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A B S T R A C T   

As we advance towards individualized therapy, the ‘one-size-fits-all’ regimen is gradually paving the way for 
adaptive techniques that address the complexities of failed treatments. Treatment failure is associated with 
factors such as poor drug adherence, adverse side effect/reaction, co-infection, lack of follow-up, drug-drug 
interaction and more. This paper implements a transfer learning approach that classifies patients’ response to 
failed treatments due to adverse drug reactions. The research is motivated by the need for early detection of 
patients’ response to treatments and the generation of domain-specific datasets to balance under-represented 
classification data, typical of low-income countries located in Sub-Saharan Africa. A soft computing model 
was pre-trained to cluster CD4+ counts and viral loads of treatment change episodes (TCEs) processed from two 
disparate sources: the Stanford HIV drug resistant database (https://hivdb.stanford.edu), or control dataset, and 
locally sourced patients’ records from selected health centers in Akwa Ibom State, Nigeria, or mixed dataset. Both 
datasets were experimented on a traditional 2-layer neural network (NN) and a 5-layer deep neural network 
(DNN), with odd dropout neurons distribution resulting in the following configurations: NN (Parienti et al., 
2004) [32], NN (Deniz et al., 2018) [53] and DNN [9 7 5 3 1]. To discern knowledge of failed treatment, DNN1 
[9 7 5 3 1] and DNN2 [9 7 5 3 1] were introduced to model both datasets and only TCEs of patients at risk of drug 
resistance, respectively. Classification results revealed fewer misclassifications, with the DNN architecture 
yielding best performance measures. However, the transfer learning approach with DNN2 [9 7 3 1] configuration 
produced superior classification results when compared to other variants/configurations, with classification 
accuracy of 99.40%, and RMSE values of 0.0056, 0.0510, and 0.0362, for test, train, and overall datasets, 
respectively. The proposed system therefore indicates good generalization and is vital as decision-making sup
port to clinicians/physicians for predicting patients at risk of adverse drug reactions. Although imbalanced 
features classification is typical of disease problems and diminishes dependence on classification accuracy, the 
proposed system still compared favorably with the literature and can be hybridized to improve its precision and 
recall rates.   

1. Introduction 

Over the last three decades, diverse drug therapies for the treatment 
of HIV/AIDS infection have been introduced, with six distinct therapy 
classes based on drug molecular mechanism and resistant profiles [1]. 
While ongoing research efforts have advanced towards simulation 
agents that target HIV reservoirs [2], interests in modeling drug resis
tance have increased [3], with mathematical models of antiretroviral 

therapy showing improved precision in risk assessment of drug resis
tance at individual and population levels [4]. However, state-of-the-art 
empirical models have failed to capture heterogeneities when assessing 
the risk of drug resistance among individuals due to model variable 
diversity [5,6], and its robustness to model real-life distribution. Many 
soft computing approaches have been studied in the past to provide 
solutions to diverse real-life problems in various sectors of the society. 
This quest has engaged scholars to evolve applications in different fields 
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namely, bioinformatics, image processing, medical diagnosis, and many 
more [7,8]. Studies on comprehensive analysis of nature-inspired met
a-heuristics utilized in the domain of feature selection [9], queries 
optimization for serpentine database [10], spam detection in marketing 
[11] and financing using high-end performance analytics [12], are a few 
supporting studies, which results have proven the effectiveness of the 
approach. In these studies, the areas of application adopted either a 
single or combined machine learning algorithm(s), such as, decision 
tree, k-nearest neighbor, support vector machine, random forest, naive 
Bayes, and multi-layer perceptron. However, deep learning has evolved 
from Artificial Neural Networks (ANNs) to proffer higher classification 
performance to traditional machine learning, due to its ability to 
perform automatic feature extraction in high-dimensional datasets 
generated from high-end performance systems such as healthcare, en
gineering, e-commerce, cybernetics, security, power management, and 
more. Deep learning is widely applied in research on natural language 
processing, pattern recognition, robotics, information systems and so on, 
with a view to discovering intrinsic relations and patterns that are 
embedded within large datasets. 

In traditional machine learning, the assumption is that the train and 
test data reside in same feature space or domain and have same data 
distribution characteristics. But a new task with different data distri
bution will require a new model based on the current data. Two 
outstanding limitations of this method are that a previous model cannot 
be deployed to model the intended system, and proprietary tools may be 
required to develop a new model. Inspired by the ability of humans to 
intelligently learn from experience and attempt to solve inactive prob
lems, transfer learning has come to the rescue, as this approach accel
erates the learning process for improved solutions. In contrast to 
traditional machine learning, transfer learning applies knowledge 
discovered from other sources to the target task, while tolerating vari
ations that exist within disparate data distributions. Applications of 
transfer learning have covered the following areas: learning from 

simulations, adapting to new domains, and transferring knowledge 
across different domains. Three main problems that define research 
progress in transfer learning include what to transfer, how to transfer 
and when to transfer. Transfer learning as subclassified in Fig. 1, may be 
inductive–where there are disparate tasks, regardless of the similarities in 
the source and target domain [13–16]; transductive–where there are 
same tasks but diverse feature spaces or marginal probability distribu
tions in both domains [17–19]; or unsupervised–where there are no 
labeled data to utilize for training [20–22]. 

To improve the performance of existing transfer learning methods 
and handle the knowledge transfer process in a more natural way 
(typical of real-world systems), nature inspired solutions that integrate 
transfer learning methods have emerged. These techniques include 
artificial neural network-based transfer learning [24]; evolution 
system-based transfer learning [25]; fuzzy system-based transfer 
learning [26], and hybrid or collaborative system-based transfer 
learning [27]. In real-world applications, training data for 
domain-specific predictions are limited but sizeable amount of control 
data can be exploited in different feature space or distribution. For such 
cases, transfer learning could improve the performance of predictive 
algorithms on the test data of the target task. 

This paper proposes a transfer learning approach that pretrains 
known domain features for subsequent reuse in classifying new datasets. 
A domain here represents a feature space of inputs from a specific 
environment. Our approach permits adaptation to new datasets with 
labeled drug types for efficient modelling of drugs interaction and failed 
treatment classification. The proposed system can also serve as an expert 
support system for drug regimen recommendation since the developed 
models and algorithms could be made available as open-source tools 
with adaptive and replicable features for diverse domains/ 
environments. 

The remaining sections of the paper are organized as follows: Section 
2 outlines the objectives of the research and contributions to knowledge. 

Fig. 1. Sub-categories of transfer learning (Adapted from Ref. [23]).  
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Section 3 reviews existing literature, exposing the research implications 
and gaps, with a justification and impact of the research. Section 4 
discusses the materials and methods used. Section 5 presents the pro
posed system model. Section 6 discusses the results, scientific implica
tions, and study limitation. Section 7 concludes on the study and offers 
future research perspectives. 

2. Specific objectives and contributions to knowledge 

The specific objectives of the study include, to.  

• process input data from a publicly available database (control 
dataset) and local data from patients records (mixed dataset), for 
studying failed treatment in HIV patients.  

• label classification targets of both datasets using available HIV 
prognostic markers (before and follow-up CD4 counts, before and 
follow-up viral loads) and patients’ response to drugs (regimens) 
interaction derived from type-2 fuzzy logic system.  

• learn the input datasets using traditional machine learning and 
transfer learning algorithms, for efficient classification and predic
tion of failed treatments. 

• compare both machine and transfer learning algorithms using suit
able performance metrics, for optimal system selection. 

The contributions of this paper to knowledge include:  

• Real time diagnose of patients with failed treatment: The risk associated 
with treatment failure is very high in low- and medium-income 
countries (LMICs) and very critical to the life of a patient. To the 
best of our knowledge no previous works have entertained the use of 
transfer learning for failed treatment prediction/classification. The 
proposed system provides a framework for implementing real time 
detection of failed treatment cases and offers useful decision support 
for the early diagnose of patients with failed treatment.  

• Informed therapy administration: Aside the challenge of diagnosing 
patients with failed treatment, there is need for early administration 
of appropriate regimen. This paper has industrial applications in the 
growing field of medicine. To physicians, it resolves the puzzle of 
relying on similar experience when cases of failed treatment present 
themselves, as the possibility of predicting patient’s response with 
certainty is guaranteed. In the field of drug delivery and adminis
tration, it illuminates the path towards individualized therapy–as the 
study of on-treatment variables influencing a set of study outcomes is 
achievable.  

• Generalizable performance across new datasets: Our transfer learning 
model can generalize across new HIV datasets, as lower RMSE values 
were obtained using the transductive-deep learning classifier. 
Furthermore, a replicable and adaptive model is sure. It is replicable 
because available datasets can be exploited to produce similar re
sults. It is adaptive because transfer learning methods provide op
portunities to change the behavior of the system in response to its 
environment or domain.  

• Control database for a Sub-Saharan African (SSA) Country: Access to 
clinical data is crucial for advancing the course of HIV research. This 
paper produces a very useful resource that will engender future 
research on HIV/AIDS in SSA. 

3. Related works 

In this section, a comprehensive review of previous research works is 
presented. These works are classified into two major groups namely: 
statistical and computational approaches to HIV treatment failure and 
transfer learning approaches to disease prediction/classification. The 
second group is predicated on the fact that, to the best of our knowledge 
no previous works have applied transfer learning methods to the treat
ment failure of any disease condition. Summaries of the two groups of 

related works documenting the Authors; Objectives; Methodologies, 
Tools, Data(bases); Findings and Drawbacks are presented in Table 1 
and Table 2. 

