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Abstract  

Anaerobic mixed culture processes have great potential for bio-waste valorisation, as they 

convert organic matter to a range of value-added compounds. Of particular interest is 

acidogenic fermentation that accumulates the natural intermediates of anaerobic digestion, 

an already established technology. Delivering product selectivity is a challenge with 

complex feedstock, especially when aiming for cost-effective waste management by 

minimising chemical addition and operational complexity. This thesis explores operating 

strategies to direct fermentation of food waste towards medium chain carboxylic acids 

(MCCA) in single-stage stirred tank reactors. MCCA are generated via microbial chain 

elongation and have a higher value than other fermentation products. The substrates for 

chain elongation, i.e., volatile fatty acids and lactic acid or ethanol, are co-generated during 

food waste fermentation.  

A literature review on chain elongation by mixed cultures with complex organic feedstock 

identified a range of operating conditions and defined the research objectives of this thesis. 

Firstly, an operating strategy involving organic overload to drive an anaerobic digestion 

community to acidogenic fermentation in a semi-continuous single-stage stirred tank reactor 

was evaluated. Start-up at higher feed-to-microbial ratio (>5 gCODfed gVSinoculum
-1) and 

organic loading rates (OLR) (8.5 gCOD L-1 d-1), compared to a parallel anaerobic digester 

(<1 gCOD gVS-1, 4.2 gCOD L-1 d-1), inhibited methanogenesis and produced volatile fatty 

acids. Chain elongation was stimulated by switching to a feedstock with higher organic 

content to give an OLR of up to 21 ± 2 gCOD L-1 d-1 with the same hydraulic retention time 

(HRT, 14 days). MCCA were produced at similar concentrations to more complicated 

reactor systems (22 ± 4 gCOD L-1 for n-caproic and 7 ± 2 gCOD L-1 for n-caprylic acid). A 

specialised community formed that showed in situ lactic acid production followed by chain 

elongation. The high-COD food waste deactivated methanogenesis and biogas production 

in anaerobic digestion, suggesting MCCA production is a better use of this feedstock. 

The OLR is determined by the organic strength of the food waste and the applied hydraulic 

retention time (HRT), hence the impacts of these parameters were evaluated. The main 

product from food waste fermentation at 12 gCOD L-1d-1 OLR and 8.5 day HRT was n-

butyric acid (13 ± 2 gCOD L-1). Operating at the same 8.5 day HRT but at 20 gCOD L-1d-1 

OLR resulted in lactic acid accumulation (34 ± 5 gCOD L-1). This is a similar OLR and lower 

HRT to the system that stimulated chain elongation in previous experiment. An OLR of 12 

gCOD L-1d-1
 and a higher HRT of 10.5 days, stimulated chain elongation (n-caproic acid up 

to 13.6 gCOD L-1). The microbial community was determined by the operating conditions 

and these together determined product profiles. Longer HRT resulted in greater abundance 
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of lactic-acid producing genera such as Olsenella spp., known to aid chain elongation, and 

secondary fermenters such as chain elongating species. Operating at higher OLR led to 

greater abundance of the homolactic genus of Lactobacillus. Hence, the reactor operating 

strategy can direct product synthesis. This shows the potential for a biorefinery with a 

flexible product portfolio improving commercial viability and presents an opportunity to 

repurpose existing single-stage AD systems by adjusting operating strategy. 

The literature review also suggested the potential of a semi-continuous feeding pattern to 

stimulate the consecutive fermentation steps required for MCCA. Hence, bi-weekly and 

daily feeding patterns were compared. Daily feeding resulted in a less stable process due 

to lactic acid accumulation, which acidified the reactor and required more pH correction. Bi-

weekly feeding resulted in higher ethanol and n-caprylic acid yields. Analysis of the 

microbial communities and their correlation with product formation, coupled with 

fermentation pathway analysis, revealed a competitive interaction between homolactic 

Lactobacillus and a consortium of primary fermentation bacteria producing ethanol, acetic 

and lactic acid with secondary fermenters performing chain elongation. With daily feeding 

the homolactic Lactobacillus had a competitive edge. Thus, the work reveals competitive 

and syntrophic interactions in the mixed culture fermentation of food waste. Understanding 

these provides a route to optimise process design and targeted products. 

