1

Equilibria, kinetics, and boron isotope partitioning in the aqueous boric acid hydrofluoric acid system

4 Richard E. Zeebe ${ }^{*, 1}$ and James W. B. Rae ${ }^{2}$

5 *Corresponding Author.
$6{ }^{1}$ School of Ocean and Earth Science and Technology, Department of Oceanography,
7 University of Hawaii at Manoa, 1000 Pope Road, MSB 629, Honolulu, HI 96822, USA.
8 zeebe@soest.hawaii.edu
$9{ }^{2}$ School of Earth \& Environmental Sciences, The Irvine Building, St. Andrews, KY16 9AL,

Abstract

The aqueous boric, hydrofluoric, and fluoroboric acid systems are key to a variety of applications, including boron measurements in marine carbonates for CO_{2} system reconstructions, chemical analysis and synthesis, polymer science, sandstone acidizing, and more. Here we present a comprehensive study of chemical equilibria and boron isotope partitioning in the aqueous boric acid - hydrofluoric acid system. We work out the chemical speciation of the various dissolved compounds over a wide range of $p \mathrm{H}$, total fluorine $\left(\mathrm{F}_{T}\right)$, and total boron $\left(\mathrm{B}_{T}\right)$ concentrations. We show that at low $p \mathrm{H}(0 \leq p \mathrm{H} \leq 4)$ and $\mathrm{F}_{T} \gg \mathrm{~B}_{T}$, the dominant aqueous species is BF_{4}^{-}, a result relevant to recent advances in high precision measurements of boron concentration and isotopic composition. Using experimental data on kinetic rate constants, we provide estimates for the equilibration time of the slowest reaction in the system as a function of $p \mathrm{H}$ and $[\mathrm{HF}]$, assuming $\mathrm{F}_{T} \gg \mathrm{~B}_{T}$. Furthermore, we present the first quantum-chemical (QC) computations to determine boron isotope fractionation in the fluoroboric acid system. Our calculations suggest that the equilibrium boron isotope fractionation between BF_{3} and BF_{4}^{-}is slightly smaller than that calculated between $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}$. Based on the QC methods X3LYP/6-311+G(d,p) (X3LYP +) and MP2/aug-cc-pVTZ (MP2TZ), $\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)} \simeq 1.030$ and 1.025, respectively. However, BF_{4}^{-}is enriched in ${ }^{11} \mathrm{~B}$ relative to $\mathrm{B}(\mathrm{OH})_{4}^{-}$, i.e., $\alpha_{\left(\mathrm{BF}_{4}^{-}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)} \simeq 1.010(\mathrm{X} 3 \mathrm{LYP}+)$ and $1.020(\mathrm{MP} 2 \mathrm{TZ})$, respectively. Selection of the QC method (level of theory and basis set) represents the largest uncertainty in the calculations. The effect of hydration on the calculated boron isotope fractionation turned out to be minor in most cases, except for BF_{4}^{-}and $\mathrm{B}(\mathrm{OH})_{3}$. Finally, we provide suggestions on best practice for boric acid - hydrofluoric acid applications in geochemical boron analyses.

1 Introduction

Fluroboron compounds have a wide variety of uses. A recent geochemical application is in the high precision analysis of boron concentration and isotopic composition (Misra et al., 2014b; Rae et al., 2018; He et al., 2019). These boron measurements have application in marine carbonates as tracers of the CO_{2} system (e.g., Branson, 2018; Rae, 2018; Hönisch et al., 2019), in silicates as tracers of seawater exchange with oceanic crust (Marschall, 2018) and subduction (De Hoog and Savov, 2018), and various other fundamental and environmental uses (e.g., Rosner et al., 2011; Penman et al., 2013; Guinoiseau et al., 2018). Boron trifluoride $\left(\mathrm{BF}_{3}\right)$ and fluoroboric acid $\left(\mathrm{HBF}_{4}\right)$ also have a wide range of applications in chemical analysis and synthesis. BF_{3} is used in various organic synthesis reactions, such as the reduction of aldehydes and ketones to alcohols and hydrocarbons (Fry et al., 1978), due to its properties as a Lewis acid. HBF_{4} is also used as a catalyst in organic synthesis and in the electroplating of tin and tin alloys, alongside various applications in polymer science, sandstone acidizing, manufacturing of fluoroborate salts, and more (e.g., Palaniappan and Devi, 2008; Leong and Ben Mahmud, 2019).

CITE ABOVE? (Wei et al., 2013; Li et al., 2019)
While the chemical and isotopic equilibrium in the boric acid system in aqueous solution is relatively well understood, including $\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}$(e.g. Zeebe, 2005; Liu and Tossell, 2005; Klochko et al., 2006; Nir et al., 2015), the partitioning of boron and its isotopes in the aqueous boric acid - hydrofluoric acid system has not been investigated in detail. This leads to uncertainties on how best to apply this method in laboratory procedures and potential pitfalls associated with isotope fractionation between B-F species. Here we work out the equilibria and kinetics of boron species in the presence of hydrofluoric acid, provide the first

$$
\mathrm{BF}_{3}(\mathrm{OH})^{-}
$$

BF_{4}^{-}
$\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$

$\mathrm{HBF}_{4}(\mathbf{I})$

Figure 1. Geometries of several key compounds examined in this study. Structures shown were optimized using quantumchemical calculations for isolated ("gas-phase") molecules. Dark-green: boron, light-green: fluorine, red: oxygen, white: hydrogen. The notations $\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{HBF}_{3}(\mathrm{OH})$ will be used synonymously here for structures similar to the $\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$ geometry shown (for details, see Section 4.1). (I) indicates geometrically unstable (one calculated frequency is imaginary).
quantum-chemical calculations for isotopic fractionation factors in this system, and comment on best practice in the practical application of HF in boron analyses.

2 Chemical Equilibrium

The reactions that link the boric acid - hydrofluoric acid system (involving B-F compounds, see Fig. 1) may be written as (Wamser, 1951; Mesmer et al., 1973):

$$
\begin{align*}
\mathrm{B}(\mathrm{OH})_{3}+\mathrm{F}^{-} & \rightleftharpoons \mathrm{BF}(\mathrm{OH})_{3}^{-} \tag{1}\\
\mathrm{B}(\mathrm{OH})_{3}+2 \mathrm{~F}^{-}+\mathrm{H}^{+} & \rightleftharpoons \mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{2}\\
\mathrm{~B}(\mathrm{OH})_{3}+3 \mathrm{~F}^{-}+2 \mathrm{H}^{+} & \rightleftharpoons \mathrm{BF}_{3}(\mathrm{OH})^{-}+2 \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{B}(\mathrm{OH})_{3}+4 \mathrm{~F}^{-}+3 \mathrm{H}^{+} \rightleftharpoons \mathrm{BF}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}, \tag{4}
\end{equation*}
$$

with

$$
\begin{array}{rlrl}
K_{1}=\frac{\left[\mathrm{BF}(\mathrm{OH})_{3}^{-}\right]}{\left[\mathrm{B}(\mathrm{OH})_{3}\right]\left[\mathrm{F}^{-}\right]} & ; & K_{2} & =\frac{\left[\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}\right]}{\left[\mathrm{B}(\mathrm{OH})_{3}\right]\left[\mathrm{F}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]} \\
\left.K_{3}=\frac{[\mathrm{BF}}{3}(\mathrm{OH})^{-}\right] \tag{6}\\
{\left[\mathrm{B}(\mathrm{OH})_{3}\right]\left[\mathrm{F}^{-}\right]^{3}\left[\mathrm{H}^{+}\right]^{2}} & ; & K_{4}=\frac{\left[\mathrm{BF}_{4}^{-}\right]}{\left[\mathrm{B}(\mathrm{OH})_{3}\right]\left[\mathrm{F}^{-}\right]^{4}\left[\mathrm{H}^{+}\right]^{3}} .
\end{array}
$$

In addition, we take into account the relatively well known dissociation reactions:

$$
\begin{align*}
\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} \tag{7}\\
\mathrm{HF} & \rightleftharpoons \mathrm{~F}^{-}+\mathrm{H}^{+} \tag{8}\\
\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \tag{9}
\end{align*}
$$

with

$$
\begin{equation*}
K_{B}=\frac{\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{B}(\mathrm{OH})_{3}\right]} ; K_{F}=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HF}]} ; K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] . \tag{10}
\end{equation*}
$$

Furthermore, equilibrium between the four $\mathrm{BF}_{\mathrm{i}}(\mathrm{OH})_{4-\mathrm{i}}^{-}$ions $(i=1, \ldots, 4)$ in reactions (1)-(4) and their protonated forms $\operatorname{HBF}(\mathrm{OH})_{3}, \mathrm{HBF}_{2}(\mathrm{OH})_{2}, \mathrm{HBF}_{3}(\mathrm{OH})$, and HBF_{4} need to be considered. For example,

$$
\begin{equation*}
\mathrm{HBF}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{BF}(\mathrm{OH})_{3}^{-}+\mathrm{H}^{+} \quad ; \quad K_{1}^{\prime}=\frac{\left[\mathrm{BF}(\mathrm{OH})_{3}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HBF}(\mathrm{OH})_{3}\right]}, \tag{11}
\end{equation*}
$$

and so forth.
Given the immediate reaction of BF_{3} with water, gaseous BF_{3} can likely be neglected for dilute solutions at room temperature. For example, complete absorption of $1.17 \mathrm{~mol}_{\mathrm{BF}}^{3}$ per $\mathrm{kg} \mathrm{H}_{2} \mathrm{O}$ has been reported at $25^{\circ} \mathrm{C}$ with no BF_{3} observed by infrared analysis in the vapor phase (Scarpiello and Cooper, 1964). Some gas manufacturers state BF_{3} "solubilities" of $\sim 3.2 \mathrm{~g}$ per $\mathrm{g} \mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}\left(47 \mathrm{~mol}_{\mathrm{BF}}^{3} / \mathrm{kg} \mathrm{H} \mathrm{O}\right)$, yet the origin and method for obtaining this value is
difficult to track down. Also, "solubility" appears misleading here as hydrates are instantly formed, rather than dissolved BF_{3}. Raman spectra of a $\mathrm{BF}_{3}-\mathrm{H}_{2} \mathrm{O}$ mix (ratio 1:2) showed three of the four fundamentals of a tetrahedral molecule (not of a trigonal molecule like BF_{3}), almost identical to those of an aqueous $\mathrm{NaBF}_{3}(\mathrm{OH})$ solution (Maya, 1977). These observations are consistent with Anbar and Guttmann (1960)'s estimate of $\left[\mathrm{HBF}_{3}(\mathrm{OH})\right] /\left[\mathrm{BF}_{3}\right] \simeq 5 \times 10^{6}$ based on free energies.