3.1. Statistical and computational approaches to HIV treatment failure: 
implications 

Studies on the use of electronic health or medical records for pre
dicting treatment failure lack complete datasets and are less accurate 
than clinical trials. These studies which are mostly limited to single 
cohorts [28] require further clinical confirmation, hence, resulting in 
incomplete, inconclusive, or inaccurate datasets [29]. Employing 
interview sessions in data collection can restrict the number of study 
variables, because patients may develop depression or the fear of being 
stigmatized; and variation in quality of healthcare services may differ 
from hospital to hospital. Understanding the use of predictors may guide 
programs to develop interventions for identifying patients with adverse 
drug reactions (ADRs) and for implementing prevention strategies. 
However, studies have employed feature selection techniques [30] to 
reveal contributors to ADRs. The Kaplan-Meier curve has been useful to 
investigate predictors of immunologic and virologic failures and has 
been the most widely used measure [31–33], but its use has failed to 
accurately estimate the actual CD4 count because of the lack of primary 
data, leading to uncertain estimates, reliance on self-reporting of viro
logic failures, and overestimation of therapy adherence. Besides the 
reason that secondary data have ignored key variables, most of the ones 
used in the literature rely on immunologic failure. Adopting genome 
sequencing [34] of patients with failed virologic antiretroviral therapy 
(ART) could not detect minority resistant viral strains thereby under
estimating resistance cases. 

Evaluating drug resistance patterns has mostly been achieved 
through simple descriptive statistics and limited to certain subtype test 
feature cutoffs [35]. Statistical methods such as binary, conditional, 
univariate, bivariate, or multivariate logistic regression [29,36–44] 
have dominated the literature for investigating, analyzing, or modeling 
risk factors, but such investigations are retrospectively done and are 
either burdened by under- or over-estimation of failure prevalence. 
However, combining regression and machine learning techniques [45], 
where the latter is used to train and test the models on practical datasets 
have proven to be efficient over traditional regression models. Conse
quently, comparing machine learning algorithms may enhance proper 
choice of improving prediction performance and avoid the over-fitting 
and under-fitting of regression models. 

Convolutional learning models have been found to outsmart other 
state-of-the-art models [46], but they perform poorly with limited data. 
The sparsity of data does not enable true generalization of findings, as 
some samples-initiated ART are at an advanced stage of HIV due to 
resource-limited situation, comorbidity, mortality, and viral trans
mission. Although estimating relative risk using generalized linear 
models [47] does not allow for causal inference of failure rates because 
adherence data is usually self-reported, the use of soft computing tech
niques has helped to model the causal inference of failure by classifying 
patients at risk of ADRs [48,49]. Control datasets of failed treatment is 
therefore certain to improve the prediction of patients with failed 
treatment. 

3.2. Transfer learning approach to disease prediction/classification: 
implications 

Methodologies of most of the understudied works consider medical 
image extraction and classification [50–54], but these methods are not 
necessarily optimal in terms of predictive performance, as development 
of robust discriminative classifiers is still incipient. However, reported 
increase in accuracy usually comes at the expense of increased training 
time complexity [54] due to the use of multiple models such as deep 
convolutional network and their hybrid variants with transfer learning 
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Table 1 
Previous works on statistical and computational approach to HIV treatment failure.  

Reference Objective Method, tool, data(base) Result/Finding Drawback/Limitation 

Parienti et al. 
[32] 

To investigate virologic failure in 
HIV-infected patients. 

Method, tool: Kaplan-Meier curves were 
constructed according to factors 
associated with virological failure, with 
proportional-hazard model used to assess 
the independent effects of each factor. To 
account for missing data, patients with 
viral load of <400 copies/mL were 
censored at last follow-up visit. 
Data(base): Previously identified 
consecutive HIV-infected patients with 
HAART controlled viral loads. 

Virologic failure was significantly 
associated with previous nonadherence 
behaviors. Resistance to NNRTIs 
occurred at low levels of adherence. 

Some (5/20) genotype data were 
missing. Self-reporting by patients 
overestimated adherence to 
therapy. 

Dragsted et al. 
[31] 

To investigate predictors of 
immunological failure after initial 
CD4+ response. 

Method, tool: Changes in CD4+ cell 
count and proportion of patients with a 
pVL <400 copies/μL between starting 
HAART and the end of the study were 
calculated. Kaplan-Meier survival curves 
were used to describe the median time to 
a modified therapy or immunological 
failure. 
Data(base): EuroSIDA HIV type 1 cohort 
database (https://clinicaltrials.gov/ct2/ 
show/NCT02699736). 

The risk of immunological response to 
HAART diminished with long term 
treatment. 

The study could not ascertain the 
actual number of CD4+ cells at the 
time of failure. 

Robbins et al. 
[28] 

To identify predictors of ART 
treatment failure. 

Method, tool: A retrospective analysis of 
HIV-infected patients was conducted 
with an HIV RNA measurement of ≤400 
copies/mL on ART. Predictors of failure 
were assessed using proportional hazards 
modeling. 
Data(base): Electronic health records 
(EHRs) for patients in an urban HIV 
clinic 

Poor adherence identified as the cause of 
treatment failures.  

• Study was limited to a single 
cohort.  

• EHRs are incomplete and less 
accurate than clinical trial. 

Hosseinipour 
et al. [35] 

To evaluate drug resistance 
patterns among patients with 
failed first-line ART. 

Method, tool: Patients with ART failure 
(s) were evaluated. Genotyping was 
performed for those with RNA >1000 
copies/mL. Phenotyping was performed 
for complex genotype pattern. Simple 
descriptive statistics (mean, median, 
proportion, Student’s t-test, Wilcoxon 
rank-sum, and chi-square) were used. 
Data(base): Patients with ART failure 
from January 2007 to July 2007. 

96 confirmed ART failures. CD4+ cell 
count criteria are associated with 
resistance profiles that markedly 
compromise the activity of second-line 
ART 

Only phenotype cut-offs of 
patients infected with HIV subtype 
B were considered. 

Hamers et al. 
[34] 

To assess HIV-1 drug resistance 
mutations (DRMs). 

Method, tool: HIV-1 sequences were 
generated for 142 participants with 
virologically failed ART. Group 
comparisons for categorical and 
continuous data were then performed 
using χ2/Fisher exact test and Kruskal- 
Wallis test, respectively. 
Data: A total of 2588 antiretroviral-naive 
individuals-initiated ART at 13 clinical 
sites in 6 African countries. 

Early failure detection limited the 
accumulation of resistance. 

Population-based sequencing 
could not detect minor resistant 
viral strains, thus potentially 
underestimating resistance. 

Haile et al. 
[33] 

To investigate predictors of 
treatment failure. 

Method, tool: Retrospective cohort study 
was done in 4 hospitals. Kaplan-Meier 
curve was used to describe the survival 
time of ART patients without treatment 
failure. Bivariate and multivariable Cox 
proportional hazards regression models 
were used to identify associated factors 
of treatment failure. 
Data(base): 4809 adult ART clients from 
4 hospitals in the Bale Zone.  

• Male ART clients were more likely to 
experience treatment failure 
compared to females.  

• Lower CD4 count (<100 m3/dl) at 
initiation of ART was significantly 
associated with higher odds of 
treatment failure. 

Study was conducted based on 
secondary data analysis, hence 
ignored other essential variables. 

Steinbrink 
et al. [39] 

To identify variables associated 
with persistent viremia within 
academic practice. 

Method, tool: HIV-infected patients with 
viral load of >200 copies/mL were 
studied. Multivariable data were 
collected. Conditional logistic regression 
was used for unadjusted/adjusted 
analysis. Final multivariable model was 
built using backwards elimination using 
likelihood ratio test. variable 
interactions were tested. 
Data(base): 66 viremic cases and 66 
matched controls. 

Hospitalization, underinsurance, and 
conflicting personal beliefs about 
disease were more common. Interaction 
was observed between psychiatric 
illness and the number of clinic visits. 

Insufficient data led to poor 
generalization of findings. 

Babo et al. [36] To determine factors that predict 
first-line ART. 

Method/tool: Case-control study was 
carried out on adult clients who failed 

Lack of education, unemployment and 
socio-economic status of patients are 

(continued on next page) 
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Table 1 (continued ) 

Reference Objective Method, tool, data(base) Result/Finding Drawback/Limitation 

first line regimen and on active follow 
up, against controls of adult clients on 
non-failed first-line regimen. Binary 
logistic regression model was used to 
identify predictors of ART failure. 
Data(base): 59 cases of adult clients with 
failed first-line regimen and on active 
follow-up and 245 controls. 

strong indicators to HIV treatment 
failures. 

Treatment failure was assessed 
through clinical and/or 
immunological criteria. 

Singh [30] To improve the effectiveness of 
Agence Nationale de Recherches 
sur le SIDA (ANRS) HIV drug 
resistance using machine 
learning. 

Method, tool: Association matrix was 
generated from feature selection 
techniques (ReliefF, MODTree filtering, 
FCBF filtering and CFS filtering), before 
incorporating same into ANRS algorithm 
rules. Tanagra–a software tool was then 
used to perform machine learning. 
Data(base): Sandford HIV drug 
resistance database with approximately 
23000 protease and reverse transcriptase 
gene sequences.  

• Feature selection revealed more 
predictors to HIV drug resistance for 
Protease and reverse transcriptase 
ART drugs.  

• Machine learning with ANRS showed 
improved HIV drug resistance 
prediction. 

Small datasets limited 
performance 

Dey et al. [46] To identify and summarize drug 
compounds that have significant 
associations with ADRs. 

Method, tool: Convolutional deep 
learning framework was used, to 
integrate a two-stage ADR prediction, 
feature creation and predictive model 
design. 
Data(base): SIDER database–1430 drugs 
and 6123 side-effects in 166123 unique 
drug-ADR associations.  

• Proposed neural fingerprints model 
outperformed other state-of-the-art 
models in predicting ADRs.  

• Analysis on drug structures revealed 
important molecular substructures 
association with specific ADRs. 

Promising solution for identifying 
risk components within molecular 
structures is required. 

Sisay et al. 
[43] 

To assess the incidence and risk 
factors of treatment failure among 
HIV/AIDS-infected children on 
ART. 

Method, tool: Weibull regression model 
was employed to identify risk factors of 
treatment failure. Adjusted HRs (AHRs) 
with 95% CIs was used to declare 
statistical significance. 
Data(base): Children’s medical charts 
and ART registration logbook. 824 
children under the age of 15 who had 
started ART. 

Incidence of treatment failure remains a 
significant public health concern.  

• Data mainly depended on 
clinical and immunological 
criteria.  

• Virological failure was not used 
to detect treatment failure, 
hence, underestimating 
treatment failure. 

Bisaso et al. 
[45] 

To comparatively study logistic 
regression-based machine 
learning techniques in the 
prediction of early virologic 
suppression of antiretroviral 
therapy. 

Method, tool: Cost functions 
optimization for multitask temporal 
logistic regression (MTLR) and simple 
logistic regression (SLR) was achieved 
using BFGS (Broyden-Fletcher-Goldfarb- 
Shanno). Nelder-Mead was used for 
patient specific survival prediction 
(PSSP). 
Data(base): Infectious disease institute 
(IDI) cohort data consisting of 559 HIV 
patients enrolled between April 2004 
and April 2005.  

• MTLR model showed an all-inclusive 
good calibration over PSSP and SLR 
models when tested with the IDI 
dataset.  

• MTLR and PSSP models gave ample 
accuracy and discrimination when 
tested with external EFV cohort data. 

Integration of pharmacokinetics 
and pharmacodynamics would 
improve the modeling of drug 
therapy efficiency or resistance. 

Ahmed et al. 
[42] 

To identify virologic treatment 
failure predictors. 

Method, tool: Binary logistic regression 
analysis was performed to determine the 
relationship between independent 
variable and outcome variable. 
Data(base): 9013 adult patients on first- 
line ART with 2 consecutive viral loads 
documented between August 2016 and 
February 28, 2018. 

Low first line CD4 T-cell count, body 
mass index, and poor adherence to ART 
treatment, predicts virologic failure 

The data collection method 
employed interviews, which 
restricted the number of variables 
studied. 

Negash et al. 
[37] 

To assess the effect of tuberculosis 
and other determinant factors of 
immunological response among 
HIV patients on HAART. 

Method, tool: A retrospective follow up 
study was conducted. Interviewer-based 
questionnaire was deployed for data 
collection. Patient charts were used to 
extract clinical data and follow-up 
results of the CD4+ T cell. Simple 
descriptive statistics and bivariate 
logistic regression were performed. 
Data(base): 393 participants on ART 
were enrolled. 

High rate of CD4+ T cells reconstitution 
failure among study participants was 
observed. Poor treatment adherence and 
tuberculosis infection were significantly 
associated with immunological failure. 

The prevalence of failure could be 
underestimated because the study 
uses data collected retrospectively 
from patient charts. 

Bezabih et al. 
[38] 

To investigate risk factors for first- 
line antiretroviral failure using 
the virologic (plasma viral load) 
criteria 

Method, tool: A case-control study was 
conducted on adult patients on ART for 
at least 6 months. Cases were selected 
from patients who were switched to 
second-line ART after first-line failure 
(viral load ≥1000 copies/mL). Controls 
were randomly selected from patients on 
first-line ART with viral load <50 
copies/mL. Multivariate logistic 
regression was performed to identify risk 

Findings underscored the importance of 
avoiding ART discontinuation. The risk 
of ART failure was high and comparable 
with duration of ART discontinuation. 

Most independent variables were 
self-reported by the patients. 

(continued on next page) 
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capabilities. Sometimes the test datasets are not large enough to reliably 
analyze the performance difference between experimented features, 
hence, yielding non-generalizable models [55]. Although transfer 
learning may achieve better classification results with small datasets via 
knowledge learned from related tasks with larger datasets [56], per
forming experiments in similar settings is useful for the purpose of 
generalizing results to other methods/domains. Leveraging hybrid 
transfer learning methods on existing databases [57,59] have demon
strated superiority over baselines, but such models cannot handle or 
evaluate other/new prediction tasks. 

3.3. Research justification and impact 

From the foregoing literature, we observe that most outcomes of 
statistical and computational approaches rest on simulation studies and 
used datasets, accompanied by huge statistical analysis/reports. These 

datasets are strictly modeled without considering adaptation to new 
datasets. To ensure adaptability of predictive models to experimental 
datasets, research progress needs to be advanced towards the production 
of control datasets for domain-specific regions/environments – an active 
area that has not been adequately explored. Imbalanced classification is 
typical of any disease problem, as not all patients produce same response 
to the disease or respond equally to treatment. Recovery rates also vary 
from patient to patient, as some patients recover quickly than others. 
Hence, a ‘one-size-fits-all’ therapy is prone to possibilities of failed 
treatments (persistent symptoms). Treatment failure is associated with 
factors such as poor drug adherence, adverse side effect/reaction, co- 
infection, lack of follow-up, and drug-drug interaction. This research 
is therefore motivated by the need for clinicians/physicians to detect 
early patients’ response to treatment and administer new drugs if the 
current regimen fails. The research is urgent due to the attendant risks of 
complications and even death. The use of nondomain-specific datasets to 

Table 1 (continued ) 

Reference Objective Method, tool, data(base) Result/Finding Drawback/Limitation 

factors for treatment failure. 
Data(base): 3238 patients with HIV/ 
AIDS who had an ART follow-up in 
Asella Hospital, Ethiopia. 

Ekpenyong 
et al. [48] 

To efficiently predict HIV patient 
response to ART. 

Method, tool: Hybridized (two-stage) 
classification of patient response to ART, 
combining IT2FL and deep neural 
network (DNN) with multidimensional 
scaling (MDS), was performed. 
Data(base): 5780 individual treatment 
episodes excavated from the Stanford 
HIV drug resistance database. 3168 
individual treatment episodes collected 
from 13 healthcare facilities in Akwa 
Ibom State (to form a mixed database). 

DNN classification results showed best 
performance for both databases, with 
improved pattern predictions for 
experiment with MDS.  

• High computational cost of type 
reduction process  

• Did not compare the 
performance of predicting cases 
of ADR/failed treatment in the 
mixed database. 

Kiweewa et al. 
[47] 

To identify factors contributing to 
viremia and virologic failure. 

Method, tool: Generalized linear models 
were used to estimate relative risks with 
their 95% confidence intervals. 
Data(base): 2678 HIV-infected 
participants. 2577 (96.2%) had viral 
load data for the most recent visit. 

Patients on second line, low CD4 count, 
and who skipped ART, including those 
with history of fever in the past week 
remain important predictors of virologic 
failure.  

• Their analysis could not derive 
virologic failure  

• Adherence data was based on 
self-reporting 

Pacheko et al. 
[44] 

To analyze characteristics and 
factors associated with late 
initiation of ART. 

Method, tool: Uni- and multi-variate 
analysis was performed using SPSS 
Data(base): 1371 HIV-infected 
treatment-naive participants-initiated 
ART from 2009 to 2012 in the public 
health system. 

Late onset of ART was associated with 
higher mortality. 

Half of their sample points, 
initiated ART at an advanced stage 
of HIV with high viral load. 

Ekong et al. 
[29] 

To understand socio- 
demographic, socio-economic and 
other related factors that could 
predict ADR. 

Method, tool: Logistic regression model 
was used to estimate odds ratios (ORs) 
and 95% confidence intervals (CIs) for 
factors associated with ADR. 
Data(base): APIN electronic medical 
record system with 458 participants. 

Understanding ADR predictors may 
guide programmes in developing 
interventions and for identifying 
patients at risk of developing ADR.  

• Extracted data appear 
incomplete, inaccurate, 
inconclusive.  

• First factor contributing to ADR 
in a patient with several 
identified predictors unknown. 

Feleke et al. 
[41] 

To assess the magnitude and 
associated factors of ART failure. 

Method, tool: Institution-based cross- 
sectional study was conducted using 
chart review data. Multivariable logistic 
regression. 
Data(base): HIV-positive adult patients 
between 45 and 54 years at stages 3 and 
4 ART, poor drug adherence, and on 
antiretroviral therapy follow-up. 

High rate of ART failure observed, with 
21% prevalence of first-line 
antiretroviral treatment failure. 

Prevalence of failure could be 
underestimated because the study 
uses data collected retrospectively 
from patient charts. 

Ekpenyong 
et al. [49] 

To model drugs interaction in 
treatment-enabled HIV patients 
and optimize their response to 
ART 

Method, tool: IT2FL, weighted least- 
squares cost function and neural network 
(NN) were used to model and optimize 
patient response to ART. 
Data(base): 5780 individual treatment 
episodes excavated from the Stanford 
HIV drug resistance database; 3168 
individual treatment episodes collected 
from 13 healthcare facilities in Akwa 
Ibom State (mixed database).  

• Prognostic markers correlate suggests 
strong association between first line 
and follow-up CD4 counts  

• Moderately weak association was 
observed for first line and follow-up 
viral loads.  

• Correlation of physiological features 
gave very strong association between 
first line and follow-up body mass 
index in mixed database.  

• Improved RMSE and classification 
accuracy for both databases were 
noticed, when compared with existing 
works. 

Study did not compare the 
performance of predicting cases 
with ADR/failed treatment in the 
mixed database.  
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Table 2 
Previous works on application of transfer learning approaches to disease prediction/classification.  

Reference Objective Methodology, tool, data(base) Finding Drawback/Limitation 

Huynh et al. [50] To extract tumor information 
from medical images via CNNs 
originally pretrained for 
nonmedical tasks. 

Method, tool: This study compared 
support vector machine classifiers based 
on the CNN-extracted image features and 
prior computer-extracted tumor features, 
to distinguish between benign and 
malignant breast lesions. 
Data(base): 219 breast lesions obtained 
from 607 full-field digital 
mammographic images, under an 
Institutional Review Board-approved 
protocol from the University of Chicago 
Medical Center.  

• Classifiers based on CNN-extracted 
features (with transfer learning) per
formed comparably to those using 
analytically extracted features.  

• Performance of ensemble classifiers 
based on both types was significantly 
better than that of either classifier type 
alone (AUC = 0.86 vs. 0.81) 

Methodological choices were 
not necessarily optimal in terms 
of predictive performance. 

Page et al. [51] To apply advanced machine 
learning and hardware techniques 
to seizures detection. 

Method, tool: Max-pooling CNN 
architecture consisting of 1–3 pairs of 
convolutional and max-pooling layers 
connected to 1–3 fully connected layers, 
with the last layer was deployed to 
implement a softmax classifier. 
Data(base): Scalp-based EEG recordings 
obtained from pediatric patients 
(collected from 23 patients) with 
intractable seizures. 

Proposed system was able to detect all 
184 seizure onsets from 24 cases with 
average latency of 1.47 s and 3.2 false 
alarms/day. 

Personalized model performed 
much worse when applied to 
long-term EEG data. 

Christodoulidis 
et al. [54] 

To improve the accuracy and 
stability of a CNN on the task of 
lung tissue pattern classification. 

Method, tool: 6 publicly available texture 
databases were used to pretrain data for a 
CNN architecture. 
Data(base): Amsterdam library of 
Textures (ALOT), Describable Textures 
Dataset (DTD), Flickr Material Database 
(FMD), Kylberg Texture Database (KTB), 
KTH-TIPS-2b and Ponce Research 
Group’s Texture database (UIUC).  

• Proposed approach resulted in an 
absolute increase of about 2% in the 
performance.  

• Results demonstrate the potential of 
transfer learning in the field of medical 
image analysis. 

Reported increase in accuracy 
came at the expense of 
increased training time. 

Samala et al. 
[55] 

To develop a computer-aided 
detection (CAD) system for 
masses in digital breast 
tomosynthesis (DBT) volume. 

Method, tool: Mass of interest on breast 
images was marked by an experienced 
breast radiologist as reference standard, 
and the dataset partitioned into training 
set and test set. 
Data(base): 2282 digitized film and 
digital mammograms. 324 digital breast 
tomosynthesis (DBT) volumes–from 
Department of Radiology at the 
University of Michigan Health System 
(UM), and University of South Florida 
(USF) digitized mammogram database  

• DCNN-based CAD system 
outperformed the feature-based CAD 
system for breast-based performance 
with statistically significant results.  

• AUC improved from 0.81 (before 
transfer learning) to 0.91 (after 
transfer learning). 

DBT test set was not large 
enough to reliably analyze the 
performance difference 
between malignant and benign 
masses. 

Li et al. [56] To implement diabetic 
retinopathy fundus image 
classification using CNN-based 
transfer learning. 

Method, tool: Fine-tune all network 
layers of the pre-trained CNN models. 
Fine-tune a pre-trained CNN model in a 
layer-wise manner. Use the pre-trained 
CNN models to extract features from 
fundus images. Training support vector 
machines using these features. 
Data(base): 1014 and 1200 fundus 
images from two publicly available (DR1 
and MESSIDOR) datasets 

CNN-based transfer learning achieved 
better classification results with small 
datasets. 

Difficult to compare results 
with other methods because 
experiments were not carried 
out on same settings. 

Turki et al. [57] To improve drug sensitivity 
prediction using transfer learning 

Method, tool: Two transfer learning 
approaches that combines auxiliary data 
from the related task with target training 
data was experimented on clinical trial 
data leveraged on 3 auxiliary datasets. 
Database: 9114 genes, and drug IC50 

values. 

Experimental results demonstrate 
superiority of proposed approaches over 
baselines when auxiliary data were 
incorporated. 

Their model could not handle 
new/other drug sensitivity 
prediction tasks 

Shtar et al. [59] To detect drug–drug interactions 
using artificial neural networks 
and classic graph similarity 
measures. 

Method, tool: ANNs and factor 
propagation over graph nodes were used 
to perform a retrospect analysis by pre- 
training the models on previously 
released DrugBank database. 
Database: DrugBank database with 1141 
drugs and 45,296 drugs interaction. 

The proposed model out-performed 
various ensembles created using 29 
different predictors based on several 
datasets; proving that known drugs 
interaction is effective for identifying 
potential drugs interaction. 

The proposed system cannot 
evaluate new drugs with no 
known interactions. 

Cha et al. [52] To develop a CAD system for 
bladder cancer treatment 
response assessment in computer 
tomography (CT) using Radiomics 
with Deep-Learning. 

Method, tool: Three unique radiomics- 
based predictive models were assessed. 
Models used different design principles 
ranging from pattern recognition using 
deep-learning convolution neural 
network (DL-CNN), to a more 
deterministic radiomics feature-based 

DL-CNN performed better when transfer 
learning with bladder images was used 
instead of natural scene images. 

Transfer learning did not 
improve the treatment response 
estimation 

(continued on next page) 
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predict other datasets, could result in over-sampling and requires 
datasets from the under-represented class. To improve the under- 
represented class, collection of more samples is necessary to provide a 
balanced perspective on the classes. This paper initiates the develop
ment of a control dataset for SSA region. The dataset is essential because 
it will not only provide baseline for comparing variability within/be
tween domains, but also engender understanding of the status of an 
infected group within the region. To demonstrate usability of the data
sets, we rely on existing clinical trial data (the Stanford resistance 
database – a curated public database for representing, storing, and 
analyzing HIV drug resistance data), as the control dataset, and apply 
normal probability plots to measure the deviation of the control and 
mixed datasets from normality. The Kaplan-Meier curve has been found 
to be less accurate in predictions, hence, this paper justifies the use of an 
integrated classification framework with intelligent models for clus
tering, learning, and predicting with precision, HIV patients with failed 
treatment. A major innovation introduced in this paper is the use of 
existing multi-line treatment to assist useful decision support on new 
drug prescription for patients on first-line treatment. 

This research will surely impact the field of medical informatics as it 
offers opportunities for achieving individualized therapy, and expert 
recommendation system. By isolating patients with improved therapy 
from a controlled dataset, knowledge of optimal drugs combination with 
very low or no interaction can be discerned and used for learning a 
mixed dataset of non-isolated and isolated regimens of high and very 
high drugs interaction. 

4. Materials and method 

4.1. Description of the domain datasets 

Data for this study came from two disparate sources: a publicly 
available online domain data–the Stanford HIV drug resistance dataset: 
https://hivdb.stanford.edu (control dataset); and locally sourced data 
from healthcare facilities in Akwa Ibom State, Nigeria (mixed dataset). 
While the control dataset holds curated clinical trials of patients who 
experienced ADRs after first-line treatment and were subjected to multi- 
line follow-up treatments for up to a period of 48 weeks, the mixed 
dataset holds only first-line treatment episodes (initial 6 months). Each 
patient record on the control dataset stores treatment change episodes 
(TCEs) or treatment course of the patient, as separate XML file. The 
mixed dataset was extracted from existing patients’ records/files under 
the supervision of a medical superintendent after due ethical approval 
was obtained. Additionally, each patient’s data was validated for con
sistency before recording while questionable, inconsistent, or not 
properly documented records were dropped. Both datasets contain the 
following prognostic features: before and follow-up CD4+ count (BCD4 
and FCD4), before and after viral load (BRNA and FRNA); and drug type 
combination (DType). The CD4+ count is a test that measures the 
number of CD4 cells in the blood. Also called T cells, they are white 
blood cells that fight infection and play vital role in one’s immune sys
tem. HIV viral load is the number of viral particles found in each 
millimeter. The more HIV-1 particles in the blood, the faster the CD4+ T- 

cells are destroyed. Twenty-four (24) drug types were administered 
during the Stanford clinical trials. Table 3 lists the various drugs 
administered indicating the drug code (DrugCode) and drug name 
(DrugName) in the control dataset. For the mixed dataset, only 4 drug 
types are administered namely, Zidovudine (AZT), Lamivudine (3 TC), 
Tenofovir (TDF), and Efavirenz (EFV), corresponding to serial numbers 
9, 4, 11 and 12 on Table 3, in an ongoing community antiretroviral 
testing programme in collaboration with the Family Health Interna
tional (FHI) 360 Project in Akwa Ibom State of Nigeria. The mixed 
dataset covers patients who registered for treatment at various health 
facilities from 2015 to 2018. A total of 1521 and 1506 unique patients’ 
records filtered from 5780 to 3168 individual treatment change episodes 
(TCEs) were processed using the Python programming language for the 
control and mixed datasets, respectively. 

4.2. Exploratory analysis of domain datasets 

Many natural or real-life phenomena can be approximated by a bell- 
shaped frequency distribution known as the normal or Gaussian distri
bution. Before exploring the domain datasets, initial assumptions about 
the data are necessary to condition the model for fluctuations not seen in 
the training data. To understand the domain datasets, we deployed the 
normal probability plots, also called quantile-quantile or Q-Q plots as a 
diagnostic tool to identify substantive departure from normality (out
liers, skewness, kurtosis, etc.). This visualization helped us find patterns 
and discover potential predictors for querying if the necessary assump
tions are violated or not, and for determining the choice of an appro
priate or reasonable model. 

From the normal probability plots visualizing CD4 count in the 
control dataset (Fig. 2a), it is evident that there is strong likelihood of 
the existence, on the average, of a slight discrepancy in the BCD4 and 
FCD4 counts of patients who were examined. More patients seem to 
have, on the average, a slightly higher BCD4 counts than the FCD4 
counts for count values from about 40 to 840 units, indicating that more 
patients in this dataset may have had compromised immune system 
(CD4≤500 cells/mm3) prior to the clinical trials, and are gradually 
improving, immunologically. However, there seem to be no significant 
evidence of any discrepancy in these prognostic parameters for count 

Table 2 (continued ) 

Reference Objective Methodology, tool, data(base) Finding Drawback/Limitation 

approach. 
Data(base): Natural scene images or 
regions of interest (ROIs) inside and 
outside the bladder. 

Deniz et al. [53] To compare the classification of 
transfer learning and deep feature 
extraction on breast cancer 
detection. 

Method, tool: Transfer learning and deep 
feature extraction methods are deployed, 
to adapt pre-trained CNN model. 
Data(base): BreaKHis dataset covering a 
total of 9109 microscopic images (2480 
benign and 5429 malignant samples) 

Transfer learning produced better result 
than deep feature extraction and SVM 
classification. 

The critical nature of breast 
cancer requires higher 
detection accuracy.  

Table 3 
Drugs administered in the Stanford experiment (control dataset).  

DrugNo DrugCode DrugName DrugNo DrugCode DrugName 

1 RTV Ritonavir 13 DDI Didanosine 
2 IDV Indinavir 14 LPV Lopinavir 
3 D4T Stavudine 15 APV Amprenavir 
4 3 TC Lamivudine 16 NVP Nivarapine 
5 SQV Squatonavir 17 DRV Darunavir 
6 T20 Nfoviritide 18 FTC Emtricitabine 
7 FPV Fosamprenavir 19 ATV Atazanavir 
8 NFV Nelfinavir 20 TPV Tipranavir 
9 AZT Zidovudine 21 RAL Raltenovir 
10 ABC Abacavir 22 ETR Etravirine 
11 TDF Tenofovir 23 MVC Maraviroc 
12 EFV Efavirenz 24 DLV Delavirdine  
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values greater than 840 up to about 1160. But, towards the right tail, for 
count values higher than about 1160 up to about 1280, the FCD4 counts 
of the patients tend to be higher, on the average, than their corre
sponding BCD4 counts; with a break in the BCD4 counts from values 
above 1280 up to a value just before 1400, showing a possibility of the 
prognostic parameters not falling in that range. This implies that few 
patients showed no immunological improvements over time. Also, there 
appears to be no evidence of both parameters higher than about 1400 
units, indicating the candidate upper universe of discourse (UoD) for 
these parameters. No discrepancy in the prognostic markers exists for 
count values below 40 units. 

Normal probability plots visualizing CD4 counts in the mixed dataset 
(Fig. 2b) show that there is a wide discrepancy, between the prognostic 
parameters. For count values in the range of 125–1400, the BCD4 counts 
of the patients, is observed to be significantly higher than their corre
sponding FCD4 counts, indicating evidence of significant immunological 
improvements. Towards the right tail, for count values higher than 
about 1500, there are some breaks, showing that there may have been 
some patients without some prognostic parameter values in that range. 
For count values of about 1900, there seem to be more patients with a 
higher FCD4 counts than BCD4 counts; and there may not be patients 
with BCD4 counts above this value. Furthermore, there appears to be 

few patients with FCD4 counts slightly lower than their BCD4 counts at 
the lower tail, indicating poor immunological recovery. 

Suppressed viral load indicates good response to treatment/therapy 
or efficacy of the administered drugs. Viral load normal probability plots 
of the control dataset (Fig. 3a) show evidence of a much wider 
discrepancy between BRNA and FRNA copies. Particularly, for lower 
count values of FRNA below about 5.8, progressive improvements are 
noticed in the TCEs. Furthermore, no patient with evidence of BRNA 
values below 3.0 is found. The BRNA and FRNA copies patients are 
however found to be nearly identical for some count values towards the 
right tail; and at count values of approximately 6.0, there is a break on 
the BRNA and FRNA plots, showing evidence of patients with specified 
RNA values not beyond 6.0. From the viral load normal probability plots 
of the mixed dataset (Fig. 3b), it is obvious that there is a wide 
discrepancy between FRNA copies exceeding their corresponding BRNA 
copies, indicating evidence of suppressive therapy. The discrepancy 
appears to be much wider for RNA copies from about 1.8 to 6.0, hence, 
narrowing down towards the right tail of the plot. There also appears to 
be some patients with BRNA values at the right tail with no corre
sponding FRNA values. Similarly, towards the left tail, a couple of FRNA 
values with no corresponding BRNA values is observed. The much de
viation of the FRNA plot from the central line shows the presence of 

Fig. 2. Normal probability plots visualizing CD4 counts in the control and mixed datasets.  

Fig. 3. Normal probability plots visualizing viral loads in the control and mixed datasets.  
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many outliers, as such, patients with FRNA values of higher than about 
3.5 tend to deviate from the mean (below the average). Consequently, 
patients with BRNA values of above 1.8 tend to be close to the average, 
as the plots do not deviate much from the center. 

4.3. Classification target labeling of patient response 

For the control and mixed datasets, inputs to our classification al
gorithms include (i) prognostic markers processed from the Stanford 
resistance dataset and medical records of patients from a mixed dataset, 
respectively; and (ii) patients’ response to drug regimens derived from 
output membership grades of an interval type-2 fuzzy logic (IT2FL) 
system [48,49]. The classification target is segmented into five output 
classes, C1–C5 (C1=NI: no interaction, C2=VLI: very low interaction, 
C3 = LI: low interaction; C4=HI: high interaction; C5=VHI: very high 
interaction). On Table 4 and Table 5, a list of the first 15 patients from 
both datasets is provided to aid readers understanding of the class la
beling. Table 6 shows an analysis of the extent of immunological and 
virologic changes obtained from both datasets. 

5. Proposed system model 

5.1. Neural network algorithm 

Suppose that a network has L layers, with layers 1 and L being the 
input and output layers, respectively. Suppose that layer l : l = 1,2, 3,… 
, L contains nl neurons, where n1 is the dimension of the input data. 
Generally, the network maps from Rn1 to RnL ; and we denote W[l] ∈

Rnl×nl− 1 as the weights’ matrix at layer l. Precisely, w[l]
jk is the weight that 

neuron j at layer l applies to the output from neuron k at layer l − 1. 
Similarly, b[l] ∈ Rnl is the vector of biases for layer l, so neuron j at layer l 
uses the bias b[l]j . In this paper, our experiment architectures are the 
traditional 2 layers NN, and 5 layers deep neural network (DNN) with 
neurons distribution obeying an odd number dropout fashion as follows: 
NN [32], NN [53] and DNN [9 7 5 3 1]. These architecture configura
tions and their connecting nodes with a sample weight highlighted, are 
presented in Fig. 4. The defined parameters are given as follows: For NN 
[32], L = 2; n1 = 3,n2 = 2.For NN [53], L = 2; n1 = 5, n2 = 3. For DNN 
[9 7 5 3 1], L = 5; n1 = 9, n2 = 7, n3 = 5, n4 = 3, n5 = 1. Hence, the 
weights and corresponding biases matrices at various layers of these 
architectures are given as follows:  

(a) W[2] ∈ R2×3, b[2] ∈ R2;  
(b) W[2] ∈ R2×3, b[2] ∈ R2  

(c) W[2] ∈ R7×9, W[3] ∈ R9×7, W[4] ∈ R7×5, W[5] ∈ R1×3, b[2] ∈ R7, 
b[3] ∈ R9, b[4] ∈ R7, b[5] ∈ R1.

Given an input x ∈ Rn1 , the action of the network can be neatly 
summarized by letting o[l] denote the output, or activation, from neuron j 
at layer l. So, we have: 

o[1] = x ∈ Rn1 , (1)  

o[l] = σ
(
W [l]o[l− 1] + b[l])∈Rnl , for l= 1, 2, 3,…, L. (2) 

It becomes clear that (1) and (2) represent an algorithm for feeding 
input data through the network in order to produce the output o[l] ∈ RnL ; 
and is required in any approach for training a network. For N data 
samples or training points in {x{i}}

N
i=1 ∈ RnL , the target outputs are 

{y(x{i})}
N
i=1 ∈ RnL . A total of 8948 TCEs (i.e., combined TCEs of the 

control dataset: 5780 samples plus TCEs of the mixed dataset: 3168 
samples) were used in the classification tasks, save the DNN2 [9 7 5 3 1] 
classifier, which used only TCEs of those at risk of drug interaction (i.e., 
HI and VHI) in the mixed dataset. But while the traditional machine 
learning approach randomly partitions the entire datasets according to a 
75%-train, 15%-validation, and 15%-test ratio with a safe finetune of 
the network to maintain acceptable validation errors; the transfer 
learning approach strictly preserves the mixed dataset for test purposes 
only, while splitting the control dataset into 85%-train and 15%-vali
dation ratio. 

The activation function adopted in this paper is the rectified linear 
unit (ReLU) function, which has become the most widely used activation 
function for neural networks especially in convolutional neural net
works (CNNs). It is said to be a universal function approximation, and is 
defined as: 

ϕ(X)=
{

x; x > 0
0; otherwise. (3) 

ReLU provides a solution to the vanishing gradient problem (a con
dition that prevents a network to learn further or become drastically 
slow due to extremely low values) with identity derivative. 

5.2. Transfer learning algorithm 

Our transfer learning algorithm is transductive and is described 

Table 4 
Input linguistic variables and target classes for control dataset.  

Input linguistic variable Target class 

PID BCD4 FCD4 BRNA FRNA DType PR C1 C2 C3 C4 C5 

1 380 337 5.1 5.1 3 TC + D4T + IDV + RTV 33.25 0 1 0 0 0 
2 39 65 5.3 5.5 D4T + RTV + SQV 30.00 1 0 0 0 0 
3 86 58 5.1 5.2 3 TC + FPV + RTV + T20 30.00 1 0 0 0 0 
4 59 49 4.7 4.9 3 TC + AZT + NFV 30.00 1 0 0 0 0 
5 35 33 4.6 4.5 3 TC + ABC + AZT + RTV + SQV + T20 + TDF 30.00 1 0 0 0 0 
6 86 113 5.3 2.7 ABC + AZT + EFV + RTV + SQV 44.82 0 1 0 0 0 
7 144 104 4.7 2.3 3 TC + ABC + D4T 50.00 0 1 0 0 0 
8 114 98 3.7 4.7 DDI + RTV + SQV 30.00 0 1 0 0 0 
9 388 331 4.5 3.5 3 TC + D4T + NFV 33.81 0 0 1 0 0 
10 790 444 4 2.9 3 TC + D4T + NFV 59.61 0 0 0 0 1 
11 78 73 5 4.9 3 TC + ABC + EFV + NFV 30.00 1 0 0 0 0 
12 114 110 4.3 4.6 3 TC + DDI + LPV + T20 + TDF 30.00 1 0 0 0 0 
13 276 239 3.4 3 3 TC + D4T + RTV + SQV 43.13 0 0 1 0 0 
14 56 125 5.4 5.1 3 TC + ABC + NFV 30.00 1 0 0 0 0 
15 68 18 5.9 5.6 ABC + EFV + RTV + SQV 30.00 1 0 0 0 0 
16 11 21 5.9 5 D4T + DDI + EFV 30.00 1 0 0 0 0 
17 151 168 4 4.6 D4T + IDV + RTV 30.00 0 1 0 0 0 
18 115 148 5.4 2.9 3 TC + AZT + RTV + SQV 41.07 0 1 0 0 0 
19 209 382 5.1 4.5 3 TC + RTV + SQV 33.38 0 1 0 0 0 
20 190 211 4.3 3.1 3 TC + APV + D4T + DDI + RTV 37.97 0 1 0 0 0  
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within the context of the problem as follows: 
Let F = {(x1 , y1 ),…, (xm , ym )} and T = {t1 , …, tr }, be the target 

training and target testing sets, respectively. In this case, the target 
training set is the control dataset and contains individual TCEs of pa
tients who failed treatment; and the target testing set is the mixed 
dataset, which contain individual TCEs of patients on first-line treatment 
(i.e., contains patients with failed and successful/improved treatment). 
Note that both datasets are clustered by patient’s response to treat
ment–into five target classes C1–C5, using [48]. In the target training 
set, xi ∈ Rp is the ith target training exemplar with p features or prog
nostic markers plus drug combinations; yi ∈ R is the corresponding label 
of xi, representing patient’s response to treatment. Similarly, ti ∈ Rp is 
the ith target testing exemplar with p features of the mixed datasets. The 
target training set and target testing set are considered disjoint, where m 
and r are the numbers of training and testing examples, respectively, in 
the target task. There exists a set of isolated patients S = {(s1 ,u1 ),…,(sf ,

uf )}, with improved treatments sieved from the control dataset; where 
si ∈ Rn is the ith example (i.e., TCEs of optimal drug combinations) with 
n prognostic markers and drug combinations (or features); ui ∈ R is the 
corresponding label of si; and n, the number of features in the isolated 

Table 5 
Input linguistic variables and target classes for mixed dataset.  

Input linguistic variable Target class 

PID CD4_B CD4_F VL_B VL_F Dr_T PR Sex BWt FWt C1 C2 C3 C4 C5 

1 148 106 3 1.3 TDF+3 TC + EFV 53.56 F 42 43 0 0 1 0 0 
2 145 378 2.5 1.3 AZT+3 TC + NVP 55.33 F 57 60 0 0 0 1 0 
3 78 131 4.1 1.7 AZT+3 TC + NVP 50 M 70 75 0 1 0 0 0 
4 295 574 4.4 1.9 AZT+3 TC + NVP 50 M 64 66 0 0 1 0 0 
5 397 792 1.9 1.3 AZT+3 TC + NVP 76 F 52 55 0 0 0 0 1 
6 155 280 4.2 1.7 TDF+3 TC + EFV 50 F 59 56 0 1 0 0 0 
7 303 679 4.2 1.3 AZT+3 TC + NVP 53.68 F 62 60 0 0 1 0 0 
8 370 615 5.1 1.7 TDF+3 TC + EFV 52.62 M 78 68 0 0 0 1 0 
9 210 242 5.1 4.1 AZT+3 TC + NVP 30 F 82 82 1 0 0 0 0 
10 120 278 2.7 1.7 AZT+3 TC + NVP 50 M 85 80 0 0 1 0 0 
11 450 347 3.1 1.3 TDF+3 TC + EFV 57.78 M 48 50 0 0 0 1 0 
12 365 302 3 1.5 AZT+3 TC + NVP 52.62 F 50 52 0 0 0 1 0 
13 450 500 4.1 2.5 TDF+3 TC + EFV 63.2 M 60 60 0 0 0 1 0 
14 198 324 5.1 1.8 TDF+3 TC + EFV 50 F 48 50 0 1 0 0 0 
15 254 631 4.1 1.7 TDF+3 TC + EFV 50 M 70 73 0 0 1 0 0 
16 265 654 4.2 1.7 AZT+3 TC + EFV 50 M 77 77 0 0 1 0 0 
17 432 765 4.1 1.9 TDF+3 TC + EFV 58.29 M 60 60 0 0 0 1 0 
18 584 652 4.3 2.1 AZT+3 TC + EFV 71 F 57 59 0 0 0 1 0 
19 280 584 3.2 1.3 AZT+3 TC + EFV 55.33 M 60 62 0 0 0 1 0 
20 287 110 4.2 4.6 AZT+3 TC + NVP 30 M 57 59 1 0 0 0 0  

Table 6 
Immunological and virologic changes in experiment dataset.  

Metric/measure Statistic 

Stanford Akwa- 
Ibom 

Total number of unique patients with TCEs>2 (total 
TCEs) 

1490 
(5780) 

1056 
(3168) 

Total number of drugs administered 24 5 
Total number of drug combinations 559 5 
Patients with improved immunity (FCD4>BCD4) 1046 894 
% of patients with improved immunity 68.91 84.66 
Patients with FRNA < BRNA (total TCEs) 1248 

(4774) 
897 
(2691) 

Patients with improved RNA ([BRNA-FRNA] ≤ 0.5), 
(total TCEs) 

1085 
(4171) 

821 
(2463) 

% RNA decrease (≤0.5) 71.48 77.75 
% RNA increase (>0.5) 28.52 22.25 
Unique drug combinations that yield improved 

treatment (i.e., with [BRNA-FRNA] ≤ 0.5) 
446 5 

Ineffective drugs combination 106 0  

Fig. 4. Experimented NN architectures. The edges corresponding to the weights W[2]
32 , W[3]

53 and W[7]
97 are highlighted.  
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dataset, is different from p, the number of features in the target task. Our 
goal is to optimally predict alternative/new drug combinations or per
formance on the target testing set T (of the target task) via learning an 
accurate model using the isolated set S and the target training set F. The 
target testing set T is known at training time, such that the learning 
algorithm is fully aware of which exemplars it will be evaluated on after 
the training. This is a great asset to the algorithm, as it enables it to shape 
its decision function to match and exploit properties found in T – a 
special case of semi-supervised learning in which S = T. 

A 4-step process workflow implementing the proposed approach is 
presented in Fig. 5. In the first step, the target training set and isolated 
datasets are preprocessed to eliminate outliers and inconsistencies in the 
TCEs. To remove outliers, a data normalization procedure is adopted in 
this paper. To eliminate inconsistencies, a fuzzy-logic system [48,49] is 
implemented. The outcome is a normalized and consistent data with 
non-fuzzy patient response. In the second step, TCEs of the target 
training set are clustered according to the potential risk of failed treat
ments. A clustered dataset with optimized TCEs is obtained as a result. In 
step 3, a learning algorithm is applied to learn the model, and the ob
tained model used to predict new drug combinations for patients with 

failed treatment (step 4). To quicken the computation process, there is 
the need to repurpose the trained model given the similarities in 
parameters/features of both datasets. Since a pre-trained model already 
exists, there is no need retraining the model from the scratch, but rather 
deploying this model on the new dataset with a new task for isolating 
patients with failed treatment. TCEs with high similarity measures are 
then matched to locate patients requiring new drug combinations. 

6. Results and discussion 

6.1. Visualization of classification performance 

MATLAB 2020a was used to develop the necessary classification 
models. Confusion matrices were then generated to visualize the system 
performance. The overall confusion matrices in Fig. 6 and Fig. 7., show 
the performance of traditional machine learning and transfer learning 
approaches, respectively. In these matrices, rows correspond to the 
predicted or output class, while columns correspond to the true or target 
class. The diagonal cells indicate correctly classified observations while 
the off-diagonal cells correspond to misclassified observations. The 

Fig. 5. Process workflow implementing the proposed approach.  
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Fig. 6. Confusion matrices for traditional machine learning approach.  
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columns on the far right show the percentage of all samples predicted to 
belong to each class that are correctly and incorrectly classified, often 
called ‘precision’, i.e.: TP/(TP + FP), where TP is the true positive and 
FP is the false positive. The rows at the bottom show the percentage of 

all samples belonging to each class that are correctly and incorrectly 
classified, often called ‘recall’, i.e.: TP/(TP + FN), where FN is the false 
negative. 

In Fig. 6, classification results of the traditional machine learning 

Fig. 7. Confusion matrices for transfer learning approach.  
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approach across different network architectures are presented. It is 
observed that the DNN1 [9 7 5 3 1] configuration, which combines TCEs 
of control and mixed datasets correctly classified cases of patients 
response to drug regimens as follows: No Interaction {1011 (11.3%)}, 
Very Low Interaction {1615 (18.0%)}, Low Interaction {2239 (25.0%)}, 
High Interaction {2127 (23.8%)} and Very High Interaction {1748 
(19.5%)}, representing about 97.7% of the overall classification per
formance; while the DNN2 [9 7 5 3 1] configuration, which used only 
TCEs of those at risk of drug interaction (i.e., High Interaction and Very 
High Interaction) as mixed dataset correctly classified patients response 
to drug regimens as follows: No Interaction {1011 (16.7%)}, Very Low 
Interaction {1633 (27.0%)}, Low Interaction {1515 (25.0%)}, High 
Interaction {944 (15.6%)} and Very High Interaction {882 (19.5%)} 
representing about 98.9% of the overall classification performance. 

In Fig. 7, results of classification performance of transfer learning 
approach indicate that the DNN1 [9 7 5 3 1] configuration correctly 
classified patients response to drug regimens as follows: No Interaction 
{1011 (11.3%)}, Very Low Interaction {1611 (18.0%)}, Low Interaction 
{2213 (24.7%)}, High Interaction {2212 (24.7%)} and Very High 
Interaction {1779 (19.9%)} representing about 98.6% of the overall 
classification performance; while the DNN2 [9 7 5 3 1] configuration 
correctly classified patients response to drug regimens as follows: No 
Interaction {1011 (16.7%)}, Very Low Interaction {1640 (27.1%)}, Low 
Interaction {1531 (25.3%)}, High Interaction {954 (15.8%)} and Very 
High Interaction {878 (14.5%)}, representing 99.4% of the overall 
classification performance. 

Visualizations of the receiver operating characteristic (ROC) curves 
for the traditional machine learning and transfer learning approaches 
are presented in Fig. 8 and Fig. 9, respectively. ROC curves show the 
trade-offs between sensitivity (or true positive rate: TPR) and specificity 
(1 − [false ​ positive ​ rate: FPR]). Classifiers which curves are neatly 
aligned to the top-left corner of the plot indicate better performing 
classifiers. On the average, better the DNN classifier variants showed 
better performance, with the HI and VHI curves aligning more closely to 
the top-left corner of the plots, indicating the robustness of the classifiers 
at predicting patients at risk of drug interaction or with high and very 
high interaction response to drug regimens. 

6.2. Network performance evaluation 

In this section, results of both classification approaches and how well 
they generalize across new datasets are evaluated for the neural network 
architectures considered in this study. Table 7 shows a summary of the 
root mean squared error (RMSE) and other classification metrics 

computed from the confusion matrices obtained in Figs. 7 and 8. (i.e., 
classification accuracy, precision, recall and F1-measure/score). From 
these results, a general improvement is observed as the number of 
neurons increases, but better performance when the DNN architecture 
was deployed. As the number of neurons in the 2-layer NN increases 
from Refs. [32–53], appreciable improvements in RMSE test perfor
mances were obtained for the traditional machine learning approach 
([32] = 0.2530 [53], = 0.1044) and transfer learning approach ([32] =
0.2045 [53], = 0.1625); compared to the RMSE train performances 
obtained from traditional machine learning approach ([32] = 0.2602 
[53], = 0.1040) and transfer learning approach ([32] = 0.2027 [53], =
0.1466). However, these results indicate not so good generalization or 
poor (regression) curve fitting, as the RMSE test results were slightly 
higher than the RMSE train results for both approaches, save the [53] 
configuration result of the traditional machine learning approach, which 
had a higher RMSE value. 

Generally, a test error is expectedly higher than a training error, but 
should not be significantly higher, otherwise, the model overfits and 
generalizes poorly. However, this notion is not completely universal, as 
our DNN architecture exhibit good generalizations. Hence, using tradi
tional machine learning approach, RMSE values of 0.0112 and 0.1861 
were obtained as test and train errors, respectively, for DNN1 [9 7 5 3 1] 
configuration, compared to DNN2 [9 7 5 3 1] configuration, which gave 
0.0102 and 0.0640 as RMSE values for test and train errors, respectively. 
Similarly, using transfer learning approach, RMSE values of 0.0082 and 
0.0566 were obtained as test and train errors, respectively, for DNN1 [9 
7 5 3 1] configuration, compared to DNN2 [9 7 5 3 1] configuration, 
which gave 0.0056 and 0.0510 as RMSE values for test and train errors, 
respectively. 

Table 8 compares our approach with state-of-the-art literature. 
Observe that the transfer learning approach gave the best classification 
accuracy, but its recall rate is slightly lower than [48]. Although 
imbalanced features classification is typical of disease problems and 
diminishes dependence on accuracy as a good measure for assessing 
models’ performance, the proposed system still compares favorably with 
the literature and can be hybridized to improve its precision and recall 
rates. 

6.3. Scientific implications of the research and study limitation 

Instead of estimating relative risk of patients using generalized 
linear/logistic regression or statistical models [29,36–42], we employ 
machine learning approach to model fitting, by training a fraction of the 
datasets with the model and then validating the trained datasets before 

Fig. 8. ROC curves for traditional machine learning method.  
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testing the predicted values. The scientific implication of this approach 
is to aid manage the tradeoff between the variance (how much the model 
changes in response to the training data) and the bias (the strength of 
assumptions made about the data). By validating the training data, we 
can discover cases of underfitting or overfitting, or simply put, a 
degraded model performance, which can be fine-tuned further, using 
regularization techniques. Cross-validation (the process where data is 
split into different subsets) is an excellent way of dealing with this 
defect. The availability of control and experiment datasets can guide 
further tuning of the variance and bias in response to the training data 
(for better generalization). This is opposed to the deduced inference 
supported by statistical models without verifiable datasets. Control and 
experiment datasets also have positive consequence for advancing the 

progress in HIV/AIDS research, as cases of under estimation or over 
estimation can easily be quelled to avoid false alarms. Soft computing 
methods are therefore necessary for evaluating discovered patterns in 
datasets with potentials of increased accuracy and performance. In this 
paper, patterns were easily established and preserved from clinical trial 
datasets compared to medical images, which to a great extent may 
render unexpected outliers due to low quality or distortions. Sparsity of 
non-image datasets such as HIV may yield poor generalization of find
ings, because many samples-initiated ART data are at advanced stages of 
HIV due to resource-limited situation, comorbidity, mortality, and viral 
transmission. To evaluate new drugs with no known interaction, the 
labeled datasets could be modeled to recognize drug patterns with 
improved therapy and use this knowledge to discern unknown 

Fig. 9. ROC curves for transfer learning method.  

Table 7 
Summary of performance metrics.  

Performance Metric Traditional Machine Learning Approach Transfer Learning Approach  

NN [32] NN [53] DNN1 [9 7 5 3 1] DNN2 [9 7 5 3 1] NN [32] NN [53] DNN1 [9 7 5 3 1] DNN2 [9 7 5 3 1] 

RMSE Training 0.2602 0.1040 0.1861 0.0640 0.2027 0.1466 0.0566 0.0510 
Validation 0.2648 0.1145 0.1100 0.0686 0.2007 0.1546 0.0768 0.0520 
Testing 0.2530 0.1044 0.0112 0.0102 0.2045 0.1652 0.0082 0.0056 
Overall 0.2593 0.1076 0.1024 0.0476 0.2032 0.1543 0.0472 0.0362 

Classification Accuracy (%) 74.50 96.80 97.10 98.90 85.70 92.60 98.60 99.40 
Precision 0.7566 0.9680 0.9776 0.9876 0.8686 0.9336 0.9846 0.9936 
Recall 0.7430 0.9610 0.9796 0.9906 0.8756 0.9350 0.9880 0.9946 
F1-Score 0.7448 0.9645 0.9786 0.9891 0.8721 0.9343 0.9863 0.9941  

Table 8 
Comparison of proposed model with previous related works.  

