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Abstract 

 

Microplastic pollution of freshwaters is known to be a great concern in China and these pollutants can be 

discharged into the coastal environment through fluvial processes, posing threats to the global marine 

ecosystem. This paper reviewed the literature measuring microplastic pollution in the Chinese freshwater 

environment and found that microfibres dominate other plastic morphologies in more than 65% of samples 

collected in surface water, sediments and effluents of wastewater treatment plants and domestic sewers. 

Current potential sources of microfibre pollution are identified including fishery activities, laundry sewage, 

and waste textiles according to previous research. Recommendations are offered using the circular economy 

management framework, such as textile waste reuse and recycling systems in China, for improving current 

control measures for microplastics in freshwaters.   
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1. Introduction 
 

Microplastics, defined as plastic debris with a size ranging from 1 µm to 5 mm, have been detected in 

various environments as emerging contaminants since 2004 (Eerkes-Medrano et al., 2015; Horton et 

al., 2017). Given their large surface area to volume ratio (SVR) and hydrophobicity, microplastics can 

easily absorb other pollutants present in environments, including Persistent Organic Pollutants (POPs) 

and pathogenic microorganisms, and deliver them elsewhere (Caruso, 2019). Microplastics can also 

release toxic substances (monomers and additives) during degradation processes (Zou et al., 2017). 

Ingestion of microplastics by small organisms can have detrimental impacts, with the potential for 

bioaccumulation into higher trophic rungs and negative effects on the human food chain (Caruso, 2019; 

Yuan et al., 2019; Zou et al., 2017). Microplastics in environments can also pose threats to respiratory 

and olfactory systems of organisms through inhalation (Shi et al., 2021; Verla et al., 2019). The Chinese 

fluvial system is one of the most important sources of microplastics in global marine environments, 

repeatedly demonstrated over the last decade from field measurements (Zhang et al., 2018) and 

simulations of microplastic transportation (van Wijnen et al., 2019).  

Several patterns of microplastics abundance have been documented in major Chinese river basins since 

2014, such as the Pearl River (Fan et al., 2019; Lam et al., 2020; Lin et al., 2018; Ma et al., 2020), 

Yangtze River (Hu et al., 2018; Li et al., 2019a; Li et al., 2020; Zhao et al., 2014), Yellow River (Han 

et al., 2020; Qin et al., 2020; Wang et al., 2019), Dongting Lake (Jiang et al., 2018; Wang et al., 2018; 

Yin et al., 2020), and Poyang Lake (Liu et al., 2019c; Yuan et al., 2019). Given the substantial and 

growing industrial system and the market demand for plastic materials in China, the establishment and 

improvement of relevant management of plastic production and disposal in China may have beneficial 

impacts on mitigating the global fluvial microplastic discharges (Xu et al., 2020).  It is estimated that 

more than two million tonnes of plastic microfibres are released into global oceans annually (Sunanda 

et al., 2019).  A number of studies on microplastic pollution in Chinese freshwaters document the 
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dominance of microfibres in samples (Ding et al., 2019; Lin et al., 2018; Su et al., 2016; Wang et al., 

2017; Zhang et al., 2020b; Zhao et al., 2015; Zhao et al., 2014). Understanding the sources and 

characteristics of this form of microplastic pollution, will inform the efforts of stakeholders and 

authorities to reduce emissions of microfibres from Chinese freshwaters into the global marine 

environment.  

Definitions of ‘microfibre’ in the literature are ambiguous. For example, microfibre can refer to natural 

fibres (e.g. cotton, wool, linen and silk), synthetic fibres (e.g. nylon, polyester and acrylic) and 

anthropogenic cellulosic fibres (e.g. viscose and rayon) at the same time (Jerg and Baumann, 1990;  Liu 

et al., 2019a). Microfibre can also be classified into staple fibres (veranne) and filament (sillionne) 

according to their “Length-Diameter Ratio” (LDR) (Salvador Cesa et al., 2017). An explicit definition 

of ‘microfibre pollution’ is required to avoid confusion associated with different particles. In the textile 

industry, microfibres are usually defined as fibres finer than 1 denier and less than 10 µm in width (Jerg 

and Baumann, 1990). Liu et al. (2019a) combined the fineness and LDR standards of fibres, as well as 

the size standard of microplastics, to define microfibre as ‘any natural or artificial fibrous materials of 

threadlike structure with a diameter less than 50 µm, length ranging from 1 µm to 5mm, and LDR 

greater than 100’. This definition aids particle characterisation but eliminates the finer fibres that pose 

the greatest risks to respiratory systems that are increasingly used in the textile industry, such as sports 

apparel (Wright and Kelly, 2017). Here, we do not assign a minimum fibre width to account for these 

common fibres of potentially great ecological detriment. The definition used herein is explicitly 

targeting material, and is also inclusive of particle size; ‘Plastic microfibres’ are defined here as fibrous 

particles made from synthetic petrochemical-derived polymers of between 1 µm to 5 mm in length. 

Natural textile fibres have recently been found to dominate fibre populations in a multiple environments 

(Guen et al., 2019; Stanton et al., 2019; Suaria et al., 2020). Natural textile fibres and some regenerated 

textile fibres (e.g. viscose, rayon) that are synthesised from natural cellulosic material (Liu et al., 2019a), 

have similar potential environmental impacts to plastic fibres, including the release of chemical 
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additives during degradation (Stanton et al., 2019). Here, this article will only focus on plastic 

microfibres, due to the limitations of current research progresses on natural fibre pollution.  

It is well acknowledged that microplastic pollution encompasses a wide range of substances, and it is 

challenging to manage a large panoply of microplastics together (Rochman et al., 2019). 

Reclassification of microplastics by material types and morphologies can contribute towards more 

targeted regulations, such as establishing relevant legislative policy guidelines of plastic microbeads 

(Xu et al., 2020). Plastic microfibres may be disproportionately problematic because they are likely to 

be the most common microplastic morphology in the Chinese freshwaters, and have the potential to 

cause significant ecological harm through entwining and/or clogging organisms breathing and feeding 

apparatus (Ma et al., 2020; Yuan et al., 2019). The number of publications on plastic microfibres has 

rapidly increased over the last 5 years, and have focused on different environmental matrices and 

methodologies. The rapid increase in work means that it is timely to review and reflect on the key trends 

established, to identify limitations in this work and, to suggest areas where understanding remains 

limited, particularly in China. In the past few years, Sunanda et al. (2019) reviewed the microfibre 

pollution in global marine environments and stated that rivers delivered the most microfibre pollution 

from domestic drainage system to oceans; while Singh et al. (2020) reviewed global microfibre 

pollution conditions and reported that China has the largest microfibre discharge capacity, globally 

(approximately 9.17 Mt/year). This paper focuses more specifically on microfibre pollution with an 

emphasis on freshwater environments in China; the specific research objectives are as follow: 

a. Review plastic microfibre abundances in Chinese freshwater environments including 

surface waters, sediments, and effluents of wastewater treatment plants; 

b. Use the reviewed information to investigate the potential sources of plastic microfibres in 

Chinese freshwater environments, and; 

c. To suggest potential management interventions to reduce plastic microfibre pollution.  
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2. Plastic microfibre abundance in the Chinese freshwater systems 

Zhou et al. (2020) investigated plastic microfibre pollution in industrial sewage and effluents of 

wastewater treatment plants (WWTPs) in an industrial textile district of Zhejiang (China). Their results 

showed the highest recorded concentration of 54,100 microfibres per litre. Although local WWTPs 

have been recorded to remove 84.7% - 99.5% of plastic microfibres from sewage (Zhou et al., 2020), 

the high concentrations recorded mean many would still pass through these facilities. For example, 

573.5 microfibres per litre were still be detected in the effluent of WWTPs in the study of Zhou et al. 

(2020). There are few studies that solely investigate microfibre pollution in Chinese freshwater 

environments, but many have quantified microfibre concentrations within broader investigations of 

microplastic pollution.  

 

2.1. Data collection and screening methods  

For the purpose of more comprehensively understanding the abundance of plastic microfibres in 

China’s freshwater environment, this study searched the publications available on “Web of Science” 

(WOS) and “China National Knowledge Internet” (CNKI) from 2014 to 19th November 2020, focused 

on freshwater microplastic pollution (search string for WOS: ‘microplastic* AND (water OR freshwater 

OR wastewater OR sediment* OR sewage OR river* OR lake* OR reservoir*) AND CU = China’; and 

similar search string in Chinese for CNKI). All publications involving the investigation of microplastic 

abundances in three freshwater environmental matrices (surface water, sediment and effluents of 

wastewater treatment plant (WWTP)) were selected for further review. These publications usually 

qualified microplastics into one of four categories according to their physical properties, namely 

fibre/line, fragment/sheet, film and sphere/pellet (there are also articles separating foamed microplastics 

as a category). After excluding the articles that did not provide the proportion of fibrous microplastics, 

a total of 93 papers were included in this study. 
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For each paper, all samples in every individual investigated waterbody (e.g. different rivers, lakes, 

ponds, or different wastewater treatment plants) were classified into a single sample set. If a study 

conducted a multi-scale investigation on one waterbody (e.g. during multiple seasons, or before and 

after a typhoon event, etc), the samples from that waterbody were grouped again according to the 

research variables (e.g. dry season and wet season). Although some articles have investigated 

microplastic pollution in different waterbodies or at multiple scales, some of them only provide an 

average or an overall proportion of microplastic shapes, without a complete dataset for each sample 

that they took. In such cases, all samples corresponding to one microplastic shape proportion were 

classified as a sample set, even if these samples were collected from different waterbodies or seasons. 