The equilibrium constants K_{i} have been determined in $1 \mathrm{M} \mathrm{NaNO}_{3}$ and 1 M NaCl solutions (Grassino and Hume, 1971; Mesmer et al., 1973); K_{B}, K_{F}, and K_{w} are relatively well known, also at different ionic strengths. In this study, we use the set of constants given by Mesmer et al. (1973) in 1 M NaCl (see Table 1). The acid dissociation constants K_{i}^{\prime} are less well known. For instance, the acid strength of HBF_{4} has been estimated to be similar to HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in aqueous solution (Wamser, 1951; Fărcasiu and Hâncu, 1997). Thus, we assign the value $p K_{4}^{\prime}=-3.0$ (actual value is of minor importance as long as $\lesssim-2.0$). The acid strength of $\mathrm{HBF}_{3}(\mathrm{OH})$ and $\mathrm{HBF}_{2}(\mathrm{OH})_{2}$ was deemed similar to $\mathrm{CCl}_{3} \mathrm{COOH}$ and $\mathrm{CHCl}_{2} \mathrm{COOH}$, respectively (Wamser, 1951), broadly consistent with estimates based on $\mathrm{HBF}_{3}(\mathrm{OH})$ and $\mathrm{HBF}_{2}(\mathrm{OH})_{2}$ concentrations in solution (Mesmer et al., 1973). Hence we use $p K_{3}^{\prime}=0.66$ and $p K_{2}^{\prime}=1.35$ (Lide, 2004). For the weakest of the four acids, $\operatorname{HBF}(\mathrm{OH})_{3}$, we assign $p K_{1}^{\prime}=2.0$ (actual value is of minor importance as long as $\lesssim 5.0$) (Table 1).

To link equilibrium and kinetics, the equilibrium constant for the hydrolysis of fluoboric acid will also be required (see reaction (13), Section 3 below):

$$
\begin{equation*}
K_{h}=\frac{\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right][\mathrm{HF}]}{\left[\mathrm{BF}_{4}^{-}\right]}, \tag{12}
\end{equation*}
$$

which we set to $K_{h}=2.3 \times 10^{-3} \mathrm{M}\left(p K_{h}=2.64\right.$, Wamser, 1948) at $25^{\circ} \mathrm{C}$ for consistency with Wamser's kinetic data used in Section 3. Compatibility between K_{h} and the set of K^{\prime} s from

Table 1. Equilibrium constants at $25^{\circ} \mathrm{C}$ used in this study ($p \mathrm{~K}=-\log K$).

$p \mathrm{~K}$	$p K_{1}$	$p K_{2}$	$p K_{3}$	$p K_{4}$	$p K_{B}$	$p K_{F}$	$p K_{w}$	$p K_{1}^{\prime}$	$p K_{2}^{\prime}$	$p K_{3}^{\prime}$	$p K_{4}^{\prime}$	$p K_{h}$
Note	a	a	a	b	a	a	a	b	b	b	b	c
Value	0.36	-7.06	-13.69	-19.21	8.81	2.89	13.73	2.00	1.35	0.66	-3.00	2.64
${ }^{\bar{a}}$ Mesmer et al. (1973), 1 M NaCl .												
${ }^{b}$ See text.												
${ }^{c}$ Wamse	r (194											

Mesmer et al. (1973) (Table 1), then determines $p K_{4}=-19.21$, because $K_{4}=K_{3} / K_{F} / K_{h}$.
Note that Mesmer et al. (1973) did not measure K_{4} but determined its value using the same reasoning as applied here.

Given equilibrium constants, $p \mathrm{H}$, total boron and total fluorine, the speciation in the boric acid - hydrofluoric acid system can be calculated (Appendix A). At low $p \mathrm{H}(0 \leq p \mathrm{H} \leq 4)$ and $\mathrm{F}_{T} \gg \mathrm{~B}_{T}$, the dominant aqueous species is BF_{4}^{-}, followed by $\mathrm{BF}_{3}(\mathrm{OH})^{-}$(Fig. 2). Also, under most of those conditions, the protonated forms $\left[\mathrm{HBF}_{\mathrm{i}}(\mathrm{OH})_{4-\mathrm{i}}\right]$ make up a small fraction of B_{T} and F_{T} (not shown). One exception is $\mathrm{HBF}_{3}(\mathrm{OH})$ with significant concentrations at very low $p \mathrm{H}$ (Fig. 2). However, note that there is considerable uncertainty in the calculated $\left[\mathrm{HBF}_{3}(\mathrm{OH})\right]$, as only estimated values for $p K_{3}^{\prime}$ are available (see above). Our speciation results (Fig. 2) are similar to, but different from, those of Katagiri et al. (2006), who used a different set of constants and did not take into account the protonated forms $\left[\mathrm{HBF}_{\mathrm{i}}(\mathrm{OH})_{4-\mathrm{i}}\right]$.

The rising concentration of $\mathrm{HBF}_{3}(\mathrm{OH})$ at $\left[\mathrm{H}^{+}\right]>10^{0}$ (negative $p \mathrm{H}$) can be understood considering the relevant equilibria and their $p K$ values (Table 1). At very high $\left[\mathrm{H}^{+}\right]$, the most abundant species are $\mathrm{BF}_{4}^{-}, \mathrm{BF}_{3}(\mathrm{OH})^{-}, \mathrm{HBF}_{4}$, and $\mathrm{HBF}_{3}(\mathrm{OH})$. As one might expect, at low $p \mathrm{H}$, $\left[\mathrm{BF}_{4}^{-}\right]>\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right]$. However, the balance between these species is additionally controlled

Figure 2. Speciation in the boric acid - hydrofluoric acid system at $25^{\circ} \mathrm{C}$ as a function of (a) $p \mathrm{H}$, (b) F_{T}, and (c) B_{T}. Default parameter values (when not varied) are $p \mathrm{H}=1.0, \mathrm{~F}_{T}=0.3 \mathrm{M}$, and $\mathrm{B}_{T}=1 \times 10^{-5} \mathrm{M}$. Note that $\left[\mathrm{HBF}_{3}(\mathrm{OH})\right]$ is uncertain as only estimated values for $p K_{3}^{\prime}$ are available.
by the acid strengths of the protonated forms, HBF_{4} and $\mathrm{HBF}_{3}(\mathrm{OH})$, of which HBF_{4} is the stronger acid ($p K^{\prime}$ s of -3.00 vs. +0.66 , see Table 1). It turns out that for the $p K$ set used here, the difference in acid strength between HBF_{4} and $\mathrm{HBF}_{3}(\mathrm{OH})$ dominates that between BF_{4}^{-}and $\mathrm{BF}_{3}(\mathrm{OH})^{-}$, leading to high $\left[\mathrm{HBF}_{3}(\mathrm{OH})\right]$ at very low $p \mathrm{H}$. In fact, using equilibrium relations such as Eqs. (6), (10), and (11), and $F_{T} \gg B_{T}$, the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]^{*}$ at which $\left[\mathrm{HBF}_{3}(\mathrm{OH})\right]=\left[\mathrm{BF}_{4}^{-}\right]$can be estimated as $\left[\mathrm{H}^{+}\right]^{*} \simeq K_{3}^{\prime} K_{4} K_{F} F_{T} / K_{3}$, or $p \mathrm{H}^{*} \simeq-1.5$, in agreement with the complete speciation calculation (Fig. 2).

2.1 Note of caution

For the present study, we opted for the set of equilibrium constants (K^{\prime} 's) from Mesmer et al. (1973) (Table 1), as the set appears internally consistent. However, these K's apply to 1 M NaCl solutions and not to solutions of different ionic strengths in general. Unfortunately, the dependence on ionic strength is unknown at present. Mesmer et al. (1973) noted that their equilibrium constant for the hydrolysis of $\mathrm{BF}_{3}(\mathrm{OH})^{-}$to produce $\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}$and undissociated HF $\left(1.8 \times 10^{-4}\right)$ is considerably lower than the value 0.011 estimated by Wamser (1951). Furthermore, the acid dissociation constants K_{i}^{\prime} have only been estimated, not measured, at this point. As a result, our equilibrium calculations (Fig. 2) should be taken as a basic guide to the speciation in the system. However, that speciation only applies to a single ionic strength and may also change in the future as new or improved data for equilibrium constants become available. Caution seems also warranted regarding the available kinetic data for the system, as values reported by two different studies for one particular rate constant differ by a factor of $\sim 2-3$ (see Section 3).