Reference Method; Drug Type; Data(sets) Precision Recall F1- 
Score 

Classification 
Accuracy (%) 

RMSE 

[42] Fuzzy-Multidimensional Deep learning; HIV drugs; Control dataset; 1521 unique patient 
records. 

0.9889 0.9919 0.9904 97.00 0.1153 

[42] Fuzzy-Multidimensional Deep learning; HIV drugs; Mixed dataset; 1301 unique patient 
records. 

0.9974 0.9984 0.9979 98.87 0.0616 

[43] Hybrid technique (fuzzy logic, least squares optimization, NN); HIV drugs; Control dataset; 
1527 unique patient records. 

– – 9.8920 98.90 1.83 

[43] Hybrid technique (fuzzy logic, least squares optimization, NN); HIV drugs; Mixed dataset; 
1056 unique patient records. 

– – 9.6780 98.40 1.10 

Shtar et al. 
[59] 

Adjacency matrix factorization (AMF) and Adjacency matrix factorization with propagation 
(AMFP); HIV drugs; DrugBank; 1440 drugs and 248 drug–drug interactions. 

– – – 56.00 – 

This Study Traditional machine learning DNN2 [9 7 5 3 1]; HIV drugs 0.9876 0.9906 0.9891 98.90 0.0473 
This Study Transfer learning DNN2 [9 7 5 3 1]; HIV drugs 0.9936 0.9946 0.9941 99.40 0.0362  
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interactions. 
The proposed approach can only predict known (test) set of learned 

domain-specific datasets or feature-space and cannot adapt to domain 
features outside the input datasets. Sparse training dataset constitute 
another limitation of this study. Although limited datasets have always 
hindered the need for training data, methods such as transfer learning, 
online learning and the use of high-fidelity models have evolved to 
generate inexpensive datasets [58]. 

7. Conclusion and future research direction 

Although ingenious and active ART have been the effectual measure 
for mitigating associative risk of HIV infection, treatment failure is 
inevitable, as prescribed drug regimens do not achieve maximal thera
peutic effect. To a large extent, this challenge inhibits the proper man
agement of HIV/AIDS patients and remains a major health burden in 
low- and medium-income countries. Factors that can cause treatment 
failure in ART include drug resistance, drug toxicity, poor or non- 
adherence to therapy, and late discovery of HIV status leading to the 
late initiation of treatment. Knowledge on these factors is therefore 
required by clinicians to make better decisions about patient diagnosis 
and treatment options, while understanding the possible outcomes and 
cost for each one. The value of machine learning is in its ability to learn 
experiential knowledge from existing datasets using nature-inspired al
gorithms, and then reliably convert the resulting analysis into clinical 
insights, ultimately producing better outcomes, lowered costs of care, 
and increased patient satisfaction. Using existing HIV datasets coded by 
experienced domain experts; machine learning methods could learn 
patterns associated with treatment failure, HIV risk, patient behavior, 
etc. Major outcomes of machine learning in healthcare include optimal 
clinical trials and new treatment options that have prolonged the lives of 
patients. 

This paper has proposed a machine learning approach for the clas
sification of failed treatment in mixed HIV dataset. Using supervised 
deep transductive-transfer learning, higher accuracy and generalization 
of the model were obtained compared to traditional machine learning. 
Our transfer learning approach maintained high accuracy and reduced 
performance errors for the DNN model architecture–indicating accept
able isolation of failed cases and good model generalization compared to 
the NN model architecture. Although convolutional learning models 
used in mining medical images are found to outsmart other state-of-the- 
art models [44], they perform poorly with limited (image) datasets, and 
are largely unsupervised. Furthermore, tuning of the available data into 
image-like structure is required. A future direction of this paper is the 
deployment of our proposed model as an expert system, for early and 
efficient detection of failed treatment and effectual drugs regimen pre
scription to patients on ART. 
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[53] Deniz E, Şengür A, Kadiroğlu Z, Guo Y, Bajaj V, Ü Budak. Transfer learning based 
histopathologic image classification for breast cancer detection. Health Inf Sci Syst 
2018;6(1):1–7. https://doi.org/10.1007/s13755-018-0057-x. 

[54] Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S. 
Multisource transfer learning with convolutional neural networks for lung pattern 
analysis. IEEE J Biomed Health Informat 2016;21(1):76–84. https://doi.org/ 
10.1109/JBHI.2016.2636929. 

[55] Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in 
digital breast tomosynthesis: deep convolutional neural network with transfer 
learning from mammography. Med Phys 2016;43(12):6654–66. https://doi.org/ 
10.1118/1.4967345. 

[56] Li X, Pang T, Xiong B, Liu W, Liang P, Wang T, Li X, Pang T, Xiong B, Liu W, 
Liang P. Wang T. Convolutional neural networks based transfer learning for 
diabetic retinopathy fundus image classification. In: 2017 10th International 
Congress on Image and Signal Processing, BioMedical Engineering and Informatics 
(CISP-BMEI). IEEE; 2017. p. 1–11. https://doi.org/10.1109/CISP- 
BMEI.2017.8301998. 2017. 

[57] Turki T, Wei Z, Wang JT. Transfer learning approaches to improve drug sensitivity 
prediction in multiple myeloma patients. IEEE Access 2017;5:7381–93. https:// 
doi.org/10.1109/ACCESS.2017.2696523. 

[58] Li W, Gu S, Zhang X, Chen T. Transfer learning for process fault diagnosis: 
knowledge transfer from simulation to physical processes. Comput Chem Eng 
2020;139:106904. https://doi.org/10.1016/j.compchemeng.2020.106904. 

[59] Shtar G, Rokach L, Shapira B. Detecting drug–drug interactions using artificial 
neural networks and classic graph similarity measures. PloS One 2019;14(8):1–21. 
https://doi.org/10.1371/journal.pone.0219796. 

M.E. Ekpenyong et al.                                                                                                                                                                                                                          

https://doi.org/10.1097/01.qai.0000248351.10383.b7
https://doi.org/10.1186/s12981-020-0261-z
https://doi.org/10.1186/s12981-020-0261-z
https://doi.org/10.4258/hir.2017.23.4.271
https://doi.org/10.4258/hir.2017.23.4.271
https://doi.org/10.1086/420786
https://doi.org/10.1086/383572
https://doi.org/10.1371/journal.pone.0164299
https://doi.org/10.1371/journal.pone.0164299
https://doi.org/10.1093/cid/cis254
https://doi.org/10.1097/QAD.0b013e32832ac34e
https://doi.org/10.1371/journal.pone.0187694
https://doi.org/10.1186/s12865-019-0327-7
https://doi.org/10.1186/s12865-019-0327-7
https://doi.org/10.1186/s12879-019-4170-5
https://doi.org/10.1186/s12879-019-4170-5
https://doi.org/10.1093/ofid/ofw172.1248
https://doi.org/10.1093/ofid/ofw172.1248
https://doi.org/10.1155/2019/5165313
https://doi.org/10.1177/2050312120906076
https://doi.org/10.1177/2050312120906076
https://doi.org/10.1186/s12879-019-3924-4
https://bmjopen.bmj.com/content/8/4/e019181
https://bmjopen.bmj.com/content/8/4/e019181
https://doi.org/10.1155/2019/5165313
http://refhub.elsevier.com/S2352-9148(21)00058-7/sref45
http://refhub.elsevier.com/S2352-9148(21)00058-7/sref45
http://refhub.elsevier.com/S2352-9148(21)00058-7/sref45
http://refhub.elsevier.com/S2352-9148(21)00058-7/sref45
https://doi.org/10.1186/s12911-018-0659-x
https://doi.org/10.1186/s12911-018-0659-x
https://doi.org/10.1371/journal.pone.0211344
https://doi.org/10.1371/journal.pone.0211344
https://doi.org/10.1016/j.heliyon.2019.e02080
https://doi.org/10.1007/s00500-020-05024-1
https://doi.org/10.1117/1.JMI.3.3.034501
https://doi.org/10.1109/ISCAS.2016.7527433
https://doi.org/10.1109/ISCAS.2016.7527433
https://doi.org/10.1038/s41598-017-09315-w
https://doi.org/10.1038/s41598-017-09315-w
https://doi.org/10.1007/s13755-018-0057-x
https://doi.org/10.1109/JBHI.2016.2636929
https://doi.org/10.1109/JBHI.2016.2636929
https://doi.org/10.1118/1.4967345
https://doi.org/10.1118/1.4967345
https://doi.org/10.1109/CISP-BMEI.2017.8301998
https://doi.org/10.1109/CISP-BMEI.2017.8301998
https://doi.org/10.1109/ACCESS.2017.2696523
https://doi.org/10.1109/ACCESS.2017.2696523
https://doi.org/10.1016/j.compchemeng.2020.106904
https://doi.org/10.1371/journal.pone.0219796

	A transfer learning approach to drug resistance classification in mixed HIV dataset
	1 Introduction
	2 Specific objectives and contributions to knowledge
	3 Related works
	3.1 Statistical and computational approaches to HIV treatment failure: implications
	3.2 Transfer learning approach to disease prediction/classification: implications
	3.3 Research justification and impact

	4 Materials and method
	4.1 Description of the domain datasets
	4.2 Exploratory analysis of domain datasets
	4.3 Classification target labeling of patient response

	5 Proposed system model
	5.1 Neural network algorithm
	5.2 Transfer learning algorithm

	6 Results and discussion
	6.1 Visualization of classification performance
	6.2 Network performance evaluation
	6.3 Scientific implications of the research and study limitation

	7 Conclusion and future research direction
	Funding
	Declaration of competing interest
	Acknowledgments
	References