When fibrous microplastics accounted for the largest proportion in one microplastic sample set 

compared to other microplastic shapes, we recorded that plastic microfibres were dominant in that 

sample set. Some publications only provided figures without the underlying data. In these cases, Image 

J was used to estimate the proportion of microplastic shapes from the figures. This approach may lead 

to small errors but, the impact on the overall result is expected to be negligible. 
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Figure 1. Bar-polar diagrams of the proportion 

of fibrous microplastics in each set of samples 

collected from Chinese freshwater 

environments (made in OriginLab 2018). (A) 

Surface water samples, (B) sediment samples, 

(C) WWTP effluent samples. Red bars and 

blue bars represent the minimal and maximal 

proportions of fibrous microplastics, 

respectively. Yellow bar are the overall or 

mean proportion in samples. The radius of the 

polar circle represents 100%. The light red 

outer ring indicates the fibre-dominated 

samples while the light green outer ring 

indicates other-shape dominated samples. Each 

number on the rings corresponds to a set of 

data. The sources of these data are shown in 

Table S1, S2 & S3. 
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2.2. Results and limitations 

As a result of the above decision, 108, 102 and 48 sets of microplastic shape distribution data were 

extracted for surface water, sediment, and wastewater effluent samples, respectively. These are 

presented in Fig. 1, which shows the proportion of fibrous microplastics in each sample. Some papers 

provided a range of fibrous microplastic proportions while other papers provided an average or a total 

value of their samples. We distinguished these situations with coloured bars in Fig. 1. In 82.4% (n=108), 

46.1% (n=102) and 60.4% (n=48) of the samples of surface water, sediments and sewage treatment 

plant effluent, respectively, fibrous microplastics accounted for the largest proportion.  

The major limitation of the methods is the reliability of original data. As there are currently no unified 

microplastic investigation methods, the microplastic concentrations reported by different publications 

might be influenced by various sampling strategies, quality assurance/quality control methods, sample 

preparation treatments, and identification approaches that the scientists selected (Cowger et al., 2020). 

For example, Zhang et al. (2020a) used plankton nets with different pore-size and pump samplers to 

sample microplastics from the urban surface water of Qin River (in Beibu Gulf), and found that different 

sampling equipment had significant impacts on the recorded concentrations. Thus, it is a challenge for 

us to define the validity, comparability, and representativeness of those collected data and eliminate 

potential errors and bias. Whilst these limitations will affect the absolute concentrations recorded in 

studies, the fundamental finding that fibres dominated water samples, is unlikely to be altered. Future 

research on investigating microplastics should apply the ‘Reporting guidelines for microplastic 

research’ (Cowger et al., 2020) to ensure the comparability and reproducibility. The visual 

identification approaches that have been certified by related industries (e.g.  the Chinese textile industry 

standard microscopy identification methods FZ/T 01057,3-2007) or established for microplastic 

research communities (Lusher et al., 2020; Stanton et al., 2019) recommended to distinguish natural, 

cellulose regenerated, synthetic and other fibrous materials in future microfibre research.  
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3. Potential sources of plastic microfibres in China 

Some articles have summarised the potential sources of plastic microfibres in China, such as the textile 

industry, plastic products, laundering and plastic bags (Singh et al., 2020). Our study finds that several 

potential sources are repeatedly mentioned by the literature including fishery, laundry effluents, textile 

industry sewage, wastewater treatment plants and other sources (e.g. atmospheric deposition) in China 

(e.g. Li et al., 2019b; Su et al., 2016; Wang et al., 2017; Zhou et al., 2020). In view of the limitations 

of current traceability studies, it is challenging to define the contribution ratio of different microfibre 

pollution sources. Thus, the order of following sections does not indicate the level of pollution severity 

associated with these sources. 

 

3.1. Fishery 

Frequent use of aging fishing gear (such as nets, lines and ropes) in fishery activities is one of the most 

discussed sources of microfibre pollution in Chinese freshwater environments (Ma et al., 2020; Yuan 

et al., 2019; Zhao et al., 2014). For example, the paint that protects the hull of fishing vessels can release 

microfibres (Mishra et al., 2020). Ma et al. (2020) reported microplastic concentrations that were 

positively correlated to the prosperity of local fishery activates, with microplastic concentrations higher 

in fishpond water than in pond influents (Pearl River Estuary), where 68.1-78.9% of total microplastics 

were fibres. Such conditions might be important because ponds have been the major waterbodies for 

inland aquaculture since 2013 in China (Kang et al., 2017).  

The output value of fisheries in China has continuously increased over recent decades (Ma, 2019). By 

2018, China had a fishing population of 18,786,800 and 863,900 fishing boats, with a total fishery 

output value was 2.59 trillion RMB (approximately 0.4 trillion US dollars) (Xu and Lv, 2018). 

Aquaculture and fishing made up 49.6% of the total fishery output value in 2018 (compared to fishery 

processing and service) (Cao and Sang, 2019). Primary fisheries (i.e. aquaculture and fishing) with 

relatively low added value of products, still occupies the main industrial share of the total fisheries 
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output in China, indicating that China still notably has an extensive traditional fisheries production. 

Traditional fishery production is associated with severe resource inefficiencies and other ecological 

problems (i.e. one ton of water used for aquaculture yields 0.07 US dollars) (Fig. 2) (Ma, 2019). 

Aquaculture usually requires the long-term use of fishing gear and equipment, which is likely causing 

further microfibre pollution via gear degradation and gear-aging issues. By 2018, China’s freshwater 

aquaculture area reached 51,464.6 km2 while the equivalent marine aquaculture area reached only 

20,430.7 km2. This demonstrates the high plastic emission potential of freshwater fisheries in China.  

Microfibre pollution from fishing activities can directly enter waterbodies and has been recorded in 

multiple fish species (Chagnon et al., 2018; Tien et al., 2020; Yuan et al., 2019). Microfibres can be 

similar in size, shape and colour to fish prey, leading to mistaken ingestion by fishes (Ma et al., 2020; 

Mishra et al., 2020; Tien et al., 2020; Yuan et al., 2019). Yuan et al. (2019) found that fibrous 

microplastics were the most common microplastic morphology found in adult female Carassius 

auratus (main fish consumed by local people) in the Poyang Lake. Small aquatic invertebrate organisms 

can also ingest microfibres, which pass up through the food chain to predatory fish. Hu et al. (2018) 

documented the dominated microfibre abundances in tadpoles from the Yangtze River Delta. Through 

consumption of farmed fish, microfibres could enter human bodies. From 1952 to 2017, the per capita 

consumption of aquatic products in China rose from 2.67 kg to 11.5 kg (3.3 times) (Cao and Sang, 

2019), which indicates the potential risks of Chinese people ingesting microplastics and microfibres 

are also rising. Whilst the current understanding of the impact of microplastics (including microfibres) 

on human health is in the research stage, it is still essential to locate the fishery sources of microplastics 

and microfibres and to apply management measures to reduce potential environmental and health risks.  
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Figure 2 (A) Picture of Chinese traditional fishery activities; (B) picture of people washing clothes in the river in China (see 

source addresses in picture) 

 

 

3.2. Laundry effluent 

Domestic laundry effluent is also a source of microfibres, which is frequently mentioned in previous 

research (Li et al., 2019a; Mishra et al., 2020; Salvador Cesa et al., 2017; Wang et al., 2017). Chemical 

(e.g. detergent) and physical (e.g. washing machine) washing cycles during laundry can cause surface 

wear and tear of clothing, releasing microfibres that can pass through WWTP (Cotton et al., 2020; De 

Falco et al., 2018). Napper and Thompson (2016) observed that a 6 kg wash load of acrylic fabric could 

release about 700,000 microfibres on average during each laundry cycle and De Falco et al. (2018) 

found that 5 kg of polyester fabric could release over 6 million microfibres during each laundry cycle. 