3 Kinetics

Among the reactions in the fluoroboric acid system, only the following is considered slow (Wamser, 1948, 1951; Anbar and Guttmann, 1960):

$$
\begin{equation*}
\mathrm{BF}_{3}(\mathrm{OH})^{-}+\mathrm{HF} \stackrel{k_{1}}{\stackrel{\stackrel{k_{2}}{\rightleftharpoons}}{\rightleftharpoons}} \mathrm{BF}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{13}
\end{equation*}
$$

which will be assumed the slowest reaction in the system and examined in the following. Reaction (13) leads to the rate law:

$$
\begin{equation*}
\frac{\mathrm{d}\left[\mathrm{BF}_{4}^{-}\right]}{\mathrm{d} t}=k_{1}\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right][\mathrm{HF}]-k_{2}\left[\mathrm{BF}_{4}^{-}\right] \tag{14}
\end{equation*}
$$

Wamser (1951) found the forward reaction ((13) left to right) to be acid-catalyzed, with:

$$
\begin{equation*}
k_{1}=k_{1}^{0}+k_{1}^{\mathrm{H}}\left[\mathrm{H}^{+}\right], \tag{15}
\end{equation*}
$$

where $k_{1}^{0}=0.0641 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$ and $k_{1}^{\mathrm{H}}=7.35$ at $25^{\circ} \mathrm{C}$. The measured values in Table II of Wamser (1951) at $p \mathrm{H}=1.65$ and $1.36\left(0.244\right.$ and $\left.0.3871 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}\right)$ are consistent with those in Table IV of Wamser (1948) (0.244 and $0.392 \mathrm{l} \mathrm{mol}^{-1} \mathrm{~min}^{-1}$) at $25^{\circ} \mathrm{C}$. We are unaware of any other studies that determined k_{1} experimentally.

Wamser (1948) also studied the BF_{4}^{-}hydrolysis, i.e., the backward reaction of (13) and provided values for k_{2} (his Table IV), which varied with the initial concentration of BF_{4}^{-}. Wamser (1948) stated that the observed variation of k_{2} may be in part a result of $\left[\mathrm{H}^{+}\right]$changes, which varied simultaneously with initial concentrations. In fact, Anbar and Guttmann (1960) found the BF_{4}^{-}hydrolysis to be first order in $\left[\mathrm{BF}_{4}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$and suggested the rate law $R=k_{2}^{\prime}\left[\mathrm{H}^{+}\right]\left[\mathrm{BF}_{4}^{-}\right]$. Assuming also the BF_{4}^{-}hydrolysis to be acid-catalyzed and assuming $p \mathrm{H}$ values of 1.65 and 1.36 for initial concentrations of 0.0561 M and 0.1105 M in Table IV of Wamser (1948) (cf. Table II, Wamser (1951)), we can calculate a catalyzed hydrolysis rate constant from:

$$
\begin{equation*}
k_{2}=k_{2}^{0}+k_{2}^{\mathrm{H}}\left[\mathrm{H}^{+}\right], \tag{16}
\end{equation*}
$$

by fitting Eq. (16) to Wamser's k_{2} values, which yields $k_{2}^{0}=1.47 \times 10^{-4} \mathrm{~min}^{-1}$ and $k_{2}^{\mathrm{H}}=1.69 \times 10^{-2} 1 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$. The latter may be compared to $k_{2}^{\prime} \simeq 7 \times 10^{-3} 1 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$ given by Anbar and Guttmann (1960), which is less than half the k_{2}^{H} value as derived from Wamser (1948). The reason for the discrepancy is unclear at this point. However, note that the ratio of Wamser's $k_{2} / k_{1} \simeq 2.3 \times 10^{-3} \mathrm{M}$ (Table IV, Wamser (1948)), i.e., the equilibrium constant (K_{h}) of reaction (13), was consistent with his value derived from
titration data $\left(K_{h}=2.04 \times 10^{-3} \mathrm{M}\right)$. This lends confidence to the kinetic data of Wamser (1948, 1951), which we use in the following. Also, for internal consistency between k_{1} and k_{2} as implemented here (Eqs. (15) and (16)), we made sure that the ratios of individual $k_{i}^{j \prime}$ s that are dominant at low vs. high $p \mathrm{H}$, respectively, yield the desired K_{h} value, i.e., $k_{2}^{0} / k_{1}^{0}=1.47 \times 10^{-4} / 0.064=k_{2}^{\mathrm{H}} / k_{1}^{\mathrm{H}}=1.69 \times 10^{-2} / 7.35=2.3 \times 10^{-3}$.

Given k_{1} and k_{2}, the rate law (Eq. (14)) can be solved analytically with some critical assumptions (Appendix B). First, our solution is only valid at low $p \mathrm{H}$, where $\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right]$and $\left[\mathrm{BF}_{4}^{-}\right]$are the dominant $\mathrm{B}-\mathrm{F}$ species and other compounds such as $\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}$and $\mathrm{BF}(\mathrm{OH})_{3}^{-}$ can be ignored. Second, $\left[\mathrm{H}^{+}\right]$and $[\mathrm{HF}]$ are assumed to remain constant during the reaction. If $\left[\mathrm{H}^{+}\right]$varies, our acid-catalyzed rates cannot be treated using constant k_{1} and k_{2} (Eqs. (15) and (16)). Importantly, constant $[\mathrm{HF}]$ during the reaction usually requires the hydrofluoric acid concentration to be much greater than the total boron concentration B_{T}. The condition "much greater" is critical, as even for initial molar ratios $[\mathrm{HF}]: \mathrm{B}_{T}=4: 1$, nearly 4 moles of fluorine per mole of boron may be consumed, if a large fraction of BF_{4}^{-}is formed during the reaction (see discussion in Wamser, 1948, 1951). Hence without a substantial [HF] excess over B_{T}, the rate may slow down significantly in the course of the reaction as $[\mathrm{HF}]$ drops. Note that in such cases, the final equilibrium extent of hydrolysis and product/reactant ratio (Eq. (12)) is given by the final, not initial, [HF] (cf. Table V, Wamser, 1948).

With the above assumptions, the characteristic (e-folding) time τ for the reaction may be calculated as (Appendix B):

$$
\begin{equation*}
\tau=\left(k_{1}[\mathrm{HF}]+k_{2}\right)^{-1} . \tag{17}
\end{equation*}
$$

Using k_{1} and k_{2} values derived from Wamser $(1948,1951)$ (Eqs. (15) and $\left.(16)\right)$, the calculated time for 99% equilibration $\left(t_{99 \%}=-\ln (0.01) \times \tau\right)$ is less than $\sim 1 \mathrm{~min}$ for $[\mathrm{HF}]>0.01 \mathrm{M}$

Figure 3. Calculated time for 99% equilibration of reaction (13) at $25^{\circ} \mathrm{C}$, assuming [HF] to be much greater than the total boron concentration B_{T} (see text).
and $\left[\mathrm{H}^{+}\right]>1 \mathrm{M}$ due to acid catalysis (Fig. 3). However, $t_{99 \%}$ increases dramatically to over $10,000 \mathrm{~min}(167 \mathrm{~h})$ at low $[\mathrm{HF}]$ and $p \mathrm{H}>2$. Thus, the equilibration time is very sensitive to $[\mathrm{HF}]$ and $p \mathrm{H}$. We note, however, that the specific numbers presented here should be taken with caution due to the limited available experimental studies on the subject and the disagreement between them (discussed above).

4 Isotopic Equilibrium: Theory

Isotopic fractionation factors in thermodynamic equilibrium are calculated from first principles based on differences in the vibrational energy of molecules. In this study, we determine fundamental frequencies and molecular forces using quantum-chemical (QC) computations (e.g. Jensen, 2004; Schauble, 2004; Zeebe, 2005; Guo et al., 2009; Rustad et al., 2010; Zeebe, 2014). Fractionation factors were calculated from reduced partition function
ratios (Urey, 1947):

$$
\begin{equation*}
\left(\frac{Q^{\prime}}{Q}\right)_{\mathrm{r}}=\frac{s}{s^{\prime}} \prod_{i} \frac{u_{i}^{\prime}}{u_{i}} \frac{\exp \left(-u_{i}^{\prime} / 2\right)}{\exp \left(-u_{i} / 2\right)} \frac{1-\exp \left(-u_{i}\right)}{1-\exp \left(-u_{i}^{\prime}\right)}, \tag{18}
\end{equation*}
$$

with s and s^{\prime} being symmetry numbers, $u_{i}=h c \omega_{i} / k T$ and $u_{i}^{\prime}=h c \omega_{i}^{\prime} / k T$ where h is Planck's constant, c is the speed of light, k is Boltzmann's constant, T is temperature in Kelvin, and ω_{i} and ω_{i}^{\prime} are the frequencies of the isotopic molecules or the solute-water clusters. Note that Eq. (18) is based on the harmonic approximation and hence requires harmonic ω^{\prime} 's as input (see discussion in Zeebe (2005)), which we calculate here using QC calculations. In contrast, observed ω^{\prime} 's include anharmonicity but will nevertheless be compared to harmonic ω^{\prime} 's (see Section 5.1). In the present case, errors introduced by anharmonicity (e.g., Zeebe, 2005) are likely much smaller than those due to different QC methods (see below). The theoretical calculations yield β-factors, which, for a compound A is given by:

$$
\begin{equation*}
\beta_{\mathrm{A}}=\left(\frac{Q_{\mathrm{A}}^{\prime}}{Q_{\mathrm{A}}}\right)_{\mathrm{r}}^{\frac{1}{k}} \tag{19}
\end{equation*}
$$

where k is the number of atoms being exchanged $(k=1$ for boron in the compounds considered here). Finally, the fractionation factor α between two compounds A and B is given by:

$$
\alpha_{(\mathrm{A}-\mathrm{B})}=\frac{\beta_{\mathrm{A}}}{\beta_{\mathrm{B}}} .
$$

4.1 Quantum-chemical computations

We used the quantum-chemical software package GAMESS, Sep-2018-R3 (Gordon and Schmidt, 2005) and different computational methods (differing in level of theory, LoT, and basis sets) to determine geometries and frequencies of key compounds in the boric acid - hydrofluoric acid system (Fig. 1). A very basic but fast method (HF/6-31G(d), HFb for

Figure 4. Solute-water cluster example. Optimized geometry of a hydrated $\mathrm{BF}_{3}(\mathrm{OH})^{-}$ion including 22 water molecules (C_{1} symmetry) based on X3LYP / $6-311+G(d, p)$ calculated with GAMESS (Gordon and Schmidt, 2005). Dark-green: boron, light-green: fluorine, red: oxygen, white: hydrogen. Dotted lines indicate hydrogen bonds.
short) was used for initial guesses and pre-optimization (for methods, see e.g., Jensen, 2004; Gordon and Schmidt, 2005). However, α^{\prime} s and β-factors obtained with HFb should be taken with caution because the method has limited accuracy. The density functional theory (DFT) method X3LYP/6-311+G(d,p) (X3LYP +) was employed for higher level optimizations and large solute-water clusters with up to $n=22$ water molecules (Fig. 4). Computations with the most complete basis sets tested here were performed with MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ (MP2DZ, MP2TZ), which are however computationally expensive and mostly impractical for large solute-water clusters.

