
DP EDTA EtBr e.g <i>et al.</i> FOSHU FOS	Degree of polimerization Ethylenediaminetetraacetic acid Ethidium Bromide <i>Example gratia</i> (for example) Et cetera (and company) Foods for Special Health Use Fructooligosaccharides

h	Hour
H_2SO_4	Sulphuric acid
HC1	Hydrocloric acid
HPLC	High performance liquid chromatography
i.e.	id est (that is)
IPTG	Isopropyl-B-D-thiogalactopyranoside
JCM	Japan Collection of Microorganism
kb	Kilo base pair
kV	Kilo volt
L	Liter
LB	Lysogeny broth
LAB	Lactic acid bacteria
Log	Logarithm
М	Molar
min	Minute
Mg	Magnesium
MgCl ₂	Magnesium Chloride
mL	Mililiter
mM	Milimolar
Ν	Normality
NaOH	Sodium Hydroxide
NCBI	National Centre of Biotechnology
OFN	Oxigen free nitrogen

OS	Oligosaccharides
PCR	Polymerase chain reaction
PBS	Phosphate-buffered Saline
rDNA	Ribosomal deoxyribonucleic acid
rRNA	Ribosomal ribonucleic acid
RNA	Ribonucleic acid
rpm	Revolution per minute
S	Second
S.D.	Standard deviation
SOC	Super Optimal Broth (with catabolite)
spp.	Species
TPY	Trypticase-Phytone- Yeast Extract
v/v	Volume per volume
w/v	Weight per volume
WHO	World Health Organisation
X-gal	5-bromo-4-chloro-3-indolyl-ß-D-galactoside

CHAPTER 1

INTRODUCTION

The awareness on keeping good gastrointestinal tract (GIT) health among the public has risen nowadays. Inflammatory bowel disease (IBS), irritable bowel syndrome (IBS), Crohn's disease, ulcerative colitis and Celiac disease are the common problem in gut due to unbalance of bacteria in GIT (Bradesi et al. 2003; Asakura et al. 2008; Collado et al. 2008). Many factors affect the population of intestinal bacteria including diet, age, sex, use of drugs, surgery, and some diseases. Researches showed that maintaining a proper balance of bacteria in GIT is the key to good gut health (Gorbach 2000) and one of the ways to achieve it is by consuming probiotics and prebiotics.

Probiotics and prebiotics are already a reputable sector in the health food market of developed countries. Probiotic dairy products were reported as one of the most developed and well-liked functional food products in European market (Shortt et al. 2004). The market is currently estimated to be worth more than USD 2 billion per annum (Saxelin 2008). In the USA, the annual market value of functional foods is estimated to be around USD80 billion in 2000. An estimated USD 1.86 billion is contributed by probiotics, and probiotic related products. The value is expected to grow to USD3.5 billion by 2007 (Sanders 1998). In Japan, the market size for probiotics and other dietary supplement segments, dominated (80%) the Foods for Special Health Use (FOSHU) category. The FOSHU market is estimated to worth more than USD 10 billion, annually (Amagase 2008). Meanwhile, in Malaysia,

probiotics and prebiotics are an emerging health food concept. Probiotic and prebiotic food products have a huge potential in the functional food market in Malaysia. Hence, special attention is required to develop the sector to be market driven and most important is to use locally manufactured products and expertise in order to participate and compete in the main stream of the field.

The concept of ingesting live microorganisms for therapeutic and prophylactic purposes can be traced back to the beginning of the 20th century (Metchnikoff 1910). Ever since such discovery had been made, there has been rapid growth in research regarding the use of live bacterial cells to benefit humankind. Probiotic organisms influence the physiological and pathological process of the host by modifying the intestinal microbiota, thereby affecting human health (Erickson and Hubbard 2000). They have been used in the prevention and treatment of many GIT disorders, such as inflammatory bowel disease, antibiotic-related diarrhea, and post-resection disorders such as pouchitis (Gorbach 2000). Most of the applied probiotic microorganisms are of human origin and are largely represented by *Bifidobacterium* and *Lactobacillus* species in the commercial. For the past several years, research in our laboratory has focused on *Bifidobacterium* strain that shows the most probiotic characteristics. *Bifidobacterium pseudocatenulatum* G4 was isolated from free-living breast-fed infant by Yazid *et al.* (1999a) and has shown some characteristics as a probiotic candidate.

Prebiotics is defined as non digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon and thus improve host health (Gibson and Roberfroid 1995). It is

a recent novel food concept that includes food ingredients that are not digested in the human upper intestinal tract and commonly used as a food additive (fiber), fat replacer, sugar substitute, or emulsifier. Dietary modulation of the gut microflora by prebiotics is designed to improve human health by reducing disease risk through the large intestinal surface with various physiological process and stimulating the numbers and/or activities of the bifidobacteria and lactobacilli (Manning and Gibson 2004). Prebiotics for which sufficient data are available for their classification as functional food ingredients are the inulin-type fructans, which include native inulin, enzymatically hydrolysed inulin or oligofructose, and synthetic fructooligosaccharides (FOSs) (Roberfroid and Delzenne 1998; Roberfroid et al. 1998).

Inulin is a plant-derived carbohydrate with the benefits of soluble dietary fiber (Schneeman 1999). It was reported to be fermented by resident bacterial groups such as bifidobacteria once reaches the colon intact (Roberfroid et al. 1998). In addition, the bifidogenic effect of inulin has been well proven (Gibson and Roberfroid 1995; Kolida and Gibson 2007).

Prebiotics are consumed by human generally in the form of ingredients in food products. Many food companies especially companies that produce dairy products take a prospect in developing a new product that contains prebiotic substances for the health claim. Inulin and fructo-oligosaccharides (FOS) have been studied in terms of their prebiotic activity in many studies. However, when it comes to its role as a food ingredient, only few tests took place. Most studies of prebiotics have involved the consumption of inulin- or oligosaccharide-containing powders, which may not be

relevant to everyday life because the substrates, for commercial use, would be incorporated into a food product (Tannock et al. 2004).

Probiotics, when applied in conjugation with prebiotics give rise to another possibility in microflora management technique known as synbiotics (Gibson and Roberfroid 1995). This combination could confer greater advantages to the host owing to greater survivality of probiotic candidate due to availability of substrate for its fermentation. Probiotics, prebiotics and synbiotics can be classified as health-enhancing and healthpromoting functional food concepts. However, only a few combinations of pre/probiotics have been evaluated as synbiotics, with only a limited number determining effects on the human faecal microbiota using reliable molecular techniques (Saulnier 2007) and to date, finding the novel probiotic strain and the best synbiotic preparation still remains a challenge (Liong and Shah 2008). Thus, this study was conducted to elucidate the effect of synbiotic preparation of our own probiotic candidate, B. pseudocatenulatum G4 with inulin towards the bacterial composition in human GIT using real-time PCR assays. Here, we describe the first stages in the development of a synbiotic, by first determine the ability of probiotic strain of interest to metabolize prebiotic substance of interest, then by evaluating their effect on the faecal microbiota in vitro, to assess whether the synbiotic can have a superior functionality as compared with its probiotic/prebiotic components. Synbiotic function was also tested in food products to see whether the functionality of synbiotic was affected or not by the food itself. This general objective meets the specific objectives as listed below:

