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Abstract

This thesis assembles three published papers containing original research in the area of
regularization techniques for large-scale linear discrete inverse problems.

In order to present the natural framework of this thesis, a general introduction to large-
scale linear discrete inverse problems is given first, along with a brief description of the
nature of these problems that motivates the need for regularization. The review on back-
ground material, presented in Chapter 1, has not been written with the aim of being
exhaustive, but to provide a common setting for the work in Chapter 2, Chapter 3 and
Chapter 4. In fact, most of the content in Chapter 1 is presented in the correspond-
ing introductions of the papers included in Chapter 2 [GL20], Chapter 3 [GNL21] and
Chapter 4 [GL19], but it is presented in a slower pace, with illustrative examples and
more detailed explanations. In particular, Chapter 1 focuses on the description of Krylov
subspace methods and different variational regularization techniques that are suited for
recovering different desired properties of the inverse problem solution. Moreover, Chap-
ter 1 describes two canonical examples of linear imaging problems: image deblurring and
computed tomography. The rest of the thesis follows naturally from this general intro-
duction, as Chapter 2, Chapter 3 and Chapter 4 describe methods that combine Krylov
subspace methods with three different variational regularization schemes, and that are
tested on imaging problems. All chapters are rich in numerical examples to illustrate the
performance of the different regularization strategies studied in this thesis.

Chapter 2 includes the survey paper [GL20] on regularizing Krylov projection methods
and hybrid methods, which combine the use of Tikhonov regularization and Krylov sub-
space methods. Moreover, [GL20] addresses the difficulty of finding a good regularization
parameter for Tikhonov regularization, and presents a novel scheme based on bilevel op-
timization that interlaces iterations of standard parameter choice strategies with Krylov
iterations. In particular, when the discrepancy principle is used as the parameter choice
rule, [GL20] provides a theoretical proof of convergence of the solution computed using
the novel scheme to the Tikhonov solution with regularization parameter determined by
the discrepancy principle.

Chapter 3 includes paper [GNL21], that presents two new algorithms (IRW-FGMRES and
IRW-FLSQR) to compute sparse solutions of large-scale linear discrete inverse problems.
The new approach is based on finding a solution of a smooth approximation of the `2-`p
regularization problem, for 0 < p ≤ 1. This is achieved by constructing a sequence of
quadratic tangent majorants to a smooth approximation of the `2-`p problem, for 0 < p ≤
1, that are partially solved using flexible Krylov methods. Moreover, [GNL21] provides
a theoretical proof of convergence of the solutions computed using IRW-FGMRES and
IRW-FLSQR to the solution of the smooth approximation of the `2-`p problem.

Chapter 4 includes paper [GL19], that presents a new algorithm, TV-FGMRES, to com-
pute solutions to large-scale linear discrete inverse problems using total variation (TV)
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regularization. In the context of imaging problems, this scheme allows a good edge-
recovery in the approximated solution. Similarly to the strategy described in Chapter 3,
the non-smooth functional associated to TV regularization is approximated in this chapter
by a sequence of quadratic functionals. This leads to a sequence of quadratic minimization
problems that are partially solved using flexible Krylov methods and efficient implemen-
tation strategies.

Finally, Chapter 5 gives some last remarks and conclusions, as well as future possible
directions of work.
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Chapter 1

Background on regularization for
large-scale linear discrete inverse
problems

Inverse problems involve the reconstruction of a hidden object from some possibly noisy
measured data after it has been transformed by some forward process, so that the object
is just measured indirectly. In this thesis we will assume that the forward process is linear
and known. In particular, we will focus on discrete inverse problems arising from suitable
discretizations of Fredholm integral equations of the first kind, which arise in a variety
of scientific and engineering applications. We are interested in imaging problems and,
more specifically, in image deblurring problems (e.g, like those arising in astronomical
and biological applications) and computed tomography (e.g, used in medicine and also
in different applications in industry); for more details see [Han10, Vog02, HNO06, HH93,
EHN96] and the references therein. The problems we are interested in have two main
features that make them interesting yet challenging to solve. First, linear inverse problems
tend to be ill-posed, as the reconstructed solution is very sensitive to perturbations in the
measurements. Therefore, in order to obtain meaningful approximations to the original
solution, one must resource to regularization, i.e., replace the original problem with a
closely related problem that has better stability properties. Second, real-world applications
of inverse problems are often large-scale, resulting in very computationally demanding
tasks when the matrices involved do not have an exploitable structure. In this case,
the only feasible approach to recover a solution to the ill-posed large-scale linear inverse
problem is to apply an iterative solver.

In Section 1.1 an overview of linear inverse problems and their properties is given, with
the aim of describing their nature and motivating the need for regularization. Section
1.2 introduces two specific imaging problems, namely: image deblurring and computed
tomography, and describes common test problems in this setting. Section 1.4 introduces
different variational regularization schemes, where the regularized solution is computed
solving an optimization problem. Finally, Section 1.5 introduces iterative regularization
methods and dwells on classical and flexible Krylov methods for linear problems.
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1.1 Linear inverse ill-posed problems

Consider a general Fredholm integral equation of the first kind

(1.1)

∫

Ω
k(s, t)f(t)dt = g(s),

where s, t ∈ Ω ⊂ Rq, Ω is compact and Jordan measurable with positive measure and
k ∈ L2(Ω × Ω) is a known kernel that is associated to the underlying forward model (so
that the integral operator is compact [EHN96, Chapter 2]). Integral equations have a
smoothing effect on the measurements: components of f(t) with higher frequency will
appear damped in g(s) compared to components with lower frequency [Han10]. This
can be understood under the light of the Riemann-Lebesgue lemma, that states that if
f(t) = sin(2πpt) and p tends to infinity, then g(s) in (1.1) goes to zero for any kernel k(s, t)
with sufficient regularity [Han10]. Note that the smoothness of k(s, t) is related to the
severity of the dampening. For this reason, in the context of the inverse problems, where
g(s) is known and f(t) is the desired solution, the amplification in f(t) of high frequency
terms in g(s) is more severe when k(s, t) is smoother. In particular, noise components of
small amplitude but high frequency that might appear in g(s) will create large oscillations
in f(t).

Suitable discretizations of equation (1.1), e.g., quadrature (or collocation) methods and
expansion (or projection) methods [Han10, Section 3.1], lead to linear discrete inverse
problems of the form

(1.2) Ax = b, where A ∈ Rm×n, b ∈ Rm.

Here, x corresponds to a discretization of f(t) in the domain Ω. A is the matrix representa-
tion of the integral operator with the kernel k(s, t), which is usually of ill-determined rank
(i.e., the singular values of A decay and cluster at zero without an evident gap between
two consecutive ones). Finally, b is the vector of measurements corresponding to a dis-
cretization of g(s) (which is usually corrupted by some added noise e, so that b = btrue+e).
Note that, when analyzing linear discrete inverse problems of the form (1.2), we implicitly
assume that the discretization of the integral operator is sufficiently fine so as to, loosely
speaking, “inherit” the behaviour of the original continuous problem.

Although, for some inverse problems, A may be unknown, in this thesis we will always
assume both b and A are known, and we want to recover a good approximation of x. The
noise vector e is not known in (1.2) but for the algorithms presented in this thesis we will
assume that e can be well approximated by Gaussian white noise, i.e., the entries of the
vector e are uncorrelated and are sampled from a Gaussian distribution with zero mean
and the same variance. Note that this can be extended to the case of non-white Gaussian
noise, i.e., with covariance matrix Ce 6= I, using a procedure commonly referred to as
“whitening”. More details will be given in Section 1.4.

As it will be mentioned in the following sections and chapters, the choice of algorithms that
are appropriate to solve equation (1.2) is conditioned by the normality of the coefficient
matrix A, which for A square is defined as

ATA = AAT .

Note that non-square matrices cannot be normal, and that the coefficient matrix of the
normal equations associated to problem (1.2), i.e., ATA, is always normal.
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1.2 Imaging Problems

In this section two imaging problems that can be expressed in the general form (1.1) will
be introduced. In particular, the aim is to give a more detailed description of the main
examples used to test the performance of the new algorithms presented in the different
papers included in this thesis [GL19, GL20, GNL21]. These descriptions are not included
in the publications due to space constraints.

Although both problems will be introduced in the continuous framework dictated by equa-
tion (1.1), in practice we work with the discretized equation (1.2). In particular, square
gray-scale digital images can be represented by two-dimensional arrays X ∈ R

√
n×√n,

where
√
n is a scalar, whose entries capture the intensity of the signal at a given section

of the image, or pixel. Note that, for simplicity of the notation, we assume that all images
are square, but the results can be trivially generalized to non-square images. Although the
values of [X]i,j are usually quantized and stored as unsigned integers between 0 and 255,
we will convert them to double precision floating point in our computations. Typically,
images of either 256 × 256 or 512 × 512 pixels are used in the examples included in this
thesis. Note that, to obtain a linear system of the kind (1.2), a vectorized version of the
image, x ∈ Rn, is used, which can be obtained by stacking the columns of X so that

(1.3) xi = [X]k,l for i = (l − 1)
√
n+ k, l, k = 1, ...,

√
n.

Most of the test problems used in this thesis, as well as some of the general solvers used
to validate the presented algorithms, can be found in the MATLAB packages IR Tools
[GHN18] and Restore Tools [NPP].

For all the applications considered in this thesis, we will assume that the matrix A in
(1.2) is known (at least in the form of actions of A and sometimes AT on vectors). In the
synthetic examples used in this thesis, we will also consider the exact solution xexact to be
known, so that the reconstruction error can be monitored for different solvers. Although
the exact right-hand side bexact could be easily obtained as bexact = Axexact, this situation
is unrealistic. Indeed, the assumption that the model used to compute the reconstruction
x is the same model that has been used to generate the measurements b, is usually known
as “inverse crime” [Han10, Chapter 7.2]. To avoid this situation, and generate a more
realistic problem, some test data are generated with a slightly different A (for example,
deblurring examples in IR Tools [GHN18] might employ different boundary conditions for
the forward and the inverse problems). Finally, the noise corrupting the measurements is
considered to have a noise level nl = ‖e‖2/‖btrue‖2, or, equivalently, a signal to noise ratio
SNR = 20 log10(‖btrue‖2/‖e‖2); and the entries of e in (1.2) are drawn from uncorrelated
Gaussian distributions with zero mean and equal variances, i.e., Gaussian white noise.

1.2.1 Image Deblurring

Image deblurring consists of reconstructing digital images that have suffered from a blur-
ring process. This process often occurs inside the camera, usually because the camera
lens is out of focus, or because the object or the camera are moving while the picture is
being taken. There are also other situations in which we can find blur, for example in
astronomical imaging, where it can be caused by turbulence in the atmosphere. In this
framework, we will consider 2D problems where the blurring is a known process that is
either linear or can be well approximated by a linear operator.
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Image deblurring problems can be formulated in the general form (1.1), where the kernel
k(s, t) is a function that models how a single point in the image is distorted in the measure-
ments (i.e., how it is spread across its neighborhood), and it is usually referred to as point
spread function (PSF). When dealing with spatially-invariant blur, i.e., k(s, t) = k(s− t),
equation (1.1) reduces to a convolution. A couple of schematic examples of an image
deblurring problem of this kind can be found in Figures 1.1 and 1.2 .

Figure 1.1: Sketch of an image deblurring problem with ‘shake’ blur. We can observe a
representation of a PSF function being convoluted to the satellite image [GHN18], with
added white noise, to obtain a blurred noisy version of the image.

Figure 1.2: Sketch of an image deblurring problem with Gaussian blur. We can observe
a representation of a PSF function being convoluted to the satellite image [GHN18], with
added white noise, to obtain a blurred noisy version of the image.

In the following, we explain how the coefficient matrix A in (1.2) can be constructed in a
way that provides a good intuition on the structure of the matrix. This approach is given
in [HNO06, Chapter 3].

A discrete point source is an array Ek ∈ R
√
n×√n where all entries but one (with pixel

value of 1), are zero. In vectorized form, this corresponds to the canonical vector ek ∈ Rn
for 1 ≤ k ≤ n, where the point source is located at the pixel of Ek corresponding to the kth
component of ek. By definition, the discrete measurement of a point source after blurring
is given by the discrete PSF centered around the point source location; see Figure 1.3. If
we denote by Pk ∈ R

√
n×√n the PSF matrix corresponding to the blurred version of the

point source Ek, and by pk ∈ Rn its vectorized version, then the columns of the coefficient
matrix A can be constructed as

ak = Aek = pk,

where ak denotes the kth column of A. For example, when A represents a two dimensional
Gaussian blur (e.g., atmospheric blur) centered around the pixel of Ek corresponding to
the kth component of the vectorized image ek, then the PSF matrix Pk ∈ R

√
n×√n is

defined component-wise as
(1.4)

[Pk]ij = γ exp

(
−1

2

(
i− floor(k/

√
n) + 1

j −mod(k,
√
n)

)T (
s2

1 ρ2

ρ2 s2
2

)−1(
i− floor(k/

√
n) + 1

j −mod(k,
√
n)

))
,

where floor(c) is the greatest integer that is less than or equal to c and mod(c, d) is the
remainder after division of c by d. In (1.4) s1, s2 and ρ are parameters that define the
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orientation and width of the Gaussian PSF, and γ is a normalization constant so that the
sum of all the elements of Pk is 1.

Note that the behaviour of the pixels neighbouring the boundaries of a blurred image
cannot be fully determined using the model above, as the image is not measured outside
of its boundaries. One way of remedying this is to impose suitable boundary conditions,
i.e., assumptions on the unmeasured area surrounding the image. The three most classical
instances of this are zero, periodic and reflecting boundary conditions; see [HNO06, Section
3.5] and Figure 1.4. Those are also the three boundary condition options that are available
for deblurring problems in the IR Tools toolbox [GHN18] (at the date of writing). Other
more sophisticated and modern boundary conditions have been developed over the years
in order to avoid artifacts in the restored images, for example the anti-reflective boundary
conditions [DEMSC06]. As briefly stated in the introduction of this section, different
boundary conditions in the forward and inverse problems for synthetic examples can be
used to avoid committing an inverse crime.

(a) (b) (c)

Figure 1.3: Small Gaussian blur example with
√
n = 32. (a) corresponds to the image

of a point source in the central pixel of the image. (b) and (c) display two different
representations of the blurred image of the point source in (a); namely a discrete PSF
matrix.

We typically assume that the reconstructed image has the same number of pixels as the
measurement, so that, for spatially-invariant blurs, the matrix A ∈ Rn×n in (1.2) is a
square matrix defined by the PSF (describing the transformation of each of the pixels
through the blurring), and the boundary conditions. Particular choices of PSFs and
boundary conditions lead to different matrix structures for A, which can be exploited
directly or used to perform efficient matrix-vector products with A. Moreover, these
choices will determine the normality of the matrix A. For example, blurring matrices A
coming from a very skewed PSF (e.g., example in Figure 1.1) with reflexive boundary
conditions will be highly non-normal, while doubly-symmetric PSFs (e.g., example in
Figure 1.2) will lead to a normal A using the same boundary conditions; see [HNO06,
Chapter 4] for more details.

1.2.2 Computed Tomography

Computed tomography (CT) is an X-ray imaging technique that aims to reconstruct an
object from a set of projections, i.e., measurements obtained by the integration along
rays that penetrate a given domain in straight lines. In particular, computed tomography
problems can be formulated in the general form (1.1) where the domain Ω is rectangular,

10



(a) (b) (c)

Figure 1.4: Example of the three most common boundary conditions for image deblurring
problems applied to the satellite image [GHN18]: (a) reflective boundary conditions; (b)
zero boundary conditions; (c) periodic boundary conditions.

the unknown function f(t) represents the image of some material parameter such as the
density, and the kernel k(s, t) models the measurement process. For different position
angles between the source-detector set up and the object, a set of measurements is taken.
There are two main possible geometries for the measuring process at each angle. On the
one hand, if the rays are parallel (and usually equidistantly spaced) and the detector is flat,
we have parallel-beam tomography. This is the case in synchrotron X-ray measurements,
and, mathematically, this process corresponds to the Radon transform. On the other hand,
the measurements can be taken by a curved detector from a fan of X-rays coming from
a single point source (usually, with an equiangular span between the rays). This is the
case in many large medical X-ray scanners. A schematic example of a CT problem with
parallel-beam geometry can be observed in Figure 1.5, while a schematic example of the
corresponding measuring process can be observed in Figure 1.6. In particular, each column
of the sinogram in Figure 1.5 (right image), is constructed by a full set of projections along
parallel rays given a fixed position of the phantom (left image), in this case 362 horizontal
rays; and each row corresponds to the phantom being rotated by a small angle, in this
case by 180 different angles spanning from 0◦ to 179◦.

Figure 1.5: Sketch of a tomography problem. On the left, we can observe the original
Shepp Logan phantom image, available in the MATLAB Image Processing Toolbox [Mat].
The line crossing this image represents one ray. The measurements in the right-hand side
correspond to the projections over rays like the one depicted in the leftmost image, after
white noise has been added. Another sketch of the measurement process can be observed
in Figure 1.6. Note that the sizes of the image and the measurement are different.

To understand how A can be constructed, we consider a basic 2D model problem on the
square domain Ω = [0, 1]2. Starting from the integral equation (1.1), a discretization of
problem (1.1) can be achieved by considering Ω to be the space of

√
n×√n pixel arrays,

and f(t) to be piece-wise constant over every pixel. Each entry of the measurements vector

11



Figure 1.6: Schematic representation of the measuring process for an X-ray acquisition of
the Shepp-Logan phantom. Here, the horizontal (red) ray is generated from a source (red
circle) and propagates in the right direction. After penetrating the body, where it gets
partially absorbed, it is measured when it hits the receiver (vertical blue line). The profile
density on the right of the vertical line corresponds to the total amount of absorbed light in
each of the horizontal projections corresponding to rays parallel to the one depicted. The
density profile depicted on the right corresponds to one column of the sinogram displayed
in Figure 1.5, on the right. Image taken from [Sil].

b would then correspond to the measurement taken by a different ray, so that:

bj =
∑

k=1,...,
√
n

l=1,...,
√
n

fkl ·∆Lkl,j ,(1.5)

where ∆Lkl,j is the length of the section of the ray j in the pixel with coordinates (k, l),
and fkl is the value of the function f(t) in that pixel. Note that ∆Lkl,j is zero if the ray
j does not cross pixel (k, l), so in principle the sum in (1.5) can be very sparse. We can
then build the matrix A ∈ Rm×n in (1.2) as

[A]ji =





∆Lkl,j if ray j crosses the pixel with coordinates

(k, l) = (mod(i,
√
n), floor(i/

√
n) + 1)

0 otherwise

,

where floor(c) is the greatest integer that is less than or equal to c and mod(c, d) is the
remainder after division of c by d. Finally, the vector x ∈ Rn in (1.2) corresponds to the
vectorized image and it is defined component-wise as xi = fkl for i = (l − 1)

√
n+ k.

For further details, a good review of the mathematics behind tomography can be found
in [Han10], and some really didactic and interactive materials can be found in [Sil].

1.3 Why do we need regularization?

Linear inverse problems of the form (1.2) are often ill-posed in the sense of Hadamard
[Had52], i.e., they fulfill at least one of the following undesired properties:

• the problem does not have a solution,

• the problem does not have a unique solution,

• the solutions is very sensitive to small perturbations on the data.
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Sometimes, the difficulties associated to problems not having a unique solution, or not
having a solution at all, can be alleviated by re-writing the problem as an `2-norm mini-
mization

(1.6) min
x
‖Ax− b‖22,

also known as a least squares problem, or by adding additional constraints to the solution.
However, it is usually the case that problems of the form (1.2) satisfy the third property, so
that small perturbations in the measurements can be arbitrarily amplified in the recovered
solution. Therefore, the solutions obtained by straightforwardly solving the linear system
(1.2) or the least squares problem (1.6) are very frequently meaningless, and one needs
to use regularization, i.e., replace the original problem with a closely related one whose
solution is less sensitive to perturbations in the data.

To analyze linear discrete ill-posed problems of the form (1.2) one can resort, at least
theoretically, to the singular value decomposition (SVD) of A [GL96, Chapter 2], i.e.,

(1.7) A = Û Σ̂V̂ T ,

where the columns of the square orthogonal matrices Û = [û1, .., ûm] ∈ Rm×m and V̂ =
[v̂1, .., v̂n] ∈ Rn×n are the left and right singular vectors of A, and the diagonal elements
of the rectangular matrix Σ̂ = diag(σ̂1, ..., σ̂min{m,n}) ∈ Rm×n, σ̂i ≥ σ̂i+1 ≥ 0, are its
singular values. In the context of ill-posed problems, the singular values of A decay and
cluster at 0. If the decay of the singular values is exponential, problem (1.2) is said to be
severely ill-posed, whereas if the singular values have power decay, problem (1.2) is said
to be moderately or mildly ill-posed; see [Hof86, Chapter 2].

Given the exact measurement btrue = b − e, defined below equation (1.2), and assuming
Axtrue = btrue, the following equality holds:

(1.8) xtrue = A†btrue =

min{m,n}∑

i=1

ûTi btrue
σ̂i

v̂i,

where A† is the Moore-Penrose pseudoinverse of A [GL96, Chapter 5]. Since xtrue is well
defined, and the singular values of A decay and cluster at 0, the values of |ûTi btrue| need
to decay on average at least as fast as σ̂i. This is known as the discrete Picard condition
[Han90], and can be observed in Figure 1.7 for the problem introduced in Figure 1.2.

Consider now problem (1.2) where the measurements b are corrupted with some noise e.
Using the SVD of A, the unregularized solution to (1.2) can be computed as

(1.9) x = A†b =

min{m,n}∑

i=1

ûTi b

σ̂i
v̂i =

min{m,n}∑

i=1

ûTi btrue
σ̂i

v̂i +

min{m,n}∑

i=1

ûTi e

σ̂i
v̂i ,

where the second term on the right-hand side describes how the error in the measurements
propagates in the solution x. Note that this term dominates the solution if |ûTi e| does not
decay on average as fast as the singular values of A. For example, this is the case when e
is Gaussian white noise, as |ûTi e| is roughly constant; for more details see [Han10, Chapter
4] and the references therein. This behavior can be observed in Figure 1.8 where artificial
noise is added in the example shown in Figure 1.7 to simulate the effect described in
(1.9). A very powerful tool to obtain a meaningful approximation of the solution of the
unavailable noise-free linear system is regularization.
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Figure 1.7: Illustration of the discrete Picard condition for the noise-less version of the
deblurring problem presented in Figure 1.2 (i.e., in equation (1.2) we consider xexact and
bexact). In this example, A ∈ R65536×65536, but has an exploitable structure (namely, a
separable PSF) that allows for an easy computation of the SVD, see [HNO06] for more
details. (a) displays the values of |ûTi btrue| and σ̂i that appear in equation (1.8): it can be
observed how the values of |ûTi btrue| for i = 1, ..., n decay on average faster than σ̂i. (b)
displays xtrue, which fulfills equation (1.8).
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Figure 1.8: The noisy version of the problem depicted in Figure 1.2 , and whose noise-
less version is presented in Figure 1.7, fails the discrete Picard condition. Note that now
Gaussian white noise with nl = 0.01 perturbs the right-hand side. (a) displays the values
of |ûTi b| and σ̂i that appear in equation (1.9); it can be observed how the values of |ûTi b|
stabilize so they do not decay on average as fast as σ̂i. (b) displays x as computed in (1.9),
which is now completely dominated by the noise.

1.4 Direct methods and variational regularization

Direct regularization methods, i.e., those where the regularized solution can be computed
directly using an analytic expression, are conceptually the easiest approach to solving in-
verse problems; see [Han10] for more details. The two classical examples of direct methods
are truncated SVD (TSVD) and Tikhonov regularization. For the explanations in this sec-
tion, recall the definition of the SVD of A (1.7), where ûi (resp. v̂i) denote the left (resp.
right) singular vectors of A, and σ̂i are the singular values of A.
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The truncated SVD (TSVD) seeks a solution of the form:

(1.10) xtsvdk =

k�n∑

i=1

ûTi b

σ̂i
v̂i =

n∑

i=1

φi(k)ûTi b

σ̂i
v̂i , φi(k) =

{
1 for i ≤ k,
0 otherwise

.

Looking at the second equality in equation (1.10), we can observe that the TSVD solution
can be written in a similar form to equation (1.9), where a factor φi(k) that depends on
the truncation parameter k is multiplied in each of the terms of equation (1.9). Since
the basis given by the SVD can be considered a spectral basis [Han10, Section 2.1], the
TSVD method in expression (1.10) can be considered a spectral filtering method, and so
the scalars φi(k) are usually called filter factors. As an example, Figure 1.9 (b) displays
the TSVD reconstruction for the test problem in Figure 1.2, while Figure 1.9 (a) shows the
corresponding values of φi(k)|ûTi b| and σ̂i, which can be compared to the ones displayed in
Figure 1.8 (a). The truncation parameter k acts as a discrete regularization parameter for
TSVD, and therefore the choice of k determines the success of TSVD as a regularization
method. When solving an ill-posed problem, TSVD with k too small will produce an over-
regularized solution (with a big residual norm); while TSVD with k too big will produce
an under-regularized solution (with a big solution norm as the last factors in the sum
(1.10) for i ≤ k might satisfy the following undesired property: |ûTi b| >> σ̂i).
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Figure 1.9: Illustration corresponding to the TSVD method, with truncation parameter
k = 1695, applied to the deblurring problem presented in Figure 1.2 with nl = 0.01. (a)
displays the values of φi(k)|ûTi b| and σ̂i that appear in equation (1.10). It can be observed
how the values of |ûTi b| decay on average as fast as σ̂i for i ≤ k = 1695. (b) displays the
corresponding TSVD solution (1.10).

Tikhonov regularization is defined as:

(1.11) xT ikλ,L = arg min
x∈Rn

{ ‖Ax− b‖22 + λ ‖Lx‖22 } = (ATA+ λLTL)−1AT b , λ ≥ 0,

where L ∈ Rq×n is the regularization matrix and λ is the regularization parameter that
balances the effect of the fit-to-data term ‖Ax − b‖22 and the regularization term ‖Lx‖22.
The choice of L encourages desired known properties on the recovered solution by penaliz-
ing the norm of unwanted features arising in the product Lx. The most natural choices for
L are either the identity matrix, which penalizes a big solution norm (and problem (1.11)
is said to be in standard form), or a discrete approximation to a derivative operator. Since
high frequency components are magnified with differentiation, choosing the regularization
matrix to be a discrete approximation to a derivative operator penalizes high frequency
components, thus promoting smoother solutions [HNO06, Chapter 7]. Note that, when
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L ∈ Rq×n is a discrete approximation to a derivative operator of order o in d dimensions,
q = d(n−o), so that the properties of problem (1.11), and suitable implementation strate-
gies to solve (1.11), heavily depend on the number of dimensions of the problem. We will
assume that L is chosen so that N (A) ∩N (L) = {0}, where N (B) denotes the null space
of a matrix B, so that problem (1.11) has a unique solution and the closed form expression
after the second equality in (1.11) is well defined. Analogously to the choice of a good
truncation parameter k in the TSVD, the choice of a good regularization parameter λ is
crucial for the success of Tikhonov regularization (1.11). When solving an ill-posed prob-
lem, Tikhonov regularization with λ too big produces over-regularized solutions (with a
big discrepancy in the fit-to-data term), while Tikhonov regularization with λ too small
produces under-regularized solutions (with a big solution norm). Chapter 2 offers a review
of existing parameter choice rules for large-scale problems and presents a new framework
to obtain a good regularization parameter λ in the context of Krylov projection methods.
More specifically, this is presented in the paper [GL20] included in this thesis.

Tikhonov regularization is a spectral filtering method. Analogously to TSVD, and for
L = I, equation (1.11) can be re-written in a similar form to (1.9):

(1.12) xT ikλ,I =

n∑

i=1

φi(λ)ûTi b

σ̂i
v̂i, φi(λ) =

σ̂2
i

σ̂2
i + λ

≤ 1.

An example of this method can be observed in Figure 1.10. Note that equation (1.12) can
be generalized to L 6= I using the generalized SVD (GSVD) of the matrix pair {A, L}
[GVL96]. Tikhonov problems in general form, i.e., when L 6= I, can also be approached
by performing a standard form transformation to (1.11); see [Eld82]. Indeed, using the
A-weighted pseudoinverse of L,

L†A = [I − (A(I − L†L))†A]L† ∈ Rn×q,

the solution xT ikλ,L to equation (1.11) can be decomposed as the sum of a vector x0,L ∈
N (L) and a vector in the range of L†A, so that xT ikλ,L = L†Ax̄

T ik
λ,L + x0,L. Considering the

transformations Ā = AL†A and b̄ = b − Ax0,L, (1.11) can be equivalently re-written as a
standard form Tikhonov problem:

x̄Tikλ,L = arg min
x̄∈Rn

{
∥∥Āx̄− b̄

∥∥2

2
+ λ ‖x̄‖22 }, xT ikλ,L = L†Ax̄

T ik
λ,L + x0,L,

where x0,L = (A(I − L†L))†b. This approach is extensively used in the papers [GL20]
and [GL19], included in Chapter 2 and 3 respectively. Note that, when L is square and

non-singular L†A = L−1 and x0,L = 0; also, when q ≥ n and L ∈ Rq×n is full-rank, then

L†A = L† and x0,L = 0.

Tikhonov regularization as defined in (1.11) has a limited performance. For example, since
using 2-norm regularization terms promotes a smooth solution, Tikhonov regularization
will have a poor performance when the exact solution xtrue has non-smooth components,
e.g., xtrue is an image displaying sharp edges or xtrue is sparse. For more details see,
e.g., [Han10, Section 8.6] or [Vog02, Section 1.2]. Therefore, we consider more advanced
regularization schemes that incorporate knowledge about the object that we want to recon-
struct or the noise in the measurements. We focus on variational regularization methods
for (1.2) [SGG+08, Chapter 3], which can be written in the following general form

(1.13) min
x∈Rn
{ρ(Ax, b) + λR(x)}, λ ≥ 0,
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Figure 1.10: Illustration corresponding to the Tikhonov method in standard form, with
λ = 8.4 · 10−4, applied to the deblurring problem presented in Figure 1.2 with nl = 0.01.
(a) displays the values of φi(λ)|ûTi b| and σ̂i that appear in equation (1.12). It can be
observed how the values of φi(λ)|ûTi b| decay on average faster than σ̂i. (b) displays the
corresponding Tikhonov solution (1.12).

where, as in (1.11), the regularization parameter λ balances the effect of the fit-to-data
term ρ(Ax, b), measuring the error between Ax and the (often noisy) measurement b, and
the regularization term R(x). Note that Tikhonov regularization (1.11) can be written in
the form (1.13), as well as TSVD, by defining a suitable function ρ(Ax, b) involving the
SVD of A. A very popular choice for the fit-to-data term is

ρ(Ax, b) = ‖M(Ax− b)‖rr,

where M is formally a preconditioning matrix that, in the inverse problems setting, can be
used to incorporate prior information about the noise; see [Cal07]. For example, for col-
ored Gaussian noise whose entries are uncorrelated but have different variances, i.e., with
covariance matrix Ce = diag(σ2

1, ..., σ
2
m), a good choice for the preconditioning matrix is

M = diag(1/σ1, ..., 1/σm) and r = 2, see, e.g., [RHM10]. Moreover, similar precondition-
ing techniques can be used to consider other noise distributions, for example, this is used
in [BN06] for CCD camera noise statistics that describe the noise distribution as a sum of
Poisson and Gaussian distributions. In particular, when the noise in the measurements e
is Gaussian white noise, a good choice of M is a rescaled version of the identity matrix,
and r = 2, so we are left with the following problem:

(1.14) min
x∈Rn
{‖Ax− b‖22 + λR(x)}, λ ≥ 0,

where possible scaling factors have been absorbed by the regularization parameter λ. The
general `r-`p regularization problem is a particular case of (1.13), which is defined as:

(1.15) min
x∈Rn
{‖M(Ax− b)‖rr + λ‖Lx‖pp}.

In particular, for M = I, r = 2 and L = I,

(1.16) x
`p
λ = arg min

x∈Rn
{‖Ax− b‖22 + λ‖x‖pp} ,

and (1.16) is widely used to compute sparse solutions of linear discrete ill-posed problems
when 0 < p ≤ 1. Indeed, the `0 “norm”, which amounts to the number of non-zero elements
of a vector, is small by definition for sparse vectors. As the minimization problem (1.16)
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for p = 0 is NP hard [FR11], it is common to approximate it using 0 < p ≤ 1. However, for
0 < p < 1, the `2-`p regularization problem is non-convex, so the minimization problem
(1.16) can produce non-meaningful reconstructions due to local minima of the objective
function in (1.16). A well-established method to compute sparse solutions of linear discrete
ill-posed problems is `2-`1 regularization, as it is the convex relaxation of the `2-`0 problem.
Note that some care has to be taken in the convex minimization of the functional in (1.16)
as it is not differentiable at the origin for p = 1. For example, in signal processing,
this minimization scheme is usually exploited in the area of compressed sensing [FR13].
Finally, note that the `2-`p regularization problem (1.16) can be formulated as a non-linear
weighted least squares problem of the form:

(1.17) x
`p
λ = arg min

x∈Rn
{‖Ax− b‖22 + λ‖x‖pp} = arg min

x∈Rn
{‖Ax− b‖22 + λ‖W (p)(x)x‖22},

where

(1.18) W (p)(x) = diag
(

(|[x]i|
p−2
2 )i=1,...,n

)
.

A well-established framework to solve problem (1.16), usually referred to as iteratively
reweighted least squares (IRLS) [DDFG10] or iteratively reweighted norm method (IRN)
[WR08a], is the local approximation of (1.17) by a sequence of quadratic Tikhonov prob-
lems (1.11) of the form

(1.19) xk = arg min
x∈Rn

{‖Ax− b‖22 + λ‖Wkx‖22}, k = 1, 2, ...,

where the sequence of weights Wk is updated using the available approximate solution
xk−1 from the previous problem in the sequence. Note that, when 0 < p < 2, some
care has to be taken to avoid division by zero when evaluating the weights (1.18) at
an approximate solution with [x]i = 0 for at least one 1 ≤ i ≤ n: this is likely to
happen as `2-`p regularization promotes sparse approximate solutions of (1.2). Division
by zero can be avoided by either adding a suitable threshold on the definition of Wk =
(W (p)(xk−1)−1 + τ)−1, or by replacing (1.17) by a smooth approximation of the `2-`p
regularization problem (whose corresponding functional is differentiable at the origin)
with the following weights

(1.20) W̃ (p,τ)(x) = diag
(

(([x]2i + τ2)
p−2
4 )i=1,...,n

)
,

so that Wk = W̃ (p,τ)(xk−1). If we consider the smooth approximation of `2-`p regulariza-

tion with weights defined in (1.20), solving the sequence (1.19) with Wk = W̃ (p,τ)(xk−1)
is a particular instance of a majorization-minimization (MM) scheme [HLM+17], where
(1.19) corresponds to the non-constant terms of a quadratic majorization of the smoothed
version of the objective function in (1.17). The paper [GNL21], included in Chapter 3,
exploits this framework for seeking sparse solutions of linear inverse problems. Note that
generalizations of this method can be applied also when one chooses M = I, r = 2 and
L 6= I in (1.15) to enforce sparsity of the solution in a basis given by the range of L; see
[GNL21] and references therein. Paper [GL19], included in Chapter 4, uses this framework
to tackle a more sophisticated regularization method called total variation (TV).

Total variation (TV) regularization is another popular regularization method defined as
follows,

(1.21) xTVλ = arg min
x∈Rn

{‖Ax− b‖22 + λTV(x)} ,

where TV(x) is the discrete isotropic total variation of x and it is defined as the `1-norm of
the discrete gradient of x. Similarly to `2-`p regularization, described in (1.16), the `1 norm

18



is a sparsity-enforcing norm when used in the regularization term; in this case, it enforces
sparsity in the gradient of x. Note that this can be understood as a special case of sparsity
under transform; however, special care needs to be taken as the derivative transformation
is not invertible. Sparsity in the gradient promotes piece-wise constant reconstructions
so, in the context of imaging, this regularization term is very effective to preserve edges.
Note that, as we are interested in sparsity-promoting norms, problem (1.21) can also be
generalized by TVp regularization, where the discrete gradient is evaluated in the `p norm,
for 0 < p ≤ 1. As explained for `2-`p regularization, choosing 0 < p < 1 leads to a better
approximation to the 0 ‘quasi-norm’ for the regularization term, but it is a non-convex
optimization problem.

In the one-dimensional case, TV(x) = ‖D1dx‖1, where

(1.22) D1d =




1 −1
. . .

. . .

1 −1


 ∈ R(n−1)×n.

In the two-dimensional case, TV(x) = ‖
(
(Dhx)2 + (Dvx)2

)1/2 ‖1, where x ∈ Rn is ob-

tained by stacking the columns of a 2D array X ∈ R
√
n×√n as defined in (1.3). The

discrete first derivatives in the horizontal and vertical directions are given by

Dh = (D1d ⊗ I) ∈ R
√
n(
√
n−1)×n , Dv = (I ⊗D1d) ∈ R

√
n(
√
n−1)×n ,

respectively. Here D1d ∈ R(
√
n−1)×√n is the 1D first derivative matrix (1.22) of appropriate

size, and I is the identity matrix of size
√
n, so that 2D discrete operators are defined in

terms of the corresponding 1D ones (see [GL19] for more details).

Since the TV(x) regularization functional is non-differentiable, total variation regulariza-
tion as defined in (1.21) requires solving a convex but non-smooth minimization problem.
Analogously to `2-`p regularization, TV regularization can be re-written as a weighted
non-linear least squares problem:

(1.23) min
x∈Rn

{‖Ax− b‖22 + λTV(x)} = min
x∈Rn

{‖Ax− b‖22 + λ‖W (Dx)Dx‖22}.

This can be solved using an IRLS or and IRN scheme [WR08b], so (1.23) is approxi-
mated by a sequence of quadratic problems; each of them replacing the solution-dependent
weights W (Dx) in the TV(x) functional by the weights evaluated at the approximated
solution of the previous problem in the sequence. As for `2-`p regularization, suitable
modifications of W (Dxk−1) must be considered to avoid division by zero. The formal def-
inition of the weights W (Dx) is different if the problem is in 1D or 2D, and D is a scaled
finite differences matrix that discretizes a first order derivative operator in either 1D or
2D. More details can be found in Chapter 4 and the included paper [GL19], where we
also present a new algorithm called TV-FGMRES to solve total variation regularization
problems when A ∈ Rn×n.

1.5 Iterative regularization and Krylov Methods

Storing and accessing the coefficient matrix A associated to large-scale problems, like
those naturally arising from imaging applications, is computationally very demanding. In
these cases, unless A has an exploitable structure, direct methods that require expensive
computations such as determining the SVD of A are not feasible. Moreover, A is sometimes
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coded as a function that efficiently performs matrix-vector products between A (or possibly
AT ) and arbitrary vectors v, but it cannot be accessed explicitly: this scenario is usually
referred to as a matrix-free problem. In these cases, one has to resort to an iterative
method to find a solution for problem (1.2).

Many iterative methods can be used as regularization methods because of their semi-
convergent behavior, i.e., the computed solution initially approximates the solution of
the noise-free problem A†btrue and then deteriorates due to the noise e present in the
measurements, as it starts to approximate A†b. For this reason, a clever stopping criterion
for the iterations of iterative solvers for linear systems has to be decided, and the total
amount of iterations k∗ can be considered the regularization parameter for the method.
An illustration of this phenomenon can be observed in Figure 1.11 for LSQR, an iterative
Krylov subspace method that will be described in the following paragraphs.
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Figure 1.11: LSQR method applied to the deblurring problem presented in Figure 1.2
with nl = 0.01. The semi-convergence behaviour can be observed in these plots: in (a) the
value of the relative error norm ‖xk − xexact‖2/‖xexact‖2 decreases in the first iterations
and then starts increasing again, while in (b) the relative residual norm ‖Axk − b‖2/‖b‖2
decreases monotonically due to the optimality properties of LSQR.

One of the most basic iterative linear system solvers is gradient descent method. At
iteration k, given an initial guess x0 and a step length αk that can be iteration-dependent,
the gradient descent method computes an approximation of the solution of (1.2) of the
form

(1.24) xk+1 = xk + αkA
T (b−Axk).

There are a variety of solvers that can be written in the form (1.24), and that differ on
the choice of αk, e.g., the Landweber algorithm determines αk as a relaxation parameter
[EHN96, Chapter 6.1]. However, even for good choices of αk, the gradient descent method
typically displays very slow convergence. A very powerful alternative is the use of Krylov
subspace methods, which are projection methods onto Krylov subspaces. Given a matrix
C ∈ Rn×n and a vector d ∈ Rn, a Krylov subspace of dimension k is defined as

Kk(C, d) = span{d,Cd, . . . , Ck−1d}.

In the most general case, when applying a Krylov method at iteration k, we seek a solution
xk such that:

(1.25) xk ∈ Kk(C, d), rk = b−Axk ⊥ Kk(C ′, d′).
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In particular, we are interested in the case where Kk(C ′, d′) = AKk(C, d), so that xk fulfills
the conditions in (1.25) if and only if

(1.26) xk = arg min
x∈Kk(C,d)

‖b−Ax‖2.

For this reason, these methods are usually called minimal residual Krylov methods [Saa03,
Section 5]. We will focus on the two most common examples of such methods. On
the one hand, for A ∈ Rn×n, choosing C = A and d = b leads to GMRES. On the
other hand, for a general A, choosing C = ATA and d = AT b leads to LSQR, which is
mathematically equivalent to CGLS. From now on only minimal residual Krylov methods
will be considered.

Krylov methods are iterative regularization methods based on partial factorizations of A
(and sometimes AT ) that are updated at each iteration. Golub-Kahan bidiagonalization
and the Arnoldi algorithm provide suitable partial factorizations to be used in LSQR and
GMRES (respectively). Both are based on adaptations of a Gram-Schmidt-like orthogo-
nalization process and will be detailed in the following.

The Golub-Kahan bidiagonalization algorithm and LSQR

Golub-Kahan bidiagonalization [GK65], also known as the Lanczos bidiagonalization algo-
rithm, computes orthogonal bases for the Krylov subspacesKk(ATA,AT b) andKk(AAT , b),
which are spanned by the column vectors of the matrices Vk ∈ Rn×k and Uk ∈ Rm×k,
respectively. The partial factorizations of A, and AT , computed by the Golub-Kahan
bidiagonalization algorithm are

AVk = Uk+1B̄k,(1.27)

ATUk+1 = VkB̄
T
k + ρk+1ζk+1e

T
k+1,

where

B̄k =




ρ1

ζ2 ρ2

. . .
. . .

ζk ρk
ζk+1



∈ R(k+1)×k,

and ek+1 denotes the (k+1)th canonical basis vector of Rk+1. Note that the first column
of Uk is chosen to be b/‖b‖. Algorithm 1 reports a summary of a basic implementation of
the Golub-Kahan bidiagonalization procedure without re-orthogonalization. In practice
one should re-orthogonalize (at least) the columns of Uk or Vk [Bar13] to avoid numerical
instabilities and to ensure the spectral properties of the matrix B̄k associated to the pro-
jected problem approximate the ones of matrix A [RVEA17]. Note that the computational
cost of this method is dominated by a matrix-vector product with A and a matrix-vector
product with AT at each iteration, and that explicitly storing A is not needed.

The partial factorization (1.27) given by the Golub-Kahan bidiagonalization algorithm
is used in LSQR to update the solution at each iteration by solving the minimization
problem (1.26). More specifically, the approximated solution to problem (1.6) belonging
to Kk(ATA,AT b) can be written as xk = Vkyk, where yk is determined by projecting (1.6):

(1.28) yk = arg min
y∈Rk

‖b−AVky‖2 = arg min
y∈Rk

‖b−Uk+1B̄ky‖2 = arg min
y∈Rk

‖‖b‖2e1− B̄ky‖2.
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Algorithm 1 Golub-Kahan bidiagonalization algorithm

Input: A, b.
Initialize: ζ1 = ‖b‖2, u1 = b/ζ1.
Initialize: v = ATu1, ρ1 = ‖v‖2, v1 = v/ρ1.
For j = 2, . . . , k + 1

1. Compute u = Avj−1 − ρj−1uj−1.

2. Set ζj = ‖u‖2.

3. Take uj = u/νj .

4. Compute v = ATuj − νjvj−1.

5. Set ρj = ‖v‖2.

6. Take vj = v/ρj .

Note that the second equality in (1.28) is obtained using the partial factorization of A in
(1.27), and the third equality is obtained using the fact that Uk+1 has orthogonal columns
and that the fist column of Uk+1 is u1 = b/‖b‖2, so that b = Uk+1‖b‖2e1. The computations
involved at the kth LSQR iteration are sketched in Algorithm 3.

Note that so far we have assumed that no initial guess is known for the solution, i.e.,
x0 = 0. However, LSQR can be easily generalized to the case where an initial guess x0 6= 0
is known.

The Arnoldi algorithm and GMRES

For any square matrix A ∈ Rn×n, the Arnoldi algorithm constructs an orthonormal basis
for the Krylov subspace Kk(A, b). Let Vk ∈ Rn×k be the matrix whose columns span
Kk(A, b). Then the partial decomposition of A given by the Arnoldi algorithm is

(1.29) AVk = VkHk + hk+1,kvk+1e
T
k ,

where ek is the kth canonical basis vector of Rk and Hk ∈ Rk×k is an upper Hessenberg
matrix that represents the orthogonal projection of A onto the Krylov subspace Kk(A, b).
Note that the fist vector of Vk corresponds to a normalized version of the vector of mea-
surements b. Equivalently, relation (1.29) can be written as

(1.30) AVk = Vk+1H̄k, for H̄k =

[
Hk

hk+1,ke
T
k

]
∈ R(k+1)×k.

A basic implementation of the Arnoldi algorithm (without re-orthogonalization) is de-
scribed in Algorithm 2, where it can be observed that its computational cost is dominated
by the cost of a matrix-vector product with A. Analogously to Golub-Kahan bidiagonal-
ization, A does not need to be stored explicitly. Note that, in practice, one might want
the re-orthogonalize the columns of Uk.

The partial decomposition of A (1.29) given by the Arnoldi algorithm is the main build-
ing block of GMRES. At each iteration, GMRES computes an approximated solution to
problem (1.6) belonging to Kk(A, b), xk = Vkyk, where

(1.31) yk = arg min
y∈Rk

‖b−AVky‖2 = arg min
y∈Rk

‖b− Vk+1H̄ky‖2 = arg min
y∈Rk

‖‖b‖2e1− H̄ky‖2.

22



Algorithm 2 Arnoldi algorithm

Input: A, b.
Initialize: v1 = b/‖b‖2.
For j = 1, 2, . . . , k

1. For i = 1, . . . , j: compute [H]i,j = (Avj)
T vi.

2. Compute v = Avj −
∑j

i=1[H]i,jvi.

3. Define [H]j+1,j = ‖v‖2.

4. If [H]j+1,j = 0 stop; else take vj+1 = v/[H]j+1,j .

Here, we have used the partial factorization (1.30) (equivalent to (1.29)), the fact that
Vk+1 has orthogonal columns, and v1 = Vk+1e1 = b/‖b‖2. A general step of GMRES at
iteration k is sketched in Algorithm 3.

Algorithm 3 LSQR and GMRES solution update at iteration k

1. Expand the Krylov subspace by adding a column vk to the matrix Vk and updating
the partial factorizations in (1.27) for LSQR or (1.29) for GMRES.

2. Solve the projected LS problem (1.28) for LSQR and (1.31) for GMRES.

3. Compute the approximation xk = Vkyk.

Analogously to LSQR, GMRES can be easily generalized to the case where an initial guess
for the solution x0 6= 0 is known. For A ∈ Rn×n GMRES can be appealing with respect
to LSQR as it is cheaper per iteration, but it can display very bad performance when the
system matrix A is highly non-normal.

When the Arnoldi algorithm is applied to Hermitian matrices it can be simplified, so
we can perform a three-term recursion when constructing the partial factorization of A:
this is known as the symmetric Lanczos algorithm [Saa03, Chapter 6]. In particular, for
symmetric matrices A, the upper Hessenberg matrix Hk in (1.29) is symmetric tridiagonal.
This is the main building block for both MINRES and CGLS. In fact, the symmetric
Lanczos algorithm and the Golub-Kahan bidiagonalization (or Lanczos bidiagonalization
algorithm) are closely related, and CGLS is mathematically equivalent to LSQR . This
notion is explained and unfolded in Chapter 2, as it is extensively used in the included
paper [GL20].

1.5.1 Krylov-Tikhonov Methods

Due to the semi-convergence phenomenon, the performance of Krylov methods heavily
relies on a good stopping criterion for the iterations. Moreover, it is possible that semi-
convergence happens before all the significant basis vectors for the solution have been
incorporated in the Krylov subspace, so a later stopping can improve the quality of the
reconstructed solution if the semi-convergence effect is mitigated, i.e., if the error norm
stabilizes at the point of semi-convergence; see [Han10, Chapter 6] or [HJ17]. For this
reason, it is common to jointly use Krylov projection methods and a direct regularization
method, so that the advantages of Krylov methods (efficiency, fast convergence and a good
regularizing space for the solution) are preserved while the new algorithm is less sensitive
to semi-convergence (which might depend on the choice of a good regularization parameter
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for the direct regularization method). In particular, we focus on methods that combine
Tikhonov regularization and minimal residual Krylov subspace methods. For simplicity,
we will consider L = I in (1.11).

Note that there are two possible ways of combining Tikhonov regularization and minimal
residual Krylov subspace methods to obtain “the best of both worlds” [Han10, Section
6.4]. As it can be observed in Figure 1.12, one could either project the original Tikohonov
problem (1.11) in standard form onto a Krylov subspace of increasing dimension in a
“first-regularize-then-project” approach, or regularize the sequence of projected problems
(1.26) with a standard Tikhonov regularization term in a “first-project-then-regularize”
approach. The methods in the latter class are also generally known as hybrid methods
[CNO08, OS81]. An important feature of Krylov-Tikhonov methods is that, for fixed λ,
and due to the orthogonality of the columns of Vk, the problems solved at each itera-
tion of the “first-regularize-then-project” approach and the “first-project-then-regularize”
approach are equivalent. This can be observed in Figure 1.12. Due to this equivalence,
hybrid methods can be written in an analogous framework to Algorithm 3 where, in step
2, the projected problem (1.28) is replaced by

yk = arg min
y∈Rk

{‖b−AVky‖22 + λ‖Vky‖22} = arg min
y∈Rk

{‖‖b‖2e1 − B̄ky‖22 + λ‖y‖22}

for hybrid LSQR, and (1.31) in replaced by

yk = arg min
y∈Rk

{‖b−AVky‖22 + λ‖Vky‖22} = arg min
y∈Rk

{‖‖b‖2e1 − H̄ky‖22 + λ‖y‖22}

for hybrid GMRES.

Finding a good regularization parameter λ for Krylov-Tikhonov methods, when it is not
known a-priori, has drawn a lot of attention in recent years. In particular, hybrid methods
(corresponding to the “first-project-then-regularize” approach) are very popular in this
area of research as it has been observed that if a good regularization parameter is properly
chosen at each iteration for each projected sub-problem (so that λk changes through the
iterations), the value of λk as k increases seems to stabilize around a value λ that is
also good for the full-dimensional original Tikhonov problem (1.11) [CKO15]. Specifically,
examples of automatic parameter choice rules can be found in [RR13, RS08, GN14], and
in the references therein. In [GL20], presented in Chapter 2, we derive a new class of rules
for the simultaneous choice of the stopping iteration and a good regularization parameter
λk.

1.5.2 Modified Krylov subspaces

Although Krylov subspace methods have inherent regularizing properties [Han98, Chap-
ter 6], Krylov subspaces can be further modified to enhance particular properties of the
reconstructed solution. For example, a-priori information about the solution we want to
recover can be incorporated into the Krylov subspaces through prior-conditioning [Cal07],
a method that is formally equivalent to preconditioning but that is theoretically moti-
vated by the Bayesian interpretation of the linear system (1.2). Differently from tradi-
tional preconditioners, used to accelerate the convergence of iterative methods [Saa03],
prior-conditioners can be used to improve the quality of the recovered solution, while
maintaining a similar (or a relatively slower) convergence rate. This concept is further
detailed below.

In the Bayesian framework, a statistical interpretation is given for the linear system (1.2),
i.e., x, b and e are modeled as random variables [CS07, Chapter 2]. When the distribution
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Figure 1.12: Sketch of the equivalence between the“first-regularize-then-project” and the
“first-project-then-regularize” approaches. Inspired by a figure in [Han10, Chapter 6].

of x is unknown we are interested in finding a good statistical estimator for it. For example,
if e is Gaussian white noise, then the solution of the least squares problem (1.6) is the
maximum likelihood estimator of x.

The key purpose in Bayesian inference is to integrate results obtained from measurements
with prior information. In this setting, left preconditioners for the linear system (1.2)
(where the original problem is replaced by MlAx = Mlb) are related to the distribution
of the noise e, in the sense that Ml encodes information about the covariance of e. On
the other hand, right preconditioners (where the original system is replaced by AMry = b
for x = Mry), are related to previous available information about the solution, i.e., the
prior for the random variable x. For this reason, in the framework of regularizing iterative
methods, right preconditioners can be called prior-conditioners [Cal07]. In particular, we
are interested in this latter kind of preconditioning. Note that, in general, the precondi-
tioning matrices Ml and Mr are assumed to be invertible; otherwise, special care has to
be taken to ensure that the preconditioned and the original system are equivalent.

When using a Krylov subspace method to solve a right-preconditioned system, the pre-
conditioner Mr is embedded in the construction of the search space for the solution. This
is particularly important in the setting of prior-conditioners, as the resulting Krylov sub-
space incorporates previous knowledge about the solution and therefore it becomes better
suited for that particular application. For example, for preconditioned GMRES, we obtain
a sequence of subspaces that, at iteration k, have the form

Kk(AMr, b) = span{b, AMrb, ..., (AMr)
k−1b}.

The subspaces in this sequence are nested in the sense that, at iteration k, Kk−1 ⊆ Kk.

The regularization matrix appearing in Tikhonov problems in general form (1.11) can be
naturally associated to right preconditioning. As already seen in Section 1.4, if we assume
for simplicity that the regularization matrix L is square and non-singular, we can easily
transform (1.11) into standard form, i.e., solve

(1.32) min
x̄∈Rn
{‖AL−1x̄− b‖22 + λ‖x̄‖22} and then take x = L−1x̄.

Problem (1.32) is then equivalent to (1.11), but now the inverse of the regularization matrix
acts as a right-preconditioner for the matrix A. If (1.32) is solved using a Krylov method,
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as mentioned above, the effect of the regularization matrix L can be directly observed in
the construction of the Kylov subspace for the solution through right preconditioning. In
particular, at iteration k, projecting (1.32) into a Krylov subspace spanned by the columns
of Vk leads to

(1.33) ȳk = arg min
ȳ∈Rk
{‖AL−1Vk︸ ︷︷ ︸

Zk

ȳ − b‖22 + λ‖Vkȳ‖22}, so that x = L−1Vk︸ ︷︷ ︸
Zk

ȳk.

A possible interpretation of (1.33) is that a solution of (1.32) in sought in the precondi-
tioned subspace R(Zk) = R(L−1Vk). In the case of GMRES, for example,

(1.34) R(Zk) = L−1Kk(AL−1, b) = span{L−1b, L−1(AL−1)b, ..., L−1(AL−1)k−1b}.

This approach is explored for GMRES in [HJ07], where a so-called smoothing norm regu-
larization is incorporated into the approximation subspace for the solution through prior-
conditioning. It is interesting to note that, in [HJ07], no regularization term is considered,
i.e., λ = 0 in (1.33), so smoothness in the solution is only encouraged through the con-
struction of the space (1.34). In [GL19], included in Chapter 4, this method is called
GMRES(L). Note that specific preconditioners can significatively improve the regulariz-
ing properties of GMRES, and therefore deliver better approximations for the solution.

A similar framework to the one described in (1.33) arises in the context of `2-`p regular-
ization (1.16) solved by the IRLS or IRN methods. As previously explained in Section
1.4, the `2-`p regularization problem can be approximated by a sequence of reweighted
Tikhonov problems of the form

(1.35) xk = arg min
x∈Rn

{‖b−Ax‖22 + λ‖Wkx‖22} .

The details of these derivations are unfolded in Chapter 3. If each of the problems of the
form (1.35) approximating `2-`p is solved using an iterative solver, then the IRLS and IRN
methods intrinsically rely on an inner-outer iteration scheme. This can be computationally
expensive because a minimization problem is fully solved at each outer step, when the
weights are updated. An alternative to avoid nested loops of iterations is to update the
weights Wk as soon as a new approximation of x is available, i.e., at each iteration of an
iterative solver for (1.35), leading to iteration-dependent preconditioning when (1.35) is
transformed into standard form, i.e., we solve

(1.36) x̄k = arg min
x̄∈Rn

{‖b−AW−1
k x̄‖22 + λ‖x̄‖22} and then take xk = W−1

k x̄k.

Note that the regularization matrix Wk is square and invertible (this can be assumed
through suitable thresholding [HLM+17, WR08a]). This motivates the use of flexible
Krylov methods.

We emphasize that, recalling (1.23), TV regularization can be formally presented in a
very similar fashion to equation (1.35), where we have added a discrete representation of
a gradient operator D:

(1.37) xk = arg min
x∈Rn

{‖b−Ax‖22 + λ‖WkDx‖22} .

However, since D is not invertible, TV regularization needs to be dealt with differently
than `2-`p regularization; more details can be found in [GL19], in Chapter 4.
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1.5.3 Flexible Krylov Methods

Flexible Krylov methods are modifications of standard Krylov methods that allow variable
preconditioning. In particular, we are interested in flexible GMRES (FGMRES), derived
from the flexible Arnoldi algorithm [SS86], and flexible LSQR (FLSQR), based on the
flexible Golub-Kahan algorithm [CG19]. Given a sequence of square iteration-dependent
preconditioners {W−1

k }k≥1, both FLSQR and FGMRES are based on the general partial
decomposition of A ∈ Rm×n:

(1.38) AZk = Uk+1Gk, with Gk ∈ R(k+1)×k,

which is updated at each iteration k, and where Gk is upper Hessenberg, the columns of
Uk+1 ∈ Rm×(k+1) are orthogonal and u1 = b/‖b‖. For FGMRES, given a square matrix A ∈
Rn×n, Zk = [W−1

1 u1, ...,W
−1
k uk]. Instead, for FLSQR, Zk = [(W−1

1 )2v1, ..., (W
−1
k )2vk],

and the vectors vi for i = 1, ..., k are defined by updating the following partial factorization
of AT at each iteration k

(1.39) ATUk+1 = Vk+1Sk+1, with Sk+1 ∈ R(k+1)×(k+1),

where Sk+1 is upper triangular and Vk+1 has orthogonal columns. More details on the
flexible Arnoldi algorithm and the flexible Golub-Kahan process can be found in [GNL21],
included in Chapter 3, along with pseudocodes for the updates of such algorithms.

An important feature of flexible Krylov subspaces is that, when used in combination
with Tikhonov regularization, the “first-regularize-then-project” and “first-project-then-
regularize” approaches are not equivalent anymore, even for a fixed regularization param-
eter λ. This fact is sketched in Figure 1.13.
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Figure 1.13: Sketch of the lack of an equivalence between the“first-regularize-then-project”
and the “first-project-then-regularize” approaches in the case of flexible Krylov methods.

The general standard Krylov method update at iteration k defined in Algorithm 3 can be
modified to describe a general framework for FLSQR and FGMRES and to be also used in
combination with Tikhonov regularization. First, the flexible partial factorization (1.38) is
updated (along with (1.39) for FLSQR). Second, we now have two different choices for the
projection step. On one hand, if we adopt the “first-project-then-regularize” approach,
for xk = Zkyk,

(1.40) yk = arg min
y∈Rk

{‖b−AZky‖22 + λ‖y‖22} = arg min
y∈Rk

{‖‖b‖e1 −Gky‖22 + λ‖y‖22}.

This is used, for example, in [CG19] to compute sparse solutions of inverse problems using
`2-`1 regularization. On the other hand, using the“first-regularize-then-project” approach
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leads, for xk = Zkyk, to a minimization problem of the form:

(1.41) yk = arg min
y∈Rk

{‖b−AZky‖22+λ‖WkZky‖22} = arg min
y∈Rk

{‖‖b‖e1−Gky‖22+λ‖Rky‖22},

where WkZk = QkRk is the QR decomposition of the tall and skinny matrix WkZk ∈ Rn×k
that can be computed cheaply at each iteration if k � n [GNL21]. The general update at
iteration k for FLSQR and FGMES can be found in Algorithm 4.

Algorithm 4 Flexible Krylov method update for FLSQR and FGMRES at iteration k

1. Expand the Krylov subspace by adding a column zk to the matrix Zk and updating
flexible decomposition (1.38) (involving also (1.39) if we are using FLSQR).

2. Solve a projected LS problem of the form (1.40) if following the “first-project-then-
regularize” approach, or of the form (1.41) if following the “first-regularize-then-
project” approach.

3. Compute the approximation xk = Zkyk.

Flexible Krylov-Tikhonov methods using the “first-regularize-then-project” approach are
exploited in [GNL21], in Chapter 3, to define two new algorithms (called IRW-FGMRES
and IRW-FLSQR) for computing a solution to the smoothed version of the `2-`p regular-
ization problem (1.16) (as described in Section 1.4). Moreover, the “first-regularize-then-
project” approach is used in [GNL21] to prove the convergence of the solutions computed
using the two new algorithms to a stationary point of the smooth approximation of the
`2-`p regularization problem for 0 < p ≤ 2 (which is the unique minimizer when p ≥ 1). As
explained in Section 1.4, the smoothed version of `2-`p regularization can be approximated
by a sequence of quadratic problems (1.35) in Tikhonov form (1.11). A possible interpre-
tation of IRW-FGMRES and IRW-FLSQR is to consider that we are partially solving
each problem in the sequence in a single solution (flexible Krylov) subspace of increasing
dimension. Therefore, at each iteration k, the solution subspace is richer and bigger, and
we expect (as supported by the numerical experiments in [GNL21]), that for a relatively
small value of k we obtain solutions that approximately fully solve the kth problem in the
sequence as defined in (1.35).

Other classical methods to compute a solution of (1.16), used in [GNL21] to perform com-
parisons with the new algorithms IRW-FGMRES and IRW-FLSQR, are the fast iterative
shrinkage thresholding algorithm (FISTA) [BT09], and the sparse reconstruction by sep-
arable approximation algorithm (SpaRSA) [WNF09]. FISTA is an accelerated first-order
optimization method, based on a forward-backward splitting approach where the mini-
mization of the two terms in (1.16) is treated separately. This involves forward steps in
the direction of the gradient of the fit-to-data term, which are alternated with implicit
subgradient steps, or backward steps, involving the proximal mapping of the regulariza-
tion term. SpaRSA is an algorithmic framework that relies on a quadratic separable
approximation of parts of the objective function in (1.16).

Flexible Krylov methods are used in Chapter 4 to solve inverse problems imposing TV
regularization. In particular, a new algorithm called TV-FGMRES is presented in [GL19]:
this method features iteration-dependent preconditioning coming from a suitable transfor-
mation of a sequence of reweighted regularization terms in the form of (1.37). In [GL19],
λ = 0 in (1.37) and the problem is solved at each iteration in a flexible Krylov subspace
of increasing dimension. It is very interesting to see how this iteration-dependent pre-
conditioning, that incorporates information about the piece-wise constant properties of
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the solution, modifies the space where the solution is sought. In fact, [GL19, Section 3]
presents an illustrative instance of this behavior for a simple one-dimensional deconvolu-
tion example. Without being exhaustive, here we list some classical methods to compute
solutions of TV regularization (1.21). Fast first order iterations based on generalizations
of the fast iterative shrinkage and thresholding algorithm (FISTA) are used in [BT09] (in
[GL19], this method is called FBTV). Another strategy, proposed in [OBG+05], consists
in constructing a sequence of minimization problems in the general form (1.14), where the
regularization term is R(x) = D(x, xk−1), xk−1 is the approximated solution computed for
the previous problem in the sequence, and D(u, v) is the Bregman distance associated to
the continuous TV functional. Fixed point iterations are used in [VO98] in combination
with preconditioned conjugate gradient.

In the following chapters, the general theory of Krylov subspace methods for large-scale
linear inverse problems presented in this introduction will be used to develop novel algo-
rithms in combination with different variational regularization schemes.
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Chapter 2

Krylov Methods for Inverse
Problems: surveying classical, and
introducing new, algorithmic
approaches

This chapter surveys well-established regularizing projection methods based on Krylov
subspace methods and introduces a new class of algorithms that leverages Tikhonov reg-
ularization and Krylov subspace methods in a principled way. This is a joint work with
Silvia Gazzola, which is published in GAMM - Mitteilungen as open access publication
[GL19].

2.1 Outline of the paper

This paper is set in the context of Krylov-Tikhonov methods for large-scale linear ill-
posed problems described in Chapter 1. In particular, it draws special attention to the
regularization parameter choice for the Tikhonov problem (1.11). After revising existing
parameter choice rules, which usually involve (or can be re-written as) a minimization
problem, Krylov-Tikhonov methods equipped with a parameter choice rule are presented
as a bilevel optimization problem.

This paper has two very distinct parts. On one hand, as the name suggests, it surveys
well-established regularizing projection methods based on Krylov subspace methods, in the
style of Section 1.4. In particular, it centers around the methods based on the Golub-Kahan
bidiagonalization algorithm introduced in Section 1.5 and Krylov-Tikhonov methods. On
the other hand, it presents a new algorithmic approach for Krylov-Tikhonov regularization
that provides a reliable regularization parameter choice strategy.

Since the new algorithmic framework for Krylov-Tikhonov regularization proposed in this
paper involves the approximation of classical parameter choice criteria using Gaussian
quadrature rules, the second part if this paper includes a short review on Gaussian quadra-
ture rules and their well-established links with the Golub-Kahan bidiagonalization algo-
rithm. Moreover, when the discrepancy principle is used as the parameter choice rule
for the new algorithmic approach, we can prove that the computed solution converges
to the Tikhonov solution with regularization parameter determined by the discrepancy
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principle. Finally, a numerical example in image deblurring and a numerical example in
computed tomography (as described in Section 1.2) are given to illustrate the performance
and efficiency of this new method.

Note that most of the content included in the introduction of the paper [GL20, Section
1] has already been presented in Chapter 1 of this thesis, with some different details and
citations, and can therefore be skipped by the reader. Chapter 1 also includes some of the
material present in [GL20, Section 2].

The notation of Chapter 1 of this thesis is mainly coherent with the notation in the paper.
However, some discrepancies are summarized in Table 2.1.

Table 2.1: Notational discrepancies between this thesis and paper [GL20]

Discrepancies Thesis Paper

Tikhonov regularization
parameter

λ α

Tikhonov solution xT ikλ,L x(α)

Krylov subspace
related to optimality condition

Kk(C, d) and Kk(C ′, d′) S(1)
k and S(2)

k

A list of typographical errors appeared in the published version of [GL19]. These are of
two types: underscores that did not appeared as underscores and missing letters. Since
the first kind does not affect the readability of the paper, we will just list the latter:

• Page 32 of this thesis (page 2 of [GL19]): in the last paragraph, ‘(A) ∩ (B)’ should
be ‘N (A) ∩N (B)’.

• Page 33 of this thesis (page 3 of [GL19]): after the definition of L†A , ‘(L)’ should be
‘N (L)’.

• Page 37 of of this thesis (page 7 of [GL19]): after equation (17), ‘Bk and Bk’ should
be ‘Bk and B̄k’.

• Page 39 of this thesis (page 9 of [GL19]): In the table, the expression for the UPRE

parameter choice rule should be ‘ 1
m‖Ax(α)−b‖2+2η

2

m trace(A(ATA+αI)−1AT )−η2’.

• Page 46 of this thesis (page 16 of [GL19]): before equation (48), ‘convexity of k’
should be ‘convexity of Lk’.

• Page 47 of this thesis (page 17 of [GL19]): before equation (50), ‘and {k}k’ should be
‘and {Gk}k’; in the last paragraph, ‘At iteration k, k in (49)’ should be ‘At iteration
k, Gk in (49)’ and ‘once the bound k is computed’ should be ‘once the bound Gk is
computed’.

• Page 48 of this thesis (page 18 of [GL19]): in the third paragraph, ‘lower bounds k’
should be ‘lower bounds Gk’.
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Abstract
Large-scale linear systems coming from suitable discretizations of linear inverse
problems are challenging to solve. Indeed, since they are inherently ill-posed,
appropriate regularization should be applied; since they are large-scale,
well-established direct regularization methods (such as Tikhonov regulariza-
tion) cannot often be straightforwardly employed, and iterative linear solvers
should be exploited. Moreover, every regularization method crucially depends
on the choice of one or more regularization parameters, which should be suit-
ably tuned. The aim of this paper is twofold: (a) survey some well-established
regularizing projection methods based on Krylov subspace methods (with a
particular emphasis on methods based on the Golub-Kahan bidiagonalization
algorithm), and the so-called hybrid approaches (which combine Tikhonov reg-
ularization and projection onto Krylov subspaces of increasing dimension); (b)
introduce a new principled and adaptive algorithmic approach for regularization
similar to specific instances of hybrid methods. In particular, the new strategy
provides reliable parameter choice rules by leveraging the framework of bilevel
optimization, and the links between Gauss quadrature and Golub-Kahan bidi-
agonalization. Numerical tests modeling inverse problems in imaging illustrate
the performance of existing regularizing Krylov methods, and validate the new
algorithms.

K E Y W O R D S
hybrid methods, imaging problems, Krylov subspace methods, large-scale linear inverse problems,
regularization parameter choice rules, Tikhonov regularization

1 INTRODUCTION
This paper considers linear, large-scale, discrete ill-posed problems of the form

Axtrue + e = btrue + e = b , (1)

where the matrix A ∈ Rm×n represents a forward mapping that is ill-conditioned with ill-determined rank (ie, the singu-
lar values of A decay and cluster at zero without an evident gap between two consecutive ones), xtrue ∈Rn is the desired
solution, and e∈Rm is some unknown noise that affects the data b∈Rm. Systems like (1) typically stem from the dis-
cretization of first-kind Fredholm integral equations, and model inverse problems arising in a variety of applications, such

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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as (just to name a few): computed tomography in Medicine and Industry, image deblurring in Astronomy and Biology,
inverse scattering in Geophysics, and parameter identification (see [1-5] and the references therein for more details). In
this paper the noise e is assumed to be Gaussian white; although this may appear like a limitation, strategies for whitening
the noise or approximating actual noise (even realized from distributions other than Gaussian) with Gaussian white noise
are available in the literature; see, for instance, [1, Chapter 3] and [6,7]. In general, the linear system Ax = b might not
be consistent, essentially because of the presence of noise in b. However, even the noise-free linear system Axtrue = btrue
may not be consistent, essentially because one should not assume a perfect agreement between the adopted (discretized)
model and the true underlying physical model.

In a discrete setting, the properties of inverse problems are best analyzed considering the singular value decomposition
(SVD) of A [8, Chapter 2], that is,

A = Û Σ̂V̂ T , for Û = [ûi]i=1,… ,m ∈ Rm×m, V̂ = [v̂i]i=1,… ,n ∈ Rn×n, and Σ̂ = diag("̂1, … , "̂min {m,n}) ∈ Rm×n . (2)

Here the columns ûi and v̂i of the square orthogonal matrices Û and V̂ are the left and right singular vectors of A, respec-
tively, and the diagonal entries "̂1 ≥ … ≥ "̂min {m,n} ≥ 0 of the rectangular matrix Σ̂ are its singular values. Depending on
the decay of the singular values of A, (1) is regarded as severely ill-posed (exponential decay) or moderately and mildly
ill-posed (power decay); see [9, Chapter 2]. Let A† denote the Moore-Penrose pseudoinverse of A [8, Chapter 5]. Because
of the ill-conditioning of the coefficient matrix A, and the noise in the right-hand side vector b, the (unregularized) solu-
tion x =A†b to (1) is not guaranteed to be a meaningful approximation to xtrue. Indeed, assuming that the discrete Picard
condition [10] holds for (1) (ie, the spectral coefficients ûT

i btrue of btrue decay on average faster than "̂i), and expressing x
with respect to the SVD of A, leads to

x =
min {m,n}∑

i=1

ûT
i b
"̂i

v̂i =
min {m,n}∑

i=1

ûT
i btrue

"̂i
v̂i +

min {m,n}∑
i=1

ûT
i e
"̂i

v̂i , (3)

where, on the right-hand-side, the singular components corresponding to the small singular values and the very oscillating
right singular vectors in the second sum dominate and spoil x (since |ûT

i e| is roughly constant because e is Gaussian white
noise); see [1, Chapter 4] and the references therein for more details.

In order to compute a good approximation to xtrue, one should therefore regularize (1), that is, replace (1) with a
problem closely related to it that is less sensitive to perturbations in the data. In the following, a generic regularized solu-
tion of (1), obtained by applying a regularized inverse Areg† to the noise-corrupted data b, is denoted by xreg =A†

regb.
Although many approaches are possible to achieve regularization, this paper mainly focuses on strategies related to
Tikhonov regularization method, which computes a regularized solution xreg = x(#) as follows

x(#) = arg min
x∈Rn

{ ||Ax − b||2 + #||Lx||2 } , with either
L = I

(standard form)
or

L ≠ I
(general form)

, (4)

and where || ⋅ || denotes the vector 2-norm. In the above formulation, the regularization parameter # ≥ 0 balances the
effect of the fit-to-data term ||Ax − b||2 and the regularization term ||Lx||2, which is defined with respect of a regularization
matrix L∈Rq×n. If L≠ I, typical choices for L are rescaled finite differences approximations of derivative operators. The
choices of both # and L contribute to the success of Tikhonov regularization method (4). L should encode some available
information about the solution, in such a way that unwanted behaviors of the regularized solution x(#) show up in Lx(#),
whose magnitude is penalized: the bigger #, the more penalization, which is typically desirable if one is confident about
the choice of L. Many strategies have been proposed to conveniently choose L; see, for instance, [11-14]. This paper will
not focus on the choice of L, but rather on parameter choice rules for #. Note that (4) can be equivalently reformulated as

x(#) = arg min
x∈Rn

‖‖‖‖‖‖

[
A√
#L

]
x −

[
b
0

]‖‖‖‖‖‖
, or xreg = x(#) = (ATA + #LTL)−1ATb = A†

regb , (5)

where the latter assumes that the null spaces of A and L intersect trivially, that is, (A)∩ (L)={0}. Thanks to (5), one can
conclude that computing the Tikhonov-regularized solution x(#) essentially amounts to the solution of a least-squares
problem (ie, the first problem in (5)). An analytical expression for x(#) is obtained by considering the associated system
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of the normal equations (ie, the second equation in (5)). Therefore, at least in theory, any direct solver for least squares
problems can be employed to compute x(#). In order to analyze the behavior of the solution and its dependence on #,
the preferred choice is to employ the SVD of A (defined in (2)) if L= I, or the generalized SVD (GSVD) of (A, L) (see
[8, Chapter 8]) if L≠ I. Indeed, when L= I, convenient expressions of the regularized solution x(#) and the discrepancy
b − Ax(#) as functions of # can be obtained using the SVD of A as follows

x(#) =
min {m,n}∑

i=1
$i(#)

ûT
i b
"̂i

v̂i , b − Ax(#) =
min {m,n}∑

i=1
(1 − $i(#))(ûT

i b)ûi +
m∑

i=min {m,n}+1
(ûT

i b)ûi , where $i(#) =
"̂2

i

"̂2
i + #

≤ 1 .

(6)
Here the scalars $i(#), i= 1, … , min{m, n}, are the so-called filter factors that dampen the contributions to the regular-
ized solution from the small singular values associated with the high-frequency components: the bigger the regularization
parameter #, the more the amount of smoothing. Relations (6) become handy when applying some parameter choice
rules. For context, another well-known spectral filtering method worth mentioning is the truncated SVD method [1,
Chapter 4]. Also, relations (6), show that Tikhonov method can be regarded as a special spectral filtering method. A note-
worthy property of Tikhonov regularization method is that every Tikhonov-regularized problem (4) can be equivalently
transformed into standard form [15]

x(#) = arg min
x∈Rq

{||Āx − b||2 + #||x||2} , where

Ā = AL†
A ,

x0 = (A(I − L†L))†b ,

x(#) = L†
Ax(#) + x0 ,

b = b − Ax0 .

(7)

In the above equations, L†
A is the A-weighted pseudoinverse of L, defined as

L†
A = [I − (A(I − L†L))†A]L† ∈ Rn×q ,

so that x(#) is the sum of a vector lying in range(L†
A) and a vector x0 lying in (L). Note that, if q=n and L∈Rn×n is

nonsingular, then L†
A =L−1 and x0 = 0; if q≥n and L∈Rq×n is full-rank, then L†

A =L†. Tikhonov regularization in stan-
dard form may be much more computationally convenient than its general form counterpart, since tasks like setting the
regularization parameter may become simpler (see, for instance, [1, Chapter 6]). Thanks to (7), in the following, unless
stated otherwise, only Tikhonov regularization in standard form will be formally considered (ie, L= I in (4)), with the
convention that, with some abuse of notations, Ā, x, and b in (7) may formally replace A, x, and b, respectively, in (4).

Although all the derivations explained above are useful in understanding the basics behind (Tikhonov) regulariza-
tion, they are of little practical use when it comes to large-scale problems (like the ones naturally associated, for instance,
to imaging problems). In general, in these cases, the matrix A may be only available as a sparse matrix or in the form of
a function that efficiently computes the actions of A and (possibly) AT on vectors (ie, matrix-vector products). In other
words, only fully storing and explicitly accessing the matrix A may require massive memory, let alone the computational
cost of solving (5), which is typically of the order of O(n3) (unless A (and L) have some special structure that is preserved
when computing factorizations and can be exploited; see, for example, [16,17]). In all these situations, the only compu-
tationally viable approach to recover a solution of (1) is to apply an iterative linear solver that, as far as A is concerned,
only requires matrix-vector products with A and (possibly) AT (these are commonly referred to as “matrix-free” meth-
ods). Note that, for problems originally expressed in general Tikhonov form whose regularization matrix L does not have
an exploitable structure, L†

A must also be computed iteratively; this is the case especially for 2D or 3D problems, when, for
example, L is a reweighted finite differences approximation of a derivative operator (see, eg, [18]). Although sometimes it
may be more desirable to regularize (1) by applying an iterative solver to (5), in some situations just applying an iterative
solver to (1) can lead to a regularized solution. Such linear solvers are commonly dubbed iterative regularization methods.

In the remaining part of the paper, only iterative regularization methods will be considered. More precisely, Section 2
surveys some well-established approaches to iterative regularization, which include stand-alone iterative Krylov solvers
for (1) and methods that combine Tikhonov regularization and projection onto Krylov subspaces; a special emphasis will
be given on methods based on the Golub-Kahan bidiagonalization algorithm. Sections 3 and 4 deal with practical regu-
larization parameter choice rules that can be efficiently employed when combining Tikhonov regularization and Krylov
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projection methods, also introducing a new principled class of algorithms where computations for expanding the approxi-
mation (projection) subspace for the solution and choosing the regularization parameter are interlaced. Section 5 displays
some numerical results on test problems in image deblurring and computed tomography, where the performances of
methods that combine Krylov solvers and Tikhonov regularization are compared. Section 6 presents concluding remarks.

2 REGULARIZING KRYLOV PROJECTION METHODS

As mentioned at the end of the previous section, when dealing with large-scale problems (1), only iterative solvers can
generally be employed. The most natural way of computing a regularized solution in this setting is by “early” termination
of the iterations of a (convergent, regularizing) solver applied to (1); see, for instance, [1, Chapter 6] and the references
therein. Let xk denote the approximate solution at the kth iteration of a linear solver for (1). During the first iterations, that
is, for k “small enough,” xk approaches the solution xtrue of the noise-free system, and the relative reconstruction error

RRE(xk) =
||xk − xtrue||
||xtrue|| (8)

decreases. However, as k increases after a certain optimal iteration k̃ (ie, when RRE(x∼
k
) is minimal), RRE(xk) starts

increasing as well and, indeed, xk approaches the (unregularized and unwanted) solution x =A†b (3). This phenomenon
is referred to as “semiconvergence” (after [19, Chapter IV]). In this framework, the number of iterations clearly plays the
role of a regularization parameter that must be carefully set according to one or more stopping criteria (acting in this sit-
uation as regularization parameter choice rules): performing k ≪ k̃ iterations leads to over-regularized solutions, while
performing k ≫ k̃ iterations leads to under-regularized solutions.

Many well-known iterative solvers (such as Landweber method, Kaczmarz method, and many Krylov subspace meth-
ods) are known to semiconverge, and are considered regularization methods according to the following classical definition
[5, Chapter 3]

lim||e||→0
sup

||b−btrue||≤||e||
||xreg − xtrue|| = 0 , where xreg is determined according to a given regularization parameter choice rule .

(9)
It should be highlighted that not all the parameter-choice rules in use today adhere to this equation; see Section 3 for

more details. When employing a regularizing iterative solver, xreg = xk̂, where k̂ is chosen according to a specified stopping
rule (acting as a regularization parameter choice rule).

In a discrete setting one can argue that this definition is not of practical use and, indeed, despite many iterative solvers
satisfying (9), the most effective ones are those that, having a comparable computational cost per iteration, reach the opti-
mal iteration k̃ quite “quickly”. Moreover, the quality of the reconstructed solution at iteration k̃ matters. In the framework
of this paper, where regularization in norms other than the vectorial 2-norm is not considered, this usually means that
the quality of xk̂ is comparable to the quality of a xreg that would have been achieved by applying a direct filtering method;
see, for example [20]. Indeed, a possible way of exploring the regularizing properties of iterative methods is to formally
reformulate them as filtering methods, where the filter factors depend on the iteration number k: this has been done for
basic stationary iterative methods, such as Landweber, but also for some Krylov subspace methods, such as CGLS; see
[21, Chapter 6] and the references therein.

In the following, only Krylov subspace methods will be considered as iterative solvers for (1) (or (4)). Krylov subspace
methods belong to the class of iterative projection methods [22, Chapter 5], that is, at the kth iteration, and assuming
(without loss of generality) a zero initial guess for the solution, an approximate solution xk is computed by imposing that
xk belongs to a k-dimensional (approximation) subspace  (1)

k and that the residual vector is orthogonal to a k-dimensional
(constraint) subspace  (2)

k . Both the spaces  (1)
k and  (2)

k are typically expanded as the iterations proceed and, for Krylov
subspace methods, they are both Krylov subspaces, that is, subspaces of the form

k(G, c) = span{c,Gc, … ,Gk−1c} , (10)

where G is a a square matrix and c is a vector of coherent length; referring to (1) or (4), G and c are defined in terms of A
and b. Although, in general, there is no guarantee that the dimension of k(G, c) is k, in the following it will be assumed
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(without loss of generality) that this is the case. Indeed, the dimension of k(G, c) is k if and only if the grade of the vector
c (ie, the degree of the minimal polynomial of c with respect to G [22, Chapter]) is greater than or equal to k. Krylov
subspace methods for system (1) primarily differ for the choice of the two subspaces  (1)

k and  (2)
k , but also for specific

formulations adopted at implementation stage (methods that share the same (1)
k and (2)

k but are implemented differently
are indeed mathematically equivalent). When  (2)

k = A (1)
k = Ak(G, c), Krylov subspace methods can be reformulated

as constrained optimization methods computing

xk = arg min
x∈k(G,c)

||Ax − b|| ; (11)

see, for example, [22, Chapter 5]. In the following, only Krylov methods that, when applied to (1), satisfy (11), will be taken
into account. Formally, at iteration k, all Krylov subspace methods can be reformulated to update a partial factorization
of the form

AWk = Zk+1Rk , (12)

where W k ∈Rn× k has orthonormal columns that span the approximation subspace for the solution k(G, c),
Zk+ 1 ∈Rm× (k+ 1) has orthonormal columns, and Rk ∈ R(k+1)×k. Along with the partial factorization (12), for some Krylov
methods another factorization involving AT is jointly updated at the kth iteration (this is, for instance, the case for LSQR
method).

Using decomposition (12) and the properties of the matrices appearing therein, problem (11) can be reformulated as
follows

compute xk = Wkyk, where yk = arg min
y∈Rk

||AWky − b|| = arg min
y∈Rk

||Zk+1(Rky − ZT
k+1b)|| = arg min

y∈Rk
||Rky − ZT

k+1b|| . (13)

The rightmost problem appearing in (13) is a projected least squares problem of dimension k ≪ min {m,n} and, there-
fore, when adopting Krylov subspace methods to approximate the solution of (1), the task of solving (regularizing) a
full-dimensional system (1) is reduced to the task of solving a sequence of projected least squares problems of the form
(13). Linking to the notations introduced in Section 1 to denote a generic regularization method, xk in (11) and (13) can
be expressed as xk = xreg = A†

regb, where A†
reg = WkR

†
kZT

k+1b (note that xreg depends on the number of iterations k, that acts
as a regularization parameter). Table 1 lists some relevant Krylov subspace methods, giving some details about k(G, c)
(equivalently,  (1)

k and  (2)
k ) and the matrices appearing in (12).

It must be stressed once more that, with some abuse of notation, here A is assumed to refer to the original coefficient
matrix appearing in (1), or to the matrix A = AL†

A appearing in (7). In the latter case, the regularization matrix L affects the
approximation subspace for the solution, in that L†

A can be formally regarded as a right preconditioner for the linear system
in (1). Indeed, when computing xk ∈ k(G, c) according to (11), (13), and properly accounting for the transformation (7),
the following expression for the kth approximate solution should be considered

xk ∈ x0 +k(G, c) , where x0 ∈  (L),G is defined in terms of A and L†
A, c is defined in terms of b,A, and x0 ;

(14)

T A B L E 1 Examples of Krylov subspace methods commonly employed as iterative regularization methods

Method Factorization (12)  (1)
k  (2)

k W k Zk Rk References

GMRES Arnoldi k(A, b) Ak(A, b) V k V k Hk
Upper Hessenberg

[26]

RR-GMRES
range-restricted
GMRES

Arnoldi k(A,Ab) Ak(A,Ab) V k V k Hk
Upper Hessenberg

[27]

LSQR
(equivalent to
CGLS)

Golub-Kahan
bigiagonalization
(GKB)

k(ATA,ATb) Ak(ATA,ATb) V k Uk Bk
Lower bidiagonal

[28,29]
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see [1, Chapter 8; 23]. However, L†
A should not be practically regarded as traditional preconditioner: indeed, it does not

contribute to speeding up the convergence of the solver (which is undesirable because of semiconvergence [24]) but, on the
contrary, most often results in a delayed semiconvergence of the iterative regularization method to a regularized solution
of enhanced quality. Indeed, incorporating L≠ I within the Krylov subspace (10) can largely contribute to building a better
approximation subspace for the solution of (1) (and (4)). In other words, similarly to Tikhonov regularization method in
general form (4) and to the so-called “truncated” GSVD method [25], including L†

A in (14) enforces regularization in the
(semi)norm ||L ⋅ || (even if no penalization appears in (11), (13)).

Much recent (and ongoing) research is studying regularizing properties of Krylov methods of the form (13), expanding
on the theoretical definition (9). For instance, [30-32] investigate the quality of the approximation of the SVD of A obtained
when considering the SVD of the projected matrix Rk; [33] investigates whether properties like the discrete Picard con-
dition are inherited by the projected problem in (13). The results of these studies often depend on the original problem
(1) being severely, moderately, and mildly ill-posed (the first category usually enjoying better regularization properties).
Also, more thoughtful investigations of the effect of the noise on the approximation subspace (10) for the solution have
been performed in [34-36] for a variety of Krylov subspaces, concluding that, in some cases, an accurate estimate of the
amount of noise in the data b can be also recovered. Thanks to these new results, new insight into the semiconvergence
phenomenon for Krylov methods of the form (13) can be gained: namely, these methods semiconverge because of a com-
bination of the noise entering the approximation subspace for the solution k, and the projected matrix Rk inheriting the
ill-conditioning of A as k increases.

The methods based on the Arnoldi algorithm require only one matrix-vector product with A per iteration; therefore,
assuming that the dominant cost per iteration of an iterative solver is the computation of matrix-vector products with
matrices related to A (which might not be the case for a sparse or structured A), these methods are the cheapest ones
among the Krylov solvers listed in Table 1. However, the use of GMRES as a regularization method is not widespread.
Indeed, although some results on the SVD approximation properties of GMRES have been recently obtained (even in a
continuous setting [37]), in some situations (eg, when A is highly non-normal), GMRES performs worse than other Krylov
subspace methods. One of the reasons for the bad performance of GMRES as an iterative regularization method may
be that the approximation subspace for the solution explicitly contains the vector b, which is noise-corrupted (indeed,
this prompted the introduction of RR-GMRES [26]). Moreover, the approximation subspaces generated by both GMRES
and RR-GMRES may not be suitable to represent the exact solution as they basically only contain information about the
range of A, or may be affected by a severe ‘mixing’ of the singular value components of the solution (so that GMRES
and RR-GMRES cannot be interpreted as filtering methods); see [38]. When A is symmetric, GMRES (resp. RR-GMRES)
reduces to the well-known MINRES [39] (resp. MR-II [40]) method, whose regularization properties are well-studied
and well-accepted; see [41]. It should be stressed that, even if the original coefficient matrix A in (1) is square, if L≠ I is
rectangular, then the preconditioned matrix A = AL†

A in (14) is not square anymore: in this situation, applying GMRES
(and variants thereof) might still be possible by either defining square counterparts of such rectangular matrices (see
[42,43]) or by revisiting the standard form transformation (7) (see [44]). When a regularization matrix is incorporated,
GMRES applied to the transformed system may perform significantly better than its standard counterpart [45].

When it comes to regularization, LSQR is arguably the most widespread Krylov method among the ones listed in
Table 1; in the remaining part of this paper, unless otherwise stated, only LSQR will be considered as a Krylov projection
method. More details about LSQR are hereby provided. Given the initial vectors v0 = 0 and u1 = b/||b||, and taking )1 = ||b||,
the jth iteration of the Golub-Kahan bidiagonalization (GKB) algorithm computes

*jvj = ATuj − )jvj−1, )j+1uj+1 = Avj − *juj, j = 1, 2, … , (15)

with *j and )j+1 chosen so that ||vj||=1 and ||uj||=1, respectively. Breakdown of GKB happens if *j = 0 (ie, range(Uk) is
invariant with respect to AAT) or if )j+1 = 0 (ie, range(V k) is invariant with respect to ATA): this can only happen if (1)
is consistent (which is not necessarily the case considered in this paper) or if xk exactly solves the least squares problem
minx ∈ Rn||Ax − b|| associated with (1) (which is not a desirable situation when performing regularization), respectively;
see, for instance, [46] for more details. Otherwise GKB continues until the maximum dimensionality of the problem (ie,
min{m, n}) is reached. The

Assumption: The GKB algorithm does not breakdown, (16)

38



GAZZOLA AND LANDMAN 7 of 31

will be made from now on, without loss of generality. Indeed, as already emphasized, LSQR (and, in general, all the
regularizing Krylov methods), are meaningful if the total number of iterations k is quite low (ie, k≪ min{m, n}), so that
one can usually safely assume that no breakdown will happen. Looking at (15) one can see that each iteration requires
computing one matrix-vector product with A and one matrix-vector product with AT . Equivalently, after k iterations of
GKB are performed, one can write partial matrix factorizations of the form

AVk = UkBk + )k+1uk+1eT
k = Uk+1Bk , ATUk = VkBT

k , (17)

where Vk = [v1, … , vk] ∈ Rn×k and Uk+1 = [Uk,uk+1] = [u1, … ,uk,uk+1] ∈ Rm×(k+1), are matrices whose orthonormal
columns span the Krylov subspaces k(ATA,ATb) and k(AAT , b), respectively; Bk and Bk are lower bidiagonal matrices
of the form

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

*1

)2 *2

⋱ ⋱

)k−1 *k−1

)k *k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rk×k, Bk =

[
Bk

)k+1eT
k

]
∈ R(k+1)×k. (18)

Here and in the following, ei denotes the ith canonical basis vector of Rd, d≥ i. Note that the first decomposition appearing
in (17) is a specific realization of the more general decomposition in (12).

Combining Tikhonov regularization and Krylov methods
Although, by applying a regularizing iterative solver to (1) and stopping the iterations sufficiently early, thanks to

semiconvergence one is successful in computing a regularized solution to (1), special attention should be made to select
a proper stopping criterion for the iterations. As hinted at the end of Section 1, an alternative approach to apply iterative
regularization to (1), which does not rely on semiconvergence, is to apply (till convergence) an iterative solver to the
Tikhonov-regularized problem (4) (most often considering its equivalent formulation as a damped least squares problem
in (5)). By doing so, if the selected iterative solver is a projection method and, in particular, a Krylov subspace method,
one is within the framework of the so-called first-regularize-then-project methods; see [1, Chapter 6]. In other words, by
exploiting decomposition (12) and the properties of the matrices appearing therein, the kth iteration of these methods
computes

xk(#) = arg min
x∈k(G,c)

{||Ax − b||2 + #||x||2} = Wkyk(#) , where yk(#) = arg min
y∈Rk

{||Rky − ZT
k+1b||2 + #||y||2}. (19)

An upside of this approach is that the stopping criterion for the iterations plays a less crucial role in the regularization
process. However, a clear downside is that, if a good value for the regularization parameter # is not available a priori
(as it is often the case), then one should repeatedly fully solve problems of the form (4), one for every considered value
of the regularization parameter (these may belong to a discrete set of values chosen a priori, or may be sequentially set
by trying to satisfy some well-known parameter choice rules; see Section 3 for more details). Fortunately, when using a
Krylov method to solve problem (4) in standard form for a varying #, most of the computations performed to determine
xk(##) for a given ## can be smartly rearranged or recycled to compute xk(##+1) when ## ≠ ##+1 (exploiting, essentially,
the so-called shift-invariance of Krylov subspaces, that is, k(G + ##I, c) = k(G + ##+1I, c); see [47,48]). Note that, in
general, the number of iterations k for solving (4) depends on #.

Another strategy to combine a Krylov (projection) method and Tikhonov method to compute a regularized solu-
tion of (1) is to perform a so-called hybrid method; see [4] and the references therein. At the kth iteration of a hybrid
method, one projects problem (4) onto a Krylov subspace k (so that a formulation like the one in (13) is recovered),
and then applies some (standard form) Tikhonov regularization to the projected least squares problem. By doing so,
one is within the framework of the so-called first-project-then-regularize methods; see [1, Chapter 6]. In other words,
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by using decomposition (12) and the properties of the matrices appearing therein, the kth iteration of these methods
computes

xk(#k) = arg min
x∈k(G,c)

{ ||Ax − b||2 + #k||x||2 } = Wkyk(#k) , where yk(#k) = arg min
y∈Rk

{ ||Rky − ZT
k+1b||2 + #k||y||2 } . (20)

By comparing the two formulations (19) and (20) it is evident that, if #k = #, then these two approaches are equivalent.
When adopting hybrid methods (20), the search for a good regularization parameter is done on the fly using well-known
parameter choice rules on the projected problem only, which has relatively small dimensions (if k≪ min{m, n}) and is
therefore less computationally demanding than working with the original large-scale problem (4); see [49] and Section 3
for more details. It should also be emphasized that, although #k is a suitable regularization parameter for the kth iter-
ation (ie, it is in principle a local choice, good for the kth projected Tikhonov problem (20) only), when k increases #k
seems to stabilize around a value that is good for the full-dimensional problem, too; see [50]. In the following, among the
approaches (19) and (20), only the latter will be considered (unless stated otherwise).

When combining projection methods and Tikhonov regularization, one is effectively dealing with two-parameter
methods, meaning that a good regularized solution to (1) is achieved by a sensible interplay of the number of performed
iterations and the chosen Tikhonov regularization parameter. In particular, when comparing these methods to purely
iterative Krylov methods (13), setting a good stopping rule for k is less crucial for recovering a suitable regularized solution,
and often a larger approximation subspace k can be generated, where the regularized solution can be more accurately
recovered.

Linking to the notations introduced in Section 1 to denote a generic regularization method, xk(#k) in (20) can be
expressed as xreg = A†

reg, where A†
reg = Wk(R

T
k Rk + #kI)−1R

T
k ZT

k+1b (note that xreg depends on both the number of iterations
and the Tikhonov parameter #k).

3 EXISTING PARAMETER CHOICE RULES FOR LARGE-SCALE
PROBLEMS

Choosing one (or more) suitable regularization parameter(s) is a nontrivial and heavily problem-dependent aspect of every
regularization method. For large-scale problems, this has been a widely-studied topic covered in the classical bibliography
about Tikhonov, (purely) iterative, and hybrid regularization methods (see, eg, [21, Chapter 7], [51, Chapter 15]), as well
as in more or less recent survey papers (see, eg, [49,52,53]). In the hybrid framework, two similar but differently principled
approaches can be used: using a projected parameter choice scheme, or using an approximation of the full dimensional
parameter choice scheme that only relies on information available within the projected problem. In this section, only a
few parameter choice strategies that are well-established in these settings will be reviewed: they can all be formulated as
minimization problems, whose objective functions P(xreg) depend on one (or more) regularization parameter(s) through
xreg (ie, the regularized solution that is obtained by (4), or (13), or (20)). Table 2 gives more details about the strategies
considered in this paper, specified for the Tikhonov regularization case (4), that is, xreg = x(#); the information reported
there (and in this section) is by no means exhaustive.

If a good estimate of the norm of the error in the right hand side ||e|| is available, coming from existing knowledge
about the problem or recovered by noise estimation algorithms (which may be the same Krylov solver employed for
regularization [34,35]), the most widespread and reliable method is the so-called discrepancy principle [54]. It consists in
choosing the regularization parameter such that the solution xreg satisfies

+ ∶= ,||e|| = ||Axreg − b|| , (21)

where , is a (safety) parameter, usually chosen slightly bigger than 1. When e is Gaussian white noise with covariance
matrix -2I, one typically takes ||e|| = -

√
m (ie, the expected value of ||e||). When considering Tikhonov method (4), one

applies a zero finder, for example, [55], to solve with respect to # the nonlinear equation + = ||Ax(#) − b||. Note that this is
an equivalent formulation to the (unconventional) one reported in Table 2; more details will be given in Section 4.2. When
considering purely iterative methods satisfying (13), this corresponds to stopping the iterations as soon as the discrepancy
norm ||Axk̂ − b|| lies below + for an iteration k̂ (the subsequent iterations are guaranteed to have discrepancy norms lying
below + because of the optimality property of the residual in (13) that, in this case, coincides with the discrepancy). When

40



GAZZOLA AND LANDMAN 9 of 31

T A B L E 2 Parameter choice rules considered in this paper, which can be (re)formulated as minimization problems min P(xreg) over the
set of admissible regularization parameters. The objective functions P(xreg) reported in the second column are specified for Tikhonov
regularization (4), that is, xreg = x(#); notation-wise, r(#) = b − Ax(#). The reported references contain implementation details about specific
parameter rules, tailored to the considered regularization method

References
Parameter
choice rule Objective function P(xreg) = P(x(!)) Tikhonov (4) Krylov (13)

Hybrid
Krylov (20)

Discrepancy principle bT((#I − #+2I + 2AAT log((AAT + #I)−1))b − bT(AAT)2x(#) [54,55] [40] [56,57]
(DP) (where + ≃ ||e||∕||b||)

Unbiased Predictive
Risk Estimator

1
m ||Ax(#) − b||2 + 2 -

2

m trace(A(ATA + #I)−1AT) − -2 [2, Chapter 7] [2, Chapter 7] [58]
(UPRE)

Generalized Cross
Validation

||r(#)||2
(trace(I−A(AT A+#I)−1AT ))2

[59,60] [21, Chapter 7] [30,58,61]

(GCV)

L-curve (log(||r(#)||))′(log(||x(#)||))′′−(log(||r(#)||))′′(log(||x(#)||))′
(((log(r(#)))′)2+(log (x(#))′)2)3∕2 [62] [62] [31,63]

Regińska criterion ||b − Ax(#)||||x(#)||. , . > 0 [64] [52] [31]

considering hybrid methods (20), at the kth iteration, one typically solves (with respect to #) the projected version of (21),
that is,

+ = ||Axk(#) − b|| = ||Axk(#k) − b|| = ||Rkyk(#k) − ZT
k+1b|| . (22)

The last equality in (22) holds thanks to the generic decomposition (12) and the properties of the matrices appearing
therein. In other words, one typically determines the Tikhonov parameter #k to be employed at the kth hybrid iteration by
imposing (22), and sets a(n unrelated) stopping criterion for the iterations. For instance, the authors of [57] first determine
a suitable iteration k assuring that equation (22) has a unique solution, apply a zero finder to solve (22), and then compute
xk(#k). However the value of k so determined may be too small to guarantee a good approximation, and usually a few extra
iterations are performed to improve the quality of the solution by using a richer approximation subspace. The authors of
[56] derive the so-called “secant update” method, which solves (22) by performing one step of a secant-like zero finder
at each hybrid iteration (to update the regularization parameter for the projected problem (20)), stopping when (22) is
satisfied. As an upside, when a method (13) and (20) is adopted with the discrepancy principle, one can typically prove that
the resulting strategy is a regularization method according to the definition given in (9). As downsides, the discrepancy
principle relies on having an accurate estimate of ||e||, and tends to oversmooth the regularized solution [21, Chapter 7].

Another parameter choice rule that can be employed when the standard deviation - of the noise e is known is the
unbiased predictive risk estimator (UPRE), which is based on a statistical estimator of the mean squared norm of the
predictive error, and consists in computing

min Ureg(xreg) , where Ureg(xreg) =
1
m ||Axreg − b||2 + 2-2

m trace(AA†
reg) − -2 , (23)

where the minimization happens over the set of admissible regularization parameters. When considering Tikhonov
method (4) one typically applies a local optimization method (eg, Newton’s method) to find a local minimizer of
Ureg(xreg) = U#(x(#)) with respect to #; some strategies based on Krylov subspace methods, or randomized trace estima-
tors, may be employed to efficiently estimate the trace term in (23) when adopting a first-regularize-then-project approach
(19); see [49,65]. When considering purely iterative regularization methods (13) one should monitor the value of the func-
tional U reg(xreg)=Uk(xk) at the kth iteration, and stop as soon as a significant growth happens. UPRE has been adapted
in [58] to work in the hybrid framework (20), where a projected version of the optimization problem (23) is solved with
respect to the Tikhonov parameter at each iteration k, to determine a suitable # = #k to be employed in (20).

Parameter choice rules that do not use ||e||nor any other information about e are sometimes called “heuristic methods”
because it has been shown that no regularization method equipped with any of these rules can be proven to satisfy the
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definition (9); see [5, Chapter 4] and [21, Chapter 7]. A popular strategy belonging to this class of rules is the so-called
generalized cross validation (GCV), which is based on a statistical tool (cross validation) used to predict possible missing
data values (so that the regularization parameter is chosen to obtain the best prediction with respect to any supposedly
missing entry bi, i= 1, … , m, of the vector b). In practice, GCV requires the computation of

min Greg(xreg) , where Greg(xreg) =
||Axreg − b||2

(trace(I − AA†
reg))2

(24)

and where the minimization happens over the set of admissible regularization parameters. This strategy was first proposed
and analyzed in [59] for Tikhonov method (4). Application of GCV to purely iterative methods (13) is not straightforward,
because of the different approaches that can be adopted to compute the trace at the denominator of Greg in (24); see [
[21], Chapter 7]. When adopting a first-regularize-then-project approach (19) in connection with large-scale (and possibly
matrix-free) problems, and similarly to UPRE (23), the main difficulty in applying GCV is the computation of the denom-
inator of the the GCV functional Greg. This issue is commonly alleviated either by using a Monte Carlo approach [66] or
by using stochastic trace estimators, for example, Hutchinson’s stochastic trace estimator [65]. More precisely, [60] uses
the latter strategy, by also exploiting links between GKB and Gaussian quadrature rules to approximate the GCV func-
tional Greg as a function of the Tikhonov regularization parameter #; once these approximations give bounds that are tight
enough, they are used to determine a suitable value for #, and method (19) can be employed to find a regularized solu-
tion; see also [51, Chapter 15] and references therein for more details. GCV and variations thereof have also been used in
connection with hybrid methods (20), based either on GKB or other decompositions of the kind (12): for instance, [61]
adopts a weighted GCV approach, and [30,58] derive a modified GCV approach, where also insight about the relationship
between a projected functional approximating the GCV functional Greg(xreg) and Greg(xreg) itself is given. All these hybrid
strategies have in common that an approximated version of the optimization problem (24) is solved with respect to the
Tikhonov parameter # at each iteration k, to determine a suitable # = #k to be employed in (20): in doing so, these strate-
gies often overcome another known drawback of the GCV rule (24), namely, the fact that the GCV function Greg(xreg) is
usually very flat around its minimum [67].

Another very popular scheme that does not require information about the noise e in (1) is the so-called L-curve cri-
terion [62]: it consists in plotting the curve L(xreg) = (log(||xreg||), log(||Axreg − b||)) with respect to different values of the
regularization parameter (so that each point on the L-curve corresponds to one regularization parameter), and then find-
ing the corner of such curve (which is hopefully shaped as an “L”). The rationale behind the L-curve criterion is that the
corner of the L-curve is supposed to represent an good balance between the value of ||xreg|| (which should not be neither
too small nor too big, to avoid over- or under-regularization, respectively) and the value of ||Axreg − b|| (which should not
be neither too small nor too big, to avoid under- or over-regularization, respectively). In practice, the L-curve criterion
requires the computation of

min (−/(L(xreg))) , where / denotes the curvature of the L-curve, (25)

and where the minimization happens over the set of admissible regularization parameters. When considering Tikhonov
method (4), any optimization routine can be run to solve (25) with xreg = x(#) with respect to the Tikhonov regular-
ization parameter #; see [62]. Although the L-curve criterion works well in many cases, when paired with Tikhonov
method it might not be consistent with the classical definition of regularization method (9); see, for example, [68,69] and
[ [21], Chapter 7]. When considering a purely iterative method (13), the L-curve criterion can be meaningful only if both
||Axk − b|| and ||xk|| are monotonic; while the former is guaranteed by the optimality property of the residual (11), the latter
may not hold for all solvers (eg, among the ones listed in Table 1, GMRES and RR-GMRES). When dealing with large-scale
problems by adopting a first-regularize-then-project approach, since one should typically solve one regularized problem
for each of the points lying on the L-curve, a possible computationally feasible fix is to compute only a few points of the
curve using the strategy (19), and then find the corner using interpolation techniques; see [62]. When adopting a hybrid
method (20), a projected L-curve is computed at the kth iteration (ie, Lk(xk(#k)) = (log(||xk(#k)||), log(||Axk(#k) − b||))) and
an optimization problem analogous to (25) is solved with respect to the Tikhonov parameter #k at each iteration k: com-
puting every point on the projected L-curve is feasible (either because k≪ min{m, n} [31] or because computations for a
given set of predetermined values of the Tikhonov parameter are simultaneously updated from one iteration to the next
one [63]). When hybrid methods based on GKB are employed, the links between GKB and Gaussian quadrature rules have
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been exploited in [70,71] to derive upper and lower bounds (ie, boxes) for the points on the L-curve (this is the so-called
“L-ribbon” method) or to compute curvature bounds [72] at each iteration.

Closely related to the L-curve criterion is the Regińska criterion [64], which consists in solving

min Rreg(xreg) , where Rreg(xreg) = ||Axreg − b||||xreg||. , where . > 0 is fixed , (26)

and where the minimization happens over the set of admissible regularization parameters. This strategy was first proposed
and analyzed in [64] for Tikhonov method (4); an algorithm to find a local minimum of Rreg(xreg) = R#(x(#)) with respect
to # is derived in [73]. Application in the setting of purely iterative methods (13) was described in [52]. The Regińska
criterion (26) has then been adapted in [31] to work within the framework of hybrid methods (20): essentially, this involves
computing a projected Regińska functional at the kth iteration (ie, Rreg(xreg) = Rk(xk(#k)) = ||Axk(#k) − b||||xk(#k)||.) and
minimizing it with respect to the Tikhonov parameter #k.

4 A NEW BI-LEVEL OPTIMIZATION FRAMEWORK
FOR REGULARIZATION

All the rules presented in Section 3 for hybrid regularization (ie, first-project-then-regularize) methods (20) have in
common that, together with the regularization method itself, can be reformulated as a sequence of problems of the form

min
#k≥0

Pk(xk(#k)) subject to xk(#k) = arg min
x∈k

F(x, #k) , k = 1, 2, … (27)

where F(x, #k) is the objective function appearing in the first optimization problem in (20) and Pk(xk(#k)) is a condition
that allows a suitable choice of #k ≥ 0 (typically a projected version of the strategies listed in Section 3 and also listed in
Table 2). For instance, when using Regińska criterion,

Pk(xk(#k)) = Rk(xk(#k)) = ||Axk(#k) − b||||xk(#k)||. = ||Rkyk(#k) − ZT
k+1b||||yk(#k)||. , . > 0 , (28)

where the functional Rk(xk(#k)) can be regarded as a projected version of the functional Rreg appearing in (26), specific of
hybrid methods (obtained by exploiting decomposition (12) and the properties of the matrices appearing therein). Problem
(27) is formally a sequence of bi-level optimization problems, each consisting of a lower-level optimization problem whose
solution xk(#k) is an argument of the higher-level minimization problem; see [74]. Thanks to the particular form of F(x, #k)
and assuming k≪ min{m, n}, one can derive a closed-form solution for xk(#k), and substitute its expression in Pk(xk(#k)),
so that each problem (27) can be essentially regarded as a single-level optimization problem. Even in this favourable
case, nothing can be concluded in general regarding the convexity of problem (27), as it will depend on properties of the
higher-level functional Pk(xk(#k)).

Note that, as explained in Section 3, when solving (27), one fully runs (till convergence) a parameter choice strategy,
with the outcome of selecting a suitable regularization parameter for iteration k (ie, this is in principle a local choice,
good for the kth projected Tikhonov problem only): therefore, solving (27) to high precision for every k may be worthless.
Moreover, even if only a stopping criterion for the higher-level problem should be set, one needs an additional (and often
heuristic) stopping criterion to set k, that is, to guarantee that problem (27) is a good approximation to its full dimensional
counterpart , so that one is effectively dealing with two stopping criteria.

Problem (27) can also be regarded as a projected version of the bi-level optimization problem

min
#≥0

P(x(#)) subject to x(#) = arg min
x∈Rn

F(x, #) , (29)

arising when applying Tikhonov method (4) (lower-level problem) equipped with a given parameter choice rule
(higher-level problem) to compute a regularized solution to (1). As for problem (27), nothing can be stated in general
about the convexity of problem (29): a couple of instances (one convex and the other nonconvex) will be considered in
Sections 4.2 and 4.3 (respectively); see also [74] and the references therein. Again, thanks to the particular form of F(x, #),
one can derive a closed-form solution for x(#), and substitute its expression in P(x(#)), so that problem (29) is essen-
tially a single-level optimization problem. However, in practice and as explained in Section 1, one can obtain x(#) directly
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only when some factorizations of A (such as the SVD) can be computed: this is not the case for large-scale unstructured
problems (1). In these situations, one should resort to an iterative linear solver to approximate the solution x(#) of the
lower-level problem in (29), while a nonlinear solver is used to compute an approximation to the higher-level problem in
(29). Because of this, problem (29) should still be treated as a bi-level optimization problem. In particular, an inner-outer
iterative scheme may be naturally established when solving (29). As partially explained in Section 3, this may be the
case for first-regularize-then-project methods (19), which iteratively solve a lower level problem of the form (4) for every
value of the Tikhonov regularization parameter # computed within the iterations of min# ≥ 0P(x(#)). This approach is
equivalent to applying the well-known variable projection method [75] for minimizing problems over two sets of depen-
dent variables, that is, in general, one set of unknowns is explicitly eliminated, and the minimization is computed for the
resulting variable projection functional that depends only on the remaining variables. In the case of (29), for the unknown
variables x and #, x = x(#) can be computed for a given # by iteratively solving a problem of the form (4), so that the
minimization is performed over the variable # for the variable projection functional P(x(#)). Note that the intermediate
values of # so determined are subsequently computed for the full-dimensional problem (4), and two stopping criteria are
involved: one for the inner iterations (to be repeatedly applied), and one for the outer iterations.

This section introduces a new efficient class of parameter choice strategies for large-scale problems (4), which can
be viewed in the framework of (29), but leverage ideas typical of the hybrid approach to (27). The new strategies simul-
taneously compute a value for k, #k and xk(#k), thereby computing a good approximation of the solution of the original
problem (29).

The core idea behind the new strategies is to “interlace” the iterations needed to solve the lower-level problem
and the higher-level problem in (29). These strategies result in only one iteration cycle, bypassing both the
first-regularize-then-project (19) and first-project-then-regularize approaches (20). Namely, each iteration of the new meth-
ods consists in performing one step of a Krylov projection method for solving the linear lower-level problem in (29),
and one step of a nonlinear (eg, Newton-like) iterative scheme for solving the nonlinear higher-level problem in (29) (as
sketched in Algorithm 1).

Algorithm 1. New adaptive bi-level optimization algorithm for problem (29)
1: Choose an initial guess #1.
2: for k = 1, 2,… until a stopping criterion is satisfied do
3: Compute the Krylov subspace k and project problem (4).
4: Apply a step of a nonlinear solver to compute #k+1 (given k and #k).
5: end for
6: Take xk(#k+1) ∈ k as an approximation of the solution of (4).

In this way, the approximation subspace for the solution of (29) is enlarged while a suitable value for the Tikhonov
regularization parameter is set. Also, by avoiding nested iteration cycles, only one stopping criterion should be set (this
is typically a standard stopping criterion applied to the higher-level problem in (29)). The new strategy, in addition to
being conceptually simpler, potentially allows for great computational savings, even when compared with hybrid methods
(27). Indeed the latter, for each k, still requires the repeated solution of the lower-level problem (27), which may become
expensive when k increases; the following sections report more detailed estimates of the involved computational costs.
Although a similar approach was proposed in [56] for the discrepancy principle, the present strategies are new in that they
are casted in the framework of bi-level optimization problems (29), and can work in connection with every parameter
choice rule of the form (29).

In the following, details of Algorithm 1 will be only developed for projection methods that are built upon the
Golub-Kahan bidiagonalization (GKB) algorithm. This is because approximations of the functionals (listed in Table 2)
associated to the higher-level problem can be obtained by exploiting the connections between GKB and Gaussian quadra-
ture rules (see Section 4.1). However, the same approach could be used in connection with other projection methods,
provided that approximations of the higher-level functional P(x(#)) are available, can be computed cheaply at each
iteration k, and converge to P(x(#)) as k increases. When using GKB, and when the functional P(x(#)) in (29) is associated
with the discrepancy principle, it can be proved that the regularized solution computed by the new strategy converges
to the solution x(#) of (29) (see Section 4.2); when considering other higher-level functionals, no conclusions about
convergence can be drawn at this stage (see Section 4.3).
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4.1 Golub-Kahan bidiagonalization (GKB) and its connections to Gaussian
Quadrature rules

A pivotal remark that will be exploited in this section is that the symmetric Lanczos algorithm [ [22], Chapter 6] and the
GKB algorithm are closely related. Indeed, multiplying the second equation in (17) from the left by A, and using the first
equation in (17), one obtains

AATUk = AVkBk = Uk BkBT
k

⏟⏟⏟
=∶Tk

+ )k+1uk+1eT
k BT

k = UkTk + )k+1*kuk+1eT
k . (30)

Here, the lower bidiagonal matrix Bk defined in (18) can also be regarded as the Cholesky factor of the symmetric positive
definite tridiagonal matrix Tk = BkBT

k obtained after k iterations of the symmetric Lanczos algorithm applied to AAT

with initial vector b. Moreover, multiplying the first expression in (17) from the left with AT , and using again the second
equation in (17), one obtains

ATAVk = ATUkBk + )k+1ATuk+1eT
k = ATUk+1Bk = Vk+1BT

k+1Bk

= Vk B
T
k Bk

⏟⏟⏟
=∶T̂k

+ *k+1)k+1vk+1eT
k , (31)

so that V k can be regarded as the matrix generated by performing k steps of the symmetric Lanczos algorithm applied to
ATA, with initial vector ATb. After computing the QR-factorization Bk = QkB̂T

k , where B̂k ∈ Rk×k is lower bidiagonal, one
can see that B̂T

k is the Cholesky factor of the symmetric positive definite tridiagonal matrix T̂k = B
T
k Bk = B̂kB̂T

k .
Now, denote by C ∈ Rp×p a generic symmetric positive semidefinite matrix, having spectral decomposition C =

WΛW T , where Λ is a diagonal matrix whose diagonal elements are the eigenvalues 0 ≤ 31 ≤ 32 ≤ ⋅ ⋅ ⋅ ≤ 3p of C, and W is
the orthonormal matrix whose columns are the normalized eigenvectors of C. The remaining part of this section presents
a strategy to compute bounds for general quadratic forms

f ($,C,u) = uT$(C)u , (32)

where u∈Rp is a given vector and $ is a given smooth function on the interval [0,+∞) of the real line. Using standard
definitions and derivations, (32) can be expressed as

f ($,C,u) = uT$(C)u = uTW$(Λ)W Tu =
p∑

i=1
$(3i)(W Tu)2

i = ∫
+∞

0
$(3)d4(3) =∶ I($) . (33)

The last equality comes from considering the sum as a Riemann-Stieltjes integral, where the distribution function 4 is a
non-decreasing step function with jump discontinuities at the eigenvalues 3i. The chain of equalities (33) makes it natural
to consider quadrature rules to approximate the quadratic form in (32). Gaussian quadrature rules will be employed
for this purpose, and they will be computed applying the symmetric Lanczos algorithm to C with initial vector u. In
Section 4, only quadratic forms of the kind bT$(AAT)b and (ATb)T$(ATA)(ATb) have to be approximated, so that only the
symmetric Lanczos algorithm applied to AAT ∈Rm×m with initial vector b∈Rm, or applied to ATA∈Rn×n with initial
vector ATb∈Rn, have to be considered: this is done implicitly by applying the breakdown-free GKB algorithm to A∈Rm×n

and b∈Rm (see assumption (16) and equations (30) and (31)).
Let Tk = BkBT

k ∈ Rk×k be the symmetric positive definite tridiagonal matrix appearing in (30), produced after perform-
ing k ≤ min {n,m} steps of the Lanczos algorithm applied to the matrix AAT with initial vector b. Let {qi(3)}k

i=0 be the
family of orthonormal polynomials with respect to the inner product induced by the measure 4(3) (associated with AAT

and b), and let Tk = YkΘkY T
k be the spectral decomposition of Tk, where Y k is the orthonormal matrix whose columns are

the normalized eigenvectors of Tk, and Θk is the diagonal matrix of eigenvalues 0 < 51 ≤ ⋅ ⋅ ⋅ ≤ 5k. It is well-known that
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the k-point Gauss quadrature rule with respect to the measure 4(3), defined as

k($,AAT , b) ∶=
k∑

j=1
$(5j)||b||2(eT

1 (Yk)ej)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=7j

= ||b||2eT
1 Yk$(Θk)Y T

k e1 = ||b||2eT
1$(Tk)e1 , (34)

approximates (33) with C =AAT and u= b. More specifically, the eigenvalues of Tk are the zeros of the polynomial qk(3),
as well as the quadrature nodes, and the quadrature weights 7j are given by the rescaled and squared first components of
the eigenvectors of Tk [51]. Analogously, the k-point Gauss-Radau quadrature rule with one assigned node at the origin
and with respect to the measure 4(3), approximating (33) with C =AAT and u= b, can be obtained by suitably modifying
the symmetric Lanczos process to compute a symmetric positive semidefinite matrix Tk of order k with one prescribed
eigenvalue at the origin. This amounts to taking Tk = Bk−1B

T
k−1 ∈ Rk×k, where Bk−1 is the (k− 1)× k version of the matrix

Bk in (18) (or, alternatively, is the matrix obtained by selecting the first (k− 1) columns of the Cholesky factor Bk of Tk);
see [60] for a proof. Eventually, such a quadrature rule reads

k($,AAT , b) ∶=
k∑

j=1
$(5j)||b||2(eT

1 (Y k)ej)2 = ||b||2eT
1 Y k$(Θk)Y

T
k e1 = ||b||2eT

1$(Tk)e1 , (35)

where Tk = Y kΘkY
T
k is the spectral decomposition of Tk, with Y k orthonormal and Θk = diag(51, … , 5k), 0 = 51 < 52 ≤

… ≤ 5k.
Now let T̂k = B̂kB̂T

k ∈ Rk×k be the symmetric positive definite tridiagonal matrix appearing in (31), produced after
performing k ≤ min {n,m} steps of the Lanczos algorithm applied to ATA with initial vector ATb. Similarly to the pre-
vious derivations, the k-point Gauss quadrature rule with respect to the measure 4(3) (associated with ATA and ATb),
defined as

k($,ATA,ATb) ∶=
k∑

j=1
$(5̂j)||ATb||2(eT

1 (Ŷk)ej)2 = ||ATb||2eT
1$(T̂k)e1 , (36)

approximates (33) with C =ATA and u=ATb. Here, using notations analogous to the previous ones, T̂k = ŶkΘ̂kŶ T
k =

Ŷkdiag(5̂1, … , 5̂k)Ŷ T
k is the spectral decomposition of the matrix T̂k. Finally, the matrix ̄̂Tk ∶= ̄̂Bk−1

̄̂B
T
k−1 ∈ Rk×k, where

̄̂Bk−1 is the matrix constructed by selecting the first k− 1 columns of the Cholesky factor B̂k of T̂k, is symmetric
positive semidefinite with one prescribed eigenvalue at the origin. Therefore, the k-point Gauss-Radau quadrature
rule with respect to the measure 4(3) (associated with ATA and ATb), with one node assigned at the origin, can be
expressed as

k($,ATA,ATb) ∶=
k∑

j=1
$( ̄̂5j)||ATb||2(eT

1 (Ŷ k)ej)2 = ||ATb||2eT
1$(

̄̂Tk)e1 , (37)

where ̄̂Tk = Ŷ k
̄̂ΘkŶ

T
k = Ŷ kdiag( ̄̂51, … , ̄̂5k)Ŷ

T
k is the spectral decomposition of the matrix ̄̂Tk.

Assuming that $ is a 2k-times differentiable function, the quadrature errors k ($) = I($) −k($) associated with
k-point Gauss and Gauss-Radau quadrature rules (with k($) = k($) and k($) = k($), respectively, and where the
dependence on the matrices AAT , ATA, and the vectors b, ATb, has been removed in the interest of generality), are given by

k ($) =
$(2k)()k )
(2k)! ∫

+∞

0

k∏
i=1

(t − )i)2d4(t) (38)
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and

k ($) =
$(2k−1)()k

)
(2k − 1)! ∫

+∞

0
t

k∏
i=2

(t − ) i)2d4(t) , (39)

respectively. Here )k , )k
∈ [31, 3min {n.m}]. The )i’s denote the nodes of a Gauss quadrature rule (so that )i = 5i for (34)

and )i = 5̂i for (36)); the ) i’s denote the nodes of a Gauss-Radau quadrature rule (so that ) i = 5i for (35) and ) i = ̄̂5i for
(37)). As an immediate consequence of formulas (38) and (39), if the derivatives of the function $ have constant sign
on [31, 3min {n.m}], then upper or lower bounds for quadratic forms of the kind bT$(AAT)b and bTA$(ATA)ATb can be
obtained by employing Gauss and Gauss-Radau quadrature rules of the form (34)–(37)

4.2 A rule based on the discrepancy principle and a new modified Newton method

Some preliminary derivations should be performed to see how Tikhonov regularization (4) equipped with the discrepancy
principle (21) fits into the framework of problem (29). Consider the quadratic form

P(x(#)) = bT8DP(AAT , #)b ,

where

8DP(t, #) = # − #+2 + 2t log((# + t)−1) − t2(# + t)−1 , (40)

is a function defined for t ≥ 0, # > 0 (see also (33)), and + = +∕||b|| = ,||e||∕||b|| in (1) (see also (21) and Table 2). The first
and second derivatives with respect to # of the function 8DP(t, #) in (40) read

$DP(t, #) ∶= 9#8DP(t, #) = #2(t + #)−2 − +2 and 92
#8DP(t, #) = 2#t(t + #)−3 , (41)

respectively. Since 92
#8DP(t, #) ≥ 0 for # > 0, then 92

#bT8DP(AAT , #)b ≥ 0 for # > 0 (ie, bT8DP(AAT , #)b is convex as a
function of # for # > 0). Therefore, solving (29) amounts to solving the nonlinear equation (see [72] for complete
derivations)

0 = bT$DP(AAT , #)b = #2bT(AAT + #I)−2b − +2 = ||b − Ax(#)||2 − +2 (42)

with respect to # (which is basically (21) specified for Tikhonov method). Since the continuous function bT$DP(AAT , #)b
is increasing in #, there exists a unique zero #∗ in (0,∞) provided that

lim
#→0

bT$DP(AAT , #)b = −+2 < 0 and lim
#→+∞

bT$DP(AAT , #)b = ||b||2 − +2 > 0 , (43)

where the last inequality obviously holds if +2 < ||b||2 (this is a reasonable bound for the amount of noise in the data,
which will be assumed in the following). Equation (42) agrees with the standard discrepancy principle formulation (21)
and, in theory, one can easily apply a zero-finder (eg, Newton method) to compute #∗. Since $DP(t, #) is not convex for
# > 0, Newton method is not guaranteed to globally converge. As proposed in [55], the simple change of variable : = 1∕#
is performed in (42), so that

$̂DP(t, :) ∶= (:t + 1)−2 − +2 and f̂ DP($̂DP,AAT , b, :) ∶= bT$̂DP(AAT , :)b − +2 (44)

are decreasing and convex for : > 0, and a unique zero :∗ exists if conditions analogous to (43) are satisfied. Newton
method applied to solve the nonlinear equation (with respect to :)

0 = f̂ DP($̂DP,AAT , b, :) = bT(:AAT + I)−2b − +2 (45)
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F I G U R E 1 Geometrical interpretation of the modified
Newton method (47).

globally converges, and can be easily implemented if the SVD of A is available. Since this is not the case in general for
large-scale problems (as remarked earlier in this section and in Section 1), an alternative new solution approach for (45)
is derived.

The following result proves the convergence of a specific modification of the classical Newton zero finder, which can
be used in a general setting whenever dealing with a sequence of functions {k}k≥ 1 satisfying certain assumptions. This
method will be later applied to solve (45).

Theorem 1. Let f : (0,+∞)→R be a strictly decreasing, convex, differentiable function such that limx→+∞f (x) < 0.
Let {k}k≥ 1 : (0,+∞)→R, be a sequence of strictly decreasing, convex, differentiable, increasing lower bounds for f ,
that is,

k(x) ≤ k+1(x) ≤ f (x) for all k ≥ 1, x ∈ (0,+∞) , (46)

such that limx→0k(x) > 0 for all k≥ 1, and limk→+∞k(x) = f (x) for all x ∈ (0,+∞). Then, given x1 such that 1(x1)≥ 0,
the sequence {xk}k≥ 1 obtained from the recursion

xk+1 = xk −
k(xk)′

k(xk)
(47)

monotonically converges to the root x∗ of f from the left.

Proof. The assumptions assure that the functions f and k, k≥ 1, have exactly one zero in (0,+∞). Given xk, k≥ 1, define
the function

tk(x) = k(xk) + ′
k(xk)(x − xk) ,

that is, the tangent line to the graph ofk at (xk,k(xk)). Relation (47) is established by imposing tk(xk+ 1)= 0 and, together
with the convexity of k and (46), leads to

0 = tk(xk+1) ≤ k(xk+1) ≤ k+1(xk+1) ≤ f (xk+1). (48)

Replacing k by k− 1 in the above relation implies k(xk)≥ 0 which, together with ′
k(xk) < 0 and (47), leads to

xk ≤ xk+ 1. Moreover, since f is decreasing and f (xk+ 1)≥ 0, xk+1 ≤ x∗. Therefore the sequence {xk}k≥ 1 is monotonically
increasing and bounded above by x∗. Taking the limit for k→∞ in (48) implies k+ 1(xk+ 1)→ f (xk+ 1), so that xk+ 1
converges to x∗ thanks to the convergence of Newton method. ▪

Remark 1. Given a sequence of functions {k}k≥ 1, the kth iteration of the modified Newton method (47) consists in
performing only one (standard) Newton iteration on the kth function k. Figure 1 gives a geometrical illustration of
recursion (47).
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Remark 2. Theorem 1 still holds if assumption 1(x1)≥ 0 is removed and f , {k}k≥ 1 : R→R (ie, considering functions
defined on the whole real line). Indeed, in this setting

0 = t1(x2) ≤ 1(x2),

so that the reasoning in the proof of Theorem 1 can be applied starting from x2.

Turning now to the discrepancy principle (45), since the matrix functional f̂ DP is strictly decreasing, convex, and
differentiable with respect to :, and 9(2k)

t $̂DP(t, :) < 0 for all k≥ 1, t ≥ 0, : > 0, lower bounds for f̂ DP are obtained by
applying the Gauss quadrature rule, leading to

k($̂DP,AAT , b, :) = ||b||2eT
1 (:BkBT

k + I)−2e1 − +2, k ≥ 1; (49)

see Section 4.1 and equation (38). These bounds are increasing (see [ [76], Theorem 2.1]), so that, under assumption (16),
and using the shorthand notations k(:) and f̂ DP for k($̂DP,AAT , b, :) and f̂ DP($̂DP,AAT , b, :), respectively,

1(:) ≤ 2(:) ≤ · · · ≤ min {n,m}−1(:) ≤ min {n,m}(:) = f̂ DP(:) .

The functions k(:), 1≤ k≤ p, are strictly decreasing, convex, and differentiable with respect to :, lim:→0k(:) = ||b||2 −
+2 > 0 (reasonable bound for the amount of noise, see (43)), and lim:→+∞k(:) = −+2 < 0. The same limits hold for f̂ DP.
The above derivations assure that the assumptions of Theorem 1 are satisfied, so that the following result holds.

Corollary 1. Let A∈Rm×n and b∈Rm be as in (1), and let $̂DP be defined as in (44); consider f̂ DP in (44) and {k}k in (49)
as functions of : > 0. Let :1 > 0 be such that 1(:1) ≥ 0. Then the sequence {:k}k≥1 obtained from the recursion

:k+1 = :k −
k(:k)′

k(:k)
(50)

monotonically converges to the root :∗ of (45) from the left.

Remark 3. Relation (50) is formally similar to (47). Notably, since k(:) = f̂ DP(:) for k ≥ min {n,m}, relation (50) reduces
to (standard) Newton method when k ≥ min {n,m}. However, this never happens in practice, because the boundsk(:) are observed to quickly approach f̂ DP(:) and the convergence of (standard) Newton method is quadratic; see also
Section 5.

The computational cost of the new algorithm depends on the update rule (50) for the value of the regularization
parameter for problem (4). At iteration k, k in (49) is needed to compute #k+1 (recall that #k+1 = 1∕:k+1): to achieve this,
k iterations of the GKB algorithm should be performed (see Section 4.1 and equation (34)) to build the required Krylov
subspace k(AAT , b). Assuming that A is full, the computational cost of this task is dominated by O(2kmn) floating point
operations, since two matrix vector products (one with A and one with AT) are computed at each GKB iteration. Comput-
ing k(:k) and ′

k(:k) in (50) requires the solution of two linear systems with coefficient matrix (:kBkBT
k + I) (see also [55]):

exploiting the tridiagonal structure of the involved matrices, this amounts to O(k) floating point operations and is therefore
negligible. To compute an approximate solution xk(#k+1) for problem (4), one needs to consider the space k(ATA,ATb),
and project problem (4) onto it, that is, solve problem (20) (with the Tikhonov regularization parameter equal to 1∕:k+1).
This can be done inexpensively once the bound k is computed, since k iterations of the GKB algorithm generate both
spaces k(ATA,ATb) and k(AAT , b) (see Section 4.1), and only the order-k least squares problem in (20) needs to be
solved to compute ŷk(:k+1) ∶= yk(1∕#k+1) ∈ Rk (O(k) floating point operations) and to then form x̂k(:k+1) = xk(1∕#k+1)
(O(kn) floating point operations). The cost of these computations is negligible if k≪ min{m, n}; moreover this can
be performed only once a stopping criterion for the iterations is satisfied. However, ŷk(:k+1) ∈ Rk may be needed to
devise a suitable stopping criterion, and therefore should be computed at a negligible additional cost at each iteration.
Indeed, it should be remarked that the discrepancy functional f̂ DP (44) associated with the approximate solution x̂k(:k+1)
satisfies

||b||2eT
1 (:k+1BkB

T
k + I)−2e1 − +2 =∶ k+1($̂DP,AAT , b, :k+1), k ≥ 1 ; (51)
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see (36) (full derivations are provided in [72]). Since 9(2k+1)
t $̂DP(t, :) > 0 for all k≥ 1, t ≥ 0, : > 0, k+1 is an upper bound

for f̂ DP (both considered as functions of :); see (39). Note that (51) is equivalent to (22), that is, the projected version of
the discrepancy principle (21) for (direct) Tikhonov regularization.

If, for solving the kth instance of problem (27), one had to adopt a well-established hybrid regularization method
based on GKB (for the lower-level problem) and Newton method (for the higher-level problem), O(2kmn) floating points
operations should still be needed to compute the partial GKB factorizations (17) (for a full A) and, at each iteration of
the (standard) Newton method, two linear systems with tridiagonal coefficient matrix (:k+1BkB

T
k + I) of dimension k+ 1

should be inverted (see again [55] for more details). If kN Newton iterations have to be performed, the latter amounts to
O(kN (k+ 1)) floating point operations: although this cost is negligible when compared to the cost associated to GKB, it
can become significant (and much higher than the O(k) operations required by the new strategy (50)) when k increases
and if many Newton iterations kN have to be performed.

Summarizing, the kth iteration of the new adaptive strategy to solve problem (29) when P(x(#)) is associated with the
discrepancy principle consists in applying the new modified Newton zero finder (50) to (45), which involves computing
lower bounds k for f̂ DP. The discrepancy functional ||b − Ax̂k(:k+1)||2 − +2 = ||Bkŷk(:k+1) − ||b||e1||2 − +2 for the interme-
diate approximate solutions x̂k(:k+1) = xk(1∕#k+1) of problem (4) lies on upper bounds k+ 1 for f̂ DP. See also Algorithm
2. An illustration of the behavior of the bounds for the function f̂ DP (44) is given in Section 5 for an image deblurring test
problem.

Since the modified Newton method (50) can essentially be regarded as a Newton-like update formula applied to a
sequence of iteration-dependent converging functions, standard stopping criteria for Newton method can be adapted
to this setting to determine both a value of the regularization parameter :k+1 and the dimension of the approximation
subspace for x̂k(:k+1). Typically, the updates (50) should stop when the space k(ATA,ATb) is large enough to contain
a suitable approximation to the solution of (4) and when a value of the regularization parameter suitable for the full
dimensional problem (4) has been computed: these requirements are interrelated and, as mentioned in Section 3, they
are also desirable for hybrid methods; see [31,61,72].

It is natural to stop the updates (50) as soon as

f̂ DP(:k+1) = ||b − Ax̂(:k+1)||2 − +2 ≤ 5+2 , for a given tolerance 5 > 0 . (52)

However, computing x̂(:k+1) would require solving the full-dimensional problem (4) with # = 1∕:k+1, which may
be prohibitively expensive for large-scale problems. Therefore, estimates for the function on the left of (52) should be
considered. By taking the upper bound (51), one can replace (52) by

k+1($̂DP,AAT , b, :k+1) ≤ 5 +2 . (53)

Satisfying (53) implies satisfying (52). Alternatively (and using reduced notations), an estimate of ||b − Ax̂(:k+1)||2 is
obtained by averaging its upper (51) and lower (49) bounds evaluated at :k+1, and (52) can be replaced by

1
2 (k+1(:k+1) + k(:k+1)) ≤ 5 +2 . (54)

Algorithm 2. Algorithm 1 specified for GKB and the discrepancy principle

1: Choose an initial guess :1 such that 1(:1) ≥ 0, k as defined in (49).
2: for k = 1, 2,… until (53) or (54) are satisfied do
3: Apply GKB to update the kth factorizations of the form (17)
4: Compute :k+1 by (50)
5: Compute ŷk(:k+1) = y(1∕#k+1) by (20)
6: end for
7: Take xk(#k+1) = Vkyk(#k+1) ∈ k(ATA,ATb) as solution of (27), approximating the solution of (29).
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4.3 Extensions to other parameter choice rules

As already mentioned, the new class of algorithms can be potentially employed to approximate a solution to regularization
methods that can be formulated as bilevel optimization problems of the form (29), which includes all the parameter choice
rules described in Section 3 used together with Tikhonov regularization (4) (see also Table 2). This section unfolds, in a
quite heuristic way, specific derivations for the case of Regińska criterion (26), (28).

As for the discrepancy principle in Section 4.2, the kth iteration of the new approach (starting, in general, from an
iteration k ≥ k∗) consists in performing one minimization step by applying a modified Newton method to the higher level
functional P(x(#)) in (29), while expanding the approximation subspace for the solution of the lower level functional
F(x, #) in (29). Since the evaluation of P(x(#)) in (29) at each iteration k is computationally prohibitive, one should employ
a sequence of functionals k(#), which have a local minimum converging to a local minimum of P(x(#)) but, in general,
may not explicitly depend on the current approximate solution xk(#). In the case of the Regińska criterion, the functionalsk(#) are obtained by approximating P(x(#)) via Gaussian quadrature rules (see Section 4.1). For this reason, at the kth
iteration of the new solver, the Krylov subspaces k(ATA,ATb) and k(AAT , b) are built, and the new update formula for
the Tikhonov regularization parameter reads

#k+1 = #k −
9#k(#k)
92
#k(#k)

, for k ≥ k∗ . (55)

Although the above relation is formally similar to (47), where k = 9#k and a zero finder is applied to 9#P(x(#)) = 0,
its application may be not as straightforward as in the case considered in Section 4.2.

The functional associated with the Regińska criterion (26) can be expressed in terms of quadratic forms as

P(x(#)) = (#2bT$R(AAT , #)b)1∕2((ATb)T$R(ATA, #)ATb).∕2, where $R(t, #) = (# + t)−2, and . > 0 is fixed. (56)

Since 9(2k−1)
t $R(t, #) < 0 for k≥ 1, t ≥ 0, # > 0, Gauss-Radau quadrature rules can be used to compute a sequence of

increasingly sharper upper bounds for #2bT$R(AAT , #)b and (ATb)T$R(ATA, #)ATb. Namely, taking

̃k(#) ∶= (k+1($R,AAT , b, #))1∕2(k($R,ATA,ATb, #)).∕2

= ||ATb||.||b||(eT
1$R(BkB

T
k , #)e1)1∕2(eT

1$R( ̄̂Bk−1
̄̂B

T
k−1, #)e1).∕2

(57)

and knowing that both k+1($R,AAT , b, #) and k+1($R,ATA,ATb, #) decrease with increasing k≥ 2, one gets ̃k+1(#) ≤̃k(#) (see Section 4.2 and equations (35), (37)). Similarly, since 9(2k)
t $R(t, #) > 0 for all k≥ 1, t ≥ 0, # > 0, Gauss quadrature

rules can be used to compute lower bounds for P(x(#)) in (56). Namely, taking

̃k(#) ∶= (k($R,AAT , b, #))1∕2(k($R,ATA,ATb, #)).∕2 = ||ATb||.||b||(eT
1$R(BkBT

k , #)e1)1∕2(eT
1$R(B̂kB̂T

k , #)e1).∕2 (58)

and knowing that

k+1($R,AAT , b, #) ≥ k($R,AAT , b, #) and k+1($R,ATA,ATb, #) ≥ k($R,ATA,ATb, #) ,

one gets ̃k+1(#) ≥ ̃k(#) (see equations (34) and (36)). An illustration of the behavior of the upper (57) and lower (58)
bounds for Regińska’s functional (56) is given in Section 5 for an image deblurring test problem; this example is quite rep-
resentative of the typical behavior found in other test problems. Because of these features, the choicek(#) = ̃k(#) seems
more convenient and will be considered from now on, while ̃k(#) will be used to devise suitable stopping criteria for the
new solver. Moreover, since k(#) is defined for k≥ 2, it is natural to select k∗ = 2 in (55). Note also that both the kth upper
(57) and lower (58) bounds for Regińska’s functional (56) are different from its projection Rk(xk(#k)) expressed in (28):
indeed, using the notation of Gaussian quadrature rules, Rk(xk(#k)) = (k+1($R,AAT , b, #))1∕2(k($R,ATA,ATb, #)).∕2; see
[72] for analogous derivations.

As in Section 4.2, the kth step of the update rule (55) requires that k iterations of the GKB algorithm should be per-
formed, so that, if A is full, this task costs O(2kmn) floating point operations. Updating the regularization parameter #k+1
using equation (55), with k(#k) = ̃k(#k) in (57), requires the solution of four linear systems with tridiagonal coefficient

51



20 of 31 GAZZOLA AND LANDMAN

matrices (two with (BkB
T
k + #kI) and two with ( ̄̂Bk−1

̄̂B
T
k−1 + #kI)), amounting to O(k) floating point operations. The same

reasoning applies to the estimation of the cost for the computation of ̃k(#k+1) in (57) and in ̃k(#k+1) in (58), which is still
O(k) floating point operations: this quantities can be useful to devise a stopping criterion for the new strategy. Comput-
ing the approximate solution xk(#k+1) = Vkyk(#k+1) amounts to O(kn) floating point operations, although this can be done
once the stopping criterion is satisfied. If one had to solve the kth instance of problem (27) adopting a well-established
hybrid regularization method based on GKB, the computational cost would depend on the optimization method adopted
for the higher-level problem: for k ≪ min {m,n}, the O(2kmn) floating points operations needed to compute the partial
GKB factorizations (17) would dominate the computational cost; however, kM iterations of an optimization routine to
minimize Pk(xk(#k)) based on golden section search would require kM + 1 evaluations of the function (28), amounting to
O((kM + 1)k) floating point operations. Although this cost is negligible when compared to the cost associated to GKB, it
can become significant (and much higher than the O(k) operations required by the new strategy (55)) when k and kM
increase.

Similarly to Section 4.2, traditional stopping criteria for (standard) Newton method applied to 9#P(x(#)) = 0 can be
adapted to the modified Newton method (55), in such a way that expensive computation of x(#k+1) is avoided. More-
over, when {k(#)}k are approximations of P(x(#)) of improving quality (ie, when k(#) becomes closer to P(x(#)) as k
increases), one can also jointly monitor the convergence of k(#k+1) to P(x(#k+1)) (ie, the convergence of the approximate
functionals to the full-dimensional one at the current approximation of #) together with the convergence of #k+1 to a zero
of 9#k(#). This is done by stopping, for instance, as soon as

|k(#k+1) − P(x(#k+1))|
|P(x(#k+1))| + |9#k(#k+1)|

|k(#k+1)| ≈ |̃k(#k+1) − ̃k(#k+1)|
|̃k(#k+1) + ̃k(#k+1)|

+ |9#̃k(#k+1)|
|̃k(#k+1)|

< 5 , for a given tolerance 5 > 0 .

(59)
The above approximation is specific for the case of the new modified Newton method applied to the upper boundsk(#) = ̃k(#) for the Regińska functional (57), with P(x(#k+1)) ≈ 1∕2(̃k(#k+1) + ̃k(#k+1)), that is, the average of the

upper and lower approximations of P(x(#)) in # = #k+1.

5 NUMERICAL EXPERIMENTS

This section investigates the performance of the new class of bi-level optimization algorithms on two large-scale test
problems modeling imaging applications. All the experiments are performed running MATLAB R2017a and using some
of the functionalities available within the MATLAB toolbox IR Tools [77]1. No so-called inverse crime will be committed in
that, as detailed in each example below, no perfect agreement between the model and the data in the discretized inverse
problem will be assumed. The behavior of different regularized solutions to problem (1) is mainly assessed by evaluating
the quality of the reconstructed solutions. If xtrue is available, the relative restoration error (RRE) (8) is computed, as a
function of the Tikhonov regularization parameter # and the dimension k of the Krylov subspaces for the approximation
of the solution (to highlight this, the notation RRE(#, k) will be used).

5.1 Example 1

This example models an image deblurring test problem, involving the exact image X true, of size 512×512 pixels, appearing
in false-color in Figure 2, frame (a); X true represents a galaxy and it is publicly available 2. The image X true is corrupted by
applying a spatially invariant Gaussian blur and Gaussian white noise of level ||e ||/|| b||=0.05; the resulting blurred and
noisy image is shown in Figure 2, frame (b). In this setting, given a point-spread function (PSF) analytically defined as a
2D Gaussian function (which describes how a single pixel of the test image is deformed), a blurring process is modeled
as a 2D convolution of the PSF and the exact discrete finite image X true. Reflexive boundary conditions, which prescribe
pixel values outside of X true for the convolution operation to be well-defined, are assigned. To avoid inverse crime, no
perfect agreement between the boundary conditions in the forward model and the operator used to generate the example

1MATLAB implementations of our methods, which should be used jointly with IR Tools, are available at https://github.com/silviagazzola.
2It appears among the ones in the NRAO repository, obtained by processing data acquired by a ground-based radio-telescope; see
https://public.nrao.edu/gallery/topic/galaxies/
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F I G U R E 2 Example 1. (a) exact solution (ie, sharp
image) X true; (b) noisy and blurred measurements.
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F I G U R E 3 Example 1. Bounds for the discrepancy functional ||b − Ax̂(:)||2 at different iterations k as a function of the regularization
parameter :, displayed in logarithmic scale. (a) upper bounds k+1(:) + +2; (b) lower bounds k(:) + +2; (c) combination of upper and lower
bounds. In all frames the black horizontal line corresponds to the noise magnitude +2 = ,2||e||2.

is assumed (using the technique described in [ [3], §4.6] to simulate a boundary-condition-free real acquisition process).
A 2D image restoration problem can be rewritten as a linear system (1), where the square matrix A incorporates the
convolution process together with the boundary conditions, the unknown x should approximate the sharp image X true
(or, equivalently, the vector xtrue obtained by stacking the columns of X true), and the vector b is obtained by stacking the
columns of the 2D blurred and noisy image; see [3] for more details on image deblurring problems. For this test problem,
the coefficient matrix A has order m=n= 262144 and it is not explicitly stored; the action of A on any vector is computed
efficiently as described in [77].

As extensively explained in Section 4, the new class of algorithms can be applied when upper and lower bounds for
the higher-level functional P(x(#)) in (29) (or 9#P(x(#)), that is, its derivative with respect to the parameter #) can be
cheaply computed. When P(x(#)) is associated with the discrepancy principle (21) or Regińska criterion (26) (with the
choice . = 1), then upper and lower bounds for the relevant functionals are obtained at the kth iteration of the new
method by exploiting the links between Gaussian quadrature rules and the GKB algorithm (see Section 4.1). Figures 3
and 4 display such bounds for the discrepancy functional (corresponding to 9#P(x(#)) in (29)) and the Regińska func-
tional (corresponding to P(x(#)) in (29)), respectively, for the considered image deblurring test problem and at different
iterations k.

Looking at Figure 3it is immediate to see that both the upper and the lower bounds for the discrepancy functional
tend to overlap quite quickly and, in particular, the upper and lower bounds at iteration k= 100 essentially coincide
for all the considered values of the regularization parameter : = 1∕# (implying that these bounds already converged
to the full dimensional functional 9#P(x(#))). Looking at Figure 4, it can be observed that both the upper and the
lower bounds for the Regińska functional tend to approach one another more slowly than the bounds for the dis-
crepancy functional for every considered value of the regularization parameter; however, they quickly overlap in the
rightmost section of the flat region, where the minimum is located. It is important to note that the Regińska functional
displays its characteristic flatness around the minimum, which make the minimization problem hard in the full dimen-
sional case (see, eg, [73] for additional examples). This drawback is partially alleviated when considering the upper
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F I G U R E 4 Example 1. Bounds for the Regińska functional ||b − Ax(#)||||x(#)|| at different iterations k as a function of the regularization
parameter #, displayed in logarithmic scale. (a) upper bounds R̃k(#); (b) lower bounds G̃k(#); (c) combination of upper and lower bounds.

bounds, which are used in this example to compute the regularization parameter at each iteration via the new adaptive
algorithms.

Figure 5 displays: the so-called discrepancy surface, that is, a surface whose points lie on (#, k, ||b − Axk(#)||2); the
so-called Regińska surface, that is, a surface whose points lie on (#, k, ||b − Axk(#)||||xk(#)||)); the so-called error surface,
that is, a surface whose points lie on (#, k,RRE(#, k)). Note that, for every fixed k, ||b − Axk(#)||2 corresponds to the upper
boundk+1(#) + +2 for the discrepancy ||b − Ax(#)||2 (see Section 4.2); however, there is not such correspondence between
the projected Regińska functional ||b − Axk(#)||||xk(#)|| and the computed bounds for the Regińska functional displayed
in Figure 4 (recall the discussion in Section 4.3). Special markers are used to highlight the points on the different surfaces
that are selected by the hybrid and new algorithms used together with the discrepancy principle or Regińska criterion, and
the points that deliver a minimal error (ie, an ideally optimal parameter choice rule). Figure 5 gives a good overview on
how the discrepancy, the Regińska, and the error functionals evolve across different values of the Tikhonov regularization
parameter and across different iterations, and how they relate to each other. For instance, looking at frames (c) and (f),
one can see that the optimal value of # (ie, the # minimizing RRE(#, k)) stabilizes for increasing k; correspondingly,
looking at frames (a),(b),(d) and (e), one can see that the value of # satisfying the discrepancy principle and the value of
# minimizing the Regińska functional stabilize for increasing k. Moreover, as k increases, the parameters selected using
the discrepancy principle are essentially optimal (see frames (a) and (d)). It is important to remark that the computation
of the discrepancy, the Regińska and the error surfaces merely has illustrative purposes: in practice, the kth iteration of
the new algorithm requires evaluating the approximated higher-level functionals for only one value of # once (or twice
if a stopping criterion of the form (53) or (54) is implemented, and to compute the approximate solution at the final
iteration).

Figure 6 evaluates the performance of the new adaptive bi-level algorithm used in connection with the discrepancy
principle (frames (a) and (b)) and Regińska criterion (frames (c) and (d)), by displaying comparisons with other methods.
More precisely, the value of the relative restoration error RRE(#k+1, k) and the value of the regularization parameter #k+1
computed by the new method at each iteration k are compared against the values obtained by running (i) a hybrid method
with optimal parameter choice at each iteration (so that RRE(#, k) is minimized with respect to # for each k); (ii) a hybrid
method selecting the parameter according to the discrepancy principle at each iteration (in frames (a) and (b)) and the
Regińska criterion at each iteration (in frames (c) and (d)); (iii) LSQR used as purely iterative regularization method (ie,
without imposing additional Tikhonov regularization within the iterations).

For this test problem, the initial value :1 = 1∕#1 = 10−10 is set for the new algorithm used together with the discrep-
ancy principle: this value is small enough to satisfy1(:1) ≥ 0, so that the assumptions of Corollary 1 hold and convergence
to the solution of (29) is guaranteed. On the other hand, the initial value #1 = 10−3 is set for the new algorithm used
together with Regińska criterion. Looking at Figure 6 it is evident that the new algorithm used together with either the
discrepancy principle or Regińska criterion delivers results that are very similar to the ones obtained when applying their
hybrid counterparts (20) (note that the discrepancy principle can be applied in the hybrid framework starting from itera-
tion 7, because equation (22) does not have any zero till that iteration; see, eg, [55]). For this test problem, the performances
of both the new algorithm and the hybrid method, used in combination with the discrepancy principle, are very similar
to the ones obtained by adopting an optimal regularization parameter at each iteration of a traditional hybrid method.
Also, in this example, the combination of a projection method and Tikhonov regularization successfully maintains the
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F I G U R E 5 Example 1. Two perspectives of different surfaces in logarithmic scale: (a),(d): discrepancy surface (ie, the points lying on
the discrepancy surface have coordinates (#, k, ||b − Axk(#)||2)) ; (b),(e): Regińska surface (ie, the points lying on the Regińska surface have
coordinates (#, k, ||b − Axk(#)||||xk(#)||)); (c),(f): error surface (ie, the points lying on the error surface have coordinates (#, k,RRE(#, k))). In all
frames, the blue square markers correspond to the values of the parameters #k computed at each iteration with the new method (using the
discrepancy principle in (a),(d) and Regińska criterion in (b),(e)); the red circular markers correspond to the parameters #k computed at each
hybrid iteration (using the discrepancy principle in (a),(d) and Regińska criterion in (b),(e)), and the green asterisk markers correspond to the
values of #k that deliver a minimal error (optimal) solution (ie, min#RRE(#, k) at each sampled iteration k).

error of the norm at the level of semiconvergence (that affects the purely iterative regularization method LSQR). For both
parameter choice strategies, when using the new algorithm, as well as the traditional hybrid algorithms, the values of the
regularization parameter (Figure 6 frames (b) and (d)) and the relative restoration error (Figure 6 frames (a) and (c)) sta-
bilize as the iterations proceed. There is perfect agreement between the behavior observed in Figures 5 and 6. Another
desirable feature that can be observed in Figure 6 is that the stopping criteria listed in Section 4.2 and 4.3 for the new
algorithm succeed in stopping the iterations when a good regularization parameter is computed (ie, at a point that is
quite close to the optimal one), and when the relative restoration error is quite low: for this test problem, the threshold
5 = 10−3 is set for the discrepancy principle (stopping criteria (53) and (54)), and 5 = 10−1 is set for Regińska criterion
(stopping criterion (59)). Some stabilization in the values of both the relative restoration errors and the Tikhonov regular-
ization parameters happens when the new algorithm stops according to these stopping criteria; in general, 5 can be tuned
to find a trade-off between speed and stabilization (to avoid performing additional iterations once some stabilization in
the Tikhonov regularization parameters is detected).

Finally, Figure 7 displays some relevant reconstructions computed using different strategies; frame (a) displays the
best achievable reconstruction (corresponding to the iteration minimizing the RRE for the optimal parameter choice
strategy) and frames (b)-(e) display different reconstructions obtained using the new solvers. Frames (b) and (c) show to
the reconstructions at the iterations minimizing the relative reconstruction error for the new solver using the discrepancy
principle and the Regińska criterion, respectively. Note that frame (b) also corresponds to the reconstruction for the new
algorithm using the discrepancy principle at the iteration given by the stopping criterion (53). At last, frame (d) shows
the reconstruction computed by the new solver using the discrepancy principle at the iteration selected by the stopping
criteria (54) and frame (e) shows the reconstruction computed by the new solver using Regińska criterion at the iteration
selected by the stopping criterion (59). It can be observed that the quality of the reconstruction computed by the new
algorithm approaches the optimal achievable quality, and that the stopping criteria successfully pick an early iteration
that is close to the best possible iteration.
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F I G U R E 6 Example 1. (a) RRE versus number of iterations k using the discrepancy principle; (b) regularization parameter values
versus number of iterations k using the discrepancy principle; (c) RRE versus number of iterations k using Regińska criterion; (d)
regularization parameter values versus number of iterations k using Regińska criterion. Circular and triangular markers highlight the
iterations satisfying the stopping criterion (53) and (54), respectively, while diamond-shaped markers highlight the iteration satisfying the
stopping criteria (59).

5.2 Example 2

This example uses publicly available data, produced by performing a real tomographic scan of an object (in this case, a
carved piece of cheese); see [78]. The data (sometimes referred to as sinogram) consists of measurements of the damping
of fan-beam straight X-rays that penetrate the object. More precisely, 180 projections spanning the full 360 degree circle
around the object are collected; the inverse problem involves reconstructing an image of the spatially varying attenuation
coefficients of a 2D cross-section of the object. This problem leads to a linear system (1), where A is a sparse coefficient
matrix of size 178020× 65536 (where only approximately 0.8% of its entires are nonzero), x is the vectorialized 2D image
(with resolution 256× 256 pixels), and b is the vectorialized sinogram. Note that an estimate of the magnitude of the
(allegedly Gaussian white) noise e that affects the measurements is not provided.

The following illustrates the performance of the GKB-based Krylov method LSQR (used as a purely iterative regular-
ization method), the GKB-based hybrid methods, and the GKB-based new approach. The maximum number of iterations
(ie, the maximum dimension of the Krylov subspace for the approximation of the solution) is 250. Both the discrepancy
principle (after a noise estimate has been recovered) and Reginska criterion are used to adaptively set the Tikhonov regu-
larization parameter. Since the solution is expected to be piecewise-constant (as, essentially, only two different attenuation
coefficients for the cheese material and for the air in the carvings have to be recovered), a finite difference approximation
of the gradient operator is considered as regularization matrix L (whose null space is spanned by constant vectors). More
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F I G U R E 7 Example 1. (a) best achievable reconstruction, corresponding to the iteration minimizing the relative reconstruction error
(RRE) for the optimal parameter choice strategy; (b) best reconstruction obtained by the new method used in connection with the
discrepancy principle (DP); (c) best reconstruction obtained by the new method used in connection with Regińska criterion (R); (d)
reconstruction obtained by the new method used in connection with DP when the stopping criterion (54) is satisfied; (e) reconstruction
obtained by the new method used in connection with R when the stopping criterion (59) is satisfied.

precisely, one should take

L =

[
D1 ⊗ I
I ⊗ D1

]
∈ R2

√
n(
√

n−1)×n , (60)

where D1 ∈ R(
√

n−1)×
√

n is a finite difference approximation of the one-dimensional first derivative and I ∈ R
√

n×
√

n, so
that, by exploiting the properties of the Kronecker product ⊗, the first and the second blocks of L represent derivatives
in the horizontal and vertical directions of a vectorialized 2D image, respectively. As remarked in Section 2, when
considering regularizing Krylov methods L†

A may be formally regarded as right preconditioner that affects the approx-
imation subspace for the solution; in the specific case of the GKB-based methods considered for this example, xk ∈
x0 +k(L†

A(L
†
A)

TATA,L†
A(L

†
A)

TATb), where x0 ∈  (L). Computationally convenient ways of expressing L†
A, which exploit

the structure of (60), are derived in [44]. The following also compares results obtained taking L= I and L as in (60).
The leftmost frame of Figure 8 plots the relative residual norm history (ie, ||b−Axk ||/|| b|| versus k) associated to both

LSQR (corresponding to regularization in standard form) and preconditioned LSQR (PLSQR, corresponding to regular-
ization in general form, with L as in (60)). One can clearly see that both residuals, despite being non-increasing because
of the optimality property (13), somewhat stabilize: this happens very quickly (ie, approximately after 10 iterations) when
LSQR is used. Also, the PLSQR residual norm always lays above the LSQR one: this fact reveals that, for this example
(and in agreement with the theory hinted in Section 2), PLSQR is actually converging more slowly to the (unregularized)
solution of (1). Indeed, looking at the top frames of Figure 9, one can clearly see that LSQR exhibits a quite severe semicon-
vergence (ie, the reconstruction obtained after 16 iterations is good but, as the iterations advance, a sudden deterioration
in the quality of the reconstructions happens and the approximation obtained after 250 iterations is completely meaning-
less); on the contrary, within the performed 250 iterations, PLSQR seems to somewhat slowly but steadily progress toward
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F I G U R E 8 Example 2. (a) relative residual norm versus number of iterations k using the purely iterative Krylov solvers LSQR and
PLSQR (with preconditioner LA†, where L is chosen as in (60)); (b) regularization parameter values versus number of iterations k using the
traditional hybrid algorithm and the new algorithm with L= I, in connection with the discrepancy principle and Regińska criterion; (c)
regularization parameter values versus number of iterations k using the traditional hybrid algorithm and the new algorithm with L as in (60),
in connection with the discrepancy principle and Regińska criterion. Circular and triangular markers highlight the iterations satisfying the
stopping criteria (53) and (54), respectively, while diamond-shaped markers highlight the stopping criterion (59).

a solution of good quality (ie, the reconstruction obtained after 16 iterations is oversmoothed, but semiconvergence does
not happen and the reconstructions are less sensitive to any adopted stopping criterion).

Once LSQR has run, and the norm of the LSQR residual is observed to stabilize, its value can be taken as an estimate
of the the magnitude ||e|| of the noise affecting the data; see [79] for more details. Considering now the methods that
combine GKB and Tikhonov regularization, the estimate ||b − Ax100|| ≃ ,||e|| = 53.83 can therefore be used (with a safety
factor , = 1.05) to apply the discrepancy principle; note that, equivalently, the noise level ||e ||/|| b|| for this problem is
approximately 8.08 ⋅ 10−2. Alternatively, also Regińska criterion (which does not rely on an estimate of ||e||) can be used,
with exponent . = 1.

The middle frame of Figure 8 displays the values of the Tikhonov regularization parameter selected at each GKB iter-
ation when L= I and when both the new strategy and the classical hybrid approach are employed; both the discrepancy
principle and Regińska criterion are used. One can see quite a good agreement between different solvers and regulariza-
tion parameter choice rules. When the discrepancy principle is used within the hybrid method, equation (22) does not
have any zero until iteration 9; the Tikhonov regularization parameter soon stabilizes during the following iterations.
When the new strategy is used, a very large Tikhonov regularization parameter is selected trying to satisfy the discrep-
ancy principle during the very early iterations (so that the problem is initially over-regularized), but then, around the
10th iteration, some stabilization happens to the same value of the Tikhonov regularization parameter computed by the
hybrid method. Both stopping criteria (53) and (54) with 5 = 10−5 are satisfied at the 23rd iteration (but the maximum
number of allowed iterations is performed anyway to illustrate the behavior of the new method even after the stoping cri-
teria are satisfied). The (2D versions of the) reconstructions xk computed by the new method for k= 23 and k= 250 are
displayed in the frames in position (2,1) and (2,2) of Figure 9: the quality of both reconstructions is quite good, meaning
that the discrepancy principle (used within the new framework, but also within the classical hybrid framework) selects a
suitable regularization parameter, which also allows to overcome semiconvergence. Similarly, when Regińska criterion is
used together with the hybrid method and as the iterations proceed, the value of the Tikhonov regularization parameter
quickly stabilizes to a value that is slightly lower than the one selected by the discrepancy principle. When the new strat-
egy is used, the parameter selected by Regińska criterion undergoes an initial increase but then, toward the 20th iteration,
it decreases and stabilizes on the same value selected by the hybrid method; the stopping criterion (59) with 5 = 10−1

is satisfied at the 24th iteration (when, in particular, the value of the parameter is stabilized). The (2D versions of the)
reconstructions xk computed by the new method for k= 24 and k= 250 are displayed in the frames in position (3,1) and
(3,2) of Figure 9: these are almost identical to the ones computed when employing the discrepancy principle (shown in
the frames in position (2,1) and (2,2)).

The rightmost frame of Figure 8 displays the values of the Tikhonov regularization parameter selected at each GKB
iteration when L is the matrix in (60) and when both the new strategy and the classical hybrid approach are employed;
both the discrepancy principle and Regińska criterion are used. Contrarily to the L= I case, one can see several differences
between distinct solvers and regularization parameter choice rules. When the discrepancy principle is used within the
hybrid method, equation (22) does not have any zero until iteration 86 (which is to be expected because, as displayed
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F I G U R E 9 Example 2. Reconstructions achieved by the purely iterative LSQR and PLSQR methods (first row) and by the new
algorithm used together with the discrepancy principle (DP) (second row) or Regińska criterion (R) (third row). Frames in columns 1 and 2
consider L= I, while frames in columns 3 and 4 take L as in (60). Frames in columns 1 and 3 display early iterations or iterations satisfying
the stopping criterion ((54) for DP, (59) for R), while frames in columns 2 and 4 display the last iteration.

in the leftmost frame of Figure 8, the PLSQR residual norm decreases much more slowly than the LSQR one); starting
from approximately the 200th iteration, the value of the Tikhonov regularization parameter stabilizes to a value much
larger than the one selected for the L= I case: this has a desirable effect on the ideally piecewise-constant reconstruction,
as the regularization matrix (60) enforces constant reconstructions. When the new strategy is used, after approximately
150 iterations, some stabilization happens to the same value of the Tikhonov regularization parameter computed by the
hybrid method. Taking 5 = 10−5, the stopping criterion (53) is satisfied at the 70th iteration, while stopping criterion (54)
is satisfied at the 88th iteration (also in this case, the maximum number of allowed iterations is performed anyway to
illustrate the behavior of the new method even after the stoping criteria are satisfied); one can clearly see that both stopping
criteria prescribe to stop before some stabilization in the values of the Tikhonov regularization parameter happens, so that
the reconstructions may be slightly over-regularized. The (2D versions of the) reconstructions xk computed by the new
method for k= 88 and k= 250 are displayed in the frames in position (2,3) and (2,4) of Figure 9: despite the different values
#89 = 114.57 and #251 = 94.52, visually the two reconstructions are almost indistinguishable. Regińska criterion is not very
effective for this instance of this experiment: when used together with the hybrid method, the value of the regularization
parameter basically stagnates from the beginning of the iterations; when used together with the new strategy, the value
of the regularization parameter steeply increases as the iterations proceed (so that a good stopping criterion is crucial in
this situation). This behavior can be explained considering the shape of the functionals Pk(xk(#k)) (28) to be minimized at
each iteration of the hybrid method, and the function k(#) = ̃k(#) to be used in (55). Even if not shown here, Pk(xk(#))
is pathologically flat, making any minimization routine (eg, MATLAB’s fminbnd that is based on the golden section
search) massively reliant on a good estimate of the search interval; indeed, for every iteration k, fminbnd performs 500
steps (ie, the default maximum number of steps) and the value of the minimizer barely moves from the starting one.
The behavior of the upper bounds ̃k(#) is similar to the one shown in Figure 4 for the image deblurring example, even
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if the increase (when # gets large and small) is much steeper, with an an almost constant 9#k(#) and an almost zero
92
#k(#). The stopping criterion (59) with 5 = 10−1 for the new method is satisfied at the 22nd iteration, where the selected

regularization parameter is much higher than the suitable one selected when the new method based on the discrepancy
principle is stopped. For these reasons, one can conclude that, when L is chosen as in (60), Regińska criterion seems to
fail for this test problem. However, on the upside, the new method proves to be much more computationally convenient
than the hybrid method: adapting the estimates derived at the end of Section 4.3 (exploiting the fact that A is sparse
and exploiting the structure of L†

A when deriving the computational cost of matrix-vector products), one can conclude
that performing 250 iterations of the hybrid method requires O(4.8 ⋅ 1010) flops, while performing 22 iterations of the
new method requires O(4.2 ⋅ 109) flops (ie, approximately 8% of the computations required by the hybrid approach). The
(2D versions of the) reconstructions xk computed by the new method for k= 22 (with #23 = 664.27) and k= 250 (with
#251 ∼ 1023) are displayed in the frames in position (3,3) and (3,4) of Figure 9: these are both over-smoothed and look
quite different from the ones computed when the discrepancy principle is adopted (frames in position (3,1) and (3,2) of
the same figure).

6 CONCLUSIONS AND OUTLOOK

This paper surveyed a variety of iterative regularization methods that are commonly used when obtaining a
Tikhonov-regularized solution through direct factorizations would be too computationally demanding, eg, when solving
large-scale unstructured linear inverse problems. The main focus of the paper was on regularizing projection methods
that are based on Krylov subspace methods, and on the so-called hybrid methods, which combine iterations of a Krylov
subspace method and Tikhonov regularization. Hybrid methods are usually preferred to purely iterative regularization
methods because, as the iterations progress, if the regularization parameters are properly tuned, the quality of the regu-
larized solution does not deteriorate (and may even improve) at the point of semiconvergence. Well-established but often
empirical ways of setting the regularization parameters have been derived in the past decades, and some of them are
reviewed in this paper.

This paper also introduced and analyzed a new class of algorithms for the solution of bilevel optimization problems of
the form (29) arising when simultaneously computing a Tikhonov-regularized solution and a regularization parameter
according to a given rule, and when still considering large-scale unstructured linear inverse problems. By a novel use
of Krylov projection methods based on the GKB algorithm, its connections with Gaussian quadrature rules, and a new
modified Newton method, the proposed new algorithms “interlace” the iterations performed to apply a given (nonlinear)
parameter choice rule and the iterations performed to iteratively solve the (linear) Tikhonov-regularized problem, giving
rise to an efficient and principled strategy that delivers results comparable to the ones obtained with traditional hybrid
methods.

The introduction of this new class of algorithms carries a number of open questions and possible extensions that may
be addressed in future research. For instance, future work can include the natural extension of the new algorithms to
work with Krylov projection methods that are based on decompositions other than GKB (eg, the Arnoldi decomposition
or flexible Krylov methods; see [80]); also extensions to projection strategies that handle a generic regularization matrix
L by computing joint decompositions of the coefficient matrix A and L (see, for instance, [63,81]) may be considered as
an alternative to the strategy, employed within this paper, of transforming the Tikhonov problem into standard form and
preconditioning the approximation subspace for the solution. Although the algorithmic details of the new approach can
be easily adapted to these situations, the theoretical analysis of the resulting strategies needs to be carefully rethought.
Also, other parameter choice strategies that can be expressed in the framework of bilevel optimization problems (eg, the
UPRE, GCV, and L-curve criteria reported in Section 3) can be considered. Moreover, while a solid converge proof is
available for the new algorithm applied in connection with the discrepancy principle, the considered extension to other
parameter choice rules is still quite heuristic and more theoretical developments are needed to prove convergence to
possible local minima.

Finally, since the new class of algorithms is very general, it may be potentially extended to a variety of bi-level opti-
mization methods that involve the solution of a nonlinear higher-level problem and a linear lower-level problem, even
beyond the regularization task. However, as far as regularization is concerned, it should be mentioned that simple con-
straints such as non-negativity or box constraints, which sometimes have a dramatic effect in enhancing the quality of the
reconstructions, cannot be straightforwardly incorporated when adopting the basic Krylov subspace methods discussed
in this paper (although some approaches based on flexible Krylov methods are available; see [82]). Similarly, the methods
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discussed in this paper cannot be straightforwardly applied to nonlinear ill-posed problems; see, eg, [83,84]. Extending
the new class of algorithms to handle these situations can be the focus of future research.
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[64] T. Regińska, A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput. 17 (1996), 740–749.
[65] M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines, Commun. Stat.: Simul.

Comput. 19 (1990), 433–450.
[66] D. A. Girard, A fast ‘Monte Carlo cross-validation’ procedure for large least squares problems with noisy data, Numer. Math. 56 (1989),

1–23.
[67] C. Fenu, L. Reichel, and G. Rodriguez, GCV for Tikhonov regularization via global Golub-Kahan decomposition, Numer. Linear Algebra

Appl. 23 (2016), 467–484.
[68] C. R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems 12 (1996), 535–547.
[69] M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT Numer. Math. 36 (1996), 287–301.
[70] D. Calvetti, L. Reichel, and A. Shuibi, L-curve and curvature bounds for Tikhonov regularization, Numer. Algorithms 35 (2004), 301–314.
[71] D. Calvetti et al., Tikhonov regularization and the L-curve for large discrete ill-posed problems, J. Comput. Appl. Math. 123 (2000),

423–446.
[72] D. Calvetti, G. H. Golub, and L. Reichel, Estimation of the L-curve via Lanczos bidiagonalization, BIT 39 (1999), 603–619.
[73] Bazán Fermín S. Viloche, Fixed-point iterations in determining the Tikhonov regularization parameter, Inverse Problems 24 (2008),

035001.
[74] K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM J. Imaging Sci. 6 (2013),

938–983.
[75] G. Golub and V. Pereyra, Separable nonlinear least squares: the variable projection method and its applications, Inverse Problems 19

(2003), R1.
[76] Lagomasino G. López, L. Reichel, and L. Wunderlich, Matrices, moments, and rational quadrature, Linear Algebra Appl. 429 (2008),

2540–2554.
[77] S. Gazzola, P. C. Hansen, and J. G. Nagy, IR tools: A MATLAB package of iterative regularization methods and large-scale test problems,

Numer. Algorithms 81 (2019), 773–811.
[78] Bubba T. A., Juvonen M., Lehtonen J., et al. Tomographic X-ray data of carved cheese. arXiv:1705.05732, 2017.

https://zenodo.org/record/1254210#.XsT3B8bTWu4.

62



GAZZOLA AND LANDMAN 31 of 31
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2.3 Conclusions

This chapter provides a general survey of regularizing projection methods based on stan-
dard Krylov subspaces. In particular, it focuses on the combination of such methods with
the well-established Tikhonov regularization. As mentioned in Section 1.5.1 of this thesis,
the use of Krylov methods in combination with Tikhonov regularization is not new, but
[GL20] presents a novel algorithmic framework that automatically sets the regularization
parameter at each iteration given a parameter choice rule by incorporating ideas coming
from bilevel optimization. When using the discrepancy principle to compute the regu-
larization parameter, [GL20] also includes theoretical guarantees for convergence of the
computed solution to the Tikhonov solution with regularization parameter determined by
applying the discrepancy principle.

In the next chapter, Krylov subspace methods will be applied to a more general regular-
ization scheme, `2-`p regularization, having to resource to modified Krylov subspaces that
incorporate variable preconditioning.
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Chapter 3

Iteratively Reweighted FGMRES
and FLSQR for sparse
reconstruction

This chapter presents two new algorithms to compute sparse approximated solutions of
large-scale linear discrete ill-posed problems. The new approach is based on the con-
struction of a sequence of quadratic problems approximating `2-`p regularization (with
additional smoothing to ensure differentiability at the origin) that are partially solved us-
ing flexible Tikhonov-Krylov methods. Both algorithms are built upon a solid theoretical
justification that guarantees that the sequence of approximate solutions converges to the
solution of the smoothed `2-`p regularization problem. I present joint work with James
Nagy and Silvia Gazzola, which is published in SIAM Journal on Scientific Computing
[GNL21].

3.1 Outline of the paper

This paper is concerned with large-scale linear ill-posed inverse problems described in
Section 1.2 of this thesis, where the solution x of the linear system (1.2) is known to be
sparse. As mentioned in Section 1.4, a popular scheme to compute approximate sparse
solutions of (1.2), when considering Gaussian white noise, is to minimize a least squares
problem with an `p-norm as a regularization term for 0 < p ≤ 1.

As explained in Section 1.4, `2-`p regularization can be approximated by a sequence of
quadratic Tikhonov problems (1.35). Since the regularization matrix Wk is square, diago-
nal and invertible (this can be assumed through suitable thresholding [HLM+17, WR08a]),
we can easily transform problem (1.35) into standard form (1.36). The interpretation of
the matrix W−1

k as an iteration-dependent right preconditioner motivates the use of flexible
Krylov methods as explained in Section 1.5.3. In this setting, the search space for the solu-
tion adaptively incorporates information about the solution, avoiding the nested cycles of
iterations. In this paper, we propose two new algorithms, iteratively reweighted FGMRES
(IRW-FGMRES) and FLSQR (IRW-FLSQR), that are based on the ‘first-regularize-then-
project’ setting for flexible Krylov methods (i.e., the projected problem (1.41) is considered
at iteration k). A theoretical proof of the convergence of the approximate solutions given
by both IRW-FGMRES and IRW-FLSQR to the solution of a smoothed version of the `2-`p
regularization problem is also given. As a note, the smoothing of the `2-`p problem ensures
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that the functional associated to this regularization scheme is differentiable at the origin,
and it is related to the thresholding of the weights (more details are given in [GNL21]).
Finally, numerical examples involving image deblurring and computed tomography (de-
scribed in Section 1.2) are presented to illustrate the performance of IRW-FGMRES and
IRW-FLSQR.

Most of the content in the introduction of the paper [GNL21, Section 1] has already been
presented in Chapter 1 of this thesis. Therefore, the reader can skip the introduction of
the paper without missing important key points. Note that [GNL21, Section 2] contains
important remarks about the smoothing of the `2-`p functional and the derivations of the
quadratic tangent majorants that are not specified in Chapter 1 of this thesis. There
are no major notation discrepancies between this thesis and the included paper [GNL21].
It might be worth noting that Chapter 1 of this thesis just considers a general partial
factorization of A for either FLSQR or FGMRES, while these are always kept separate in
the paper. Moreover, the solution of the projected problem is noted differently, see Table
3.1.

Table 3.1: Notational discrepancies between this thesis and paper [GNL21]

Discrepancies Thesis Paper

Solution of the projected flexible
Krylov subspace problem y ȳ

Partial decomposition of
A for flexible Arnoldi alg. AZk = Uk+1Gk AZk = Vk+1H̄k

Partial decomposition of A
for flexible Golub-Kahan alg. AZk = Uk+1Gk AZk = Uk+1Mk
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Abstract. This paper presents two new algorithms to compute sparse solutions of large-scale6

linear discrete ill-posed problems. The proposed approach consists in constructing a sequence of7

quadratic problems approximating an `2-`1 regularization scheme (with additional smoothing to en-8

sure differentiability at the origin) and partially solving each problem in the sequence using flexible9

Krylov–Tikhonov methods. These algorithms are built upon a new solid theoretical justification10

that guarantees that the sequence of approximate solutions to each problem in the sequence con-11

verges to the solution of the considered modified version of the `2-`1 problem. Compared to other12

traditional methods, the new algorithms have the advantage of building a single (flexible) approxi-13

mation (Krylov) subspace that encodes regularization through variable “preconditioning” and that14

is expanded as soon as a new problem in the sequence is defined. Links between the new solvers15

and other well-established solvers based on augmenting Krylov subspaces are also established. The16

performance of these algorithms is shown through a variety of numerical examples modeling image17

deblurring and computed tomography.18
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1. Introduction. Large-scale linear ill-posed inverse problems of the form23

Axtrue = btrue + e = b, A ∈ Rm×n,(1.1)24
25

where xtrue is the desired unknown solution and e is some unknown Gaussian white26

noise that affects the data b, arise in the discretization of problems stemming from27

various scientific and engineering applications, such as astronomical and biomedical28

imaging, or computed tomography in medicine and industry. In particular, we are29

interested in the case where A is ill-conditioned with ill-determined rank, i.e., the30

singular values of A decay and cluster at zero without an evident gap between two31

consecutive ones to indicate numerical rank. In this case, due to the presence of noise32

in the measured data, the naive solution A†b of (1.1) (where A† is the Moore–Penrose33

pseudoinverse of A) can be very different from the desired solution, A†btrue, due to34

noise amplification; see, e.g., [23]. Therefore, to obtain a meaningful approximation of35

xtrue, problem (1.1) should be regularized, i.e., replaced by a closely related problem36

whose solution is less sensitive to perturbations in the data b (for a more detailed37

discussion on ill-posed and discrete ill-posed problems and regularization see, e.g.,38

[25]).39
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One of the best-known approaches for regularizing linear ill-posed problems is40

Tikhonov regularization, which, in its general formulation, computes a regularized41

approximation to the solution of (1.1) by solving the following minimization problem:42

xλ,L = min
x
‖Ax− b‖22 + λ‖Lx‖22 .(1.2)43

44

Here, the regularization parameter λ > 0 balances the effect of the fit-to-data term45

‖Ax − b‖22 and the regularization term ‖Lx‖22. The regularization matrix L ∈ Rq×n46

has the effect of enhancing certain properties on the solution and it is usually chosen47

to be the identity (in this case, problem (1.2) is said to be in standard form) or a48

rescaled finite differences approximation of a derivative operator (to enforce smoother49

solutions); if the null space of A and the null space of L intersect trivially, the general-50

form Tikhonov solution xλ,L is unique.51

For large-scale problems, where A does not have an exploitable structure nor is52

even explicitly stored (i.e., may be defined as a function that efficiently computes the53

actions of A and, possibly, AT on vectors), the only way to solve problem (1.1) is to54

apply an iterative method to obtain a sequence of approximated solutions {xk}k≥1.55

In fact, many well-known general iterative solvers, e.g., Landweber and Kaczmarz56

methods, and many Krylov subspace methods leverage the so-called semiconvergence57

phenomenon and lead to a regularized solution if the iterations are stopped sufficiently58

early, with the number of iterations playing the role of a discrete regularization pa-59

rameter (see [25, Chapter 6] for a more accurate description). This paper will only60

consider the GMRES and LSQR iterative methods and variations thereof: these are61

Krylov methods that compute a regularized solution by expanding an approxima-62

tion subspace for the solution and solving a projected least squares problem at each63

iteration. Note that LSQR is mathematically equivalent to CGLS.64

When regularization relies on semiconvergence only, a bad stopping criterion can65

lead to a big error in the approximated solution. Moreover, semiconvergence may hap-66

pen before the relevant basis vectors for the solution are incorporated in the Krylov67

approximation subspace for the solution; see [25, Chapter 6] and [28] for more details.68

These issues can be mitigated by applying further regularization within the iterations,69

e.g., by using schemes that combine an iterative Krylov solver and Tikhonov regu-70

larization, as detailed below. Consider, for simplicity, L = I in (1.2), i.e., Tikhonov71

regularization in standard form. Projecting (1.2) into a kth dimensional Krylov sub-72

space spanned by the columns of the matrix Vk leads to73

xk = Vkyk, yk = arg min
y
‖AVky − b‖22 + λ‖Vky‖22,(1.3)74

75

which is sometimes referred to as the “first-regularize-then-project” approach [25,76

Chapter 6]. Alternatively, a “first-project-then-regularize” approach can also be used,77

which involves projecting the original linear system (1.1) and then applying standard78

Tikhonov regularization, leading to79

xk = Vkyk, yk = arg min
y
‖AVky − b‖22 + λ‖y‖22.(1.4)80

81

For fixed λ, and assuming the columns of Vk to be orthonormal, expressions (1.3)82

and (1.4) are equivalent and both schemes are interchangeable. Methods employing83

the latter approach are also known as hybrid methods [11, 37] and they have recently84

attracted a lot of attention in the case of large-scale problems where the regularization85

parameter λ is not known a priori; see [10, 19, 21, 30]. Indeed, hybrid methods86
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allow for a very efficient (local) choice of the parameter λ = λk at each iteration87

k� min{m,n}; moreover, when k increases, λk seems to stabilize around a value that88

is suitable for the full-dimensional problem (1.2).89

Tikhonov regularization as defined in (1.2) is rather restrictive, and more general90

regularization strategies can yield to better approximations of the solution of (1.1).91

In particular, this paper focuses on regularized problems of the form92

min
x
‖Ax− b‖22 + λ‖x‖pp ,(1.5)93

94

where, for 0 < p ≤ 1, the `p-norm regularization term enforces sparsity in the so-95

lution. Although sparse vectors have a small `0 “norm,” considering an `0 regu-96

larization term yields to an NP hard optimization problem (1.5); see [16]. There-97

fore, it is common to approximate the `0 regularization term by an `p term with98

0 < p ≤ 1, noting that for 0 < p < 1 problem (1.5) is nonconvex, and for p = 199

problem (1.5) approximates the desired `0-norm via convex relaxation but is non-100

differentiable at the origin; see, e.g., [27, 31, 32]. Note that if sparsity of the so-101

lution is assumed in a different domain (e.g., wavelets or discrete cosine transform)102

a sparsity transform can be incorporated in the regularization term. The values103

0 < p ≤ 2 will be considered in this paper; when p = 2, problem (1.5) reduces to104

Tikhonov regularization in standard form. The `2-`p regularization problem (1.5) can105

be solved by a variety of optimization methods [4, 22, 33, 46] or by employing iterative106

schemes that approximate the regularization term in (1.5) by a sequence of weighted107

`2 terms [39]. Methods of the second kind come equipped with (local) convergence108

proofs for most values of p > 0 but usually rely on inner-outer schemes so they can109

become very expensive computationally; see, e.g., [5, Chapter 4].110

More recently, solvers for the `2-`p regularization problem that avoid nested loops111

of iterations by combining reweighting techniques and modified Krylov methods have112

gained popularity. Namely, generalized Krylov subspaces are considered in [31, 27,113

6], and hybrid solvers based on the flexible Arnoldi and the flexible Golub–Kahan114

decompositions are considered in [9, 18, 20].115

In this paper, we propose two new iterative Krylov–Tikhonov methods that use116

the flexible Arnoldi and the flexible Golub–Kahan decomposition, respectively, to117

solve the `2-`p regularization problem (1.5) by building a single approximation sub-118

space through the iterations. Both algorithms are essentially different from the strate-119

gies already available in the literature. On the one hand, differently from [31, 27, 6],120

the approach proposed in this paper is based on flexible Krylov subspaces. On the121

other hand, differently from the “first-project-then-regularize” scheme corresponding122

to hybrid methods implicitly adopted in [9, 18], the approach proposed in this pa-123

per exploits a “first-regularize-then-project” scheme. In fact, another contribution of124

this paper is to show that regularizing and projecting are not interchangeable any-125

more in the flexible Krylov subspace setting, and properties derived from using the126

“first-regularize-then-project” approach are used to provide theoretical justification127

of convergence for the newly proposed algorithms. An original interpretation of the128

new algorithms in the general framework of augmented and recycled Krylov sub-129

spaces is also given. It should be stressed that both new algorithms are inherently130