We selected the methods HFb, X3LYP + , and MP2TZ because they are frequently used in QC computations and similar LoT and basis sets have been applied to boron isotope calculations previously (e.g. Oi, 2000; Zeebe, 2005; Liu and Tossell, 2005; Rustad et al., 2010).

Also, X3LYP+ and MP2TZ yield values for $\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}$that cluster around the upper and lower end of the spectrum (Rustad et al., 2010). However, even for isolated ("gas-phase") molecules (see below), the higher-level DFT and MP2 methods differed by up to 5% in α 's (Table 2). Given these differences, we refrain from testing further QC methods, which will unlikely narrow down the range of α values. The selected LoT and basis set therefore represents the largest uncertainty in our calculations, whereas the effect of hydration on the calculated boron isotope fractionation turned out to be less significant in most cases (see below).

For HFb and MP2DZ frequencies, scale factors of $s=0.92$ and 1.03 were applied, whereas unscaled frequencies were used from X3LYP+ and MP2TZ computations. The scale factors applied here are close to those obtained from general low-frequency fits to $>1,000$ observed frequencies and are consistent with scale factors from our previous work on boron, carbon, and oxygen isotopes (Scott and Radom, 1996; Merrick et al., 2007; Zeebe, 2005, 2014). For all molecules and solute-water clusters studied here (see Figs. 1 and 4), geometry optimizations were followed by full Hessian (force-constant matrix) runs to determine frequencies and to ensure that none of the calculated frequencies was imaginary (geometrically unstable, e.g., HBF_{4} at $C_{2 v}$ symmetry, see Fig. 1).

As mentioned above, the notations $\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{HBF}_{3}(\mathrm{OH})$ are used synonymously here (see Fig. 1). Note that initial geometries in which one hydrogen was positioned near any of the three F atoms quickly evolved into separate $\mathrm{BF}_{2}(\mathrm{OH})^{-}$and HF structures. This was the case for the isolated $\mathrm{HBF}_{3}(\mathrm{OH})$ molecule, as well as for a hydrated unit including $n=6$ water molecules. The B-O distance, which is large in $\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)(\sim 1.84 \AA$, Fig. 1), is substantially smaller in the $\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ cluster $(\sim 1.54 \AA)$ (both at X3LYP/6-311+G(d,p) level).

4.2 Uncertainties in computed α^{\prime} s

The range in the computed fractionation factors from the higher-level DFT and MP2 methods is reported here as an uncertainty estimate, as different QC methods yield significantly different values for α (see below). Other approaches have been used in the literature. For instance, propagated uncertainties in the computed frequencies derived for well-studied small molecules have been used as an error estimate for a single QC method (e.g., Kowalski et al., 2013). This approach is based on the well known tendency of certain methods to systematically under- or overestimate frequencies. However, this is a systematic, not random error (commonly corrected for by a scale factor, see Section 4.1), which says little about the QC method's accuracy when applied to a specific system for which experimental frequencies and α^{\prime} s are yet lacking. (Note that a QC method's precision for a fixed geometry is undefined as one method yields exactly one set of frequencies and one α value for that case.) Furthermore, it is not uncommon that certain QC methods give large errors in only a few (but critical) frequencies that deviate substantially from errors accounted for by an average frequency scaling. Also, the computed α value and its error for a given method is sensitive to the calculated frequency shift upon isotopic substitution, which is not necessarily related to the average error in absolute frequency for that method.

Alternatively, by averaging results from different QC methods, a "theoretical mean" α has been calculated to report its $\pm 1 \sigma$ standard deviation as error (e.g., Li et al., 2020). However, it is important to realize that selected QC methods and their numerical results do not represent a set whose statistical sample mean approaches "a true mean value" for large N. Rather, the set of QC methods included in the analysis is an often arbitrary selection made by the
investigator, which inevitably leads to bias (some studies, for example, only include density functional theory methods). Furthermore, it is not clear whether results from methods with known limited accuracy such as HF/6-31G(d) should be included or not, which may be highly problematic in some cases, but inconsequential in others (HF/6-31G(d) fortuitously yields acceptable α values in several cases). For the various reasons outlined above, the uncertainty estimate reported here is given as the range in the computed α from different methods. We include results from the higher-level DFT and MP2 methods and exclude results from HF/6-31G(d).

5 Boron Isotope Partitioning

Given the dominant aqueous species discussed in Section 2, our calculations of boron isotope fractionation factors (α^{\prime} s) will mainly focus on $\mathrm{B}(\mathrm{OH})_{3}, \mathrm{~B}(\mathrm{OH})_{4}^{-}, \mathrm{BF}_{4}^{-}$, and $\mathrm{BF}_{3}(\mathrm{OH})^{-}$. Of those compounds, the fractionation between $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}$in aqueous solution has been established theoretically and experimentally and is described elsewhere (e.g. Zeebe, 2005; Liu and Tossell, 2005; Klochko et al., 2006; Rustad et al., 2010; Nir et al., 2015). To provide insight into the systematics of boron fractionation, we also include BF_{3} for comparison between $\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)}$and $\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}\left(\alpha_{\mathrm{BF}_{34}}\right.$ and α_{34} for short), and HBF_{4} and $\mathrm{HBF}_{3}(\mathrm{OH})$ to assess the effect of protonation on α 's.

5.1 Gas phase estimates

It is instructive to consider first quantum-chemical calculations for isolated ("gas-phase") molecules to gain an overview of α 's in the boric-hydrofluoric acid system and to examine differences between levels of theory. It turned out that isolated HBF_{4} was geometrically unstable at all LoT tested here, i.e., either one calculated frequency was imaginary ($C_{2 v}$

Figure 5. Calculated vs. observed fundamental frequencies of BF_{3} and BF_{4}^{-}(Vanderryn, 1959; Nakane and Ōyama, 1966; Bates et al., 1971). Calculated ω^{\prime} s obtained at MP2/aug-cc-pVTZ level are unscaled ($s=1.0$).
symmetry, Fig. 1), or the geometry optimization led to $\mathrm{BF}_{3}+\mathrm{HF}$, suggesting that HBF_{4} should not exist in the gas phase (Fărcasiu and Hâncu, 1997; Otto, 1999). Starting with HBF_{4} in $\mathrm{C}_{2 v}$ symmetry, adding two $\mathrm{H}_{2} \mathrm{O}$ molecules $\left(\mathrm{HBF}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right)$, and then removing all symmetry restrictions in the calculation $\left(\mathrm{C}_{1}\right)$, led to disintegration into a $\mathrm{BF}_{3}-\mathrm{FH}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ configuration, in which BF_{3} was slightly non-planar (tested with HF/6-31G(d)). An alternative configuration $\left(\mathrm{C}_{1}\right)$ that resembled $\mathrm{BF}_{4}^{-}-\mathrm{H}_{3} \mathrm{O}^{+}-\mathrm{H}_{2} \mathrm{O}$ was geometrically stable at all LoT tested here.

The calculated fundamental molecular frequencies (ω^{\prime} s) and their shift upon isotopic substitution are key to evaluate Eq. (18). Measured ω^{\prime} s are available, e.g., for BF_{3} (Vanderryn, 1959; Nakane and Ōyama, 1966) and BF_{4}^{-}from NaBF_{4} in aqueous solution (Bates et al., 1971) and can be compared to calculated frequencies from our quantum-chemical computations (Fig. 5). The match is quite good at the highest LoT tested here (MP2/aug-cc-pVTZ) - the
calculated ω^{\prime} s line up close to the 1:1 line without scaling (scale factor $s=1$). At a basic LoT (HF/6-31G(d)) the asymmetric stretch in BF_{3} at $\sim 1450 \mathrm{~cm}^{-1}$ falls slightly below the 1:1 line, while the asymmetric stretch in BF_{4}^{-}at $\sim 1100 \mathrm{~cm}^{-1}$ falls above the $1: 1$ line $(s=0.92$, not shown). As a result, the β-factors of BF_{3} and BF_{4}^{-}are probably too small and too large, respectively, and hence $\alpha_{\text {BF34 }}$ at $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ is likely underestimated (Fig. 6, Table 2, see Electronic Annex).

Despite differences between LoT and basis sets, a few patterns emerge from our calculations that appear robust. First, all B-F compounds considered are enriched in ${ }^{11} \mathrm{~B}$ relative to $\mathrm{B}(\mathrm{OH})_{4}^{-}$(Fig. 6). Second, BF_{3} and BF_{4}^{-}are isotopically heavier than $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}$, respectively, indicating that boron is more strongly bound in the B-F than the B-OH compounds, given the pairwise similar molecular geometries $\left(D_{3 h}\right.$ vs. $C_{3 h}$ and T_{d} vs. S_{4} symmetry). The order of ${ }^{11} \mathrm{~B}$ enrichment may have been expected from bond strength and bond length (d) of B-F vs. B-O in these compounds (e.g., $d_{\mathrm{B}-\mathrm{F}} \simeq 1.31 \AA$ in $\mathrm{BF}_{3}, d_{\mathrm{B}-\mathrm{O}} \simeq 1.37 \AA$ in $\left.\mathrm{B}(\mathrm{OH})_{3}\right)$. Furthermore, the β-factor of $\mathrm{BF}_{3}(\mathrm{OH})^{-}$falls below or close to that of BF_{4}^{-}and the effect of protonation is small (compare, e.g., fractionation between $\mathrm{BF}_{3}(\mathrm{OH})^{-}$and $\mathrm{HBF}_{3}(\mathrm{OH})$, see Fig. 6).