An effective waste management system requires a stable outcome regardless of natural 

fluctuations in the feedstock. Variations of the food waste collected during the project and 

their impact on fermentation was assessed via batch reactor studies. Fermenting food 

waste as employed in anaerobic digestion recycling centres led predominantly to carboxylic 

acid formation. By contrast, fermentation of fresh cafeteria food waste mainly generated 

lactic acid. Feedstock storage and pretreatment was shown to affect fermentation and, 

therefore, the necessary optimal operating conditions. Batch studies also evaluated the 

impact of sucrose supplementation of the feedstock. Sucrose was found to destabilise 

fermentation and confirmed the competition between MCCA and lactic acid as the main 

product. Finally, immiscible, and low density oils present in some food wastes promoted 

partitioning and concentration of MCCA from the aqueous fermentation broth. This leads to 

interesting opportunities for utilising oily feedstocks and enhancing downstream processing. 

The thesis concludes by proposing the necessary operating conditions to direct acidogenic 

fermentation towards MCCA production in a simple one-stage reactor configuration, such 

as existing anaerobic digestion assets. Proposals are made for advancing this research to 

develop a bio-waste valorisation technology that allows sustainable resource recovery 

contributing to a circular bio-economy.
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Chapter 1. Introduction 

This chapter outlines the research motivation and briefly introduces some key concepts for 

the present thesis. It also provides an overview of the thesis scope and outline. 
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1.1. Thesis motivation 

1.1.1. Bio-waste valorisation to make the most out of food 

About one third of the food produced for human consumption is lost or wasted. In Europe 

alone, an estimate of 88 million tonnes of food waste is produced yearly, resulting roughly 

from households (53%), food processing (19%), food service (12%), food production (11%) 

and wholesale and retail (5%) [1]. These numbers are shocking and distressing, especially 

when simultaneously an estimated 8.9% of the global population was undernourished in 

2019 and more than 3 billion people cannot afford a healthy diet. Moreover, 21-37% of total 

anthropogenic greenhouse gas emissions are caused by our current linear food system [2]. 

It is estimated that for every 1 USD spent on food, 2 USD is incurred in societal, economic 

and environmental costs [3].  

As a response to this unsustainable food system, organisations and policy makers 

worldwide have outlined various ambitions, goals and policies. These include prevention of 

food loss (before reaching the consumer) and waste (from consumer side), the design of 

healthier foods and replacing the concept of waste by one where materials and products 

are kept in use for as long as possible [3, 4]. For waste management this results in a 

hierarchy of reduction, reuse, recycling and disposal. Currently, the most predominant 

global waste treatment is landfilling, yet it does not result in any revenue or resource 

recovery [5]. Landfilling or incineration of non-separated municipal solid waste with bio-

waste result in a negative impact on public health, require land availability, generate 

greenhouse gases, reduce potential for energy recovery and often contribute to soil and 

groundwater pollution [6]. Moreover, valuable resources are irrevocably withdrawn from 

economic and natural cycles, thus hindering the implementation of a circular bioeconomy. 

By the end of 2023, EU Member States are obligated to collect bio-waste separately 

(Directive 2018/851/EU). Thus, these waste streams will become more available for waste 

valorisation. The latter is defined as the industrial processing of low-value resources such 

as waste into products with a target market and higher value. This allows reducing 

consumption of raw materials, manage waste effectively and provide new business 

opportunities [7].  

Composting and anaerobic digestion (AD) are established bio-waste valorisation 

technologies that result in fertilizer and biogas as products. However, these are of relatively 

low economic value. Instead, research is focussing on alternative technologies that obtain 

higher value products to improve bio-waste valorisation. The idea of relocating bio-waste 

from the end of the supply chain to using it as a resource for new bio-chemicals lies on the 
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intersection of the concepts of the Circular Economy and Bioeconomy. Technologies 

enabling these concepts are widely supported from global to national scale as, for instance, 

they align with the UN Sustainable Development Goals (e.g., SDGs 8.2, 9.4, 12.5), the EU’s 

Circular Economy Action Plan and Bioeconomy Strategy and the UK’s 25 Year Environment 

Plan [8-10].  