“matrix-free” (i.e., they only require the action of A on vectors, and additionally the131

action of AT if the flexible Golub–Kahan decomposition is considered) and allow for132

an iteration-dependent choice of the regularization parameter.133

The paper is organized as follows. In section 2 background material on `2-`p reg-134

ularization is reviewed. In particular, section 2 explains how to approximate the `p135
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regularization term in (1.5) using an iteratively reweighted scheme, and how the trans-136

formation of the resulting problem into standard form leads to iteration-dependent137

right preconditioning for a Tikhonov problem of the form (1.2). In section 3 two new138

algorithms for sparse reconstruction (called IRW-FGMRES and IRW-FLSQR) are139

introduced, along with a solid theoretical proof of convergence and links with aug-140

mented Krylov subspace methods. Finally, numerical results are presented in section141

4, and general conclusions are given in section 5.142

2. Background on `2-`p regularization. Iteratively reweighted schemes for143

the `2-`p regularization problem intrinsically rely on the interpretation of problem144

(1.5) as a nonlinear weighted least squares problem of the form145

min
x
‖Ax− b‖22 + λ‖x‖pp = min

x
‖Ax− b‖22 + λ‖W (p)(x)x‖22,(2.1)146

147

where the diagonal weighting W (p)(x) is defined as148

W (p)(x) = diag

((
|[x]i|

p−2
2

)
i=1,...,n

)
,(2.2)149

150

and [x]i denotes the ith component of the vector x. Note that when 0 < p < 2,151

division by zero might occur if [x]i = 0 for any i ∈ {1, . . . , n} and, in fact, this is a far152

from unlikely situation in the case of sparse solutions. For this reason, in this paper,153

instead of (2.2), the closely related weights154

W̃ (p,τ)(x) = diag

(((
[x]2i + τ2

) p−2
4

)

i=1,...,n

)
,(2.3)155

156

where τ is a fixed parameter chosen ahead of the iterations, are considered, and157

problem (2.1) is replaced by158

min
x
‖Ax− b‖22 + λ‖W̃ (p,τ)(x)x‖22︸ ︷︷ ︸

T (p,τ)(x)

,(2.4)159

160

where τ 6= 0 also ensures that T (p,τ)(x) is differentiable at the origin for p > 0.161

Note that (2.4) should be considered a smooth version of problem (2.1) and, formally,162

problem (2.1) can be recovered from problem (2.4) setting τ = 0.163

A well-established framework to solve problem (2.4) is the local approximation164

of T (p,τ) by a sequence of quadratic functionals Tk(x) that give rise to a sequence of165

quadratic problems of the form166

xk,? = arg min
x
‖Ax− b‖22 + λ‖Wkx‖22 + ck︸ ︷︷ ︸

Tk(x)

,(2.5)167

168

where Wk = W̃ (p,τ)(xk−1,?). Here, ck (a constant term for the kth problem in the169

sequence with respect to x) and λ (which has absorbed other possible multiplicative170

constants with respect to (2.4)) are chosen so that Tk(x) in (2.5) corresponds to a171

quadratic tangent majorant of T (p,τ)(x) in (2.4) at x = xk−1,?. By definition, this172

implies that Tk(x) ≥ T (p,τ)(x) for all x ∈ Rn, Tk(xk−1,?) = T (p,τ)(xk−1,?), and173

∇Tk(xk−1,?) = ∇T (p,τ)(xk−1,?); see also [27, 39]. Since p and τ are chosen ahead of174

the iterations, they are omitted from the notation for the weighting matrix Wk.175

The vector xk,? formally denotes the solution of (2.5). For moderate-scale prob-176

lems, or for large-scale problems where A has some exploitable structure, xk,? may be177
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obtained by applying a direct solver to (2.5). For large-scale unstructured problems,178

only iterative solvers can be used in different fashions to approximate the solution of179

(2.5), naturally leading to an inner-outer iteration scheme for the sequence of prob-180

lems (2.4). This is the case considered in the present paper, so that xk,? corresponds181

to the approximate solution xk,l of the kth problem of the form (2.5) (or “at the182

kth outer iteration”) at the lth iteration of the inner cycle of iterations. Iteratively183

reweighted least squares (IRLS) and iteratively reweighted norm (IRN) methods based184

on an inner-outer iteration scheme are very popular [12, 39] and have been used in185

combination with different inner solvers, such as steepest descent and CGLS. Typi-186

cally xk,? = xk,l is obtained when a stopping criterion is satisfied for problem (2.5)187

to indicate convergence of the approximate solution; alternatively, problem (2.5) can188

be partially solved and xk,? = xk,l denotes the latest available approximation of x.189

In any case, Tk(x) in (2.5) is a quadratic tangent majorant of T (p,τ)(x) in (2.4) at190

x = xk−1,?, and IRLS or IRN approaches are particular instances of majorization-191

minimization schemes: for fixed λ, it is known that solving a sequence of problems192

of the form (2.5) produces a sequence of approximate solutions that converge to the193

minimizer of problem (2.4); see, e.g., [12]. Fully solving each problem (2.5) can result194

in a computationally demanding scheme.195

For Wk square and invertible (note that this can be assumed for any fixed p > 0196

when the weights are defined as in (2.3) with τ > 0), problem (2.5) can be easily and197

conveniently transformed into standard form as follows:198

x̄k,? = arg min
x̄
‖AW−1

k x̄− b‖22 + λ‖x̄‖22 so that xk,? = W−1
k x̄k,?.(2.6)199

200

The interpretation of the matrix W−1
k as a right preconditioner for problem (2.5) can201

be exploited under the framework of prior-conditioning [7]. The simplest way to use202

formulation (2.6) in combination with Krylov methods is to rely on an inner-outer203

scheme (e.g., with an inner loop of (hybrid) GMRES or LSQR iterations [9, 18]) so204

that, at each outer iteration, a new Krylov subspace is built. Let Vk,l ∈ Rn×l be the205

matrix whose columns, at the lth inner iteration of the kth outer cycle, span a Krylov206

subspace Kk,l of dimension l. Then, problem (2.6) can be projected and solved in207

Kk,l by computing208

ȳk,l = arg min
ȳ

∥∥∥A
x︷ ︸︸ ︷

W−1
k Vk,lȳ︸ ︷︷ ︸

x̄

−b
∥∥∥

2

2
+ λ‖Vk,lȳ︸ ︷︷ ︸

x̄

‖22 ,(2.7)209

210

so that x̄k,l = Vk,l ȳk,l and xk,l = W−1
k x̄k,l = W−1

k Vk,l ȳk,l. Note that since Vk,l has211

orthonormal columns, solving (2.7) is equivalent to solving212

ȳk,l = arg min
ȳ

∥∥∥A
x︷ ︸︸ ︷

W−1
k Vk,l︸ ︷︷ ︸
Zk,l

ȳ−b
∥∥∥

2

2
+ λ‖ȳ‖22,(2.8)213

214

which is consistent with the idea of “first-regularize-then-project” being equivalent to215

“first-project-then-regularize” for hybrid solvers (cf. [25, Chapter 6]). An alternative216

interpretation of this scheme is that, at the lth inner iteration of the kth outer cycle,217

an approximate solution to the original problem is sought in the preconditioned space
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R(Zk,l) = R(W−1
k Vk,l), where R(·) denotes the range of a matrix. Note that, when218

applying preconditioned GMRES,219

R(Zk,l) = W−1
k Kl

(
AW−1

k , b
)

(2.9)220

= span
{
W−1
k b,W−1

k

(
AW−1

k

)
b, . . . ,W−1

k

(
AW−1

k

)l−1
b
}
,221

while, when applying preconditioned LSQR,222

R(Zk,l) = W−1
k Kl

(
W−1
k ATAW−1

k ,W−1
k AT b

)
(2.10)223

= span

{(
W−1
k

)2
AT b, , . . . ,

((
W−1
k

)2
ATA

)l−1 (
W−1
k

)2
AT b

}
.224

With respect to preconditioned GMRES, preconditioned LSQR naturally applies the225

inverse of the weight matrix Wk twice for every new direction included in the search226

space and, hence, twice at each iteration.227

It should be stressed that for both (2.7) and (2.8) to be equivalent to (2.6), the228

regularization term in (2.7) has to be ‖Vk,lȳ‖22, where Vk,l ȳ = x̄ in (2.6), and not229

‖Zk,lȳ‖22. Using ‖Zk,lȳ‖22 as a regularization term would in fact be equivalent to230

solving a different problem, namely, Tikhonov problem (1.2) with the identity as a231

regularization matrix (i.e., in standard form), in the preconditioned Krylov subspace232

R(Zk,l). It is important to note that R(Zk,l) incorporates regularization through233

preconditioning.234

Flexible Krylov methods provide a natural framework to efficiently avoid nested235

loops of iterations by regarding the inverse of the regularization matrix (stemming236

from an iteratively reweighted regularization term) as iteration-dependent right pre-237

conditioning in (2.6). In this setting, at the kth iteration, the weights Wk are updated238

using the most recent approximation of the solution, i.e., the one at the (k −1)th iter-239

ation of the flexible solver, and incorporated in the construction of the flexible Krylov240

space in the form of the adaptive preconditioner W−1
k . Flexible Krylov subspaces241

based on either the flexible Arnoldi or the flexible Golub–Kahan decompositions are242

summarized below.243

Flexible Arnoldi decomposition. The flexible Arnoldi decomposition of A ∈ Rn×n244

was first introduced in [40], and it is commonly employed in different settings to incor-245

porate adaptive or increasingly improved preconditioners into the solution subspace;246

see [42, Chapter 9] and [43, 44]. Given A (square), b and right iteration-dependent247

preconditioning matrices W−1
k , the partial factorization248

AZk = Vk+1H̄k(2.11)249
250

is updated at iteration k (for k ≤ n), where H̄k ∈ R(k+1)×k is upper Hessenberg, Vk+1251

has orthonormal columns with v1 = b/‖b‖2, and Zk = [W−1
1 v1, . . . ,W

−1
k vk] ∈ Rn×k.252

Note that when the preconditioning is fixed, i.e., Wi = W , flexible Arnoldi reduces to253

standard right preconditioned Arnoldi (see (2.9)).254

Flexible Golub–Kahan decomposition. The flexible Golub–Kahan decomposi-255

tion of A ∈ Rm×n has been recently introduced in [9] to solve `p-regularized least256

squares problems. Given A, b, and iteration-dependent right preconditioning matri-257

ces (W−1
k )2, the partial factorizations258

AZk = Uk+1Mk and ATUk+1 = Vk+1Sk+1(2.12)259
260

are updated at iteration k (for k ≤ min{m,n}). In the first equation of (2.12),261

Mk ∈ R(k+1)×k is upper Hessenberg, Uk+1 ∈ Rm×(k+1) has orthonormal columns262

73



ITERATIVELY REWEIGHTED FGMRES AND FLSQR S7

with u1 = b/‖b‖2, and Zk = [(W−1
1 )2v1, . . . , (W

−1
k )2vk] ∈ Rn×k. Moreover, Sk+1 ∈263

R(k+1)×(k+1) is upper triangular and Vk+1 ∈ Rn×(k+1) has orthonormal columns. Note264

that for fixed preconditioning, i.e., Wi = Wk, FLSQR with preconditioner (W−1
k )2

265

reduces to right preconditioned LSQR, which is mathematically equivalent to CG266

applied to the normal equations with split preconditioner W−1
k . Although this relation267

is not stressed in [9], it can be observed in the definition of the search space for268

preconditioned LSQR in (2.10). The cost of computing these partial factorizations is269

dominated by one matrix vector product with A and one matrix vector product with270

AT per iteration.271

Detailed computations to update the partial flexible Arnoldi and flexible Golub–272

Kahan decompositions at the kth iteration are reported below. Notationwise, [·]i,j273

denotes the (i, j)th entry of a matrix, and the vectors vi, ui, and zi denote the ith274

column of the matrices Vk, Uk, and Zk, correspondingly.

Flexible Arnoldi update

1: zk = W−1
k vk

2: w = Azk
3: Compute [H]i,k = wT vi for i = 1, . . . , k and set w = w −∑k

i=1[H]i,kvi
4: Set [H]k+1,k = ||w||2 and, if [H]k+1,k 6= 0, take vk+1 = w/[H]k+1,k

Flexible Golub–Kahan update

1: w = ATuk
2: Compute [S]i,k = wT vi for i = 1, . . . , k − 1 and set w = w −∑k−1

i=1 [S]i,kvi
3: Set [S]k,k = ||w||2 and, if [S]k,k 6= 0, take vk = w/[S]k,k
4: zk = (W−1

k )2vk
5: w = Azk
6: Compute [M ]i,k = wTui for i = 1, . . . , k and set w = w −∑k

i=1[M ]i,kui
7: Set [M ]k+1,k = ||w||2 and, if [M ]k+1,k 6= 0, take uk+1 = w/[M ]k+1,k

275

Flexible methods to solve `p-regularized least square problems have already been276

used in [18, 9], where, at the kth iteration, the following projected problem is solved:277

ȳk = arg min
ȳ
‖AZkȳ − b‖22 + λ‖ȳ‖22 so that xk = Zkȳk .(2.13)278

279

Note that ȳk corresponds to the coefficients of the solution of (1.2) (in standard280

form) in the basis given by the columns of Zk, which span a flexible Krylov space of281

dimension k with iteration dependent preconditioner W−1
k and (W−1

k )2 for FGMRES282

and FLSQR, respectively, where Wk = W̃ (p,τ)(xk−1). Although extensive numerical283

tests show that methods (2.13) are efficient and deliver excellent reconstructions when284

compared to other Krylov solvers and other state-of-the-art methods for (1.5), it285

should be noted that solving problem (2.13) is not equivalent to solving problem286

(2.5) projected onto an appropriate flexible Krylov subspace at the kth iteration.287

Indeed, assume that n iterations of a flexible algorithm (2.13) have been performed,288

so that R(Zn) = Rn: in this situation expression (2.13) corresponds to the Tikhonov289

problem (1.2) in standard form associated to (1.1) (and not the modification of the290

`2-`p problem in (2.4)). In other words, the “first-regularize-then-project” approach291

is not equivalent to the “first-project-then-regularize” approach for flexible Krylov292

solvers. Alternatively, this mismatch can be explained using the fact that, unlike in293
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the case of (nonflexible) preconditioned Krylov methods, in the problem projected294

using flexible Krylov subspaces there is no straightforward way of representing the295

variable x̄ in (2.6) before “back-transformation.” Note that [9] proposes to replace the296

regularization term ‖ȳ‖22 in (2.13) by ‖Zkȳ‖22: while (2.13) can be regarded as a hybrid297

regularization method that imposes additional standard form Tikhonov regularization298

on the projected solution ȳk, the regularization term ‖Zkȳ‖22 enforces standard form299

Tikhonov regularization on xk = Zkȳk and does not lead to a scheme equivalent to300

the “first-regularize-then-project” one, either.301

In the following section, two algorithms exploiting flexible Krylov subspaces in302

connection with the “first-regularize-then-project” framework will be presented along303

with a proof of convergence of the resulting schemes.304

3. Iteratively reweighted flexible Krylov subspace methods. In this sec-305

tion, two new algorithms are presented to solve (2.4) using a sequence of approximate306

problems of the form (2.5) and flexible Krylov subspaces (based on the flexible Arnoldi307

decomposition and the flexible Golub–Kahan decomposition, respectively).308

Here and in the following, without loss of generality, no initial guess is considered309

for the solution of (2.4) in a “warm start” fashion; however, a possible initial guess310

x0 6= 0 may be purely used to initialize the weights (2.3) at the very first iteration311

of the algorithm. The presented algorithms are assumed to be breakdown-free, i.e.,312

at iteration k ≤ min{m,n}, the approximation subspace R(Zk) for the solution has313

dimension k.314

3.1. The new IRW-FGMRES and IRW-FLSQR methods. The kth itera-315

tion of the new IRW-FGMRES and IRW-FLSQR methods computes an approximate316

solution xk belonging to the space spanned by the columns of the matrix Zk appearing317

in (2.11) or (2.12), respectively. More precisely, problem (2.5) is solved partially (i.e.,318

in the space spanned by the columns of Zk) as a projected least squares problem of319

the form320

ȳk = arg min
ȳ
‖AZkȳ − b‖22 + λ‖WkZkȳ‖22 so that xk = Zkȳk .(3.1)321

322

Let323

WkZk = QkRk, with Qk ∈ Rn×k, Rk ∈ Rk×k,(3.2)324
325

be the reduced QR factorization of the tall and skinny matrix WkZk, which can be326

computed efficiently (see, for example, [13]). Then (3.1) is equivalent to327

ȳk = arg min
ȳ
‖H̄kȳ − ‖b‖2e1‖22 + λ‖Rkȳ‖22 , so that xk = Zkȳk,(3.3)328

329

for IRW-GMRES, or330

ȳk = arg min
ȳ
‖Mkȳ − ‖b‖2e1‖22 + λ‖Rkȳ‖22 , so that xk = Zkȳk,(3.4)331

332

for IRW-FLSQR. With a notation analogous to (2.13), ȳk corresponds to the coeffi-333

cients of the solution of (2.5) in the basis formed by the columns of Zk, which span a334

flexible Krylov space of dimension k with iteration-dependent preconditioning W−1
k335

for IRW-FGMRES and (W−1
k )2 for IRW-FLSQR (where Wk = W̃ (p,τ)(xk−1)). Af-336

ter the approximate solution xk to problem (3.1) has been computed, the weights337

Wk+1 = W̃ (p,τ)(xk) are (immediately) updated to be used in the next IRW-FGMRES338

or IRW-FLSQR iteration.339
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Although (3.1) might seem a rather unnecessarily convoluted formulation, since340

a change of variables for the regularization term is done and undone (i.e., an initial341

transformation into standard form in (2.6) eventually leads to a Tikhonov problem in342

general form), formulation (3.1) provides two main advantages over (2.8) and other343

IRN strategies based on Krylov subspaces. First, the iteration-dependent regular-344

ization matrix Wk favorably affects the approximation subspace for the solution of345

problems of the form (2.5), i.e.,346

xk ∈ R(Zk) = R
([
W−1

1 v1, . . . ,W
−1
k vk

])
,347

for a set of vectors vi that depend on the choice of IRW-FGMRES or IRW-FLSQR;348

see also [9, 20]. Second, problem (3.1) can be interpreted as a projection of the349

kth full-dimensional Tikhonov problem (2.5) (i.e., in a “first-regularize-then-project”350

framework). As a consequence, it can be proven that the sequence of approximate351

solutions {xk}k≥1 computed by IRW-FGMRES or IRW-FLSQR converges to the so-352

lution of problem (2.4).353

Remark 3.1. Note that, assuming n ≤ m in (1.1), the IRW-FGMRES and IRW-354

FLSQR methods can be extended to the case when the number of iterations exceeds355

n by considering356

xk =

{
arg minx∈R(Zk) Tk(x) for k = 1, . . . , n− 1,

arg minx∈Rn Tk(x) for k = n, . . . ,
(3.5)357

358

where Tk(x) is defined in (2.5). Indeed, when n ≤ k, an iteration of IRW-FGMRES359

or IRW-FLSQR corresponds to an IRN iteration for `p regularization (1.5), where360

the solution of each subproblem (2.5) is computed in a “direct” fashion because the361

approximation subspace for the solution coincides with Rn. Note, however, that this362

situation is not expected to happen in practice for large-scale problems.363

Remark 3.2. Some numerical instabilities might happen in generating WkZk in364

the regularization term in (3.1) when applying the new IRW-FGMRES and IRW-365

FLSQR methods, due to division by almost zeros in the weights component. Section366

4 presents an example where this happens and discusses two possible fixes that can367

be adopted at the implementation level to improve stability.368

The new IRW-FGMRES and IRW-FLSQR methods are sketched in Algorithm 3.1.369

If k � min{m,n}, the computational cost of the kth iteration of Algorithm 3.1 is370

dominated by the computational cost of updating the factorizations (2.11) or (2.12).371

Indeed, for IRW-FGMRES and assuming that A is dense, computing matrix-vector372

Algorithm 3.1. IRW-FGMRES and IRW-LSQR methods.

1: Input: A, b, p, τ> 0, x0

2: Initialize: v1 = b/||b||2 for IRW-FGMRES, u1 = b/||b||2 for IRW-FLSQR

3: If x0 6= 0 W1 = W̃ (p,τ)(x0) else W1 = In
4: for k = 1, . . . , until a stopping criterion is satisfied do
5: Update (2.11) (for IRW-FGMRES) or (2.12) (for IRW-FLSQR)
6: Compute ȳk in (3.3) (for IRW-FGMRES) or in (3.4) (for IRW-FLSQR)
7: Compute xk = Zkȳk
8: Update the weights Wk+1 = W̃ (p,τ)(xk)
9: end for
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products with A amounts to O(mn) flops (but could be much less if A is sparse or has373

some structure), while performing the orthonormalization steps amounts to O(kn)374

flops. Forming the matrix WkZk and computing the QR factorization (3.2) amounts375

to O(nk2) flops, while solving problem (3.3) and forming xk amounts to O(k3) flops.376

Similar estimates can be derived for IRW-FLSQR.377

3.2. Convergence of IRW-FGMRES and IRW-FLSQR. Note that even if378

in practice IRW-FGMRES and IRW-FLSQR allow for an iteration-dependent choice379

of the regularization parameter λ in the functional T (p,τ)(x) in (2.4), in this section380

λ is assumed to be known a priori and fixed throughout the iterations.381

Lemma 3.3. Assume that no breakdown happens in the flexible Arnoldi and382

Golub–Kahan algorithms. Then the sequence {T (p,τ)(xk)}k≥1 for 0 < p ≤ 2, where383

T (p,τ)(x) is defined in (2.4), and where xk is the approximate solution computed after384

k steps of the IRW-FGMRES or the IRW-FLSQR method, is decreasing monotonically385

and it is bounded from below by zero.386

Proof. Consider a fixed p ∈ (0, 2] and τ > 0. Since T (p,τ)(x) ≥ 0, only the fact387

that T (p,τ)(xk) is monotonically decreasing needs to be proved, i.e., that T (p,τ)(xk) ≤388

T (p,τ)(xk−1) for every k ≥ 1. Consider Tk(x) defined in (2.5) (note that it is defined389

with respect to Wk = W̃ (p,τ)(xk−1)) and recall that Tk(x) is a quadratic tangent390

majorant of T (p,τ)(x) at point xk−1, i.e.,391

T (p,τ)(xk−1) = Tk(xk−1) and T (p,τ)(x) ≤ Tk(x) ∀x.(3.6)392

In particular, for xk,393

T (p,τ)(xk) ≤ Tk(xk).(3.7)394
395

Moreover, recalling the definition of xk in (3.1), and since xk−1 ∈ R(Zk−1) ⊂ R(Zk),396

Tk(xk) = min
x∈R(Zk)

Tk(x) ≤ Tk(xk−1),(3.8)397

398

so, combining (3.6), (3.7), and (3.8),399

T (p,τ)(xk) ≤ Tk(xk) ≤ Tk(xk−1) = T (p,τ)(xk−1) ,(3.9)400
401

which concludes the proof.402

Theorem 3.4. Under the same assumptions of Lemma 3.3, the sequence403

{xk}k≥1, where xk is the approximated solution computed after k steps of IRW-404

FGMRES or IRW-FLSQR with p > 0, is such that405

lim
k→∞

‖xk − xk−1‖2 = 0.406

Moreover, it converges to a stationary point of T (p,τ) and, if p ≥ 1, this is the unique407

solution of (2.4).408

Proof. Thanks to Lemma 3.3, {T (p,τ)(xk)}k≥1 has a stationary point. The con-409

vergence result for {xk}k≥1 proved in Theorem 5 of [27] for majorization-minimization410

methods based on generalized Krylov subspaces, when k ≥ n, can be applied in this411

setting as the same majorization for T (p,τ) is used.412
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It should be stressed that, although the regularization parameter λ in (3.1) is413

assumed fixed, the IRW-FGMRES and the IRW-FLSQR methods naturally allow for414

an iteration-dependent regularization parameter λk to be adaptively set at the kth415

iteration (e.g., at line 6 of Algorithm 3.1). Indeed, when considering inner-outer416

iterative schemes for (2.6) or flexible Krylov methods for (2.13), one can employ ap-417

proaches typically used for hybrid methods (e.g., projected versions or approximations418

of well-known regularization parameter rules for Tikhonov problem (1.2); see [9, 18]).419

For IRW-FGMRES and IRW-FLSQR to be consistent with the “first-regularize-then-420

project” framework, one should make sure that the parameter λk selected at the kth421

iteration according to the adopted rule is a suitable λ for problem (2.5) and, eventually,422

for problem (1.5): although for projection methods based on standard Krylov sub-423

spaces convergence of λk to a λ can be guaranteed in some situations (e.g., when using424

standard Golub–Kahan bidiagonalization and the discrepancy principle; see [21]), it is425

not immediate to generalize these results to IRW-FGMRES and IRW-FLSQR. In the426

numerical experiments displayed in section 4 the discrepancy principle is employed to427

select the regularization parameter at each IRW-FGMRES or IRW-FLSQR iteration.428

3.3. Alternative interpretation of IRW flexible methods. Augmented429

Krylov subspaces are most commonly used to incorporate an initial “guess” subspace430

of moderate dimension within a (traditional) Krylov subspace for the approximation431

of the solution of a linear system. In the framework of ill-posed problems, this ap-432

proach is extremely beneficial if the initial “guess” vectors are chosen to model known433

features of the solution (see, e.g., [1, 2, 3, 15]); a combination of Tikhonov regular-434

ization and projection onto augmented Krylov subspaces has been considered in [24].435

When performing iteratively reweighted schemes, a sequence of different but closely436

related problems of the form (2.5) or, equivalently, (2.6) is considered. Potentially,437

an augmented Krylov subspace method could be used to solve each of the problems438

if one had a good initial set of “guess” vectors. In this setting it is argued that IRW439

flexible Krylov methods can be regarded as particular instances of augmented Krylov440

methods where, when approximating the solution of the kth problem of the form (2.5)441

(i.e., at iteration k ≤ min{m,n}), the initial “guess” subspace is taken to be R(Zk−1)442

(i.e., the flexible Krylov subspace available from the previous iteration) and only one443

iteration of a (standard) Krylov method is performed (so that, in particular, the size444

of the augmentation subspace for the kth problem of the form (2.5) is k − 1). This445

interpretation also draws similarities with the idea of recycling Krylov methods for446

sequences of linear systems [29, 38] and can be extended to flexible Krylov methods447

in general. Indeed, some analogies between flexible GMRES and augmented GMRES448

were already established in [8, 41]. Although the following derivations are specified449

for IRW-FGMRES and for augmented methods based on GMRES, they can be easily450

extended to handle IRW-FLSQR and augmented methods based on LSQR.451

Consider the kth IRW-FGMRES iteration. Using the identity452

Zk = [Zk−1,W
−1
k vk] = W−1

k [WkZk−1, vk] ,453

the flexible Arnoldi partial factorization (2.11) can be reformulated as454

A[Zk−1,W
−1
k vk] = AW−1

k [WkZk−1, vk] = [Vk, vk+1]H̄k,(3.10)455
456

and the kth minimization problem (3.1), solved at the kth iteration of IRW-FGMRES,457

can be expressed as458

ȳk = arg min
ȳ
‖AW−1

k [WkZk−1, vk]ȳ − b‖22 + λ‖[WkZk−1, vk]ȳ‖22 .(3.11)459
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Then, x̄k = [WkZk−1, vk]ȳk is an approximate solution of the kth problem of the form460

(2.6) that belongs to the space R([WkZk−1, vk]), and xk = W−1
k x̄k is an approximate461

solution of the kth problem of the form (2.5) that belongs to the space R(Zk).462

Now consider a single step of the augmented Arnoldi process with augmentation463

space R(Zk−1) and with starting vector464

v̂k =
(
I − Vk−1V

T
k−1

)
rk−1

/∥∥(I − Vk−1V
T
k−1

)
rk−1

∥∥
2
, with rk−1 = b−Axk−1 ,

(3.12)

465
466

so that v̂k = vk. This leads to an approximation subspace for the solution of dimen-467

sion k and can be written as follows:468

1: Define v̂k as in (3.12) and set Vk = [Vk−1, v̂k].469

2: Compute ẑk = W−1
k v̂k.470

3: Compute ŵ = (I − VkV Tk )Aẑk.471

4: Take [Ĥ]k+1,k = ‖ŵ‖2.472

5: Compute v̂k+1 = ŵ/[Ĥ]k+1,k.473

In the above algorithm, the matrix Vk in line 1 coincides with the matrix Vk in (3.10)474

because v̂k = vk. Lines 3 to 5 can be rearranged as475

[Ĥ]k+1,k v̂k+1 =
(
I − VkV Tk

)
Aẑk so that Aẑk = Vk

(
V Tk Aẑk

)
+ v̂k+1[Ĥ]k+1,k .476

Incorporating augmentation and considering the partial factorization (2.11) with k477

replaced by k − 1, the following decomposition is obtained:478

A[Zk−1, ẑk] = [Vk, v̂k+1]

[
H̄k−1 V Tk Aẑk

0 [Ĥ]k+1,k

]
= [Vk, v̂k+1]Ĥk.(3.13)479

480

Comparing the above algorithm to the flexible Arnoldi algorithm in section 2, it is481

immediate to see that ẑk = W−1
k v̂k = W−1

k vk = zk, and v̂k+1 = vk+1. Therefore,482

by inspection, it can be seen that this formulation is equivalent to (3.10) and that483

H̄k = Ĥk.484

As a consequence, the projection step performed to compute ȳk in (3.11) using485

either the flexible or the augmented approach is equivalent, so the same kth approxi-486

mate solution xk of (3.1) is obtained.487

The augmented method (3.13) mainly differs from the available augmented meth-488

ods in the starting vector that is chosen for building the (standard) Krylov subspace:489

indeed, the latter take either the normalized right-hand side b (i.e., the (standard)490

Krylov subspace is built first, and then enriched with the initial “guess” subspace;491

see [15, 24]) or the orthogonal projection of b on the orthogonal complement of the492

initial “guess” subspace (i.e., the (standard) Krylov subspace is built preserving or-493

thogonality to the initial “guess” subspace; see [1, 2, 3]). Note that the choice of494

the initial vector (3.12) for IRW-FGMRES more radically stems from the fact that495

(I − VkV Tk )b = 0, as b ∈ R(Vk).496

The decomposition (3.13) associated to IRW-FGMRES is also analogous to the497

decompositions typically associated to recycling methods [38], the only difference be-498

ing in the way the solution is computed (recycling often considers “warm restarts,”499

where computing the solution at the kth iteration amounts to computing the correc-500

tion of an initial guess).501

4. Numerical experiments. In this section the results of three experiments502

concerned with imaging problems are presented to illustrate the behavior of the new503

methods. In all the experiments, x is the vector obtained by stacking the columns of a504
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two-dimensional discrete image. The new IRW-FGMRES and IRW-FLSQR methods505

are compared with other state-of-the-art solvers for (1.5) with 0 < p ≤ 2, including506

other solvers based on generalized and flexible Krylov methods, first-order optimiza-507

tion methods or optimization methods based on quadratic separable approximations508

of part of the objective function, and solvers that employ standard or preconditioned509

Krylov methods based on the Arnoldi and the Golub–Kahan bidiagonalization al-510

gorithms. To the best of our knowledge, comparisons between methods based on511

flexible and generalized Krylov subspaces have never been considered before. Table512

1 summarizes the methods considered in this section, providing acronyms and brief513

descriptions thereof. Note that for all the considered examples, the computation of514

matrix-vector products with A and, possibly, AT dominates the computational cost515

of each iteration of all the methods listed in Table 1. In particular, Krylov methods516

based on the (flexible) Golub–Kahan algorithm (i.e., IRW-FLSQR, IRN-hLSQR, (hy-517

brid) FLSQR) have the same computational cost per iteration as GKSpq, FISTA, and518

SpaRSA, since they require one matrix-vector product with A and AT ; Krylov meth-519

ods based on the (flexible) Arnoldi algorithm (i.e., IRW-FGMRES, IRN-hGMRES,520

(hybrid) FGMRES) are the ones with the lowest cost per iteration, since they require521

only one matrix-vector product with A. As a consequence, in the following tests,522

methods that require fewer iterations to compute solutions of comparable qualities523

have to be regarded as more efficient.524

Table 1525

Summary of the methods considered in this section for approximating the solution of problem
(1.5).

526

527

Method Description Note Reference Marker

IRW-FGMRES
IRW-FLSQR

the new Algorithm 3.1
adaptive reg. parameter
selection

–
blue
line

IRN-hGMRES
IRN-hLSQR

IRN strategy
within an inner-outer
scheme

preconditioned hybrid
GMRES or LSQR
is used to solve (2.6)
at each outer iteration;
adaptive reg. parameter
selection

[39]
green
line

hybrid FGMRES
hybrid FLSQR

hybrid versions
of FGMRES or FLSQR

standard form
Tikhonov regularization
applied on the projected
solution;
adaptive reg. parameter
selection

[9, 18]
pink
line

FGMRES
FLSQR

flexible GMRES or LSQR
with sparsity-enforcing
iteration-dependent
preconditioning

no Tikhonov regularization
for the projected problem

[9, 18]
dark red
line

GKSpq
generalized Krylov
subspace methods

initial subspace
Kl(A

TA,AT b)
with l = 5;
adaptive reg. parameter
selection

[31]
light blue
line

FISTA fast ISTA
accelerated first-order
optimization method

[4]
purple
line

SpaRSA
sparse reconstruction
by separable
approximation

quadratic separable
approximations of part of the
objective function

[46]
orange
line
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When a method allows the regularization parameter λ to be adaptively set at each528

iteration, this is done according to the discrepancy principle [34] as described below.529

Assuming that a good approximation of the 2-norm of the noise vector e appearing in530

(1.1) is available, a zero-finder is employed to solve the following nonlinear equation531

with respect to λ ≥ 0 at the kth iteration:532

‖Axk(λ)− b‖2 = η‖e‖2 ,(4.1)533
534

where xk(λ) is the approximate solution at iteration k given as a function of the regu-535

larization parameter λ, and η≥ 1 is a safety parameter. Note that (4.1) is guaranteed536

to have a solution as soon as ‖Axk(0)− b‖2 ≤ ‖e‖2. For IRW-FGMRES,537

xk(λ) = Zkȳk = Zk
(
H̄T
k H̄k + λRTkRk

)−1
H̄T
k ‖b‖2e1538

= Zk
(
H̄T
k H̄k + λRTkRk

)−1
H̄T
k V

T
k+1b,(4.2)539

where H̄k is defined in (2.11) and Rk is obtained computing the reduced QR factor-540

ization of WkZk; see (3.2). Then541

‖Axk(λ)− b‖2 =
∥∥∥AZk

(
H̄T
k H̄k + λRkR

T
k

)−1
H̄T
k V

T
k+1b− b

∥∥∥
2

542

=
∥∥∥Vk+1H̄k

(
H̄T
k H̄k + λRkR

T
k

)−1
H̄T
k V

T
k+1b− b

∥∥∥
2

543

=
∥∥∥H̄k

(
H̄T
k H̄k + λRkR

T
k

)−1
H̄T
k ‖b‖2e1 − ‖b‖2e1

∥∥∥
2
,(4.3)544

so that applying the discrepancy principle (4.1) does not require performing any545

additional matrix-vector product with A per iteration. An analogous argument can546

be made specifically for IRW-FLSQR (as expression (4.3) formally holds for IRW-547

FLSQR after replacing the matrix H̄k by Mk), as well as for most of the algorithms548

listed above; see also [30, 19]. Note that although synthetic noise e with known ‖e‖2549

is always used in the following, estimates of the noise level or alternative parameter550

choice strategies that do not require an estimate of ‖e‖2 can be used if ‖e‖2 is not551

immediately available; see, e.g., [21, 45]. When no adaptive regularization parameter552

choice is supported (e.g., for FISTA and SpaRSA), the value of the regularization553

parameter computed by IRW-FGMRES or IRW-FLSQR (upon iteration termination)554

is used. Alternatively, such solvers can be run from scratch for different preselected555

values of the regularization parameter and the best solution can be picked according556

to some criterion, resulting in a very computationally demanding strategy.557

Throughout all the experiments, if not stated otherwise, the values p = 1 and558

τ = 10−10 are chosen in (2.3), η = 1 is chosen in (4.1), and all the solvers are set559

to perform 200 (total) iterations. Although, provided that a suitable value of the560

regularization parameter is set at each iteration, the quality of the reconstructions561

computed by the new methods does not significantly deteriorate as the iterations562

proceed, one or more stopping criteria should be set in practice. A reasonable choice563

is to stop at the first iteration k such that564

|λk − λk−1|
λk

< θ1 or
|s(xk)− s(xk−1)|

s(xk)
< θ2,(4.4)565

566

where θ1, θ2 > 0 are user-selected thresholds, and where s(·) is a (practical) measure567

of the sparsity of the solution. In the following, given a vector y,568

s(y) = #
{
i : |[y]i| ≥ 10−3||y||2

}
, where # denotes cardinality.(4.5)569

570

571
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Stopping criteria (4.4) monitor the stabilization of some relevant quantities for the572

solution, so that one can expect xk not to vary too much once they are satisfied;573

see [19]. In all the graphs presented below, the iteration satisfying the first stopping574

criterion in (4.4) with θ1 = 10−4 is marked by a circle, and the iteration satisfying575

the second stopping criterion in (4.4) with θ2 = 10−10 is marked by a triangle.576

Experiment 1. The first experiment is concerned with image deblurring. The577

star cluster test problem from Restore Tools [35] is used to generate an exact578

test image of size 256 × 256 pixels (so n = 65536 in (1.1)) and a square blurring579

matrix modeling spatially variant blur (we refer interested readers to [36] for a dis-580

cussion of how the matrix A is represented and how matrix-vector products can be581

done efficiently). The measurements are corrupted by Gaussian white noise e of level582

‖e‖2/‖btrue‖2 = 10−2. The setting for this example can be observed in Figure 1. Note583

that s(xtrue) = 470, i.e., only approximately 0.07% of the pixels can be regarded as dif-584

ferent from zero in practice, according to definition (4.5). This example has been mim-585

icked from [18]. Since A is square, the performance of IRW-FGMRES can be tested.586

Figure 2 displays the behavior of the relative errors versus the number of iter-589

ations for the methods listed in Table 1. It can be observed in Figure 2(a) that590

IRW-FGMRES shows a faster and more stable convergence when compared to other591

standard methods for `2-`p regularization. In particular, the new method stabilizes592

to roughly the same value of the relative error as IRN and FISTA, while SpaRSA593

converges to a reconstruction of worse quality. Even restricting the comparisons to594

other methods that build only one generalized or flexible Krylov subspace for the595

solution, the new IRW-FGMRES method shows a more desirable behavior. Indeed,596

it can be observed in Figure 2(b) that the solver based on FGMRES displays some597

semiconvergence; this feature is shared by the hybrid version of FGMRES and may598

appear because a Tikhonov problem in standard form is solved, so that sparsity is only599

enforced through the construction of a suitable flexible Krylov subspace. Also, within600

the maximum number of allowed iterations, the quality of the solution computed by601

the solver based on generalized Krylov subspaces is lower than the IRW-FGMRES one:602

this shows that, for this test problem, the approximation subspace for the solution603

computed by IRW-FGMRES is better than the one computed by GKSpq.604

Figure 3(a) displays the values of the relative residuals ‖b−Axk(λ)‖2/‖b‖2 versus615

the number of iterations k. One can clearly see that, since λ is adaptively set at each616

(a) (b)

Fig. 1. Experiment 1. Setting for the star cluster test problem. (a) True image xtrue.
(b) Noisy measurement b.

587

588
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Fig. 2. Experiment 1. History of relative error norms (i.e., ‖xk(λ)−xtrue‖2/‖xtrue‖2 against
iteration number k) for the new IRW-FGMRES, compared to (a) other standard solvers for the `2-`1
problem, (b) other flexible and generalized Krylov-based solvers. The circle and triangle markers
correspond to stopping criteria (4.4) based on the stabilization of λ and s(xk), respectively.
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Fig. 3. Experiment 1. Methods based on Krylov subspaces. (a) History of the relative residuals.
(b) History of the regularization parameters. The circle and triangle markers correspond to stopping
criteria (4.4) based on the stabilization of λ and s(xk), respectively.

609

610

611

iteration using the discrepancy principle (for all the displayed methods except for617

FGMRES), the relative residual eventually stabilizes around the noise level, as should618

happen for regularization methods applied to ill-posed problems: this happens quite619

quickly for methods based on the flexible Arnoldi algorithm, but sensibly later for the620

GKSpq method (coherently to what is observed in Figure 2(a)). Figure 3(b) displays621

the values of the regularization parameters λ = λk selected at each iteration versus the622

number of iterations k. It can be observed that the regularization parameter chosen623

by the new IRW-FGMRES method quickly stabilizes to a value that is similar to the624

one eventually selected by the IRN and GKSpq methods. The regularization param-625

eter chosen by the hybrid version of FGMRES stabilizes to a different value, which626

is more similar to the one selected during the first IRN outer iteration, i.e., when a627

Tikhonov problem in standard form is solved. This behavior is consistent with the628

arguments presented in sections 2 and 3. Indeed, similarly to IRN and GKSpq, IRW-629

FGMRES can be proved to converge to a stationary point of (2.4): therefore it should630

be expected that the regularization parameter adaptively selected by these methods631
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Fig. 4. Experiment 1. (a) History of the IRW-FGMRES relative error norms for different
values of p in the `p regularization term. (b) History of s(xk) for IRW-FGMRES and for different
values of p in the `p regularization term.

612

613

614

according to the discrepancy principle also stabilizes around a common value. On the632

contrary, hybrid FGMRES imposes additional standard form Tikhonov regularization633

on the projected solution: therefore it should be expected that the regularization pa-634

rameter stabilizes around a value suitable for standard form Tikhonov regularization.635

Finally, Figure 4(a) displays the history of relative errors obtained using IRW-636

FGMRES for different values of p in the `p regularization term. Note that since the637

quality of the solution generally improves when taking p < 1 (coherently with the fact638

that xtrue is very sparse), one can expect that IRN-FGMRES is converging to a global639

minimum when started with x0 = 0 for this test problem. Correspondingly, Figure640

4(b) displays the values of s(xk) versus the number of iterations k. It can be observed641

that when the value of p in the `p regularization term is 2, the recovered solution is642

considerably less sparse than xtrue, whereas for smaller values of p, the value of s(xk)643

approximates s(xtrue) = 470. In particular, note that when p = 1, s(xk) converges644

to s(xtrue) = 470 when using IRW-FGMRES. Even if not shown, this is also true645

for FISTA, SpaRSA, IRN-hGMRES, FGMRES, and hybrid FGMRES. Similarly, the646

solution obtained using the GKSpq method at the end of the iterations had an s(xk)647

of 472.648

Experiment 2. The second test problem uses the so-called hst (Hubble space tele-649

scope) test image together with the spatially invariant speckle medium blur linear650

operator available within IR Tools [17]. The noise level is ‖e‖2/‖btrue‖2 = 10−2 and651

η = 1 is chosen in (4.1). The setting for this experiment can be observed in Figure652

5. The object displayed in this test image is not as sparse as in the previous test653

problem; the overall sparsity is associated to the uniform (zero) background. Note654

that, in this example, the square matrix A ∈ Rn×n (where n = 65536) is generated655

by a highly anisotropic blur (see Figure 5(b)): in this situation, there is no guarantee656

that GMRES can perform well; see [14]. For this reason, only the performance of657

methods based on LSQR will be compared.658

The relative error history associated to different solvers for (2.4) is displayed in671

Figure 6. It should be stressed that, when running IRW-FLSQR for this experiment,672

τ = 0.01 is set in (2.3) to avoid numerical instabilities happening in the generation of673

WkZk (as mentioned in Remark 3.2). As can be seen in Figure 7(a), a smaller value of674

τ would lead to solutions of worse quality. Alternatively, Figure 7(b) shows the history675

of the relative errors when the components of the weights Wk = W̃ (p,τ)(xk−1,?) are676

set to 0 in (2.5) if they are higher than a certain threshold τW (as suggested in [39]).677
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(a) (b)

Fig. 5. Experiment 2. Setting for the hst test problem. (a) True image xtrue. (b) Noisy
measurement b.
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Fig. 6. Experiment 2. History of relative error norms for the new IRW-FLSQR, compared
to (a) other standard solvers for the `2 − `1 problem, (b) other flexible and generalized Krylov-
based solvers. The circle and triangle markers correspond to stopping criteria (4.4) based on the
stabilization of λ and s(xk), respectively.
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664

As in the previous example, Figure 8(a) displays the values of the relative residuals678

‖b − Axk(λ)‖2/‖b‖2 versus the number of iterations k, and Figure 8(b) displays the679

values of the regularization parameters λ = λk selected at each iteration k according680

to the discrepancy principle. The behavior of these quantities is very similar to that681

observed in the previous example and it can be interpreted in the same way.682

Experiment 3. This test problem models sparse X-ray tomographic reconstruc-683

tion with oversampled data. The chosen test phantom is the ppower image from [26],684

generated in such a way that only 10% of its pixels are exactly nonzero; this phan-685

tom is also fairly smooth (see Figure 9(a)). A measurement geometry consisting of686

362 equidistant parallel beams rotated around 224 equidistant angles between 1◦ and687

180◦ is considered. This corresponds to a discrete forward operator A ∈ Rm×n with688

m = 81088 and n = 65536, so that only methods based on the Golub–Kahan decom-689

position can be compared. The noise level in this example is ‖e‖2/‖btrue‖2 = 1.5·10−2.690

The convergence results for this tomography example with oversampled data are701

displayed in Figures 10 and 11. The methods based on flexible Krylov subspaces all702
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Fig. 7. Experiment 2. Different strategies to stabilize the quality of the solution. History of the
relative error norms for the new IRW-FLSQR: (a) for different values of τ , (b) for different values
of τW .
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Fig. 8. Experiment 2. Methods based on Krylov subspaces. (a) History of the relative residuals.
(b) History of the regularization parameters. The circle and triangle markers correspond to stopping
criteria (4.4) based on the stabilization of λ and s(xk), respectively.
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Fig. 9. Experiment 3. Setting for the ppower test problem. (a) True phantom xtrue. (b) Noisy
sinogram measurement b.
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Fig. 10. Experiment 3. History of relative error norms for the new IRW-FLSQR, compared
to (a) other standard solvers for the `2 − `1 problem; (b) other flexible and generalized Krylov-
based solvers. The circle and triangle markers correspond to stopping criteria (4.4) based on the
stabilization of λ and s(xk), respectively.
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Fig. 11. Experiment 3. Methods based on Krylov subspaces. (a) History of the relative residuals.
(b) History of the regularization parameters chosen according to the discrepancy principle. The circle
and triangle markers correspond to stopping criteria (4.4) based on the stabilization of λ and s(xk),
respectively.
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perform similarly well. FISTA seems to deliver a solution of slightly better quality703

than IRW-FLSQR, but it takes more iterations to do so. SpaRSA seems to perform704

poorly for this test problem; it may be expected that experimenting with different705

values of the regularization parameter could lead to an improved solution.706

5. Conclusions. This paper presents two new algorithms, called IRW-FGMRES707

and IRW-FLSQR, that efficiently solve the `2-`p minimization problem (1.5) by par-708

tially solving a sequence of quadratic problems arising from the IRN strategy. The709

new methods compute approximate solutions belonging to flexible Krylov subspaces of710

increasing dimension that encode regularization through iteration-dependent “precon-711

ditioning” so as to avoid nested loops of iterations and build only one approximation712

subspace for the solution. With respect to other available IRN solvers, the new ap-713

proach not only improves the efficiency of the algorithm but also avoids the need of714

choosing stopping criteria for the inner iterations. Moreover, the regularization pa-715

rameter can be set adaptively along the iterations (even using strategies other than716
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the discrepancy principle, which is considered in this paper). The new flexible Krylov717

solvers are supported by a solid theoretical justification: indeed, the sequence of ap-718

proximate solutions given by Algorithm 3.1 is guaranteed to converge to the solution719

of the smoothed formulation (2.4) of problem (1.5).720

Extensive numerical testing, involving large-scale inverse problems in imaging,721

shows that IRW-FGMRES and IRW-FLSQR are competitive with other standard722

implementations of IRN methods as well as other optimization methods. Moreover,723

although IRW-FGMRES can only be applied to a square coefficient matrix A and724

is not guaranteed to work well if A is highly nonnormal, it requires only a single725

matrix-vector product with A at each iteration, while IRW-FLSQR needs an addi-726

tional matrix-vector product with AT at each iteration. It is worth highlighting again727

that, although the hybrid implementations of FGMRES, FLSQR [18, 9] and IRW-728

FGMRES, IRW-FLSQR have a similar behavior in most of the performed numerical729

tests, the former still lack a solid theoretical justification of convergence.730

Future work will include a theoretical investigation of the convergence of IRW-731

FGMRES and IRW-FLSQR in the presence of a variable regularization parameter732

that is automatically set at each iteration according to a given rule, and the extension733

of the new IRW flexible Krylov methods to handle more involved regularizers, such734

as total variation and generalizations thereof.735
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3.3 Conclusions

This chapter studies the use of Kylov methods in combination with `2-`p regularization.
This requires generalizing the Krylov subspace methods reviewed in Chapter 2 to incorpo-
rate iteration-dependent preconditioning, and this is done using flexible Krylov subspaces.
Moreover, the particular reformulation of `2-`p regularization given in [GNL21] is used to
give theoretical guarantees of convergence.

In the next chapter, flexible Krylov methods will be used in combination with TV regu-
larization in a similar fashion to [GNL21]. However, the generalization of the algorithms
in [GNL21] is not straightforward, as TV regularization as formulated in Chapter 4 of
this thesis involves (partially) solving a sequence of Tikhonov problems with iteration-
dependent non-square regularization matrices. The next chapter describes a new algorithm
for TV regularization using flexible Krylov subspaces.
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Chapter 4

Flexible GMRES for total
variation regularization

This chapter presents a new algorithm based on total variation (TV) regularization for
large-scale linear ill-posed problems. The new approach requires constructing a sequence
of quadratic problems that are partially solved at each iteration using flexible GMRES
(FGMRES). I present joint work with Silvia Gazzola, which is published in BIT Numerical
Mathematics as open access publication [GL19].

4.1 Outline of the paper

This paper presents a new algorithm to solve large-scale linear ill-posed inverse problems
using total variation regularization as defined in (1.21), which is approximated by a se-
quence of Tikhonov problems of the form (1.37). Unlike `2-`p regularization, presented in
Chapter 3, the regularization matrix WkD associated to the quadratic approximation of
the TV functional at iteration k (i.e., of the form (1.37)), is not square. This entails a
more challenging situation when transforming (1.37) into standard form, which involves
the computation of the A-weighted pseudoinverse of the matrix WkD. Assuming that the
original coefficient matrix A is square, the transformed problem is modified again to ob-
tain a new equivalent problem with a square coefficient matrix, that is solved using flexible
GMRES (FGMRES). Efficient implementation strategies are proposed to compute these
transformations and are therefore included in [GL19, Section 4].

The performance of the new algorithm, TV-FGMRES, is illustrated on three deblurring
problems (see Section 1.2). In particular, as already stated in Section 1.5.3, [GL19, Section
3] includes an illustration of how priorconditioning modifies the flexible Krylov subspace
where the solution is sought for a simple one-dimensional deconvolution example.

Most of the content included in [GL19, Section 1] is already explained in Chapter 1 of
this thesis, and can therefore be skipped by the reader. Similarly, most of the material
mentioned in [GL19, Section 2] is summarized in Chapter 1 of this thesis, but is presented
with more detail in [GL19, Section 2] and with a slightly different notation that is more
tailored to TV regularization. [GL19, Section 2] also includes important remarks on the
smoothing of the TV regularization functional. Therefore, we recommend reading it,
although parts of it should be very familiar to the reader. There are some discrepancies
between the notation in [GL19] and Chapter 1 of this thesis: these are summarized in
Table 4.1.
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Table 4.1: Notational discrepancies between this thesis and paper [GL19]

Discrepancies Thesis Paper

original linear problem Ax = b = btrue + e Ax+ e = b

dimensions of a square A n× n N ×N

dimensions of an image X
√
n×√n n× n

Tikhonov solution xT ikλ,L xL,λ

dimensions of the reg. matrix L q × n M ×N

TV solution xTV
k xTV,k

p norm `p `p

iterative method solution xk x(i)

iterative-dependent reg. matrix Wk W (i)

standard form transformation xT ikλ,L = L†Ax̄
T ik
λ,L + x0 xL,λ = L†AȳL,λ + x0

x̄L,λ = L†AȳL,λ
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Abstract
This paper presents a novel approach to the regularization of linear problems involv-
ing total variation (TV) penalization, with a particular emphasis on image deblurring
applications. The starting point of the new strategy is an approximation of the non-
differentiable TV regularization term by a sequence of quadratic terms, expressed as
iteratively reweighted 2-norms of the gradient of the solution. The resulting problem is
then reformulated as a Tikhonov regularization problem in standard form, and solved
by an efficient Krylov subspace method. Namely, flexible GMRES is considered in
order to incorporate new weights into the solution subspace as soon as a new approx-
imate solution is computed. The new method is dubbed TV-FGMRES. Theoretical
insight is given, and computational details are carefully unfolded. Numerical experi-
ments and comparisonswith other algorithms for TV image deblurring, aswell as other
algorithms based onKrylov subspacemethods, are provided to validate TV-FGMRES.

Keywords TV regularization · Flexible GMRES · Smoothing-norm
preconditioning · Image deblurring

Mathematics Subject Classification AMS 65F08 · AMS 65F10 · AMS 65F22

1 Introduction

This paper considers large-scale discrete ill-posed problems of the form

b = Ax + e , (1.1)

where the matrix A ∈ RN×N is ill-conditioned with ill-determined rank (i.e., the sin-
gular values of A quickly decay and cluster at zero without an evident gap between two
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consecutive ones), and e ∈ RN is unknown Gaussian white noise. Systems like this
typically arise when discretizing inverse problems, which are central in many appli-
cations (such as astronomical and biomedical imaging, see [11,18] and the references
therein). This paper mainly deals with signal deconvolution (deblurring) problems,
where x ∈ RN is the unknown sharp signal we wish to recover, and b is the measured
(blurred and noisy) signal. In the case of images (i.e., two-dimensional signals) we
use the following convention: X ∈ Rn×n is the array storing the sharp image, while
x ∈ RN , N = n2, is the vector obtained by stacking the columns of X . The spa-
tially invariant convolution kernel (blur) is assumed to be known. More specifically,
in image deblurring, A is determined starting from a so-called point spread function
(PSF, which specifies how the points in the image are distorted by the blur) and the
boundary conditions (which specify the behavior of the image outside the recorded
values).

Because of the ill-conditioning of A and the presence of noise e, some regularization
must be applied to (1.1) in order to compute a meaningful approximation of x . To
this end, one may employ the well-known Tikhonov method in general form, which
computes a regularized solution

xL,λ = arg min
x∈RN

‖Ax − b‖22 + λ‖Lx‖22 . (1.2)

Here L ∈ RM×N is the so-called regularization matrix that enforces some smoothing
in xL,λ (by including the penalization ‖Lx‖22 in the above objective function), and
λ > 0 is the so-called regularization parameter that specifies the amount of smoothing
(by balancing the fit-to-data term ‖Ax − b‖22 and the regularzation term ‖Lx‖22).
The choice of L and λ is problem-dependent, the former being typically the identity
(L = I , inwhich case (1.2) is said to be in standard form), or a rescaled finite difference
discretization of a derivative operator. When information about the regularity of x is
available, one obtains enhanced reconstructions by considering a suitable L �= I . If
the GSVD of the matrix pair (A, L) (or the SVD of the matrix A when L = I ) can
be feasibly computed, then the vector xL,λ in (1.2) can be directly expressed as a
linear combination of the right (generalized) singular vectors basis. In particular, by
using the GSVD, one can notice that additional smoothing is encoded in the basis
vectors, and the components of xL,λ belonging to the null space of L are unaffected
by regularization (see [18, Chapter 8] for more details).

Unfortunately, when considering large-scale problemswhose associated coefficient
matrix A may not have an exploitable structure or may not be explicitly stored, one
cannot assume the GSVD to be available. In this setting iterative regularization meth-
ods are the only option, i.e., one can either solve the Tikhonov-regularized problem
(1.2) iteratively, or apply an iterative solver to the original system (1.1) and terminate
the iterations early (see [4,11,16,18] and the references therein).

This paper considers the last approach, sometimes referred to as “regularizing iter-
ations”, and it focuses on the GMRES method [27, Chapter 6] and some variants
thereof. GMRES does not require AT nor matrix-vector products with AT , and there-
fore it appears computationally attractive when compared to other regularizing Krylov
subspace methods such as LSQR [26]. Although GMRES was proven to be a regu-
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Flexible GMRES for total variation regularization 723

larization method in [6], it is well known that it may have a poor performance in
some situations, e.g., when dealing with highly non-normal linear systems [21]. It has
been shown that, however, this issue can be fixed by using specific preconditioners.
For instance, the so-called smoothing-norm preconditioned GMRES method derived
in [19] (and here referred to as GMRES(L)) follows from transforming the general
Tikhonov problem (1.2) into standard form (i.e., into an equivalent Tikhonov prob-
lem with L = I ), and then applying GMRES to the transformed fit-to-data term.
GMRES(L) can be regarded as a right-preconditioned GMRESmethod that computes
an approximate regularized solution as a linear combination of vectors that incorpo-
rate the smoothing effect of the regularization matrix L in (1.2). We emphasize that,
here and in the following, the term “preconditioner” is used in a somewhat unconven-
tional way. Indeed, the preconditioners used in this paper aim at computing a good
regularized solution to problem (1.1) and, from a Bayesian point of view, they may be
regarded as “priorconditioners” [5].

Total variation regularization is very popular when dealing with signal deconvolu-
tion problems (see [9,Chapter 5] and the references therein), and amounts to computing

xTV,λ = arg min
x∈RN

‖Ax − b‖22 + λTV(x), (1.3)

where TV(x) denotes the isotropic total variation of the unknown x , which measures
the magnitude of the discrete gradient of x in the �1 norm. The weighted term λTV(x)
in the above Tikhonov-like problem has the effect of producing piecewise-constant
reconstructions, as solutions with many steep changes in the gradient are penalized or,
equivalently, solutions with a sparse gradient are enforced. In particular, for images,
λTV(x) helps preserving edges.

The convex optimization problem (1.3) is very challenging to solve, both because
of its large-scale nature, and because of the presence of the non-differentiable total
variation term (so that the efficient iterative techniques used to solve problem (1.2)
cannot be straightforwardly adopted in this setting). We also mention in passing that
the so-called TVp penalization term, which evaluates the magnitude of the gradient
with respect to some �p “norm”, 0 < p < 1, can be considered instead of the usual
TV = TV1, see [7]. TVp is notably more effective in enforcing sparse gradients (as
it better approximates the �0 quasi-norm), but the resulting Tikhonov-like problem
is not convex anymore (and therefore may have multiple local minima). A variety
of numerical approaches for the solution of (1.3) have already been proposed: some
of them are based on fixed-point iterations, smooth approximations of TV(x), fast
gradient-based iterations, and Bregman-distance methods; see [3,8,25,29], to cite only
a few.

This paper is concerned with strategies that stem from the local approximation of
(1.3) by a sequence of quadratic problems of the form (1.2), and that exploit Krylov
subspacemethods to compute solutions thereof. To the best of our knowledge, this idea
was first proposed for total variation regularization in [30], where the authors derive
the so-called iteratively reweighted norm (IRN) method consisting of the solution of
a sequence of penalized weighted least-squares problems with diagonal weighting
matrices incorporated into the regularization term and dependent on the previous

123

97
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approximate solution (so that they are updated from one least-squares problem to the
next one). For large-scale unstructured problems, this method intrinsically relies on
an inner-outer iteration scheme. In the following we use the acronym IRN to indicate
a broad class of methods that can be recast in this framework.

Although the IRN method [30] is theoretically well-justified and experimentally
effective, it has a couple of drawbacks. Firstly, conjugate gradient is repeatedly applied
from scratch to the normal equations associated to each penalized least-squares prob-
lem of the form (1.2) in the sequence: this may result in an overall large number of
iterations. Secondly, the regularization parameter λ should be chosen (and fixed) in
advance. The so-called modified LSQR (MLSQR) method [1] partially remedies both
these shortcomings. Although the starting point of MLSQR is still an IRN approach
[30], each Tikhonov-regularized problem in the sequence of least-squares problems is
transformed into standard form: in this way the matrix A is now right preconditioned
and a preconditioned LSQR method can be applied. This approach typically results
in a smaller number of iterations with respect to IRN [30]; moreover, different values
of the regularization parameter can be easily considered. On the downside, LSQR is
still applied sequentially to each IRN least-squares problem, and a new approxima-
tion subspace for the LSQR solution is computed from scratch. The so-called GKSpq
method [23] leverages generalized Krylov subspaces (GKS), i.e., approximation sub-
spaces where the updated weights and adaptive regularization parameters can be easily
incorporated as soon as they become available. In other words, only one approxima-
tion subspace is generated when running the GKSpq method for the IRN least-squares
problems associated to (1.3), and the approximate solutions are obtained by orthogonal
projections onto GKS of increasing dimension. In this way, GKSpq avoids inner-outer
iterations and is very efficient when compared to IRN and MLSQR.

All the methods surveyed so far implicitly consider the normal equations associated
to least-squares approximations of problem (1.3). As already remarked, approaches
based on GMRES applied directly to the fit-to-data term in (1.2) may be more ben-
eficial in some situations, as the computational overload of dealing with AT can be
avoided. The restarted generalized Arnoldi–Tikhonov (ReSt-GAT) method [15] is
arguably the only approach that generates a GMRES-like approximation subspace
for the solution of each least-squares problem associated to the IRN strategy. How-
ever ReSt-GAT has two shortcomings: it is based on an inner-outer iteration scheme
(though approximations recovered during an iteration cycle are carried over to the
next one by performing convenient warm restarts) and the TV penalization does not
directly affect the approximation subspace of ReSt-GAT (failing to properly enhance
piecewise constant reconstructions).

The goal of this paper is to propose a novel strategy that employs GMRES for the
solution of Tikhonov-regularized problems associated to the IRN approach to (1.3).
In particular, a flexible instance of a GMRES(L)-like method is used to solve pre-
conditioned versions of system (1.1), which are obtained by considering quadratic
approximations to problem (1.3), performing transformations into standard form, and
applying GMRES to the resulting fit-to-data term. In this way, the effect of the total
variation regularization term (defined with respect to iteratively updated weights and a
discrete gradient operator) is incorporated into the solution subspace, which is affected
by both the null space of the regularization matrix and the adaptive weights. As the
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weights are updated as soon as a new approximate solution becomes available, i.e.,
immediately after a new GMRES iteration is computed, the flexible GMRES (FGM-
RES) method (see [27, Chapter 9]) is employed to handle variable preconditioning
along the iterations. The resulting regularization method is dubbed Total-Variation-
FGMRES (TV-FGMRES). We emphasize that the TV-FGMRESmethod is inherently
parameter-free, as only one stopping criterion should be set to suitably terminate the
iterations (while, for all the other solvers for problem (1.3) listed so far, one has
to choose both the parameter λ and the number of iterations). Moreover, the new
approach is different from the ReSt-GAT one [15] for two reasons: firstly, the standard
GMRES approximation subspaces are modified and, secondly, regularizing iterations
are employed rather than solving a sequence of Tikhonov problems (1.2); also, this
approach is somewhat analogous to the GKSpq [23] one, but the two methods differ in
the computation of the approximation subspaces (recall that the GKSpq ones involve
both AT and λ).

This paper is organized as follows. Section 2 covers some background material,
including the definition of the weighting matrices for the approximation of the total
variation regularization term in an IRN fashion, and a well-known procedure for trans-
forming problem (1.2) into standard form. Section 3 describes the new TV-FGMRES
method. Section 4 dwells on implementation details. Section 5 contains numerical
experiments performed on three different image deblurring test problems. Section 6
presents some concluding remarks and possible future works.

2 IRN, weights, and standard form transformation

The main idea underlying the IRN approaches for the solution of TV-regularized
problems is to approximate theminimizer of (1.3) by solving a sequence of regularized
problems with rescaled penalization terms expressed as reweighted �2 norms, whose
weights are iteratively updated using a previous approximation of the solution, i.e.,

xTV,λ � xL,λ = arg min
x∈RN

‖Ax−b‖22+λ‖Lx‖22 , with L = WD ∈ RM×N , (2.1)

where W = W (i) = W (Dx (i−1)) denotes a diagonal weighting matrix defined with
respect to an available approximation x (i−1) of xTV,λ (so that also L depends on x (i−1)),
and D denotes a scaled finite difference matrix discretizing a derivative operator of
the first order. More precisely, (2.1) is obtained by locally approximating the total
variation functional in (1.3) by the quadratic functional

1

2

(
||W (Dx (i−1))Dx ||22 + TV(x (i−1))

)
, (2.2)

where the constant second term is dropped and the rescaling factor is incorporated
into λ in (2.1). The weights W (Dx (i−1)) are determined in such a way that (2.2) is
tangent to TV(x) at x = x (i−1), and it is an upper bound for TV(x) elsewhere, see
[30]. The weights are derived as follows, distinguishing between:
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– The one-dimensional (1d) case. In a discrete setting with v ∈ RN , TV(v) =
‖D1dv‖1, where

D1d =
⎡
⎢⎣
1 −1

. . .
. . .

1 −1

⎤
⎥⎦ ∈ R(N−1)×N . (2.3)

The weighting matrix

W1d = W1d(D1dv) = diag
(
|D1dv|−1/2

)
∈ R(N−1)×(N−1) , (2.4)

where both modulus and exponentiation are considered component-wise, is used
in practice to approximate the 1-norm. Indeed, for a given v, one can easily see
that

‖W1dD1dv‖22 =
N−1∑
k=1

|[D1dv]k |−1 [D1dv]2k =
N−1∑
k=1

|[D1dv]k | = ‖D1dv‖1 = TV(v) ,

where [w]k denotes the kth entry of a vector w.
– The two-dimensional (2d) case. In a discrete setting,

TV(v) =
∥∥∥∥
(
(Dhv)2 + (Dvv)2

)1/2∥∥∥∥
1

,

where, if v ∈ RN is obtained by stacking the columns of a 2d array V ∈ Rn×n

with N = n2, the discrete first derivatives in the horizontal and vertical directions
are given by

Dh = (D1d ⊗ I ) ∈ Rn(n−1)×n2 , Dv = (I ⊗ D1d) ∈ Rn(n−1)×n2 ,

respectively. Here D1d ∈ R(n−1)×n is the 1d first derivative matrix (2.3) of appro-
priate size, and I is the identity matrix of size n, so that 2d discrete operators are
defined in terms of the corresponding 1d ones (note that here both D1d and I have
n columns, i.e., the size of the 2d array V ). Deriving an expression for the weights
in the discrete 2d setting is less straightforward. Following [30], for a given v, and
letting Ñ = n(n − 1), one takes

D2d =
[
Dh

Dv

]
∈ R2Ñ×N ,

W̃2d = W̃2d(D2dv) = diag

((
(Dhv)2 + (Dvv)2

)−1/4
)

∈ RÑ×Ñ ,

W2d = W2d(D2dv) =
[
W̃2d 0
0 W̃2d

]
∈ R2Ñ×2Ñ . (2.5)
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The expression of the weights in (2.4) and (2.5) generalizes to the TVp functional,
0 < p < 1, defined as

TVp(v) = ‖D1dv‖p
p and TVp(v) =

∥∥∥∥
(
(Dhv)2 + (Dvv)2

)1/2∥∥∥∥
p

p
,

in the 1d and 2d cases, respectively. Indeed, given v, it suffices to take the weights

Wp,1d(D1dv) = diag
(
|D1dv|(p−2)/2

)
and

W̃p,2d(D2dv) = diag

((
(Dhv)2 + (Dvv)2

)(p−2)/4
)

,

for the 1d and 2d cases, respectively, and then proceed as in the TV case illustrated
above.

It is important to stress that division by zeromay occur when computing theweights
associated to the TV and TVp functionals (this is the case when a component of the
gradient magnitude is zero, which should not be regarded and a rare occurrence as
(1.3) enforces sparsity in the gradient of the solution). To avoid this, one should set
some safety thresholds τ1 > τ2 > 0, define

fτ ([w]k) =
{

|[w]k | if |[w]k | > τ1

τ2 otherwise
for each component [w]k of a vector w,

(2.6)
and then consider as weights the diagonal matrices W1d( fτ (D1dv)) and W2d( fτ (D2dv))

for TV, Wp,1d( fτ (D1dv)) and Wp,2d( fτ (D2dv)) for TVp.
In the following, when the distinction between the 1d and the 2d cases can be

waived, we will use the simpler notations W for the M × M diagonal weighting
matrix, and D for the M × N first derivative matrix (with M = N − 1 in the 1d case,
and M = 2Ñ in the 2d case).

We conclude this section by recalling a well-known strategy to transform a
generalized Tikhonov-regularized problem (1.2) with a given regularization matrix
L ∈ RM×N into standard form, with rank(L) = M < N and N (A) ∩ N (L) = {0},
i.e., the null spaces of A and L trivially intersect (see [12] for more details). Under
these assumptions, the solution of (1.2) can be equivalently expressed as

xL,λ = L†
A ȳL,λ+x0 = x̄L,λ+x0 , where

ȳL,λ = argmin ȳ∈RM ‖ Ā ȳ − b̄‖22 + λ‖ȳ‖22 ,

Ā = AL†
A ,

b̄ = b − Ax0 .

(2.7)
Here L†

A is the A-weighted pseudoinverse of L , defined as

L†
A = [I − (A(I − L†L))†A]L† ∈ RN×M ,

where L† denotes the Moore–Penrose pseudoinverse of L , x̄L is the component of the
solution xL in R(L†

A) (i.e., the range of L†
A), and x0 is the component of the solution
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xL in N (L) (i.e., x0 = (A(I − L†L))†b). We remark that, when a given matrix
L ∈ RM×N has full rank but is such that M > N , a reduced QR factorization of L ,
L = QR, can be performed, and the above derivations can be applied to R ∈ RN×N

(instead of L). In the following we will use this procedure to transform (2.1), for a
given weighting matrix W = W (i) = W (Dx (i−1)), into standard form.

3 TV-preconditioned flexible GMRES

We begin this section by defining a TV-preconditioned version of the GMRES(L)
method [19], motivated by the generalized Tikhonov problem (2.1) appearing within
the IRN framework and assuming that the matrix W = W (i) = W (Dx (i−1)) is fixed.
To achieve this, we first transform problem (2.1) into standard form, following the
procedure outlined in (2.7). We then describe how to apply GMRES to a system
linked to the fit-to-data term in (2.7) or, in other words, we consider λ = 0 in (2.7).
Indeed, we would like to apply GMRES (as a regularizing iterative method) to the
system

A(L†
A ȳL + x0) = b , (3.1)

where L†
A can be regarded as a preconditioner accounting for a total variation regu-

larization term, x0 is defined as in (2.7), and ȳL=ȳL,0 (note that, to keep the notations
simple, in the following we will use ȳL=ȳL,0, x̄L=x̄L,0, and xL=xL,0 ).

Applying GMRES to (3.1) is not straightforward, because the coefficient matrix
AL†

A ∈ RN×M is rectangular. To overcome this obstacle we closely follow the
approach proposed in [19]. Let K be a matrix with full column-rank whose columns
span N (L): when L is as in (2.1), since W is nonsingular, this means that

R(K ) = N (L) = N (D) = span{1}

for both the 1d and the 2d cases, where 1 = [1, . . . , 1]T ∈ RN . Thanks to this remark,
the expression for xL in (2.7) (with λ = 0) can be further detailed as

xL = x̄L + x0 = L†
A ȳL + x0 = L†

A ȳL + Kt0 , (3.2)

where the scalar t0 ∈ R is uniquely determined by computing

t0 = (AK )†b = argmin
t∈R

‖(AK )t − b‖2 . (3.3)

We note that decomposition (3.2) is uniquely determined if both L and K have full
rank. By plugging expression (3.2) into (3.1), we get

A
[
L†
A, K

] [
ȳL
t0

]
= b , (3.4)
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which, once premultiplied by [D†, K ]T , gives the 2 × 2 block system

[
(D†)T AL†

A (D†)T AK
KT AL†

A K T AK

] [
ȳL
t0

]
=

[
(D†)T b
K T b

]
.

We can easily eliminate t0 from this system by inverting the 1 × 1 (2, 2) block, so
obtaining the Schur complement system,

(D†)T P AL†
A ȳL = (D†)T Pb , (3.5)

or, using once more the relations in (3.2),

(D†)T P Ax̄L = (D†)T Pb , (3.6)

where
P = I − AK (KT AK )−1KT ∈ RN×N (3.7)

is the oblique projector onto the orthogonal complement of R(K ) along R(AK ).
The coefficient matrix in system (3.5) has size M × M , while the one in system (3.6)
has size M × N . We emphasize that this Schur complement system is different from
the one derived in [19], where both sides of (3.4) are premultiplied by the matrix
[L†

A, K ]T . In our setting, since the matrix L contains weights W that should be
suitably updated (as explained in the remaining part of this section), we conveniently
discard the contribution of W in the left preconditioner in (3.5). In the following, to
keep the formulas light, we often use the notations

Â = (D†)T P A ∈ RM×N , b̂ = (D†)T Pb ∈ RM , (3.8)

so that systems (3.5) and (3.6) can be evenmore compactly written as ÂL†
A ȳL = b̂ and

Âx̄L = b̂, respectively. The mth iteration of the GMRES method applied to compute
xL as in (3.2) produces an approximation xL,m thereof, such that

xL,m ∈ L†
AKm((D†)T P AL†

A, (D†)T Pb) + x0 = Km(L†
A(D†)T P A, L†

A(D†)T Pb) + x0 .

We stress again that here x0 is the component of xL in N (L), and the weighting
matrix W (implicit in L) is fixed. Also, referring to the original notations in (2.7),
xL,m = xL,0,m (i.e., λ = 0).

Dropping the assumption that theweights are fixed, according to the IRN framework
we should keep updating L in (2.1) with new approximations of xL . If this happens as
soon as a new approximation xL,m−1 is computed by the GMRES method applied to
(3.5), i.e., if W = W (DxL,m−1), then we should incorporate an iteration-dependent
A-weighted pseudo-inverse (denoted by (L(m))

†
A) within the GMRES scheme to solve

(3.5), and adopt a flexible version of the Arnoldi algorithm [27, Chapter 9] to handle
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variable preconditioning: this leads to the TV-FGMRES method. The mth iteration of
the flexible Arnoldi algorithm updates a decomposition of the form

ÂZm = Vm+1Hm , where Zm ∈ RN×m, Vm+1 ∈ RM×(m+1), Hm ∈ R(m+1)×m .