Figure 6. Calculated stable boron isotope fractionation of selected compounds in the boric acid - hydrofluoric acid system at $25^{\circ} \mathrm{C}$ relative to $\mathrm{B}(\mathrm{OH})_{4}^{-}$. The level of theory and size of the basis set increase from a to c .

Table 2. Calculated gas phase β-factors and α^{\prime} s at $25^{\circ} \mathrm{C}$ (see Electronic Annex). ${ }^{a}$

	HFb	X3LYP +	MP2TZ
$\mathrm{B}(\mathrm{OH})_{3}$	1.2313	1.2340	1.2363
$\mathrm{~B}(\mathrm{OH})_{4}^{-}$	1.2011	1.1913	1.1964
BF_{3}	1.2467	1.2401	1.2507
BF_{4}^{-}	1.2273	1.2035	1.2197
$\mathrm{BF}_{3}(\mathrm{OH})^{-}$	1.2199	1.2013	1.2125
$\mathrm{HBF}_{3}(\mathrm{OH})^{b}$	1.2190	1.2043	1.2145
HBF_{4}	\mathbf{I}^{c}	I	I
${\mathrm{BF}(\mathrm{OH})_{3}^{-}}$			1.2002
$\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}$			1.2057
		α	
α_{34}	1.0252	1.0358	1.0333
$\alpha_{\mathrm{BF} 34}$	1.0158	1.0304	1.0254

${ }^{a} \mathrm{HFb}=\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$, X3LYP $+=$ X3LYP $/ 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p}), \mathrm{MP2TZ}=\mathrm{MP2} /$ aug-cc-pVTZ with scale factors $s=\left[\begin{array}{lll}0.921 .001 .00\end{array}\right]$.
${ }^{b} \mathrm{HBF}_{3}(\mathrm{OH})=\mathrm{BF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$.
${ }^{c} \mathbf{I}=$ one ω imaginary (geometrically unstable, see text).

The details of the calculated β-factors and α^{\prime} s depend, however, on the LoT and basis sets used (see Fig. 6 and Table 2). For instance, the order of boron isotope enrichment in $\mathrm{HBF}_{3}(\mathrm{OH})$ vs. $\mathrm{BF}_{3}(\mathrm{OH})^{-}$is reversed for HFb , compared to X3LYP+ and MP2TZ (Fig. 6). Considering only the higher-level DFT and MP2 methods, BF_{4}^{-}is enriched in ${ }^{11} \mathrm{~B}$ relative to $\mathrm{B}(\mathrm{OH})_{4}^{-}$by $\sim 10 \%$ for X3LYP+ but by $\sim 20 \%$ for MP2TZ, respectively. The two methods differ by 5% in $\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)}$(see Table 2). Selection of the QC method (level of theory and basis set) thus represents the largest uncertainty in our isotope calculations for most compounds (cf. Section 5.2).

5.2 Solute-water clusters

We also performed geometry optimizations and Hessian (force-constant matrix) runs for large solute-water clusters with up to $n=22$ water molecules using the density functional theory (DFT) method X3LYP/6-311+G(d,p) (X3LYP+) (cf. Fig. 4). MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ (MP2DZ and MP2TZ) are computationally too expensive and mostly impractical for large solute-water clusters (we tested MP2DZ for $n \leq 6$). It turned out that the effect of hydration on the calculated β-factors for boron isotope exchange is minor in most cases, except for BF_{4}^{-}and $\mathrm{B}(\mathrm{OH})_{3}$ (Fig. 7). For instance, the hydration effect reduces $\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}$by $\sim 6 \%$ at $25^{\circ} \mathrm{C}$ as n increases from 0 to 20 for X3LYP+ (included in our calculations on temperature dependence, see Section 5.4). However, the effect of hydration is much smaller in most other cases and, importantly, less significant for MP2DZ than for X3LYP+ (Fig. 7), suggesting that our "gas-phase" estimates from MP2TZ are reasonable approximations to boron isotope fractionation in aqueous solution in most cases (Table 2). Clearly, the overall uncertainties introduced by different QC methods (Fig. 6) are substantially larger than those resulting from hydration, except for BF_{4}^{-}and $\mathrm{B}(\mathrm{OH})_{3}$ at X3LYP+ (Fig. 7).

Figure 7. Selected β-factors and $\alpha_{\left(\mathrm{BF}_{4}^{-}-\mathrm{BF}_{3}(\mathrm{OH})^{-}\right)}$from computations including solute-water clusters with up to $n=22$ water molecules.

5.3 Boron isotope partitioning vs. pH

Given the calculated fractionation factors (α^{\prime} s) between the various compounds (e.g., Table 2) and the speciation vs. pH (Fig. 2), the boron isotope partitioning in the boric acid - hydrofluoric acid system as a function of $p \mathrm{H}$ can be calculated. The correct mass balance calculation uses fractional abundances rather than isotope ratios, R's (e.g., Hayes, 1982).

However, the difference is at most 0.15% in the present case (see Appendix C). Using R's, a

Figure 8. Speciation and boron isotope partitioning in the boric acid - hydrofluoric acid system at $25^{\circ} \mathrm{C}$. (a) Note that $\left[\mathrm{HBF}_{3}(\mathrm{OH})\right]$ is uncertain as only estimated values for $p K_{3}^{\prime}$ are available. (b) The boron isotope composition of total boron $\left(\mathrm{B}_{T}\right)$ in the systen was set to $\delta^{11} \mathrm{~B}_{T}=0 \%$.
general isotope mass balance at any given $p \mathrm{H}$ may be written as:

$$
\begin{equation*}
R_{T} X_{T}=\sum R_{i} c_{i} \tag{20}
\end{equation*}
$$

where index T refers to 'Total', and X_{T} and c_{i} are the total inventory and individual concentrations of compounds containing element X, respectively. If we express all α^{\prime} s relative to a single compound A, we can write $R_{i}=\alpha_{i} R_{A}$. Then,

$$
\begin{equation*}
R_{T} X_{T}=R_{A} \sum \alpha_{i} c_{i} \tag{21}
\end{equation*}
$$

which can be solved for R_{A} :

$$
\begin{equation*}
R_{A}=R_{T} X_{T} / \sum \alpha_{i} c_{i} \tag{22}
\end{equation*}
$$

All remaining R^{\prime} s are calculated from $R_{i}=\alpha_{i} R_{A}$. These expressions were evaluated at $25^{\circ} \mathrm{C}$ using MP2TZ-calculated values for most α^{\prime} s (Table 2), the experimental α_{34} (Klochko et al., 2006), and $\delta^{11} \mathrm{~B}_{T}=0 \%$ (Fig. 8). The β-factors of $\mathrm{BF}(\mathrm{OH})_{3}^{-}$and $\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}$at MP2TZ level were calculated as 1.2002 and 1.2057 (Table 2). The concentrations of the protonated forms $\mathrm{HBF}(\mathrm{OH})_{3}$, etc., are very small and make virtually no difference, except for $\mathrm{HBF}_{3}(\mathrm{OH})$ at very low $p \mathrm{H}$. The β-factors of the protonated forms were taken equal to the corresponding non-protonated forms. As expected, over the $p \mathrm{H}$ range where BF_{4}^{-}dominates, the $\delta^{11} \mathrm{~B}$ of BF_{4}^{-} is close to $\delta^{11} \mathrm{~B}_{T}=0 \%$. The boron isotope partitioning only shifts above $p \mathrm{H} \simeq 4$, first towards $\mathrm{BF}_{3}(\mathrm{OH})^{-}$, then $\mathrm{B}(\mathrm{OH})_{3}$, and finally $\mathrm{B}(\mathrm{OH})_{4}^{-}$, having respective $\delta^{11} \mathrm{~B}$ values close to $\delta^{11} \mathrm{~B}_{T}$ (Fig. 8).

5.4 Effect of temperature

Given that the effect of hydration on boron fractionation for most B-F compounds is small relative to the effect of different LoT (Fig. 7), we calculated the temperature dependence of $\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)}$based on isolated molecules at the highest LoT tested here (MP2/aug-cc-pVTZ, Fig. 9). For $\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}=\alpha_{34}$ we use results from our X3LYP/6-311+G(d,p) calculations of solute-water clusters with $n=20$. We also include an α_{34}^{*}, which uses the measured α_{34} seawater value at $25^{\circ} \mathrm{C}$ (Klochko et al., 2006) and an estimated temperature dependence based on the slope of our calculated α_{34} scaled by the ratio $\alpha_{34}^{*} / \alpha_{34}$ at $25^{\circ} \mathrm{C}$ (Fig. 7). From 0 to $40^{\circ} \mathrm{C}$, the calculated α^{\prime} s are very nearly linear vs. temperature for which we provide a fit of the form:

$$
\begin{equation*}
\varepsilon=(\alpha-1) 10^{3}=\varepsilon_{25}+\lambda \cdot\left(T_{\mathrm{C}}-25\right), \tag{23}
\end{equation*}
$$

where T_{C} is temperature in ${ }^{\circ} \mathrm{C}$. From 0 to $300^{\circ} \mathrm{C}$, we use a fit of the form:

$$
\begin{equation*}
\varepsilon=a+b / T+c / T^{2} \tag{24}
\end{equation*}
$$

Figure 9. Temperature dependence of α^{\prime}. $\alpha_{\mathrm{BF3}_{4}}=\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)}$at MP2/aug-cc-pVTZ level; $\alpha_{34}=\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}$ from X3LYP $/ 6-311+G(d, p)$ calculations of solute-water clusters with $n=20$. (a) α_{34}^{*} uses the measured α_{34} seawater value at $25^{\circ} \mathrm{C}$ (Klochko et al., 2006) and the slope of the calculated α_{34} (dashed line) scaled by the ratio $\alpha_{34}^{*} / \alpha_{34}$ at $25^{\circ} \mathrm{C}$. (b) $\alpha_{\mathrm{BF}_{4} x_{3}}=\alpha_{\left(\mathrm{BF}_{4}^{-}-\mathrm{BF}_{3}(\mathrm{OH})^{-}\right)}$.
where T is temperature in Kelvin (for fit coefficients, see Table 3). The maximum errors of our fits are less than $\sim 0.15 \%$.

Table 3. Coefficients for temperature fits Eqs. (23) and (24).

	ε_{25}	λ	a	$b \times 10^{-3}$	$c \times 10^{-6}$	Notes
$\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)}$	25.4	-0.0627	-7.3143	14.3867	-1.3806	\ddagger
$\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}$	29.4	-0.0921	-8.9720	15.0475	-1.0757	$\#$
$\alpha_{\left(\mathrm{B}(\mathrm{OH})_{3}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}^{*}$	27.2	-0.0852				$\&$
${ }^{\ddagger} \mathrm{MP2} 2$ aug-cc-pVTZ.						
${ }^{\# \text { XXLYP } / 6-311+G(d, p), n=20 .}$						
${ }^{\text {\&See text. }}$						

6 Best Practice in Boron Analyses with HF Addition

Recently, it has been shown that addition of hydrofluoric acid can improve washout times of boron in the introduction systems of (MC-)ICPMS instruments (Misra et al., 2014b; Rae et al., 2018; He et al., 2019). Slow washout of boron results from the volatility of $\mathrm{B}(\mathrm{OH})_{3}$ (Brenner and Cheatham, 1998), which can be entrained from droplets coating the walls of ICPMS spray chambers (Al-Ammar et al., 1999), leading to persistence of up to 50% of the initial signal after $\sim 5 \mathrm{~min}$ of wash, and associated memory effects between samples and standards.

Previously, addition of ammonia gas to the spray chamber has been used to help combat this issue, leading to improved signal memory of 2% after ~ 3 min wash (Al-Ammar et al., 2000; Foster, 2008). This result can be explained by conversion of volatile boric acid to non-volatile borate ion at elevated pH . Notably, as samples, standards, and blanks are introduced in $0.5 \mathrm{M} \mathrm{HNO}_{3}$, and as the $\sim 3 \mathrm{ml} \mathrm{min}^{-1} \mathrm{NH}_{3}$ gas flux is diluted in the spray chamber by $\sim 11 \mathrm{~min}^{-1} \mathrm{Ar}$, the bulk solution in the spray chamber remains acidic ($\mathrm{pH}<1$ when tested). We therefore suggest that the suppression of boron volatility caused by NH_{3} addition results from pronounced elevation of $p \mathrm{H}$ (to greater than the boric acid $p K \simeq 9$) on the surface layer (and perhaps in the aqueous diffusion boundary layer) of otherwise acidic droplets.

Addition of HF offers an alternative method of improving boron washout. This was first noted by Makishima et al. (1997) and studied in more detail by Misra et al. (2014b,a); Rae et al. (2018); He et al. (2019). The examination of boron partitioning here allows us to provide further insights into best practice in boron analysis in an HF matrix. Avoiding the presence of volatile $\mathrm{B}(\mathrm{OH})_{3}$ requires that all boric acid is converted to fluoroboric species.

This requires an excess of F^{-}ions over total boron, which is found with a combination of low pH , high total fluorine, and low total boron (Fig. 2). Boron is typically analyzed at sub-ppm concentrations in geochemistry, so overly high boron concentrations are unlikely to present an issue (cf. Fig. 2c). However, relatively high total concentrations of HF are needed to ensure complete consumption of $\mathrm{B}(\mathrm{OH})_{3}$ (Fig. 2b). This is a function of HF's $p K(\sim 3)$, which means that at $p \mathrm{H}=1$, only $\sim 1 \%$ of total fluorine is present as free F^{-}(Eq. (10)). Low $p \mathrm{H}(<5)$ is also required (Fig. 2a), which is typical in geochemical analyses, and cautions against attempting to use HF and NH_{3} in combination to reduce boron washout.

The kinetics of $\mathrm{B}(\mathrm{OH})_{3}$ reaction with HF are generally fast, except for the formation of the final product, BF_{4}^{-}(reaction (13)). As a result, volatile $\mathrm{B}(\mathrm{OH})_{3}$ may still be present in solutions to which HF has recently been added. As well as reducing the efficiency of the washout, this has the potential to impart isotopic fractionation, via preferential loss of the isotopically heavy trigonal $\mathrm{B}(\mathrm{OH})_{3}$. To avoid this, solutions should have HF added in advance of analysis depending on $p \mathrm{H}$ and $[\mathrm{HF}]$ (see Fig. 3). Slow conversion to BF_{4}^{-}may also limit the efficiency of washout if HF is used only as a rinse solution rather than being added to the analytes.

The current procedure in the STAiG laboratory at the University of St Andrews is to run MC-ICPMS boron isotope analyses in $0.5 \mathrm{M} \mathrm{HNO}_{3}+0.3 \mathrm{M} \mathrm{HF}$ (see Rae et al., 2018). This matrix is used for all solutions - standards, samples, and blanks - and results in washout to $\sim 0.5 \%$ in 3 minutes (cf. $\sim 3 \%$ when using NH_{3} gas). Samples, initially in $0.5 \mathrm{M} \mathrm{HNO}_{3}$ following chemical purification, are "spiked" with a small volume of concentrated HF (to avoid dilution) about $1 / 2$ hour prior to analysis (the estimated 99% equilibration time at this $p \mathrm{H}$ and HF content is ~ 10 minutes, see Fig. 3). Maintaining a constant matrix for all solutions in the run is generally desirable to avoid differences in mass bias or background
contamination, though we note that solutions of the standard NIST 951 run as test samples with HF concentrations ranging from 0 to 0.5 M show no systematic differences. For analysis of trace boron concentrations, however, we use HF only in the wash solution. We do not add HF to our trace element samples, despite the potential further improvement in washout, due to the lower overall boron concentrations, higher throughput of samples, risk of contamination of other elements, and reduced contribution of boron washout to precision. Also note that HF should not be added to samples that are to be separated by ion exchange chromatography with Amberlite 743, as BF_{4}^{-}does not interact well with this resin.

Alongside the improved washout, use of HF also has advantages over NH_{3} in terms of machine sensitivity, avoiding a signal decrease of $\sim 10-20 \%$ with NH_{3}, and stability and run times, avoiding build-up of ammonium nitrate salts in the injector. The main drawback of HF use is the safety hazard, requiring careful operating procedures (for instance use of neoprene rather than nitrile gloves), though note that a 0.3 M solution is equivalent to a $\sim 1 \%$ dilution, considerably less hazardous than fully concentrated HF (29 M). Hydrofluoric acid use also requires an "inert" sample introduction kit, including self-aspirating Teflon nebulizers, Teflon spray chambers, and sapphire injectors.

7 Summary and Conclusions

In the present study, we have examined the equilibria and kinetics in the aqueous boric acid - hydrofluoric acid system using available experimental data. We have presented the first quantum-chemical computations to determine boron isotope fractionation in the fluoroboric acid system and have provided suggestions on best practice in the application of HF in experimental boron analyses. Our results show that at low $p \mathrm{H}(0 \leq p \mathrm{H} \leq 4)$ and for total fluorine $\left(\mathrm{F}_{T}\right)$ much greater than total boron $\left(\mathrm{B}_{T}\right)$, the dominant aqueous species is BF_{4}^{-}.

Our estimated time for 99% equilibration ($t_{99 \%}$) of the slowest reaction in the system (forming $\left.\mathrm{BF}_{4}^{-}\right)$is less than $\sim 1 \mathrm{~min}$ at constant $[\mathrm{HF}]>0.01 \mathrm{M}$ and $\left[\mathrm{H}^{+}\right]>1 \mathrm{M}$, assuming $\mathrm{F}_{T} \gg \mathrm{~B}_{T}$. However, $t_{99 \%}$ increases dramatically to over 167 h at low $[\mathrm{HF}]$ and $p \mathrm{H}>2$, suggesting that the equilibration time is very sensitive to $[\mathrm{HF}]$ and $p \mathrm{H}$. Our quantum-chemical (QC) computations suggest that the equilibrium boron isotope fractionation between BF_{3} and BF_{4}^{-} is slightly smaller than that calculated between $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}$. Yet, BF_{4}^{-}is enriched in ${ }^{11} \mathrm{~B}$ relative to $\mathrm{B}(\mathrm{OH})_{4}^{-}$in all our calculations $\left(\alpha_{\left(\mathrm{BF}_{4}^{-}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}>1.0\right)$, regardless of the QC method tested. Unfortunately, even considering only the higher-level QC methods tested, the calculated α values differ by $\sim 10 \%$ in $\alpha_{\left(\mathrm{BF}_{4}^{-}-\mathrm{B}(\mathrm{OH})_{4}^{-}\right)}$and by $\sim 5 \%$ in $\alpha_{\left(\mathrm{BF}_{3}-\mathrm{BF}_{4}^{-}\right)}$. Selection of the QC method (level of theory and basis set) thus represents the largest uncertainty in our isotope calculations for most compounds. The effect of hydration on the calculated boron isotope fractionation is much smaller in most cases, except for BF_{4}^{-}and $\mathrm{B}(\mathrm{OH})_{3}$ computed with the density functional theory method X3LYP / $6-311+G(d, p)$.