In 2019, the Chinese annual gross production of acrylic and polyester fibres reached 0.58 and 47.51 

million tonnes, respectively (Sun, 2020). 
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Not all laundry sewage is treated by WWTPs in China before entering waterbodies; some will directly 

enter the freshwater environment without treatment. Shen et al. (2020) reported that a residential area 

in Shanghai had only established a rainwater drainage system and was not equipped with a domestic 

sewage discharge pipe. As a result, rainwater and domestic sewage shared one drainage system, so that 

laundry wastewater entered waterbodies through the rainwater pipe directly, without essential treatment. 

Thus, in urban areas, microfibers can directly enter urban catchments through drainage systems that 

merge rainwater and sewage drains, particular during high flow rainfall events when a large volume of 

water containing microfibres can be released to river systems, bypassing treatment. In addition, in sub-

urban and rural areas of China, the number of sewage treatment systems is limited, as well as some 

villagers retain their habit of washing textiles directly in ponds, streams or rivers (Fig. 2). The numbers 

of plastic microfibres derived from this hand washing is difficult to quantify, complicating efforts to 

estimate global plastic microfibre budgets. 

 

3.3. Textile industry sewage 

The textile industry is a major producer of synthetic fabric, representing a complex set of processing 

steps, from the grey cloth into garments or other textile products, including sizing, de-sizing, scouring, 

bleaching, mercerizing, dyeing, printing, and finishing with multiple discharges of liquid (Hou et al., 

2019; Zhang, 2020). Industrial sewage discharged during the above mentioned processes is an 

important source of microfibre pollution due to limited sewage treatment, particularly in developing 

regions (Zhang, 2020). Zhou et al. (2020) found the microfibre concentration (537.5 microfibres per 

liter in average) in the sewage in a Chinese textile industry park (Shaoxing, Zhejiang) was 10-10,000 

times higher than in most municipal sewage in China.  

Meanwhile, industrial wastewater from dyeing and printing textiles had notably higher microfibre 

concentrations than other textile workshops (Zhou et al., 2020). Standard textile dyeing and printing 

workshops often own private treatment processes for discharged effluent. Hou et al. (2019) found that 
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even if a Chinese WWTP for dyeing and printing textile workshops could reach 90 - 94% removal rate 

of microfibres, there would still be 2.7×107 to 7.5×107 of microfibres discharged into waterbodies from 

that single mill per day.  

In 2019, there were about 34,734 textile industry enterprises (above Chinese designated size) registered 

on the National Government trade record, which implies a huge discharge of industrial plastic 

microfibres. Due to the heavy use of chemicals (e.g. acids, alkali and enzyme), some studies regard the 

textile industry wastewater as a more important source of plastic microfibre than domestic laundry 

wastewater in China (Napper and Thompson, 2016; Zhou et al., 2020). 

 

3.4. Wastewater Treatment Plants (WWTPs) 

WWTPs in the regions with advanced environmental technologies and developed economic structures, 

usually can efficiently remove microplastics (including microfibres) from wastewater using a range of 

treatment techniques, including air flotation, filtration and flocculation processes. For example, 

removal rates of microplastics over 95% have been documented in WWTPs in Canada (98.3%), Finland 

(99%) and USA (99.9%) (Li et al., 2019b; Mason et al., 2016; Talvitie et al., 2015). However, currently 

in China, WWTPs usually do not have such a high removal rate. In the reviewed literature on 

microplastic pollution in Chinese WWTPs, 29 sets of data provide microplastic removal rates of those 

WWTPs, of which 14 sets (48.28%) fail to reach 80% removal rates and 20 sets (69.00%) fail to achieve 

90% remove rate (Tab. S3). The removal rates of microplastics in three riverside WWTPs along 

Guangzhou urban area of the Pearl River reached only 40.5%, 40% and 57.1% (Lin et al., 2018). Two 

tertiary-treatment WWTPs in Wuhan, which represent advanced treatment following two preceding 

treatments for high-quality water effluent, had microfibre removal rates as low as 66.1% and 62.7% 

(Tang et al., 2020) and 43.75% was reported for a tertiary WWTP in Nanjing (Chen et al., 2020). In 

2017, 2209 WWTPs treated a total of 45.29 billion m3 of sewage in Chinese urban areas (Liu and Xu, 

2019). Those WWTPs undertake both domestic sewage and industrial wastewater and have great 
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potential to discharge into the environment.  

Plastic microfibres removed from WWTPs can still end up in the environment because the particulate 

matter removed during treatment is sometimes applied to agricultural land as sludge. The annual output 

of water-containing sludge (approximately 80% water content) from Chinese WWTPs is up to 40 

million tonnes, and the amount of microplastics entering the soil environment from sludge is estimated 

to reach between 15 trillion to 51 trillion, annually (Li et al., 2019b). Tang et al. (2020) found that 

microfibres accounted for 60% to 75% of microplastic in samples of sludge from two WWTPs in 

Wuhan. The substantial quantities of microfibres in sludge can still find a way to re-enter the freshwater 

environment via overland flow after rainfall, especially if agricultural practices are not promoting soil 

conservation measures. Therefore, microfibres retained by WWTPs also need to be carefully managed 

to avoid secondary diffusion.   

 

3.5. Other sources 

Wear and tear of fabrics, tyre dust and mismanaged disposal of textiles have also been mentioned as 

potential sources of plastic microfibres in the environment (Henry et al., 2019; Zhou et al., 2020). About 

60% of the fabric produced globally is made from synthetic fibres and China produces 70% of the 

world’s synthetic fibres (Mishra et al., 2020). In addition, atmospheric deposition and precipitation are 

also important potential sources of microfibres in China, which can deposit microfibres directly into 

freshwater environments, or via rainwater generated runoff. Zhou et al. (2017) reported that the 

deposition flux of microplastics in the Chinese coastal urban area (at coastal city - Yantai, Shandong 

Province in E coast) was 1.46 × 105 particles per m2 each year and that 95% of particles were fibrous 

microplastics. Cai et al. (2017) found that 90% of microplastics in atmospheric samples collected in 

Dongguan, South China were fibrous. Liu et al. (2019b) found fibres were the dominant shape (67%) 

in atmospheric microplastic samples in Shanghai. Microplastic concentrations in atmospheric 

deposition are likely to be highly variable through time and space, as documented by Stanton et al. 
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(2019) and research is required monitoring atmospheric deposition at higher resolution and longer 

timescales to truly assess its significance as a source.    

 

4. Management of microfibres in China 

Synthetic fibres are important materials for society and economic development and, unlike cosmetic 

microbeads, are not easy to remove from production. The implementation of strategies to reduce plastic 

microfibre pollution are challenging, and will involve waste disposal, wastewater treatment, public 

consumption and manufacturing processes.  

The “Circular Economy Promotion Law of the People’s Republic of China” (CEPL) legislated on 1st 

January 2009 was revised on 26th October 2018, defines the meaning of ‘circular economy’ in the 

context of Chinese legislation as “a generic term for the reducing, reusing and recycling activities 

conducted in the process of production, circulation and consumption” (Standing Committee of the 

National People’s Congress, 2009). The concept of circular economy provides a regulatory framework 

for addressing Chinese microfibre pollution problems in the ways of reduction, re-use and resource 

recovery, discussed individually below.  

 

4.1. Reducing 

4.1.1. Improvement of Chinese fishery 

CEPL defines reducing as ‘reducing the consumption of resources and the production of wastes in the 

process of production, circulation and consumption’. Reducing fishery waste production is a feasible 

way to decrease the emission of plastic microfibres and progress has been made in this area since the 

publication of the Guiding Opinions on Speeding up the Development of Agricultural Circular 

Economy, which proposes the establishment of a basic circular agricultural industrial system (National 

Development and Reform Commission, PRC et al., 2016).  
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China is the largest exporter of fish in the world and is in a critical period of transformation from 

traditional to modern and circular fisheries, with more efficient use of mechanized tools and equipment 

(Cao and Sang, 2019). The Chinese fishing population has been declining in recent years, dropping 7.7% 

from 20,350,400 in 2014 to 18,786,800 in 2018 and the freshwater aquacultural area has also dropped 

15.4% from 60,808.88 km2 in 2015 to 51,464.6 km2 in 2018 (Xu and Lv, 2018). China’s aquaculture is 

moving towards mechanised, digitised and automated equipment, which will improve efficiencies and 

reduce the quantities of wastewater discharge (Huang et al., 2019). Mechanisation can also reduce 

pollution caused by aging equipment. With technological upgrades and improvements, microfibre 

pollution discharged by Chinese fisheries is likely to decline. The magnitude of that reduction is not 

known and microfibre reduction is currently not the primary focus in this regulation.  