1.1.2. Anaerobic mixed microbial cultures  

Bio-waste, and specifically food waste, is a mixture of different and varying biodegradable 

organic compounds, and thus requires a flexible treatment approach. The use of anaerobic 

mixed microbial cultures (MMC), allows tackling complex organic feedstock, without the 

need for costly sterilisation or aeration. For instance, in AD the use of MMC allows the 

transformation of biodegradable compounds into methane, a renewable alternative to 

natural gas, via a cascade of fermentation steps [11]. A second example is acidogenic 

fermentation (AF), which is applied in processes such as dark fermentation or the 

carboxylate platform where biomass is biologically converted to produce hydrogen or 

carboxylic acids, respectively. In AF, methane generation is inhibited to induce the 

accumulation of other biogas such as hydrogen and liquid fermentation compounds such 

as volatile fatty acids (VFA), ethanol and/or lactic acid. These can be sold on the market as 

platform chemicals, i.e., a basic starting material for a range of chemicals and polymers 

and, thus, form a renewable alternative to materials from petrochemical refining [12, 13].  

Chain elongation is part of the carboxylate platform and it is of particular interest to this 

thesis. Some bacteria have the metabolic capacity to elongate VFA in the presence of an 

electron donor such as lactic acid, ethanol and/or hydrogen into medium chain carboxylic 

acids (MCCA) [14]. The first reports on production of MCCA by MMC date back as far as 

the mid-19th Century and were spontaneous observations made from curiosity-driven 

research [15]. During the past decades, the topic rapidly gained interest again from modern 

research driven by the urge to develop new ways for bio-waste valorisation. For instance, 

the MixAlco process developed at Texas A&M University converts bio-wastes into mixed 

alcohol fuels via the intermediate production of a mixture of carboxylic acids by MMC [16]. 

The interest for MCCA specifically, was spearheaded by a finding from a Ph.D. student at 

the University of Wageningen who during their work on MMC fermentation from bio-waste 

found that MCCA were produced from elongation of acetic acid with ethanol and 

characterised the bacteria responsible for it [17, 18]. This re-found research interest in chain 

elongation has since led to several university spin-offs, the first semi-commercial pilot plants 

and the early integration of this technology in bio-refineries, e.g., Capro-X, Chaincraft and 

Urbiofin [19-21].  
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1.2. Problem statement 

Acidogenic fermentation provides more economically attractive products compared to 

traditional bio-waste recycling technologies such as heat from incineration or methane from 

AD. Thus, it could incentivise recycling and contribute to the development of a circular 

bioeconomy. However, several challenges hinder its scale-up into a viable commercial 

technology including effective reactor design and choice of feedstock, optimal operating 

parameters to direct MMC towards maximal yields of desired products and more cost-

effective downstream processing [22].  

MCCA in particular, compared to other products of acidogenic fermentation, present a lower 

solubility in water, especially when acidified, which provides opportunities for product 

recovery [23, 24]. Furthermore, MCCA are more reduced, thus more suitable as 

replacement for fossil fuel based chemicals [25]. Current chain elongation processes under 

development either rely on a well-defined bio-waste feedstock enriched in single substrates 

(e.g., whey) and/or the addition of chemicals in multi-step systems to ensure a selective 

product. How to obtain MCCA from complex bio-waste with mixed substrates, such as food 

waste, while minimising chemical addition or operational complexity, as would be required 

to obtain a cost-effective waste management system that could easily be adopted by 

industry, remains largely unknown. 