The results of our study should be helpful for implementing and advancing geochemical applications in high precision analyses of boron concentration and isotopic composition. One specific application is the addition of hydrofluoric acid to boron samples, which has recently been shown to improve washout times of boron in the introduction systems of (MC-)ICPMS instruments. However, beyond geochemical applications, our study should serve as a general resource for a variety of studies dealing with equilibria, kinetics, and boron isotope fractionation in the aqueous boric acid - hydrofluoric acid system, including applications in physical chemistry, polymer science, sandstone acidizing, and more.

Appendix A: Equilibrium speciation

To simplify the calculations, we use in the following $x_{i}=\left[\mathrm{BF}_{\mathrm{i}}(\mathrm{OH})_{4-\mathrm{i}}^{-}\right]$,
$y_{i}=\left[\mathrm{HBF}_{\mathrm{i}}(\mathrm{OH})_{4-\mathrm{i}}\right](i=1, \ldots, 4), b_{3}=\left[\mathrm{B}(\mathrm{OH})_{3}\right], b_{4}=\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right], f=\left[\mathrm{F}^{-}\right], g=[\mathrm{HF}]$, $h=\left[\mathrm{H}^{+}\right]$, and $L_{i}=1 / K_{i}^{\prime}$. Using equilibrium relationships (see Section 2), we can thus write: $y_{i}=x_{i} h L_{i}, g=f h L_{F}$, and $b_{4}=b_{3} K_{B} / h$. Given $p \mathrm{H}$, total boron $\left(\mathrm{B}_{T}\right)$ and total fluorine $\left(\mathrm{F}_{T}\right)$, the mass balance equations read:

$$
\begin{align*}
\mathrm{B}_{T} & =b_{3}\left(1+K_{B} / h\right)+\sum x_{i}\left(1+h L_{i}\right) \tag{A1}\\
\mathrm{F}_{T} & =f\left(1+h L_{F}\right)+\sum i x_{i}\left(1+h L_{i}\right) \tag{A2}
\end{align*}
$$

in which we substitute $x_{i}{ }^{\prime}$ s using $K_{i}{ }^{\prime}$ s (Eqs. (5) and (6)):

$$
\begin{align*}
& \mathrm{B}_{T}=b_{3}\left[1+K_{B} / h+\sum a_{i}\left(1+h L_{i}\right) f^{i}\right] \tag{A3}\\
& \mathrm{F}_{T}=f\left(1+h L_{F}\right)+b_{3} \sum i a_{i}\left(1+h L_{i}\right) f^{i} \tag{A4}
\end{align*}
$$

with $a_{1}=K_{1}, a_{2}=K_{2} h, a_{3}=K_{3} h^{2}, a_{4}=K_{4} h^{3}$, and eliminate b_{3} :

$$
\begin{equation*}
\mathrm{B}_{T} \sum i a_{i}\left(1+h L_{i}\right) f^{i}=\left[\mathrm{F}_{T}-f\left(1+h L_{F}\right)\right]\left[1+K_{B} / h+\sum a_{i}\left(1+h L_{i}\right) f^{i}\right] . \tag{A5}
\end{equation*}
$$

This expression can be solved numerically for f at given $p \mathrm{H} . b_{3}$ can now be obtained from Eq. (A3), all x_{i} determined from Eqs. (5) and (6), and all y_{i} from $y_{i}=x_{i} h L_{i}$.

Appendix B: Analytical solution of kinetic rate equation

The kinetic rate equation (14):

$$
\begin{equation*}
\frac{\mathrm{d}\left[\mathrm{BF}_{4}^{-}\right]}{\mathrm{d} t}=k_{1}\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right][\mathrm{HF}]-k_{2}\left[\mathrm{BF}_{4}^{-}\right] \tag{B6}
\end{equation*}
$$

can be solved analytically with some critical assumptions. We assume low $p \mathrm{H}$ where $\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right]$and $\left[\mathrm{BF}_{4}^{-}\right]$are the dominant B-F species, hence we set $\mathrm{B}_{T}=\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right]+\left[\mathrm{BF}_{4}^{-}\right]$. Furthermore, we assume constant $\left[\mathrm{H}^{+}\right]$and $[\mathrm{HF}]$ during the reaction, which should hold approximately for $\mathrm{F}_{T} \gg \mathrm{~B}_{T}$. Then:

$$
\begin{align*}
\frac{\mathrm{d}\left[\mathrm{BF}_{4}^{-}\right]}{\mathrm{d} t} & =k_{1}\left(\mathrm{~B}_{T}-\left[\mathrm{BF}_{4}^{-}\right]\right)[\mathrm{HF}]-k_{2}\left[\mathrm{BF}_{4}^{-}\right] \tag{B7}\\
& =-\left(k_{1}[\mathrm{HF}]+k_{2}\right)\left[\mathrm{BF}_{4}^{-}\right]+k_{1} \mathrm{~B}_{T}[\mathrm{HF}]=-k\left[\mathrm{BF}_{4}^{-}\right]+\gamma, \tag{B8}
\end{align*}
$$

where $k=\left(k_{1}[\mathrm{HF}]+k_{2}\right)=\tau^{-1}$ is the overall rate constant (inverse characteristic time scale) and $\gamma=k_{1} \mathrm{~B}_{T}[\mathrm{HF}]$ is a constant. The solution is:

$$
\begin{equation*}
\left[\mathrm{BF}_{4}^{-}\right](t)=\left(\left[\mathrm{BF}_{4}^{-}\right]_{0}-\gamma / k\right) \exp (-k t)+\gamma / k, \tag{B9}
\end{equation*}
$$

where index ' 0 ' indicates initial $\left[\mathrm{BF}_{4}^{-}\right]$at $t=0$ and $\gamma / k=\left(k_{1} \mathrm{~B}_{T}[\mathrm{HF}]\right) /\left(k_{1}[\mathrm{HF}]+k_{2}\right)$ equals $\left[\mathrm{BF}_{4}^{-}\right]$in equilibrium, which can be shown using $k_{2} / k_{1}=K_{h}=\left[\mathrm{BF}_{3}(\mathrm{OH})^{-}\right]_{e q}[\mathrm{HF}] /\left[\mathrm{BF}_{4}^{-}\right]_{e q}{ }^{\prime}$ as it should be. Our solution (Eq. (B9)) is similar to Eq. (4) of Fucskó et al. (1993), except that our solution allows for explicitly specifying $\left[\mathrm{BF}_{4}^{-}\right]_{0}$. The time evolution is given by the exponential term and hence the characteristic (e-folding) time $\tau=\left(k_{1}[\mathrm{HF}]+k_{2}\right)^{-1}$.

Appendix C: Isotope mass balance using fractional abundance

The correct isotope mass balance using fractional abundances (r 's) reads (e.g., Hayes, 1982):

$$
\begin{equation*}
r_{T} X_{T}=\sum r_{i} c_{i}, \tag{C10}
\end{equation*}
$$

where index T refers to 'Total', and X_{T} and c_{i} are the total inventory and individual concentrations of compounds containing element X, respectively. Using $r_{i}=R_{i} /\left(1+R_{i}\right)$ and expressing all α^{\prime} s relative to a single compound A, we can write $R_{i}=\alpha_{i} R_{A}$ and thus:

$$
\begin{equation*}
r_{T} X_{T}=\sum c_{i} R_{i} /\left(1+R_{i}\right)=\sum c_{i} \alpha_{i} R_{A} /\left(1+\alpha_{i} R_{A}\right), \tag{C11}
\end{equation*}
$$

which can be solved numerically for R_{A}. All remaining R^{\prime} s are calculated from $R_{i}=\alpha_{i} R_{A}$. In the present case, the result only differs from a mass balance using R's (Eq. 22) by at most 0.15%.

References

Al-Ammar, A., Gupta, R. K., and Barnes, R. M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by addition of ammonia. Spectrochim. Acta B: Atomic. Spectr., 54 (7):1077-1084, 1999. doi: 10.1016/S0584-8547(99)00045-2.

Al-Ammar, A. S., Gupta, R. K., and Barnes, R. M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis. Spectrochim. Acta B: Atomic. Spectr., 55(6):629-635, 2000.

Anbar, M. and Guttmann, S. The isotopic exchange of fluoroboric acid with hydrofluoric acid. J. Phys. Chem., 64(12):1896-1899, 1960.

Bates, J. B., Quist, A. S., and Boyd, G. E. Infrared and Raman Spectra of Polycrystalline NaBF4. J. Chem. Phys., 54(1):124-126, 1971. doi: 10.1063/1.1674581.

Branson, O. Boron incorporation into marine CaCO_{3}. In Marschall, H. R. and Foster, G., editors, Boron Isotopes, The Fifth Element, pages 71-105. Springer, 2018.

Brenner, I. B. and Cheatham, M. M. Determination of boron: Aspects of contamination and vaporization. ICP Inf. Newslett., 24:320, 1998. URL http://icpinformation.org.

De Hoog, J. C. M. and Savov, I. P. Boron isotopes as a tracer of subduction zone processes. In Marschall, H. R. and Foster, G., editors, Boron Isotopes, The Fifth Element, pages 189-215. Springer, 2018.

Fărcasiu, D. and Hâncu, D. Acid strength of tetrafluoroboric acid The hydronium ion as a superacid and the inapplicability of water as an indicator of acid strength. J. Chem. Soc., Faraday Trans., 93(12): 2161-2165, 1997.

Foster, G. L. Seawater $\mathrm{pH}, \mathrm{pCO}_{2}$ and $\left[\mathrm{CO}_{3}^{2-}\right]$ variations in the Caribbean Sea over the last 130 kyr : A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett., 271:254-266, doi:10.1016/j.epsl.2008.04.015, 2008.