4.1.2. Domestic and industrial textile effluent 

Chemical and mechanical friction, water temperature and hardness, fabric features and laundry 

equipment are the major factors influencing the amount of plastic microfibres released from fabrics via 

the domestic (e.g. laundry) and industrial cleaning processes (Cotton et al., 2020; Liu et al., 2019a). De 

Falco et al. (2018) found that washing fabrics made of plain weave polyester materials released 162±52 

microfibres per gram of fabric without detergent but, released 1273±177 microfibres with liquid 

detergent and 3538±664 microfibres with powder detergent. Using liquid detergent could help reduce 

microfibre release compared by powder detergents during the laundry process. That said, using less 

detergent could help further reduce microfibre pollution. Improving the efficiency of detergent in 

washing processes should be a future research direction in China (Dong et al., 2020).  

Decreasing the mechanical friction during washing is another way of minimising plastic microfibre 

discharge. De Falco et al. (2018) reported using softener could reduce over 35% of microfibre discharge 

during laundry processes due to lesser mechanical friction. Yang et al. (2019) reported that using platen 

laundry machines could also reduce microfibre discharge compared with pulsator laundry machines. 

The discharge of microfibres also increases with rising water temperature and hardness during laundry 
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(Cotton et al., 2020; De Falco et al., 2018; Yang et al., 2019). Cotton et al. (2020) noticed a significant 

increase in microfibres discharged during washes with high water temperature (>40oC) and long 

washing times (over 85 minutes). This indicates cooler and quicker washing in appropriate laundry 

equipment, combined with fabric softener, can effectively reduce the microfibre discharge. 

Governmental institutions and departments should collaborate with the washing machine and detergent 

production industry to establish an incentive mechanism and policies promoting appropriate washing 

regimes and encouraging investment in relevant technologies to reduce microfibres pollution.  

Direct capture of released microfibres during washing is another approach to reducing microfibre 

loadings. Yang et al. (2019) report that filter bags assembled inside washing machines can effectively 

block fibres from entering laundry wastewater. These are already found in some separate washing 

machine accessories, such as the Cora Ball that can trap microfibres (31%) in the drum of the laundry 

machine during washing and the Guppy Friend washing bag that protect fabrics from mechanical 

friction and intercepts microfibre discharge (54%) during laundry processes (Fig. 3) (Herweyers et al., 

2020; Napper et al., 2020).  

External filters are also an effective option to stop laundry fibres entering sewage, such as XFiltra (Fig. 

3), which can reduce microfibre discharge by 78% (Napper et al., 2020). Recently, laundry balls and 

washing bags (Fig. 3) have become popular but in China these products are not aimed at reducing 

microfibre discharge. External laundry filters are still rare in the Chinese market. Whilst these products 

are capable of intercepting fibres that might otherwise have polluted aquatic and terrestrial 

environments, it is important to note that they may still enter the environment after disposal as they are 

likely to end up in landfill (Napper et al., 2020).  
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Figure 3  (A) Cora Ball (coraball.com); (B) Guppy Friend Washing Bag (us.guppyfriend.com); (C) XFiltra external laundry 

sewage filter(www.xerostech.com); (D) and (E) the in-drum laundry filter net and washing bag sold in China without special 

microfibre-block function (see source addresses in picture) 

 

4.1.3. Sewage treatment system  

Mason et al. (2016) found that the quantity of microplastics in the influent of WWTPs was in direct 

proportion to the number of people that it serves. This finding may have implications for the enormous 

pollution pressure facing Chinese WWTPs. Li et al. (2019b) concluded that fibres flocculate relatively 

easily and settle-out during wastewater treatment. The primary treatment process (i.e. screening - initial 

sedimentation tank screened by pollutant density) can effectively remove microfibres, whereas the 

removal ability of the secondary treatment process (i.e. biological treatment via microbial activities and 

sedimentation) is currently limited for microfibres (Li et al., 2019b). The ability of the tertiary treatment 

to remove microplastics (include plastic microfibres) is controversial as some tertiary techniques might 

result in conflicting removal efficiencies; for example, low microplastic removal rates via percolation 

filters while membrane bioreactors have high microplastic removal capacity (Mason et al., 2016; 
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Talvitie et al., 2015).  As such, fibres were the only shape of microplastic particles detected from the 

water outlet of tertiary WWTPs in Beibu Gulf, Guangxi Province (Zhang et al., 2020a) and in Nanjing 

(Chen et al., 2020). 

In order to effectively remove microfibres from wastewater, more studies are required on Chinese 

WWTPs and the physicochemical property of local sewage, and lessons to be learned from high-

efficiency treatment technologies that are documented to effectively remove microfibres and 

microplastics elsewhere. The Municipal Governments should provide the latest information on 

wastewater purification standards for local WWTPs, including the technical memorandum (e.g. 

treatment guidelines) to tackle microplastics and microfibres, which will significantly reduce these 

pollutants discharge. 

 

4.2. Reusing and recycling 

Reusing was defined as ‘the direct use of waste as using wastes as products directly, using wastes after 

repair, renewal or reproduction or using part or all wastes as components of other products’ in CEPL, 

and recycling defined as ‘using wastes as raw materials directly or after regeneration’ (Standing 

Committee of the National People’s Congress, 2009). Production of synthetic fibres does not only 

increase microplastic pollution, but also consumes a huge amount of petroleum resources and 

discharges CO2 and other greenhouse gasses (Li and Yang, 2001; Liu et al., 2019a). There are benefits 

to the reuse and recycling of synthetic fibres rather than purely restricting pollution emissions.  

4.2.1. Garbage Classification 

The prerequisite of reuse is to collect discarded fabric. According to the China Textile Industry 

Federation, the country is estimated to generate over 20 million tonnes of waste fabrics annually, with 

a recycling utilization rate less than 0.1% (Guo, 2013). In developed countries (UK, Japan, USA and 

Germany), the recycling utilization rate of fabric wastes was higher than 15% (Guo, 2013). Huge 
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quantities of waste textiles are being buried or burned in China, such as in Shanghai where clothing 

alone generated more than 130 thousand tonnes of waste, annually (Wang, 2019).  

China established a national “Municipal Solid Waste” (MSW) classification system in 2019 (Wang, 

2019). 46 major cities (including Beijing, Tianjin, Guangzhou, Chongqing, Shanghai etc.) are playing 

important roles in establishing the local domestic waste management regulations (Zhu et al., 2020). The 

regulations are affiliated with textile products (e.g. old clothes, bed sheets, pillows, quilts, leather shoes, 

plush toys, cotton-padded jackets, bags and silk products, etc.), with targets to encourage the recycling 

of these products by public and industrial sectors. The regulation imposes penalties on those who violate 

relevant regulations on garbage classification. For example, Ningbo links the behaviours that do not 

conduct garbage classification to personal credit files (Standing Committee of Ningbo Municipal 

People’s Congress, 2019). Shenzhen encourages setting separate waste-fabric collection containers in 

residential areas and promotes the recycling of collected fabrics (Standing Committee of Shenzhen 

Municipal People’s Congress, 2019).  

4.2.2. Fabric Recycling 

In reuse and recycling processes, fabrics are often stacked in domestic Chinese residences, which can 

be a challenge (Guo, 2017). In order to mobilise this fabric waste, China established a fabric recycling 

system. Major Chinese cities (e.g. Shanghai, Tianjin, Guangzhou, Shenzhen, and Qingdao) have 

established some notable progress in recycling systems for used clothing and materials from domestic 

(household) sources (Chen, 2017; Guo, 2017; Wang, 2019). Figure 4 summarises an overall process. 
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Figure 4 Old clothes recycling system in China (source: authors) 

 

In China, commonwealth organizations, social and non-profit organizations, major clothing brands (e.g. 

ZARA, H&M and Uniqlo) and related enterprises cooperate with the municipal government. These are 

the major stakeholders that are responsible for recycling used clothing and materials (Chen, 2017; 

Wang, 2019). Used clothing products are usually collected from domestic recycling boxes (in 

community or clothing shops) or via used-clothes donation campaigns. For example, there are 40 

recycling boxes that are located in 23 residential districts in Guangzhou and have collected 

approximately 58.33 tons of waste textiles between August and October in 2016 (Guo, 2017). More 

intelligent recycling systems are now developed using big data approaches in China (Fig. 5). For 

example, users can make an arrangement with a recycling company online via the internet or a mobile 

app to pick up their unwanted clothing and materials, termed an “Online-to-Offline” (O2O) approach 
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(Chen, 2017; Wang, 2019).  Smart waste sorting systems (i.e. sorting devices) have now been placed 

in local communities, in order to improve the efficiency of recycling old fabrics (see Fig. 5). In 2015, 

the used clothing materials collected by smart household sorting machines have reached 7% of total 

collected recyclables in Tianjin (Chen, 2017).  