1.3. Thesis scope and general objectives 

This thesis was performed in partnership with Wessex Water and GENeco (Avonmouth, 

UK), the latter being a sewage sludge and food waste AD recycling facility. Our collaboration 

placed the focus on products from AF since they are natural intermediates in AD, thus 

presenting an opportunity to repurpose existing AD assets and diversify the product range 

for waste valorisation. Food waste was our target real complex feedstock because of its 

availability via the partnership and its high potential for carboxylate production. A simple 

operational setup was selected for experiments, namely stirred tank reactors (STR), as it 

resembles current AD systems at GENeco and thus, if successful, provides better chances 

to replicate operation at full-scale. Special attention was given to chain elongation products 

being a relevant niche in current valorisation research and they are potentially easier to 

separate and have a higher market value than other AF products. Therefore, the aim 

became to evaluate the production of MCCA from mixed culture food waste fermentation.  
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This was further divided into three general goals: 

1. Acquire knowledge regarding chain elongation in mixed culture fermentation of complex 

organic feedstock. 

2. Identify operating strategies that enable chain elongation of food waste while minimising 

chemical addition in a simple STR. 

3. Investigate the underlying fermentation pathways and MMC composition in the 

fermentation of food waste related to MCCA production. 

The second chapter of this thesis mainly tackles the first goal by providing a comprehensive 

literature study on MCCA production in MMC fermentation of complex organic feedstock. 

This literature review allowed defining more specific research objectives, pertaining to each 

of these three goals, presented at the end of that chapter. These objectives were then 

addressed in the following four research chapters. The final chapter contains a concluding 

summary of the main findings and how they influence future work. 
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Chapter 2. Literature review: Medium chain 

carboxylic acids from complex organic feedstock by 

mixed culture fermentation 

The following chapter provides a systematic analysis of the literature to address the first 

general goal of this thesis, knowledge acquisition regarding chain elongation in mixed 

culture fermentation of a complex organic feedstock. A dataset was prepared to evaluate 

the literature that reported medium chain carboxylic acids as either main- or by-product. 

This dataset formed the backbone of the literature discussion and the generated figures. It 

resulted in a comprehensive overview on chain elongation in microbial culture fermentation 

and the various tried operational parameters to produce medium chain carboxylic acids as 

added-value product from a complex organic feedstock.  

A section has been included with an update of the literature that was published between 

the publication of this chapter as a review paper and the submission of the present thesis 

manuscript. 

The conclusion from this chapter allowed mapping out specific research objectives, which 

are presented at the end of this chapter.   

This chapter is submitted in an alternative thesis format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University of 

Bath. This literature review was published in MDPI Molecules’ Special Issue “Chemicals 

from Food Supply Chain By-Products and Waste Streams”: 

V. De Groof, M. Coma, T. Arnot, D. J. Leak, and A. B. Lanham, "Medium Chain Carboxylic 

Acids from Complex Organic Feedstocks by Mixed Culture Fermentation," Molecules, vol. 

24, no. 3, 398, 2019. doi.org:10.3390/molecules24030398. 

The dataset was made available as: 

V. De Groof, M. Coma, T. Arnot, D. J. Leak, and A. B. Lanham, “Dataset on experimental 

data available in the literature on "Medium chain carboxylic acids from complex organic 

feedstock by mixed culture fermentation"”. University of Bath, 22 Jan 2019. doi: 

10.15125/BATH-00584 

Author Contributions: conceptualization, V.D.G., M.C. and A.B.L.; data curation, V.D.G.; 

writing—original draft preparation, V.D.G.; writing—review and editing, M.C., D.J.L., 

A.B.L., T.C.A.; supervision, A.B.L.; project administration, A.B.L.; funding acquisition, T.C. 
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Abstract 

Environmental pressures caused by population growth and consumerism require the 

development of resource recovery from waste, hence a circular economy approach. The 

production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) 

has become promising. MMC use the synergy of bio-catalytic activities from different 

microorganisms to transform complex organic feedstock, such as by-products from food 

production and food waste. In the absence of oxygen, the feedstock can be converted into 

biogas through the established anaerobic digestion (AD) approach. The potential of MMC 

has shifted to production of intermediate AD compounds as precursors for renewable 

chemicals. A particular set of anaerobic pathways in MMC fermentation, known as chain 

elongation, can occur under specific conditions producing medium chain carboxylic acids 