Fry, J. L., Orfanopoulos, M., Adlington, M. G., P, D. J. W., and Silverman, S. B. Reduction of aldehydes and ketones to alcohols and hydrocarbons through use of the organosilane-boron trifluoride system. J. Org. Chem., 43(2):374-375, 1978.

Fucskó, J., Tan, S. H., La, H., and Balazs, M. K. Fluoride interference in the determination of boron by inductively coupled plasma emission spectroscopy. Appl. Spectrosc., 47(2):150-155, 1993. doi: 10.1366/0003702934048181.

Gordon, M. S. and Schmidt, M. W. Advances in electronic structure theory: GAMESS a decade later. In G. Frenking, K. S. Kim, G. E. Scuseria, editor, Theory and Applications of Computational Chemistry: the first forty years, pages 1167-1189. Elsevier, Amsterdam, 2005.

Grassino, S. L. and Hume, D. N. Stability constants of mononuclear fluoborate complexes in aqueous solution. J. Inorg. Nucl. Chem., 33(2):421-428, 1971.

Guinoiseau, D., Louvat, P., Paris, G., Chen, J.-B., Chetelat, B., Rocher, V., Guérin, S., and Gaillardet, J. Are boron isotopes a reliable tracer of anthropogenic inputs to rivers over time? Sci. Tot. Env., 626: 1057-1068, 2018. doi: 10.1016/j.scitotenv.2018.01.159.

Guo, W., Mosenfelder, J. L., Goddard, I., William A., and Eiler, J. M. Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. Geochim. Cosmochim. Acta, 73(24):7203-7225, 2009. doi: 10.1016/j.gca.2009.05.071.

Hayes, J. M. Fractionation et al.: An introduction to isotopic measurements and terminology. Spectra, 8:3-8, 1982.

He, M.-Y., Deng, L., Lu, H., and Jin, Z.-D. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF. J. Anal. Atom. Spectrom., 34(5):1026-1032, 2019.

Hönisch, B., Eggins, S. M., Haynes, L. L., Allen, K. A., Holland, K. D., and Lorbacher, K. Boron Proxies in Paleoceanography and Paleoclimatology. pp. 248, Wiley-Blackwell, 2019.

Jensen, F. Introduction to computational chemistry. Wiley, Chichester, UK, pp. 429, 2004.
Katagiri, J., Yoshioka, T., and Mizoguchi, T. Basic study on the determination of total boron by conversion to tetrafluoroborate ion $\left(\mathrm{BF}_{4}^{-}\right)$followed by ion chromatography. Analyt. Chim. Acta, 570 (1):65-72, 2006.

Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., and Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett., 248(1-2):276-285, 2006. doi: 10.1016/j.epsl.2006.05.034.

Kowalski, P. M., Wunder, B., and Jahn, S. Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim. Cosmochim. Acta, 101: 285-301, 2013. doi: 10.1016/j.gca.2012.10.007.

Leong, V. H. and Ben Mahmud, H. A preliminary screening and characterization of suitable acids for sandstone matrix acidizing technique: a comprehensive review. J. Petrol. Explor. Prod. Technol., 9(1): 753-778, 2019.

Li, X., Li, H.-Y., Ryan, J. G., Wei, G.-J., Zhang, L., Li, N.-B., Huang, X.-L., and Xu, Y.-G. High-precision measurement of B isotopes on low-boron oceanic volcanic rock samples via MC-ICPMS: Evaluating acid leaching effects on boron isotope compositions, and B isotopic variability in depleted oceanic basalts. Chem. Geol., 505:76-85, 2019. doi: 10.1016/j.chemgeo.2018.12.011.

Li, Y.-C., Chen, H.-W., Wei, H.-Z., Jiang, S.-Y., Palmer, M. R., van de Ven, T. G. M., Hohl, S., Lu, J.-J., and Ma, J. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study. Chem. Geol., 536:119466, 2020. doi: 10.1016/j.chemgeo.2020.119466.

Lide, D. R. CRC handbook of chemistry and physics, volume 85. CRC press, 2004.
Liu, Y. and Tossell, J. A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochim. Cosmochim. Acta, 69(16):3995-4006, 2005.

Makishima, A., Nakamura, E., and Nakano, T. Determination of boron in silicate samples by direct aspiration of sample hf solutions into icpms. Anal. Chem., 69(18):3754-3759, 1997. doi: 10.1021/ac970383s.

Marschall, H. R. Boron isotopes in the ocean floor realm and the mantle. In Marschall, H. R. and Foster, G., editors, Boron Isotopes, The Fifth Element, pages 189-215. Springer, 2018.

Maya, L. Fluoroboric acid and its hydroxy derivatives-solubility and spectroscopy. J. Inorg. Nucl. Chem., 39(2):225-231, 1977.

Merrick, J. P., Moran, D., and Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A, 111(45):11683-11700, 2007. doi: 10.1021/jp073974n.

Mesmer, R. E., Palen, K. M., and Baes Jr, C. F. Fluoroborate equilibria in aqueous solutions. Inorg. Chem., 12(1):89-95, 1973.

Misra, S., Greaves, M., Owen, R., Kerr, J., Elmore, A. C., and Elderfield, H. Determination of B/Ca of natural carbonates by HR-ICP-MS. Geochem., Geophys., Geosys., 15(4):1617-1628, 2014 a .

Misra, S., Owen, R., Kerr, J., Greaves, M., and Elderfield, H. Determination of δ^{11} B by HR-ICP-MS from mass limited samples: Application to natural carbonates and water samples. Geochim. Cosmochim. Acta, 140:531-552, 2014b.

Nakane, R. and Ōyama, T. Boron Isotope Exchange between Boron Fluoride and Its Alkyl Halide Complexes. II. 1 Infrared Spectrum of Boron Fluoride-Methyl Fluoride Complex. J. Phys. Chem., 70 (4):1146-1150, 1966.

Nir, O., Vengosh, A., Harkness, J. S., Dwyer, G. S., and Lahav, O. Direct measurement of the boron isotope fractionation factor: Reducing the uncertainty in reconstructing ocean paleo-pH. Earth and Planetary Science Letters, 414:1-5, 2015. doi: 10.1016/j.epsl.2015.01.006.

Oi, T. Calculations of reduced partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J. Nucl. Sci. Technol., 37(2):166-172, 2000.

Otto, A. H. The gas phase acidity of $\mathrm{HBF}_{4}\left(\mathrm{HF}-\mathrm{BF}_{3}\right)$. Phys. Chem. Comm., 2(12):62-66, 1999.
Palaniappan, S. and Devi, S. L. Novel chemically synthesized polyaniline electrodes containing a fluoroboric acid dopant for supercapacitors. J. Appl. Polym. Sci., 107(3):1887-1892, 2008.

Penman, D. E., Hönisch, B., Rasbury, E. T., Hemming, N. G., and Spero, H. J. Boron, carbon, and oxygen isotopic composition of brachiopod shells: Intra-shell variability, controls, and potential as a paleo-pH recorder. Chem. Geol., 340:32-39, 2013. doi: 10.1016/j.chemgeo.2012.11.016.

Rae, J. W. B. Boron Isotopes in Foraminifera: Systematics, Biomineralisation, and CO_{2} Reconstruction. In Marschall H. R., Foster G., editor, Boron Isotopes, pages 107-143. Springer, 2018.

Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole, C., Greenop, R., Li, T., Littley, E. F. M., Nita, D. C., Stewart, J. A., and Taylor, B. J. CO_{2} storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature, 562:569-573, 2018. doi: 10.1038/s41586-018-0614-0.

Rosner, M., Pritzkow, W., Vogl, J., and Voerkelius, S. Development and validation of a method to determine the boron isotopic composition of crop plants. Anal. Chem., 83(7):2562-2568, 2011.

Rustad, J. R., Bylaska, E. J., Jackson, V. E., and Dixon, D. A. Calculation of boron-isotope fractionation between $\mathrm{B}(\mathrm{OH})_{3}(\mathrm{aq})$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}(\mathrm{aq})$. Geochim. Cosmochim Acta, 74(10):2843-2850, 2010. doi: 10.1016/j.gca.2010.02.032.

Scarpiello, D. A. and Cooper, W. J. Heat of solution of boron trifluoride in water and aqueous hydrofluoric acid. J. Chem. Engineer. Data, 9(3):364-365, 1964.

Schauble, E. A. Applying Stable Isotope Fractionation Theory to New Systems. In Johnson, C. M., Beard B. L., and Albarede, F., editor, Geochemistry of non-traditional stable isotopes, Reviews in Mineralogy and Geochemistry, Vol. 55, pages 65-111; DOI: 10.2138/gsrmg.55.1.65. Mineralogical Society of America, 2004.

Scott, A. P. and Radom, L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory and semiempirical scale factors. J. Phys. Chem., 100:16,502-16,513, 1996.

Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc., :562-581, 1947.
Vanderryn, J. Infrared Spectrum of BF_{3}. J. Chem. Phys., 30(1):331-332, 1959. doi: 10.1063/1.1729915.
Wamser, C. A. Hydrolysis of fluoboric acid in aqueous solution. J. Am. Chem. Soc., 70(3):1209-1215, 1948.

Wamser, C. A. Equilibria in the system boron trifluoride-water at 25° C. J. Am. Chem. Soc., 73(1): 409-416, 1951.

Wei, G., Wei, J., Liu, Y., Ke, T., Ren, Z., Ma, J., and Xu, Y. Measurement on high-precision boron isotope of silicate materials by a single column purification method and MC-ICP-MS. J. Anal. At. Spectrom., 28(4):606-612, 2013.

Zeebe, R. E. Stable boron isotope fractionation between dissolved $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}$. Geochim. Cosmochim. Acta, 69(11):2753-2766, 2005.

Zeebe, R. E. Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide. Geochim. Cosmochim. Acta, 139:540-552, 2014. doi: 10.1016/j.gca.2014.05.005.