 

Figure 5 A second-hand clothes donation box (green box in the left) and a smart waste sorting device in Chinese 

community (at University of Nottingham, Ningbo China; blue device in the right). The waste sorting device can 

encourage residents to dispose of recyclables scientifically by paying rebates electronically or by accumulating 

credits. (Source: author) 

 

According to the Catalogue of Products for Comprehensive Utilization of Resources and Preferential 

Labour Value-added Tax, manufacturers of products that consist of 90% recycled fibres can have a 50% 

tax rebate in China (Wang, 2019). Such economic incentives encourage clothing brands, textile industry 

and third-party enterprises to invest in recycling of old fabrics.  

Collected old clothing materials will be disinfected and sorted into two major categories, namely 

wearable and unwearable clothes. The wearable clothing is normally reused, refurbished and sold as 

second-hand clothing, or exported to developing regions (e.g. Africa). Charities also donate used 
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clothes to poor areas (such as the northwest of China). A second-hand clothes-recycling project (namely 

‘Yiyibushe’) collected nearly 20 thousand tons of used clothes from more than 40 cities in China from 

July 2015 to the end of 2016, and donated more than 100 tons of wearable winter clothing to vulnerable 

communities (e.g. Tibet, Qinghai, Gansu, Yunnan and Guizhou) (Chen, 2017).  

Unwearable clothing can be synthesised and reused as fabric products (e.g. mops and dusters). In 

addition, waste fabric materials can be physically disassembled into waste fibres and reused as filling 

materials for furniture, sound insulation materials and construction materials. For example, recycled 

fibres were used as vibration-adsorptive materials in roadbeds (Zhu et al., 2020). Unwearable waste 

fabrics can recover and transform into staple fibres by chemical and physical processes, and then woven 

into low-grade fabric products (Zhang and Zhao, 2012). Due to synthetic fibres usually have relatively 

high calorific value (i.e. polyethylene fibre can reach 46 MJ/kg), recycled fibres can also be burned in 

power stations or hot water plants with professional tail gas treatments (Li and Yang, 2001).  

 

5. Conclusion 

This manuscript reviewed plastic pollution in Chinese freshwater environments and found that 

microfibres dominate other plastics in more than 65% of samples. Microfibres contribute to the 

environmental impacts associated with microplastic pollution and are potentially disproportionately 

detrimental in environments because they can be easily ingested by aquatic organisms due to their 

flexible deformation and can tangle in breathing and feeding apparatus.  

Domestic and industrial laundry wastewater, fisheries activity, residual microfibres in the effluent of 

WWTPs, atmospheric deposition and mismanaged waste fabrics are considered to be the major sources 

of microfibres in Chinese freshwater environments. Given the wide distribution of these microfibre 

sources in China, there is great potential to reduce microfibre discharges in China. Technological 

developments and behavioural changes encouraged through legislation can reduce the discharge of 
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microfibres and promote the reusing and recycling of fabrics, reducing the potential for inappropriate 

disposal.  

Our findings illustrate that China should establish legislative restrictions on wastewater discharges and 

upgrade the standards for WWTPs, including the separation of rainwater and wastewater drainage. 

Improving washing machines’ wastewater purification performance, both through technological 

advances and behavioural change would also help to reduce microfibre discharge.  

Lastly, we conclude that more research on investigating the trends of microfibre pollution and 

controlling microfibre pollution in China is urgently needed, given the high concentrations being 

recorded in the environment and the potential for significant reductions in pollution with behavioural 

change and technological improvements. Current developments, such as advancements in the fisheries 

industry, could dramatically lower microfibre concentrations but these do not have microfibre reduction 

as a core aim. Refocusing or adapting current strategies could better reduce and mitigate the impacts of 

microplastics in freshwaters, and their eventual discharge to the marine ecosystem that more 

importantly are urgently required further establishment of legislation and policy control to achieve 

reduction of microplastic (microfibre) pollution, in prior achieving relevant Sustainable Development 

Goals (SDGs) (i.e., 6, 14, etc.).  
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Appendix: microplastic concentration data from collected publications 1 

Table S1 Supplemental materials for Figure 1 (A). A part of microplastic concentration and microfibre proportion data was estimated from the figures of literatures by Image J. For 2 
accurate raw data, please see original papers. 3 

Index number in 

Figure 1 (A) 

Citation Location Microplastic concentration 

(n/m3) 

Microfibre 

proportion 

Dominant 

shape 

1 (Zhao et al., 2014) Yangtze Estuary System 500-10700 79.1% Fibre 

2 (Zhao et al., 2015) Jiaojiang Estuary Mean: 955.6 78% Fibre 

3 (Zhao et al., 2015) Oujiang Estuary Mean: 680 65% Fibre 

4 (Zhao et al., 2015) Minjiang Estuary (Before typhoon) Mean:1170 81% Fibre 

5 (Zhao et al., 2015) Minjiang Estuary (After typhoon) Mean: 1245.8 86% Fibre 

6 (Su et al., 2016) Taihu Lake 3400-25800 70% Fibre 

7 (Wang et al., 2017) Bei Lake, Wuhan City Mean: 8925 86% Fibre 

8 (Wang et al., 2017) Huanzi Lake, Wuhan City Mean: 8550 96% Fibre 

9 (Wang et al., 2017) Tazi Lake, Wuhan City Mean: 6175 93% Fibre 

10 (Wang et al., 2017) Sha Lake, Wuhan City Mean: 6390 78% Fibre 

11 (Wang et al., 2017) Nantaizi Lake, Wuhan City Mean: 6162 68% Fibre 

12 (Wang et al., 2017) Nan Lake, Wuhan City Mean: 5745 53% Fibre 

13 (Wang et al., 2017) Dong Lake, Wuhan City Mean: 5914 77% Fibre 

14 (Wang et al., 2017) Wu Lake, Wuhan City Mean: 1660 68% Fibre 

15 (Wang et al., 2017) Yangtze River Wuhan City section Mean: 2516 76% Fibre 

16 (Wang et al., 2017) Hanjiang River, Wuhan City Mean: 2933 79% Fibre 

17 (Wang et al., 2017) Houguan Lake, Wuhan City Mean: 3795 62% Fibre 

18 (Wang et al., 2017) Hou Lake Mean: 2905 80% Fibre 

19 (Wang et al., 2017) Huangjia Lake Mean: 3421 74% Fibre 

20 (Wang et al., 2017) Beitaizi Lake, Wuhan Lake Mean: 3600 87% Fibre 

21 (Wang et al., 2017) Jinyin Lake, Wuhan City Mean: 4410 80% Fibre 

22 (Wang et al., 2017) Longyang Lake, Wuhan City Mean: 4854 87% Fibre 

23 (Wang et al., 2017) Moshui Lake, Wuhan City Mean: 5264 80% Fibre 

24 (Wang et al., 2017) Sanjiao Lake, Wuhan City Mean: 3641 83% Fibre 

25 (Wang et al., 2017) Tangxu Lake, Wuhan City Mean: 3230 71% Fibre 
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26 (Wang et al., 2017) Yandong Lake, Wuhan City Mean: 2324 87% Fibre 

27 (Wang et al., 2017) Yanxi Lake, Wuhan City Mean: 2393 82% Fibre 

28 (Wang et al., 2017) Zhushan Lake, Wuhan City Mean: 2256 86% Fibre 

29 (Lin et al., 2018) Guangzhou City section of the Pearl River 374-7924 80.9% Fibre 

30 (Hu et al., 2018) Small waterbodies from Yangtze River Delta 480-21520 87.8% Fibre 

31 (Li et al., 2019) 18 lakes along Yangtze River 240-1800 93.81% Fibre 

32 (Wang et al., 2018a) Dongting Lake 900-2800 41.9%-91.9% Fibre 

33 (Wang et al., 2018a) Hong Lake 1250-4650 44.2%-83.9% Fibre 

34 (Yin et al., 2019) Xianjia Lake, Changsha City Mean: 3825 50% Fibre 

35 (Yin et al., 2019) Yang Lake, Changsha City Mean: 2425 55% Fibre 

36 (Yin et al., 2019) Yue Lake, Changsha City Mean: 3300 47% Fibre 

37 (Yin et al., 2019) Yuejin Lake, Changsha City Mean: 7050 58% Fibre 

38 (Yin et al., 2019) Donggua Lake, Changsha City Mean: 7050 42% Fibre 

39 (Ding et al., 2019) Wei River 3670-10700 38.25%-61.95% Fibre 

40 (Yin et al., 2019) Poyang Lake 5000-34000 41.2% Fibre 

41 (Wang et al., 2019b) Ulansuhai Lake, Yellow River Basin 1760-10120 68.18%-78.64% Fibre 

42 (Jiang et al., 2019) Baqu River, Tibet Mean: 967 69% Fibre 

43 (Jiang et al., 2019) Naqu River, Tibet Mean: 817 93% Fibre 

44 (Jiang et al., 2019) Lhasa River, Tibet 683-700 62%-71% Fibre 

45 (Jiang et al., 2019) Nyang River, Tibet 483-517 71%-86% Fibre 

46 (Liu et al., 2020a) Haihe River (pumping sampler), Tianjin 2640-18450 17.4%-86.7% Fibre 