(MCCA) with higher value than biogas and broader applicability. This review introduces the 

chain elongation pathway and other bio-reactions occurring during MMC fermentation. We 

present an overview of the complex feedstocks used, and pinpoint the main operational 

parameters for MCCA production such as temperature, pH, loading rates, inoculum, 

headspace composition, and reactor design. The review evaluates the key findings of 

MCCA production using MMC, and concludes by identifying critical research targets to drive 

forward this promising technology as a valorisation method for complex organic waste. 
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2.1.1. Introduction 

In 2016 nearly 58% of the organic fraction of municipal solid waste (OFMSW) in the EU was 

sent directly to landfill or incineration1, resulting in undesirable environmental effects, little 

to no value recovery, and hence a loss of resources. However, recycling in the EU is now 

increasing, and hence separately collected organic waste is becoming more available for 

resource recovery or waste valorisation, i.e., the process of converting waste into energy, 

chemicals or materials [1]. Technologies for bio-waste valorisation can be categorised as 

thermal or thermochemical such as hydrothermal liquefaction, pyrolysis and gasification, 

physicochemical like extraction and transesterification or biological conversion processes 

[2, 3]. Biomass gasification has been proposed to homogenise various substrates to syngas 

and further process this for chemical production [4]. Reviews are available regarding 

technologies for waste to energy [5, 6], or waste to chemicals and materials [7-10]. The 

choice of treatment method will depend on several factors such as type and availability of 

organic waste streams, e.g., the waste’s organic strength measured by chemical oxygen 

demand (COD) [11], relative content of biopolymers (i.e., cellulose, hemicellulose or lignin) 

[12], or biomass type (woody biomass, types of agricultural residues, household organic 

waste and sewage sludge)[13, 14]. Development of a circular economy where waste is used 

as resource for renewable energy and chemicals will require the integration of different 

types of conversion processes to deal with the complexity of bio-waste and maximize 

resource recovery [15].  

Established bio-waste valorisation technologies are composting and anaerobic digestion 

(AD), which each produce fertilizer and methane-rich biogas as end-products. However, the 

final products have relatively low economic value. For instance only €2 worth of compost is 

obtained per tonne food waste [16]. AD generates a slightly more valuable product: 

assuming the OFMSW typically contains 306.4 gCOD kg-1 of anaerobic biodegradable 

content [17] and that biogas conversion yields €0.25 worth of biogas per kg of COD [18], 

then a tonne of food waste will produce about €76 worth of biogas. However, the 

intermediate fermentation compounds produced during AD have a higher market value.  

Fermentation to accumulate the intermediate carboxylates is known as the carboxylate 

platform. Producing carboxylates through fermentation forms a sustainable alternative to 

their current production from fossil fuels or extraction in small amounts from natural oils [19]. 

                                                
1Estimated using Eurostat database accessed 28/11/2018: Recycling of bio-waste 

(cei_wm030), Generation of waste by waste category (ten00108) and Population on 1 

January (tps00001). 
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Compared to AD, the carboxylate platform shows lower conversion yields, yet the higher 

product value and broader applications can result in a higher economic value [20]. In the 

last decade, particular interest has grown in medium chain carboxylic acids (MCCA). They 

are defined as carboxylic acids with an aliphatic straight carbon chain of 6 to 12 carbon 

atoms, e.g., n-caproic acid has a straight chain of 6 carbon atoms (C6). MCCA are more 

hydrophobic compared to shorter chain carboxylates, which makes them a more interesting 

fermentation product as it facilitates recovery from the fermentation broth [21]. In terms of 

potential value, C6 has a market size of 25,000 tonne per year, with an unrefined value of 

$1,000, and refined value of $2,000 to $3,000 per tonne [22, 23]. Overall, MCCA have a 

wide range of applications: they can be applied as growth-promoting antibiotic replacements 

in animal feed [24, 25], or be converted via various bio-, thermo-, or electro-chemical 

processes into bulk fuels or solvents [14, 26-28]. The production of MCCA as higher value 

products from organic waste can incentivise for improved recycling while simultaneously 

replacing current unsustainable production processes. 