(3.9)
More specifically, in the above decomposition: Hm is an upper Hessenberg matrix;
Vm+1 has orthonormal columns vi , i = 1, . . . ,m + 1, with v1 = b̂/‖b̂‖2; Zm has
columns zi = (L(i))

†
Avi , i = 1, . . . ,m. Since the columns of Zm already include

the contribution of the variable preconditioners (L(i))
†
A, for i = 1, . . . ,m, they form

a basis for the vector x̄L in (3.2). Therefore, at the mth step of TV-FGMRES, x̄L is
approximated by the following vector

x̄L,m = Zmsm , where sm = arg min
s∈Rm

‖Hms − ‖b̂‖2e1‖2 , (3.10)

and e1 ∈ Rm+1 is the first canonical basis vector of Rm+1. Due to decomposition (3.9)
and the properties of the matrices appearing therein,

min
x̄L∈R(Zm )

‖ Âx̄L − b̂‖2 = min
s∈Rm

‖ ÂZms − b̂‖2 = min
s∈Rm

‖Vm+1(Hms − ‖b̂‖2e1)‖2
= min

s∈Rm
‖Hms − ‖b̂‖2e1‖2 ,

i.e., the approximate solution x̄L,m obtained at the mth iteration of TV-FGMRES
minimizes the residual norm of (3.6) over all the vectors in

R(Zm) = span{(L(1))
†
Av1, (L

(2))
†
Av2, (L

(3))
†
Av3, . . .} . (3.11)

The approximation subspace R(Zm) can be regarded as a preconditioned Krylov
subspace, where the preconditioner is implicitly defined by successive applications of
the matrices (L(i))

†
A to the linearly independent vectors vi ; see [24].

The main steps of the TV-FGMRESmethod are summarized in Algorithm 1 where,
notation-wise, [B] j,i denotes the ( j, i)th entry of a matrix B.

If (L(i))
†
A = L†

A is fixed, then

R(Zm) = Km(L†
A(D†)T P A, L†

A(D†)T Pb)

= L†
AKm((D†)T P AL†

A, (D†)T Pb) = L†
AR(Vm),

where Vm is the orthonormal basis generated by the right-preconditioned Arnoldi
algorithm, which can be expressed by a decomposition formally similar to (3.9), but
where Zm = L†

AVm . Recalling previous naming conventions, R(Zm) = L†
AR(Vm)

is the approximation subspace associated to the GMRES(WD) method.
We conclude this section by proposing a simple numerical experiment to illustrate

the benefit of considering flexibility, i.e., TV-FMGRES, over non-flexible versions of
GMRES. We consider a signal deblurring test problem, where a piecewise constant
sharp signal of length N = 256 is convolved with a Gaussian blurring kernel, and
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Algorithm 1 The TV-FGMRES method.
Input: Â, b̂ as in (3.8)
Take W (1) = I and v1 = b̂/||̂b||2
Compute x0 in (3.2) by (3.3)
For i = 1, . . . until a stopping criterion is satisfied

1. Compute zi = (L(i))
†
Avi = (W (i)D)

†
Avi

2. Compute w = Âzi
3. For j = 1, . . . , i , compute [H ] j ,i = wT vi and set w = w − [H ] j,iv j
4. Compute [H ]i+1,i = ||w||2 and, if [H ]i+1,i �= 0, take vi+1 = w/[H ]i+1,i
5. Compute the solution si in (3.10) so that x̄L,i = Zi si
6. Update the weights W (i+1)

end
Take xL = x̄L,i + x0

Gaussian white noise of level 10−2 is added, so to obtain a corrupted version of it (as
reported in Fig. 1a).We consider the following iterative approaches to recover the exact
signal: GMRES, GMRES(D1d), and TV-GMRES (with thresholds τ1 = 10−4, τ2 =
10−12); for the sake of comparison, we also include GMRES(W exD1d), where W ex =
W (Dxex) are the (optimal) weights computed with respect to the exact solution xex

of the noise-free problem (i.e., (1.1) with e = 0). In Fig. 1b the best reconstructions
obtained by GMRES, GMRES(D1d), and TV-FGMRES are reported: it is evident that
the latter is the most capable method in reproducing the piecewise constant features of
the original signal, as the GMRES and the GMRES(D1d) reconstructions are affected
by many spurious oscillations. Indeed, the combination of flexibility and appropriate
adaptive weightings allows to generate basis vectors for TV-FGMRES that are the
closest to the optimal ones (see Fig. 1e, f). The basis vectors for GMRES immediately
exhibit an extremely oscillatory behavior (see Fig. 1c), while the basis vectors for
GMRES(D1d) are greatly smoothed, but fail to reproduce the jumps characterizing the
exact signal (see Fig. 1d). We can experimentally conclude that one of the reasons
underlying the success of TV-FGMRES is the iteration-dependent preconditioning
that enforces piecewise-constant features of the solution into the TV-FGMRES basis
vectors.

4 Implementation strategies

To devise efficient implementations of the TV-FGMRESmethod applied to the system
(3.5) or (3.6), a number of properties of the involved matrices should be taken into
account. In this section we will often use MATLAB-like notations: for instance, we
will use a dot to denote a component-wise operation, a colon to access elements in
a range of rows or columns of an array, and diag(·) to denote a vector of diagonal
entries. We will extensively invoke and generalize some of the propositions derived in
[19]. We start by proving the following result for system (3.5) (analogous to Theorem
5.1 in [19]).
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Fig. 1 Signal deblurring problem. a 1d piecewise constant exact signal xex and its corrupted version.
b Best reconstructions obtained by the GMRES, GMRES(D1d), and TV-FGMRES methods. c Basis
vectors v1, v2, v3 for GMRES. d Basis vectors z1, z2, z6, z8, z20 for GMRES(D1d). e Basis vectors
z1, z2, z6, z8, z20 for TV-FGMRES. f Basis vectors z1, z2, z6, z8, z20 for GMRES(W exD1d)

Theorem 4.1 If R(LT ) and R(AK ) are complementary subspaces, the Schur com-
plement system (3.5) is equivalent to

(D†)T P AL†y = (D†)T Pb , (4.1)

where P is given by (3.7).
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Proof We start by noting that L†
A = EL†, where

E = I − (A(I − L†L))†A = I − (AK K †)†A = I − K (AK )†A . (4.2)

Then

(D†)T P AEL† = (D†)T P A(I − K (AK )†A)L†

= (D†)T P AL† − (D†)T P AK (AK )†AL† ,

where the second term in the above sum is

(D†)T P AK (AK )†AL† = (D†)T (I − AK (KT AK )−1KT )AK (AK )†AL†

= (D†)T AK (AK )†AL†

− (D†)T AK (KT AK )−1(KT AK )(AK )†AL†= 0.

Therefore, (3.5) reduces to (4.1). �	
Note that, although this theorem is stated for system (3.5), the same rela-

tions can be exploited when solving system (3.6), since the matrix-vector products
((D†)T P A)(L†

Av) = ((D†)T P A)(L†v) should be computed (see also lines 1, 2 of
Algorithm 1). The above theorem is important from a computational point of view
since, by avoidingmultiplication by E , an additional matrix-vector product with A can
be avoided at each iteration of TV-FGMRES. However, in a flexible framework, we
may still need the solution x̄L,i (which is implicitly expressed through a matrix-vector
product with L†

A) to update the weights W (i+1) at each iteration (see line 5 of Algo-
rithm 1). This is notably not the case for TV-FGMRES, as the weights are expressed
with respect to the gradient of x̄L,i , and

Dx̄L,i = DL†
A ȳL,i = DL† ȳL,i − DK ((AK )†AȳL,i ) = DL† ȳL,i ,

wherewe have used the fact thatR(K ) = N (L) = N (D). Note also that, to keep the
notations light, we have compactly denoted by L†

A ȳL,i a vector belonging to the space
(3.11). Finally, although the matrix P in (3.7) is defined in terms of A, matrix-vector
products with A can be smartly avoided when computing matrix-vector products with
P , by observing that

Pv = v − AK (KT AK )−1KT v = v − Q0R0(K
T Q0R0)

−1KT v

= v − Q0(K
T Q0)

−1KT v ,

where AK = Q0R0 is the reduced QR factorization of AK ∈ RN , i.e., Q0 ∈ RN

is the normalization of AK . Matrix-vector products with P have therefore an O(N )

cost.
As a consequence, under the assumptions of Theorem 4.1, the computational cost

per iteration of TV-FGMRES is dominated by one matrix-vector product with A (sim-
ilarly to GMRES applied to (1.1)), plus one matrix-vector product with (D†)T and
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L†. Efficient approaches to compute the latter will be explored in the next subsections.
We conclude by remarking that, when considering image deblurring problems with
spatially invariant blurs and periodic boundary conditions [20], the normalization con-
dition A1 = 1 is satisfied by the blurring matrix A (this is basically a conservation of
light condition for the blurred image). In this setting, R(LT ) and R(AK ) are indeed
complementary subspaces, since

R(LT ) + R(AK ) = R(LT ) + AR(K ) = R(LT )

+ AN (L) = R(LT ) + N (L) = RN ,

and R(LT ) ∩ N (L) = {0} thanks to the fundamental theorem of linear algebra.

4.1 Computations of matrix-vector products with D and (D†)T

These are required when computing the weights (defined in (2.4), (2.5)), and when
computing matrix-vector products with Â (defined in (3.8)). We focus on the 2d case,
as special strategies should be used to handle large-scale quantities. Concerning the
first task, given a vector v ∈ RN , we can exploit the special structure of D2d and the
Kronecker product properties, so that

D2dv =
[
Dh

Dv

]
v =

[
(D1d ⊗ I )v
(I ⊗ D1d)v

]
=

[
V DT

1d

D1dV

]

=
[
V (:, 1 : n − 1) − V (:, 2 : n)

V (1 : n − 1, :) − V (2 : n, :)
]

, (4.3)

where v∈ RN is obtained by stacking the columns of V ∈ Rn×n , N = n2, and where
columns and rows differences of V are computed. Matrix-vector products with D2d

have an O(n(n − 1)) = O(N ) cost.
Concerning the computation of matrix-vector products with (D†)T , let us first

assume that the singular value decomposition of D1d = U1dΣ1dV T
1d can be computed.

Then, by using some Kronecker product properties, we can decompose D2d in (2.5) as
follows

D2d =
[
D1d ⊗ I
I ⊗ D1d

]
=

[
U1dΣ1dV T

1d ⊗ V1dV T
1d

V1dV T
1d ⊗U1dΣ1dV T

1d

]

=
[
U1d ⊗ V1d 0
0 V1d ⊗U1d

]
Σ̃

[
V1d ⊗ V1d

]T
, where Σ̃ =

[
Σ1d ⊗ I
I ⊗ Σ1d

]
.

(4.4)

The matrix Σ̃ has a very sparse structure, where the only nonzero entries are

[Σ̃] j, j if j ≤ n(n − 1), and [Σ̃]
n(n−1)+ j−

⌊
j
n

⌋
, j
if j < n2 and j �= 0 mod n .
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Amore convenient decomposition can be devised by applying a set of Givens rotations
to the matrix Σ̃ , so that the QR decomposition

Q̃ D̃ = Σ̃ (4.5)

is implicitly obtained, where Q̃ ∈ R2Ñ×2Ñ is an orthogonal matrix and D̃ ∈ R2Ñ×N

is a nonnegative diagonal matrix of rank N − 1. By plugging (4.5) into (4.4), and by
using standard properties of the pseudoinverse, we get

(D†
2d)

T =
[
U1d ⊗ V1d 0
0 V1d ⊗U1d

]
Q̃(D̃†)T

[
V1d ⊗ V1d

]T
. (4.6)

Computing matrix-vector products with (D†
2d)

T has an overall O(N 3/2) cost, provided
that vectors of length N are conveniently reshaped as n × n 2D arrays (N = n2) to
exploit the Kronecker product properties.

4.2 Computation of matrix-vector products with L† and L†A

Since the A-weighted pseudoinverse can be expressed as L†
A = EL†, see (4.2), and

since K ∈ RN for TV-FGMRES, the computational burden of matrix-vector products
with L†

A mainly lays in the computation of matrix-vector products with A and L†.
Concerning the latter, we remark that in the 1d case one simply has (W1dD1d)

† =
D†

1dW
−1
1d directly from the definition of Moore–Penrose pseudoinverse of matrices

with linearly independent rows. Unfortunately, in the 2d case, the matrix

L̃† = D†
2dW

−1
2d (4.7)

does not fulfill the definition of the Moore–Penrose pseudoinverse [17, Sect. 5.5.4],
as (L L̃†)T �= L L̃† (i.e., the third condition is violated). Therefore, there is no trivial
way of deriving a computationally feasible direct expression for L† = (W2dD2d)

†.
A simple remedy is to consider anyway L̃† (4.7) as an approximation of L†. Indeed,

while L† is characterized by

L†y = arg min
x∈RN

‖(W2dD2d)x − y‖2 = arg min
x∈RN

∥∥∥W2d(D2dx − W−1
2d y)

∥∥∥
2

= arg min
x∈RN

∥∥∥D2dx − W−1
2d y

∥∥∥
W 2

2d

, (4.8)

the matrix L̃† is characterized by

L̃†y = arg min
x∈RN

∥∥∥D2dx − W−1
2d y

∥∥∥
2

= arg min
x∈RN

∥∥∥W−1
2d (W2dD2dx − y)

∥∥∥
2

= arg min
x∈RN

‖W2dD2dx − y‖W−2
2d

,
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so that L̃† can be regarded as the pseudoinverse ofW2dD2d computed in theW−2
2d norm.

Alternatively, L̃† can be regarded as the preconditioner for problem (1.1) obtained from
(2.1) after the two-step transformation process

min
x∈RN

‖Ax − b‖22 + λ ‖(W2dD2d)x‖22

≈ min
z=D2dx

∥∥∥AD†
2dz − b

∥∥∥
2

2
+ λ ‖W2dz‖22

= min
y=W2dD2dx

∥∥∥AD†
2dW

−1
2d y − b

∥∥∥
2

2
+ λ ‖y‖22 (4.9)

has been performed.We stress that problem (4.9) is not equivalent to (2.1), as L̃† �= L†.
Nevertheless, matrix-vector products with L̃† can be efficiently computed by exploit-
ing its structure with an O(N 3/2) cost (see (4.6)). Extensive numerical experiments
(some of them reported in Sect. 5) show that, in practice, L̃† (4.7) is a valid alternative
to L†.

The other preferred approach to compute L† for the 2d case (without resorting to
approximations) is to employ an iterative method to solve the least-squares problem
(4.8). This can be efficiently achieved by applying LSQR [26] or LSMR [13]. Both
of them require a matrix-vector product with L and one with LT , and this can be
efficiently achieved with an O(N ) computational cost per iteration (see (4.3)). We
remark that in the TV-FGMRES setting the matrix L depends on an approximation
of the solution (as W2d = W (i)

2d = W2d(x (i−1))), and since in practice the conditioning
of L worsens as the vector D2dx (i) gets sparser (i.e., when an increasing number of
entries of fτ (D2dx (i)) are set to τ2, see (2.6)), the convergence of LSQR and LSMR
can be accelerated by using an appropriate preconditioner. Therefore, instead of (4.8),
we consider the (right-) preconditioned least-squares problem

min
x̂∈RN

‖(W2dD2d)PL x̂ − y‖2 , x = PL x̂ . (4.10)

In this paper we explore two choices for the preconditioner PL that are related to the
structure of the pseudoinverse of L:

P(1)
L = D†

2d , and P(2)
L = D†

2dW
−1
2d = L̃†. (4.11)

We also consider a preconditioner built around the idea of approximating the row
scaling W2d by a diagonal column scaling W̃2d (see [22]), so that

DTW 2
2dD ≈ W̃2d(D

T D)W̃2d , where diag(W̃2d) =
√
diag(DTW 2

2dD)./diag(DT D)

(4.12)
(all the operations in the definition of W̃2d are applied component-wise). Note that W̃2d

can be computed efficiently using the following relations

diag(DTW 2
2dD) = (DT ).2diag(W2d) , diag(DT D) = (DT ).21 .
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The third choice for the preconditioner PL in (4.10) is the inverse of the Cholesky
factor of (4.12), so that, recalling the expressions (4.4) and (4.5),

P(3)
L = W̃−1

2d

[
V1d ⊗ V1d

]
D̃−1

β , (4.13)

where D̃β = D̃1:N ,1:N + β I corresponds to taking the singular values {σi }i=1,...,N
of D2d, with and added tolerance β> 0 used to overcome the fact that the D2d is rank
deficient (i.e., σN = 0). This preconditioner is effective for a wide range of tolerances
(in our numerical experiments we use β = σN−1).

Applying LSQR or LSMR to problem (4.10) with preconditioners (4.11) or (4.13)
has an O(N 3/2) computational cost per iteration [see (4.6)]. The LSQR or LSMR
iterations are terminated when the approximation xk of the solution of (4.8) obtained
at the kth iteration satisfies a stopping criterion based on the residual or the normal
equations residual norm tolerance, i.e., when

‖y−Lxk‖2/‖y‖2 < ρ1 or ‖LT (y−Lxk)‖2/‖LT y‖2 < ρ2 , ρ1, ρ2 > 0 . (4.14)

We remark that the quantities in (4.14) can be conveniently monitored by computing
the corresponding ones for the projected problems.

An illustration of the effect of the preconditioners (4.11) and (4.13) when LSQR
is used to compute L† is provided in Figs. 2 and 3, where a model image deblurring
problem with a small image of size 32 × 32 pixels is considered (analogously to
Sect. 5, Example 1). Figure 2 displays the distribution of the (numerically) non-zero
singular values of the preconditioned matrix LPL , i.e., the first N − 1, for PL = I
and PL = P( j)

L , j = 1, 2, 3, and clearly shows that P(2)
L = L̃† is the most effective

preconditioner in clustering the singular values of the preconditioned matrix LPL
around 1 and in reducing its conditioning, resulting in a fast convergence of LSQR
applied to (4.10). Correspondingly, Fig. 3 displays the history of the LSQR relative
errors ‖L†y − xk‖2/‖L†y‖2 versus the number k of LSQR iterations for PL = I ,
PL = P(2)

L , and PL = P(3)
L . In this setting, L†y is computed (using the SVD of L)

to get the vector zi in line 1 of Algorithm 1, i.e., to get the solution x̄L,i at the i th
TV-FGMRES iterate, for three different values of i .

4.3 Stopping criteria

As already remarked in Sect. 1, TV-FGMRES is inherently parameter-free, as only an
appropriate stopping criterion for the iterations should be chosen. All the approaches
hinted in this section are mentioned in the survey paper [2], where further references
and details are available. We propose to use the following strategies (adapted to the
solver at hand):

– Quasi-optimality criterion, which prescribes to select the solution xL,m∗ obtained
at the m∗th iteration such that

m∗ = arg min
m≤Mit

TV(xL,m+1 − xL,m) . (4.15)
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Fig. 2 Non-zero singular values of the preconditioned coefficient matrix in (4.10), with L = (W2dD2d) of

size 1984×1024, and PL = I , P( j)
L , j = 1, 2, 3. a Distribution (clusters) of the singular values. b Singular

values versus component number. These graphs are obtained at the 20th iteration of the TV-FGMRES
method applied to the test problem in Sect. 5, Example 1
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Fig. 3 History of the relative errors of the LSQRmethod for the computation of L†y, when employed at the
i th iteration of TV-FGMRES applied to the test problem in Sect. 5, Example 1. aWithout preconditioning.

b With PL = P(2)
L as preconditioner. c With PL = P(3)

L as preconditioner. d Comparative history of the
relative errors for LSQR with different preconditioners at the 20th iteration of TV-FGMRES (so that LSQR
is applied to a least-squares problem whose coefficient matrix has the singular value distribution displayed
in Fig. 2)
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We remark that, although the quasi-optimality criterion requires Mit iterations to
be performed in advance (where Mit is a selected maximum number of iterations),
no additional computational cost per iteration has to be accounted for in order to
apply (4.15) (recall the arguments at the beginning of this section).

– Discrepancy principle, which prescribes to stop as soon as an approximation xL,m

is computed such that

‖b − AxL,m‖2 = ‖rL,m‖2 ≤ θε , (4.16)

where θ > 1 is a safety threshold, and ε = ‖e‖2 is the norm of the noise e
affecting the data (1.1). The discrepancy principle is a very popular and well-
established stopping criterion that relies on the availability of a good estimate
of ‖e‖2. However, for the TV-FGMRES method, application of the discrepancy
principle may significantly increase the cost per iteration, since two additional
matrix-vector products with A should be performed: one to compute ‖rL,m‖2
(which cannot be monitored in reduced dimension, as FGMRES is applied to the
left-preconditioned system (3.5) or (3.6)), and one implicit in L†

A (to compute xL,m

at each iteration). For this reason, we also propose to consider the:
– Preconditioned discrepancy principle, which prescribes to stop as soon as an
approximation xL,m is computed such that

‖b̂ − Âx̄L,m‖2 = ‖̂rm−1‖2 ≤ θ ε̂ , (4.17)

where ε̂ is the norm of the noise associated to the preconditioned problem, i.e.,

ε̂ = ‖̂e‖2 = ‖(D†)T Pe‖2 = trace(PT D†(D†)T P)‖e‖2
= trace(PT D†(D†)T P)ε . (4.18)

Although (4.17) can be monitored at no additional cost per FGMRES iteration by
using projected quantities (see (3.10)), the computation of the trace in (4.18) can
be prohibitive for large-scale (and possibly matrix-free) problems. We mention
that, however, efficient randomized techniques can be used to handle this task (see
[28]) and, most importantly, the computation of the trace should be performed
only once for a system (3.5) or (3.6) of a given size, and can be done offline.

5 Numerical experiments

In this section we present three numerical test problems to investigate the performance
of TV-FGMRES against otherwell-known approaches to total variation regularization.
In each of the examples, we focus on specific aspects of the newmethod that wewant to
emphasize. Namely, the first experiment deals with a small image, which allows us to
directly compute the pseudoinverse L† and compare different strategies to approximate
it. The second experiment is a large-scale problem (so that L† cannot be computed
directly) and deals with an image having low total variation. The third experiment
deals with an image having higher total variation, showing the adaptability of the new
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Table 1 Summary of the acronyms denoting various solvers for TV regularization, and markers denoting
the various stopping criteria

Solver Acronym Reference Stopping criteria Marker

Smoothing-norm GMRES with L GMRES(L) [19] (4.15), inner Diamond

Restarted generalized AT ReSt-GAT [15]

Restarted Golub–Kahan bidiag. ReSt-GKB [16] (4.16), inner Square

Fast gradient-based TV FBTV [3]

TV-FGMRES for TV with L† FGMRES(1) – (4.17), inner Hexagon

TV-FGMRES for TVp with L† FGMRES(p) –

TV-FGMRES for TVp with L̃† FGMRES(∼ p) –

methods to a broader class of images. All the tests are performed running MATLAB
R2017a and using some of the functionalities available within the MATLAB toolbox
IR Tools [14]. Table 1 summarizes the acronyms for the various methods tested in
this section, together with the markers used to denote iterations satisfying specific
stopping criteria within the displayed graphs. LSQR is used to compute L†, possibly
with the preconditioner P = L̃†, allowing at most 30 iterations, and taking ρ1 = 10−8

for the stopping criterion in (4.14). In all the experiments, the quality of the solution
is measured by the relative restoration error (RRE) ‖xL,m − xex‖2/‖xex‖2, where xex
is the exact solution of the noise-free problem (1.1).

Example 1 We consider the task of restoring a geometrical test image of size 32× 32
pixels, corrupted by a Gaussian blur with PSF analytically defined by

pi, j = 1

2πσ 2 exp

(
− 1

2σ 2 (i2 + j2)

)
, (5.1)

with σ = 1, i, j = −2,−1, 0, 1, 2, and additive Gaussian noise of relative noise
level εrel = ‖e‖2/‖bex‖2 = 10−2, with bex= Axex = b − e. The corrupted image
is displayed in Fig. 5a. Since the size of this problem is moderate, it is affordable
to compute directly the pseudoinverse of the matrix L = WD, so that we can run
Algorithm 1 without resorting to (preconditioned) LSQR to perform step 1. In Fig. 4
we compare the performance of standard GMRES, GMRES(D), TV-FGMRES, TV-
FGMRES for TV0.1, a fast gradient-descent-method for TV (with a default value
λ = 2.9 × 10−3), and the restarted generalized Arnoldi–Tikhonov method (with an
automatically selected λ stabilizing around 4.5 × 10−2). 50 iterations are performed
by each solver. Looking at the graphs in Fig. 4a we can see that the better-performing
method for this test problem is TV-FGMRES for TV0.1. Including flexibly updated
weights within TV-FGMRES clearly results in a great gain in accuracy with respect to
an approach based on preconditioning GMRES with the fixed matrix D†. Moreover,
TV-FGMRES allows to reconstruct a solution of better quality with respect to the
FBTV one, with considerable computational savings. The performance of ReSt-GAT,
which is still based on the Arnoldi algorithm, is not as good, since the total-variation-
inspired preconditioners are not incorporated into the approximation subspace for the
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Fig. 4 Example 1. a History of the relative errors for various solvers. b History of the total variation of
approximate solution for various solvers [line specifications as listed in frame (a)]; the dashed horizontal
line is the total variation of the exact solution xex. The × marker highlights the iteration minimizing the
relative error, while the other markers are summarized in Table 1

solution. The graphs in Fig. 4b display the value of the total variation of the approxi-
mate solution recovered at each iteration, versus the iteration number. Looking at these
graphs we can clearly see that TV-FGMRES, TV-FGMRES for TV0.1, and FBTV are
the most successful methods in reconstructing approximate solutions whose total vari-
ation is the closest to the one of the exact image. The best reconstructed images for
the GMRES-based methods are displayed in Fig. 5, where also surface plots thereof
are provided in order to better highlight the ideally piecewise-constant features of the
solutions that are fully recovered only when TV-FGMRES for TV0.1 is employed.
Relative errors for these methods are reported in the caption. Finally, in Fig. 6, we
display the relative error history and total variation history obtained running different
instances of the TV-FGMRES method, where the computation of the pseudoinverse
L† is done directly, the approximation L̃† = D†W−1 of L† is used, or where both
unpreconditioned LSQR and preconditioned (with P = L̃†) LSQR (PLSQR) are
employed to compute L†. The best attained relative errors are reported in the caption.
We can clearly notice that the quantities computed by PLSQR perfectly mimic the
ones obtained using L† and, for this reason, in the following large-scale experiments
(where computing L† directly is not feasible) we confidently use PLSQR to perform
this task. On the other hand, the computationally convenient approximation L̃† of L†

recovers a solution of lower accuracy but similar total variation. The (unprecondi-
tioned) LSQR performance is quite remarkable in terms of the relative error, though
the corresponding total variations values are not very adherent to the true ones, as
a low-accuracy approximation of L† is inevitably computed (recall the remarks in
Sect. 4.2).

Example 2 We consider the task of restoring the well-known Shepp–Logan phantom
of size 256×256 pixels, affected by a Gaussian blur whose PSF is given by (5.1), with
σ = 4 and i, j = −127, . . . , 127, and corrupted by Gaussian noise with relative level
εrel = 5 × 10−2 (see Fig. 8a). In Fig. 7 we plot the values of the relative error (frame
(a)) and the total variation (frame (b)) versus the number of iterations for a variety
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(d)(c)(b)(a)

Fig. 5 Example 1. aBlurred noisy data. Best reconstructed solutions: bGMRES(D) (RRE, 1.6239×10−1).
c TV-FGMRES (RRE, 1.2538 × 10−1). d TV-FGMRES for TV0.1 (RRE, 1.0057 × 10−1)

(b)(a)
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Fig. 6 Example 1. a History of the relative errors of TV-FGMRES with exact L†, L† approximated by
L̃† = D†W−1, L† computed by LSQR, and L† computed by preconditioned LSQR with P = L̃†. b
History of the total variation for TV-FGMRES (line specifications as listed in frame (a))

(b)(a)
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Fig. 7 Example 2. a History of the relative errors for various solvers. b History of the total variation of
approximate solution for various solvers (line specifications as listed in frame (a)); the dashed horizontal
line is the total variation of the exact solution xex. The × marker highlights the iteration minimizing the
relative error, while the other markers are summarized in Table 1
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Fig. 8 Example 2. a Blurred noisy data. Restored solutions when the discrepancy principle is satisfied: b
GMRES(D) (RRE, 4.0162× 10−1; it, 57). c TV-FGMRES (RRE, 3.9013× 10−1; it, 49). d fast gradient-
based method for TV (RRE, 4.1600 × 10−1; it, 90)

of solvers for (1.3): the layout of this figure is similar to the one of Fig. 4, and 90
iterations are performed for each solver. We can clearly see that, for this test problem,
TV-FGMRES is the most effective solver, which attains better accuracy in the least
number of iterations. The fast gradient-based method for TV (with a default value
λ = 5.4× 10−4) seems quite slow for this problem, and the restarted GKB algorithm
(which is basically the restarted GAT method, where Golub–Kahan bidiagonalization
is considered instead of theArnoldi algorithm) rapidly stagnates (with an automatically
selected λ stabilizing around 1.7 × 10−2).

Figure 8 displays the phantoms restored when the discrepancy principle (4.16) is
satisfied by the GMRES(D), the TV-FGMRES, and the FBTV methods (the latter
does not stop within the maximum number of allowed iterations). Relative errors
and corresponding iteration numbers are reported in the caption. We can clearly see
that the TV-FGMRES solution is the one with lower relative reconstruction error,
though the FBTV solution surely appearsmore blocky (containing also some artifacts).
On the opposite, the GMRES(D) solution displays many ringing artifacts, which are
partially removed when adaptive weights are incorporated within the TV-FGMRES
preconditioners and approximation subspace.

Example 3 We consider the task of restoring the cameraman test image of size 256 ×
256 pixels, corrupted by the same blur and noise used with the previous example (see
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(b)(a)
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Fig. 9 Example 3. a History of the relative errors for various solvers. b History of the total variation of
approximate solution for various solvers (line specifications as listed in frame (a)); the dashed horizontal
line is the total variation of the exact solution xex. The × marker highlights the iteration minimizing the
relative error, while the other markers are summarized in Table 1

Fig. 10a). However, contrarily to the previous example, the total variation of the exact
image is quite moderate. In Fig. 9 we plot the values of the relative error (frame (a))
and the total variation (frame (b)) versus the number of iterations for a variety of
solvers for (1.3): the layout of this figure is similar to the one of Figs. 4 and 7. Also
for this example, 90 iterations are performed for each solver. The best reconstructions
computed by theGMRES(D), the TV-FGMRES, and the FBTVmethods are displayed
in Fig. 10 (relative restoration errors are reported in the caption). For this test problem
all the solvers seem to have a similar performance in terms of relative errors (except for
ReSt-GAT that exhibits an unstable behavior because of a likely inappropriate choice
of the regularization parameter). We also remark that both ReSt-GKB and FBTV are
very fast in recovering an approximate solution, whose quality however stagnates.
TV-FGMRES seems to recover a more accurate value of the total variation of the
approximate solutions along the iterations. Correspondingly, more details are visible
in the image restored by TV-FGMRES with respect to the one restored by the FBTV
method, which is more blocky (coherently to the fact that FBTV underestimates the
total variation of the exact solution).

6 Conclusion and future work

In this paper we presented a novel GMRES-based approach for computing regular-
ized solutions for large-scale linear inverse problems involving TV penalization, with
applications to imagedeblurring problems.By considering an IRNapproach to approx-
imate the non-differentiable total variation term, and by exploiting the framework
of smoothing-norm preconditioning for GMRES, we could derive the TV-FGMRES
method that leverages the flexible Arnoldi algorithm. The TV-FGMRESmethod easily
extends to problems involving TVp regularization, and it is inherently parameter-free
and efficient, as various numerical experiments and comparisons with other solvers
for total variation regularization show.
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Fig. 10 Example 3. a Blurred noisy image. Best restored solutions obtained by: b GMRES(D) (RRE,
1.6170 × 10−1). c TV-FGMRES (RRE, 1.5793 × 10−1). d fast gradient-based method for TV (RRE,
1.5931 × 10−1)

Futurework includes amore careful investigationof how tooptimally derive alterna-
tive preconditioners that can speed-up the convergence of LSQR for the computation of
the pseudo-inverse L† for large-scale problems. Strategies to extend the TV-FGMRES
method to incorporate additional penalization terms can be studied as well. Finally,
ways of extending TV-FGMRES to handle non-square coefficient matrices can be
devised, by exploiting the flexible Golub–Kahan bidiagonalization algorithm derived
in [10].
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4.3 Conclusions

This chapter presents yet another case where (flexible) Krylov methods can be efficiently
used in combination with variational regularization schemes. In particular, it presents a
new algorithm, TV-FGMRES, to approximate total variation regularization. The princi-
ples behind the algorithmic framework used in this chapter are conceptually very similar to
the ones in Chapter 3, and possible extensions of the methods presented in Chapter 4 and
3 to other variational regularization schemes may be considered in the future. However, as
seen in [GL19] for TV regularization, higher complexity of the regularization term requires
more cumbersome derivations which need more sophisticated implementation strategies.
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Chapter 5

Conclusions and outlook

This thesis presents three pieces of original research in the area of regularization techniques
for large-scale linear discrete ill-posed problems. These include a new principled algorith-
mic framework for Krylov-Tikhonov methods that automatically sets the regularization
parameter, and new algorithms for `2-`p and total variation regularization.

Krylov methods and Tikhonov regularization are a very powerful combination to solve
large-scale linear ill-posed problems, as shown by their extensive use in different applica-
tions. This area of research has recently regained attention with the development of new,
modified and generalized Krylov subspace methods. In particular, as presented in Chap-
ters 3 and 4, flexible Krylov methods can be used to find solutions to complex classical
regularization schemes by constructing a sequence of suitable quadratic approximations
thereof. This general approach, that has been shown to be very competitive, opens the
door to the extension to other classical regularization schemes. Just as an example, a
natural extension of these methods could be derived for group sparsity regularization
[CHLH18, CHHL14]. Another straightforward extension of the work in Chapter 4 is the
generalization of the algorithm presented in [GL19] to non-square systems. This could
be based on the flexible Golub-Kahan algorithm presented in [CG19] (already used in
Chapter 3), and could be applied to more problems such as computed tomography (CT).

Another research area that is closely related to the content of this thesis is the theoretical
analysis of flexible Krylov methods. First, Chapter 3 provides a convergence proof for
a specific application of flexible Krylov methods used in combination with an iteratively
reweighted scheme, as well as a re-formulation of flexible Krylov methods as particular
instances of augmented Krylov subspace methods. However, proving more general state-
ments about convergence of flexible Krylov methods and their regularization properties
is still a topic of ongoing research. Second, there is still room for a deeper theoretical
understanding on how the prior information coming from suitable prior-conditioning is
embedded in the flexible Krylov subspaces. From my point of view, a very interesting in-
sight can be found in Chapter 4, where the direct effect of edge-preserving regularization
can be observed in the basis vectors for the search space of a one-dimensional deconvolution
example [GL19, Section 3].

Finally, a better understanding of flexible Krylov methods can be used to develop effi-
cient recycling techniques for flexible Krylov subspaces. When employing flexible Krylov
methods we usually deal with iteration-dependent preconditioners that improve over the
iterations. This is because, for many flexible solvers, the preconditioners depend on the
most recent available approximation of the solution, which improves as the iterations pro-
ceed. In particular, the first basis vectors incorporated in the solution subspace, which
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for the purposes of regularization are often the most significative ones, are also associated
to the least updated (and therefore “worst”) preconditioners. For this reason, restarting,
and therefore building a new Krylov subspace for the solution that is more tailored to
the specific problem we are solving, could lead in theory to better reconstructions for the
solution, as well as to limit the amount of required memory to solve the problem.

In the framework of inverse problems, where the preconditioning is associated to prior
information on the solution, special attention should be put in the restarting strategy.
While classic restarting proposes constructing a Krylov subspace for the correction of the
solution after the restart, this might be inappropriate for regularization if the information
encoded in the preconditioners is just related to the properties of the solutions and not the
corrections. In combination with restarting, a common strategy to reduce computational
cost of Krylov methods is to use recycling strategies to select a “good” set of vectors
from the previous Krylov subspace that are incorporated in the search space after the
restart. Traditional recycling techniques, motivated by a slowly changing sequence of
linear systems or limited computational memory, are built to preserve a subspace that
significatively contributes to reducing the residual norm. In the framework of ill-posed
problems, where the solution subspace should promote some desirable features of the
regularized solution, different strategies should be applied to choose what is a “good”
set of vectors to carry forward through the iterations. Subspace recycling for iterative
methods is a popular topic, see for example [SdSK20], and, to the best of our knowledge,
no work concerning flexible Krylov subspaces has been published yet.

Concluding, Krylov methods are well-known and renowned iterative methods for large-
scale linear ill-posed problems, and are still a main topic of research. The work presented
in this thesis aims to make a contribution in this area, and it will hopefully convince the
reader that flexible Krylov subspaces are both adaptable and reliable, and can be exploited
much further to deal with complex regularization schemes, while maintaining attractive
theoretical guarantees.
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