47 (Wu et al., 2019) Haihe Estuary 650-2700 24%-82% Fibre 

48 (Wu et al., 2019) Yongdingxinhe Estuary 540-1550 45%-92% Fibre 

49 (Wu et al., 2019) Dagu Estuary Mean: 2400 89% Fibre 

50 (Zhou et al., 2020a) Urban waters along Tuojiang River Basin 911.57-3395.27 35%-65.85% Fibre 

51 (Zhang et al., 2020a) Qin River urban section (75 micron plankton nets) in Beibu Gulf 0.1-5.6 49.6% Fibre 

52 (Zhang et al., 2020a) Qin River urban section (300 micron plankton nets) in Beibu Gulf 0.1-4.6 38.2% Fibre 

53 (Zhang et al., 2020a) Qin River urban section (pumping sampler) in Beibu Gulf 16.67-611.1 88% Fibre 

54 (Han et al., 2020b) the lower Yellow River near estuary 380000-1392000 84.56%-98.93% Fibre 

55 (Ma et al., 2020) Fish ponds of Station 1, Pearl River Estuary 10300-60500 68.1% Fibre 
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56 (Ma et al., 2020) Fish ponds of Station 2, Pearl River Estuary 33000-87500 87.5% Fibre 

57 (Mao et al., 2020b) Wuliangsuhai Lake, northern China 3120-11250 18.3%-67.9% Fibre 

58 (Tien et al., 2020) Fengshan River system 334-1058 81%-99% Fibre 

59 (Zhang et al., 2020b) Yongjiang River, Nanning City 500-7700 73.3%-92.2% Fibre 

60 (Jian et al., 2020) Major tributries of Poyang Lake 289-1064 32%-59% Fibre 

61 (Jian et al., 2020) Reserve sites of Poyang Lake 35-72 25%-45% Fibre 

62 (Wang et al., 2020c) Manas River Basin, Xinjiang 21000-49000 88% Fibre 

63 (Chen et al., 2020a) Jinze Reservoir in summer 24500-34900 73% Fibre 

64 (Chen et al., 2020a) Suzhou Creek in summer 11600-21900 91.70% Fibre 

65 (Chen et al., 2020a) Huangpu River in summer 19800-56800 93.50% Fibre 

66 (Chen et al., 2020a) Jinze Reservoir in winter 23800-35800 67.10% Fibre 

67 (Chen et al., 2020a) Suzhou Creek in winter 6700-15700 95.1% Fibre 

68 (Chen et al., 2020a) Huangpu River in winter 11000-54300 93.8% Fibre 

69 (Di et al., 2019) Danjiangkou Reservoir  467-15017 20.8%-99.2% Fibre 

70 (Jiang et al., 2018) Lake shore surface water, West Dongting Lake 616.67-2216.67 45%-68% Fibre 

71 (Jiang et al., 2018) Lake shore surface water, South Dongting Lake 716.67-2316.67 50%-77.42% Fibre 

72 (Jiang et al., 2018) Lake centre surface water, West Dongting Lake 433.33-1500 66%-93% Fibre 

73 (Jiang et al., 2018) Lake centre surface water, South Dongting Lake 366.67-1566.67 49%-100% Fibre 

74 (Di and Wang, 2018) Mainstream, the Three Gorges Reservoir, China 1597-12611 28.6%-90.5% Fibre 

75 (Zhao et al., 2019) Changjiang Estuary (Spring) Mean:64 91.6% Fibre 

76 (Zhao et al., 2019) Changjiang Estuary (Summer) Mean: 166 82% Fibre 

77 (Zhao et al., 2019) Changjiang Estuary (Winter) Mean: 108 77.8% Fibre 

78 (Ye, 2020) Urban surface water, Nanjing City 3475-21975 26.79%-69.38% Fibre 

79 (Xie et al., 2020) Li River urban section, Guilin 44.4-85.3 70%-78% Fibre 

80 (Feng et al., 2019) Inner channel of Xiaxin Dock, Dongting Lake Mean: 600 78% Fibre 

81 (Feng et al., 2019) Outer channel of Xiaxin Dock, Dongting Lake Mean: 667 80% Fibre 

82 (Zhao et al., 2020b) Surface water, semi-urban area, Shanghai Mean: 6000 96% Fibre 

83 (Zhao et al., 2020b) Surface water, centre urban area, Shanghai Mean: 10000 97.2% Fibre 

84 (Liu et al., 2019b) Lake centre, Poyang Lake Mean: 16.24 37.8% Fibre 

85 (Deng et al., 2020a) ‘China Textile City’, Zhejiang Province  2100-71000 95% Fibre 
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86 (Zhao et al., 2020a) The Qiantang River and its tributaries, Hangzhou 54-3379 23%-74% Fibre 

87 (Xia et al., 2020) Dong Lake, Wuhan City, Hubei Province 7400-29600 95.04% Fibre 

88 (Feng et al., 2020) The Qilian mountains, Northeast part of Tibetan Plateau 66.67-773 25%-100% Fibre 

89 (Yan et al., 2019) Guangzhou urban section of Pearl River 8725-53250 7% Film 

90 (Tan et al., 2019) the Feilaixia Reservior, Beijiang River 0.28-1.1 15.73% Film 

91 (Yin et al., 2019) Meixi Lake, Changsha City Mean: 2563 46% Fragment 

92 (Yin et al., 2019) Nianjia Lake, Changsha City Mean: 5600 23% Fragment 

93 (Yin et al., 2019) Dong Lake, Changsha City Mean: 4113 34% Fragment 

94 (Li et al., 2020c) Chongming Island, Yangtze River Estuary 0-259 33% Fragment 

95 (Wang et al., 2020a) Qing River in Beijing in summer Mean:170 33.75% Fragment 

96 (Wang et al., 2020a) Qing River in Beijing in winter Mean: 260 37.80% Fragment 

97 (Pan et al., 2020b) Zhangjiang River of South eastern China 50-725 18.50% Fragment 

98 (Lam et al., 2020) Inner Lingding Bay of the Pearl River Estuary 0.688-8.221 15-22% Fragment 

99 (Liu et al., 2019b) Lake bank, Poyang Lake Mean: 63.33 16% Fragment 

100 (Pan et al., 2020a)  Danjiangkou Reservoir  457-35466 0%-61% Fragment 

101 (Wu et al., 2020) Inland waterway of Guangdong-Hong Kong-Macao Greater Bay Area  3500-25500 0.9% Fragment 

102 (Yan et al., 2019) Pearl River Estuary 7850-10950 9% Granule 

103 (Zhang et al., 2019a) Seven small-scale estuaries in Shanghai 13530-44930 3.87% Granule 

104 (Liu et al., 2019b) Bird habitat, Poyang Lake Mean: 710.26 24% Pellet 

105 (Mao et al., 2020a) Mainstream of Yulin River 7-17 24-50% Pellet/foam 

106 (Mao et al., 2020a) Tributaries of Yulin River 20-200 25%-50% Pellet/foam 

107 (Mao et al., 2020a) Bays of Yulin River 200-600 16%-46% Pellet/foam 

108 (Fan et al., 2019) Pearl River Basin 140-1960 20% Sheet 

 4 

  5 
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Table S2 Supplemental materials for Figure 1 (B). A part of microplastic concentration and microfibre proportion data was estimated from the figures of literatures by Image J. For 6 
accurate raw data, please see original papers. 7 

Index number in Figure 1 

(B) 
Citation Location 

Microplastic concentration 

(n/kg dw) 

Microfibre 

proportion 

Dominant 

shape 

1 (Su et al., 2016)  the Taihu Lake 11-234.6 48% Fibre 

2 (Peng et al., 2017) Changjiang Estuary 20-340 93% Fibre 

3 (Lin et al., 2018) Guangzhou City Section of the Pearl River 80-9597 12%-93% Fibre 

4 (Peng et al., 2018) Nanhuizui foreland tidal flat, Shanghai Mean: 53 87.2% Fibre 

5 (Jiang et al., 2019) Buqu River, Tibet Mean: 130 54% Fibre 

6 (Jiang et al., 2019) Naqu River, Tibet Mean: 50 60% Fibre 

7 (Jiang et al., 2019) Lhasa River, Tibet 180-195 54%-81% Fibre 

8 (Jiang et al., 2019) Nyang River, Tibet 65-90 50%-70% Fibre 

9 (Hu et al., 2018) Small waterbodies from Yangtze River Delta 35.76-3185.33 44.8% Fibre 

10 (Yuan et al., 2019) Poyang Lake 54-506 44.1% Fibre 

11 (Li et al., 2019) 18 lakes along middle and lower reaches of Yangtze River 90-580 94.77% Fibre 

12 (Ding et al., 2019) Wei River 360-1320 42.25%-53.20% Fibre 

13 (Wu et al., 2019) Haihe Estuary 96.7-333.3 25%-89% Fibre 

14 (Wu et al., 2019) Yongdingxinhe Estuary 56.7-113.3 62%-65% Fibre 

15 (Deng et al., 2020b) Restored mangrove wetland at Jinjiang Estuary 980-2340 68.58% Fibre 

16 (Zuo et al., 2020) Mangrove sediments of the Pearl River Estuary 100-7900 69.7% Fibre 

17 (Li et al., 2020c) Chongming Island, the Yangtze River Estuary 10-60 25%-100% Fibre 

18 (Tien et al., 2020) the Fengshan River System 508-3987 61%-93% Fibre 

19 (Jian et al., 2020) Major tributries of Poyang Lake 821-1936 37%-72% Fibre 

20 (Fraser et al., 2020) Hangzhou Bay Estuary 130-280 55% Fibre 

21 (Chen et al., 2020a) Suzhou Creek (summer) 2200-7400 93.5% Fibre 

22 (Chen et al., 2020a) Suzhou Creek (winter) 2900-9900 93.80% Fibre 

23 (Qin et al., 2020) Lake Ulansuhai of Yellow river Basin, Inner Mongolia 14-24 40.1%-42.5% Fibre 

24 (Li et al., 2020a) Huangjinxia Reservoir, Shannxi Province 233.33-870 60%-91% Fibre 

25 (Di et al., 2019) Danjiangkou Reservoir 15-40 25%-100% Fibre 

26 (Wen et al., 2018) Donggua Lake, Changsha City Mean: 468.03 41% Fibre 

27 (Jiang et al., 2018) Lake shore surface water, West Dongting Lake 320-480 41%-75% Fibre 
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28 (Jiang et al., 2018) Lake shore surface water, South Donting Lake 200-1150 12.17%-71% Fibre 

29 (Di and Wang, 2018) Mainstream, the Three Gorges Reservoir, China 25-300 33.9%-100% Fibre 

30 (Yin et al., 2019) East Dongting Lake 180-693 42%-100% Fibre 

31 (Zhao et al., 2020b) semi-urban area, Shanghai Mean: 1312.8 94% Fibre 

32 (Zhao et al., 2020b) centre urban area, Shanghai Mean: 2013.3 88.35% Fibre 

33 (Qi et al., 2019) Moshui River, Shandong Province 0-170 46.91% Fibre 

34 (Wang et al., 2020d) Nan Lake, Maanshan City, Anhui Province (spring) 93-2371 37%-53% Fibre 

35 (Wang et al., 2020d) Nan Lake, Maanshan City, Anhui Province (summer) 48-505 28%-97% Fibre 

36 (Wang et al., 2020d) Yushan Lake, Maanshan City, Anhui Province (spring) 173-1618 34%-72% Fibre 

37 (Wang et al., 2020d) Yushan Lake, Maanshan City, Anhui Province (summer) 30-786 30%-79% Fibre 

38 (Liu and Fang, 2020)  Dishui Lake, Shanghai (around the lake site) Mean: 46 0%-100% Fibre 

39 (Xu et al., 2019a) North Port, Changjiang Estuary, Shanghai (March) Mean: 195 79% Fibre 

40 (Xu et al., 2019a) North Port, Changjiang Estuary, Shanghai (July) Mean: 152.5 93% Fibre 

41 (Xu et al., 2019a) South Port, Changjiang Estuary, Shanghai (March) Mean: 58 77% Fibre 

42 (Xu et al., 2019a) South Port, Changjiang Estuary, Shanghai (July) Mean: 160 65% Fibre 

43 (Liu et al., 2020a) North tributary, Gan River, Poyang Lake 2-9 46% Fibre 

44 (Liu et al., 2019b) Bird habitat, Poyang Lake Mean: 333.9 53.6% Fibre 

45 (Deng et al., 2020a) ‘China Textile City’, Zhejiang Province 16.7-1323.3 79% Fibre 

46 (Xu et al., 2020) Liaohe Estuary, Liaoning Province 80-220 30.61% Fibre 

47 (Feng et al., 2020) Qilian mountains, Northeast part of Tibetan Plateau 20-160 0%-75% Fibre 

48 (Rao et al., 2020) Yongfeng River, Maanshan City, Anhui 5-72 33.7% Film 

49 (Han et al., 2020a) Daliao River 20-193.33 28.75% Film 

50 (Liu et al., 2019b) Lake Centre, Poyang Lake Mean: 112.1 37.5% Film 

51 (Xu et al., 2020) Daliao River, Liaoning Province 100-467 15.63% Film 

52 (Xu et al., 2020) Shuangtaizi River, Liaoning Province 67-300 28.26% Film 

53 (Liu et al., 2020a) Nanji Mount, Poyang Lake 14-102 18% Foams 

54 (Zhou et al., 2018) Up stream of Le'an River 832-1334 4%-9.5% Fragment 

55 (Zhou et al., 2018) Tributary of Le'an River 2619-3153 4%-7.5% Fragment 

56 (Zhou et al., 2018) Downstream of Le'am River 929-1484 6%-18% Fragment 

57 (Wang et al., 2018b) Wen-Rui Tang River, Wenzhou 18690-74800 4.9%-23% Fragment 
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58 (Liu et al., 2019a) Poyang Lake 11-3153 1%-45% Fragment 

59 (Wu et al., 2019) Dagu Estuary Mean:123.3 30% Fragment 

60 (Jian et al., 2020) Reserve sites of Poyang Lake 41-182 12%-30% Fragment 

61 (Fraser et al., 2020) Qiantang River, Tonglu 70-400 31% Fragment 

62 (Fraser et al., 2020) Qiantang River, Fuyang 180-260 37% Fragment 

63 (Fraser et al., 2020) Andong Salt Marsh Mean:150 31% Fragment 

64 (Wen et al., 2018) Xianjia Lake, Changsha City Mean: 270.17 24% Fragment 

65 (Wen et al., 2018) Yue Lake, Changsha City Mean: 536.34 23% Fragment 

66 (Wen et al., 2018) Nianjia Lake, Changsha City Mean: 557.63 35% Fragment 

67 (Wen et al., 2018) Yuejin Lake, Changsha City Mean: 866.59 27% Fragment 

68 (Wen et al., 2018) Meixi Lake, Changsha City Mean: 779.12 24% Fragment 

69 (Wen et al., 2018) Yang Lake, Changsha City Mean: 375.55 26% Fragment 

70 (Wen et al., 2018) Dong Lake, Changsha City Mean: 635.18 28% Fragment 

71 (Wen et al., 2018) Jinjiang River, Changsha City Mean: 401.78 33% Fragment 

72 (Wen et al., 2018) Longwanggang, Changsha City Mean: 307.55 37% Fragment 

73 (Wen et al., 2018) Laodao River, Changsha City Mean: 580.79 29% Fragment 

74 (Wen et al., 2018) Liuyang River, Changsha City Mean: 364.9 22% Fragment 

75 (Zhang et al., 2020c) Qiantan Park, Pudong new area, Shanghai Mean: 35.46 13% Fragment 

76 (Zhang et al., 2020c) Binjiang Forest Park, Pudong new area, Shanghai Mean: 74.22 15% Fragment 

77 (Zhang et al., 2020c) Dongtang Road Ferry, Pudong new area, Shanghai Mean: 39.69 11% Fragment 

78 (Li et al., 2020b) Doushan, Poyang Lake to Changjiang River Section 356-877 26% Fragment 

79 (Li et al., 2020b) Dukou, Poyang Lake to Changjiang River Section 1090-1452 25% Fragment 

80 (Li et al., 2020b) Tuoji, Poyang Lake to Changjiang River Section 858-1114 34% Fragment 

81 (Gong et al., 2020) the Yellow River (from Gansu to Shandong) 15-615 10% Fragment 

82 (Zhou et al., 2020b) Fuhe River, Hebei Province 212-1049 26.4% Fragment 

83 (Liu et al., 2020a) Middle tributary, Gan River, Poyang Lake 1033-1936 4% Fragment 

84 (Liu et al., 2020a) South tributary, Gan River, Poyang Lake 1173-1413 11% Fragment 

85 (Jian et al., 2018) Raohe River of Poyang Lake Mean: 938 7% Fragment 

86 (Wu et al., 2020) 
inland waterway of Guangdong-Hong Kong-Macao Greater 

Bay Area 
25-560 2.30% Fragment 
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87 (Liu et al., 2019b) Lake bank, Poyang Lake Mean: 201.8 36.2% Pellet 

88 (Zhang et al., 2020a) Qin River urban section in Beibu Gulf 0-97 3%-80% Sheet 

89 (Liu and Fang, 2020) Dishui Lake, Nanhui New Town, Shanghai (the canal side) Mean: 230 3%-57% Sheet 

90 (Zhang et al., 2019b) Fuxi River, Sichuan Province 160-292 14.67% Sheet 

91 (Peng et al., 2018) urban river in Yangpu District, Shanghai Mean:723 6% Sphere 

92 (Peng et al., 2018) urban river in Hongkou District, Shanghai Mean: 765 3.30% Sphere 

93 (Peng et al., 2018) Xuhui District Mean: 1535 5.50% Sphere 

94 (Peng et al., 2018) Songjiang District Mean: 160 10.9% Sphere 

95 (Peng et al., 2018) urban river in Minhang District, Shanghai Mean: 1120 3% Sphere 

96 (Peng et al., 2018) urban river in Pudong New Area, Shanghai Mean: 410 8.8% Sphere 

97 (Yu et al., 2019) Longkou wetland, Poyang Lake Mean: 679 9% Debris 

98 (Yu et al., 2019) Wucheng wetland, Poyang Lake Mean: 1013 13% Debris 

99 (Yu et al., 2019) Nanji Mount wetland, Poyang Lake Mean: 54 24% Debris 

100 (Yu et al., 2019) Middel section of Gan River, wetland, Poyang Lake Mean: 1455 4% Debris 

101 (Yu et al., 2019) Dutou Villege, wetland, Poyang Lake Mean: 1000 10% Debris 

102 (Yu et al., 2019) Ruihong Town, wetland, Poyang Lake Mean: 633 3% Debris 
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Table S3 Supplemental materials for Figure 1 (C). A part of microplastic concentration and microfibre proportion data was estimated from the figures of literatures by Image J. For 11 
accurate raw data, please see original papers. 12 

Index number in 

Figure 1 (C) 

Citation Location Microplastic 

concentration (n/m3) 

Microfibre 

proportion 

Dominant 

shape 

Microplastic 

removal rate 

1 (Lin et al., 2018) Guangzhou City section of Pearl River (WWTP1) Mean: 2700 100% Fibre 40.5% 

2 (Lin et al., 2018) Guangzhou City section of Pearl River (WWTP2) Mean: 300 100% Fibre 40% 

3 (Lin et al., 2018) Guangzhou City section of Pearl River (WWTP3) Mean: 600 66.70% Fibre 57.1% 

4 (Bai et al., 2018) a WWTP in Shanghai Mean: 52000 74.4% Fibre 55.6% 

5 (Mak et al., 2020) Sha Tin secondary treatment plant, Hongkong (March) Mean: 3260 56% Fibre N/A 

6 (Mak et al., 2020) Sha Tin secondary treatment plant, Hongkong (June) Mean: 1274 56% Fibre N/A 

7 (Mak et al., 2020) Sha Tin secondary treatment plant, Hongkong 

5(September) 

Mean: 423 57% Fibre N/A 

8 (Mak et al., 2020) Kuwn tong stormwater treatment work, Hongkong 
(December) 

Mean: 1241 60% Fibre N/A 

9 (Mak et al., 2020) Kuwn tong stormwater treatment work, Hongkong 

(March) 

Mean: 6480 48% Fibre N/A 

10 (Mak et al., 2020) Kuwn tong stormwater treatment work, Hongkong (June) Mean: 3003 66% Fibre N/A 

11 (Mak et al., 2020) Kuwn tong stormwater treatment work, Hongkong 
(September) 

Mean: 2570 66% Fibre N/A 

12 (Mak et al., 2020) Yau Ma Tei stormwater treatment plant, Hongkong 

(December) 

Mean: 3994 53% Fibre N/A 

13 (Mak et al., 2020) Yau Ma Tei stormwater treatment plant, Hongkong 
(December) 

Mean: 4800 43% Fibre N/A 

14 (Mak et al., 2020) Yau Ma Tei stormwater treatment plant, Hongkong 

(December) 

Mean: 3113 49% Fibre N/A 

15 (Tang et al., 2020) Urban residential wastewater treatment plant, Wuhan Mean: 7900 66.6% Fibre 66.10% 

16 (Tang et al., 2020) Suburban wastewater treatment plant for industrial and 

residential sewage, Wuhan 

Mean: 30300 73.2% Fibre 62.7% 

17 (Zhang et al., 2020a) WWTP1 along Qin River, Beibu Gulf Mean: 130 100% Fibre 92.8% 

18 (Chen et al., 2020b) Tertiary wastewater treatment plant in Nanjing, China Mean: 900 100% Fibre 78.57% 

19 (Wei et al., 2020) A rural WWTP (A/A/O-CW), Fuyang District, Hangzhou Mean: 300 65% Fibre 82.6% 

20 (Yang et al., 2019) Gaobeidian sewage treatment plant, Beijing 400-731 85.92% Fibre 95.16% 

21 (Xu et al., 2019b) Eleven WWTPs, Changzhou 3630-13630 86.66% Fibre 89.17%-97.15% 

22 (Wang et al., 2020e) Advanced drinking water treatment plant, Yangtze River 

Delta 

Mean: 930 51.6%-78.9% Fibre 79.7%-95.4% 

23 (Xu and Wang, 2020) Drinking water treatment plant, Jiangsu Province Mean: 1125000 46.4% Fibre 80.10% 

24 (Xie et al., 2020) Beichong WWTP, Guilin Mean: 70 100% Fibre 90% 
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25 (Jia et al., 2019) WWTP1, Shanghai Mean: 226.27 92.06% Fibre 63.25% 

26 (Jia et al., 2019) WWTP2, Shanghai Mean: 171.89 92.46% Fibre 59.84% 

27 (Jiang et al., 2020)  WWTP, Harbin City Mean: 30600 61.40% Fibre 75.70% 

28 (Ding et al., 2020) Outlet of Sequencing batch reactor activated sludge 

WWTP, Beijing 

Mean: 62000 77.4% Fibre 43.10% 

29 (Ren et al., 2020) A WWTP in Zhengzhou, Henan Province Mean: 2900 93.10% Fibre 81.90% 

30 (Wang et al., 2020b) Nine residential WWTPs, Taihu Lake Basin, Jiangsu 6000-26000 4% Film 35%-98% 

31 (Wang et al., 2020b) Nine residential WWTPs, Taihu Lake Basin, Jiangsu 7000-12000 20% Film N/A 

32 (Mak et al., 2020) Sha Tin secondary treatment plant, Hongkong 

(December) 

Mean: 1483 42% Fragment N/A 

33 (Mak et al., 2020) Stonecutters Island chemical-enhanced primary treatment 

plant, Hongkong (December) 

Mean: 3639 16% Fragment N/A 

34 (Mak et al., 2020) Stonecutters Island chemical-enhanced primary treatment 
plant, Hongkong (March) 

Mean: 10729 10% Fragment N/A 

35 (Mak et al., 2020) Stonecutters Island chemical-enhanced primary treatment 
plant, Hongkong (June) 

Mean: 3728 34% Fragment N/A 

36 (Mak et al., 2020) Stonecutters Island chemical-enhanced primary treatment 

plant, Hongkong (September) 

Mean: 1147 17% Fragment N/A 

37 (Mak et al., 2020) Yau Ma Tei stormwater treatment plant, Hongkong 

(December) 

Mean: 6666 27% Fragment N/A 

38 (Wang et al., 2020a) Four WWTPs along Qing River, Beijing (July) Mean: 350 13% Fragment N/A 

39 (Wang et al., 2020a) Four WWTPs along Qing River, Beijing (November) Mean: 320 26% Fragment N/A 

40 (Wei et al., 2020) A rural WWTP (A/A/O), Yuhang District, Hangzhou Mean: 400 37% Fragment 65.20% 

41 (Wei et al., 2020) A rural WWTP (A-CW), Fuyang District, Hangzhou Mean: 750 47% Fragment 65.2% 

42 (Ruan et al., 2019) Shek Wu Hui WWTP, Hongkong Mean: 270 13% Fragment  86.9% 

43 (Ruan et al., 2019) Stonecutters Island WWTP, Hongkong Mean: 400 40% Fragment 60.4% 

44 (Yuan et al., 2020) WWTP C, Nanjing City Mean: 240 25% Granular 97.67% 

45 (Yuan et al., 2020) WWTP P, Nanjing City Mean: 340 29.41% Granular 98.46% 

46 (Long et al., 2019) Seven WWTPs in Xiamen, Fujian 200-1730 17.7% Granules  79.33%-97.84% 

47 (Wang et al., 2019a) Yundang WWTP, Xiamen City Mean: 324 20% Pellet 80.97% 

48 (Zhang et al., 2020a) WWTP2 along Qin River, Beibu Gulf Mean: 40 33% Sheet 73.3% 
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