MCCA are produced by certain bacteria in a strongly reduced anaerobic environment, via 

a metabolic pathway that has been recently reviewed by Spirito et al. [29]. The bacteria gain 

energy by combining the oxidation of an electron donor, i.e., lactic acid or ethanol, to acetyl-

CoA with the reductive elongation of acetyl-CoA with acetic acid (C2), propionic acid (C3), 

butyric acid (C4), pentanoic acid (C5), or caproic acid (C6) generating a carboxylic acid with 

2 additional carbons at each step (Figure 2-1). The reduction step is required to provide 

sufficient Gibbs free energy (ΔG) to generate ATP in the initial oxidation step, restore the 

NAD+/NADH balance in the cell, and contribute to further energy generation via electron-

transport phosphorylation. Ethanol and lactic acid have similar thermodynamic capacity to 

act as electron donors [30]. This chain elongation pathway is called the reverse β-oxidation 

pathway, since it is seen as the reversed biochemical degradation or β-oxidation of fatty 

acids.  

Instead of using pure or engineered cultures, a consortium of microorganisms has more 

potential to deal with complex and variable feedstock such as organic waste. Mixed 

microbial cultures (MMC), also referred to as microbiomes, are communities of 

microorganisms within a well-defined environment of specific physicochemical properties 

[31]. Microbiomes are employed in biotechnology, for example in anaerobic digestion (AD), 

and in bioremediation by cultivating communities within contaminated soils [32, 33]. The 

term “microbiome” is used to describe the mixed microbial communities related to the 

human and animal gut, mouth or skin, or plant rhizospheres. 
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Figure 2-1 Simplified chain elongation pathways using ethanol or lactic acid as electron donors based on the 
metabolic pathways described in [29]. 

The first report of MMC that produced MCCA dates back to the mid-19th Century, where 

Béchamp attributed the production of approx. 6 gCOD L-1 C6 from ethanol, meat extract 

and chalk in a fermentation reactor to microbial activity [34]. A few decades later in the early 

20th Century, an oily, immiscible layer comprising 5.3 gCOD L-1 C4 and 6.4 gCOD L-1 C6 

was produced in a 30-day fermentation with impure cultures from a nutrient medium 

containing 24 gCOD L-1 ethanol [35]. Further microscopic study of the fermentation sludge 

revealed a consortia of microorganisms comprising methanogenic archaea and spore-

forming bacteria [35]. By contrast with pure cultures, MMC do not require sterilisation, can 

degrade a complex feedstock, show a resilience to operational upsets [36], and allow 

continuous, long-term operation [37]. These advantages provide a strong argument for 

utilising microbiomes. 

In MMC, conversion of organic substrates occurs following a cascade of steps catalysed by 

different microorganisms that form synergistic and competitive interactions, resulting in a 

complex microbial ecosystem with a versatile metabolic capacity [38]. The different 

microbial groups can convert organic molecules into substrates available for chain 

elongating bacteria. In general, biodegradable organics are hydrolysed and fermented to 

intermediate compounds that acidify the medium, i.e., acidogenesis, including hydrogen 

gas (H2), lactic acid, ethanol, formic acid (C1) and volatile fatty acids (VFA), i.e., straight 

short chain carboxylic acids with 2 to 4 carbon atoms. The accumulated intermediates can 

undergo several secondary bioconversion steps, including chain elongation to produce 

MCCA (Figure 2-2) [26]. For instance, co-culture of the chain elongating bacteria 

Clostridium kluyveri with specific cellulolytic species or a rumen microbiome showed chain 

elongation potential from a cellulose substrate and ethanol [39, 40]. The supporting 
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community can even be designed or selected to allow chain elongation from a specific 

compound, such as glycerol or syngas (CO) [41-43], or allow the use of alternative electron 

donors such as, for instance, the cathode in a bio-electrochemical system [44, 45].  

 

Figure 2-2 Simplified overview of fermentation pathways that can occur in MMC. 

While it is generally believed that specific operational conditions allow development of a 

MMC for a functional and stable process [46], the broad metabolic capacity also gives rise 

to a set of various competitive reactions and by-products, especially when utilising a 

complex feedstock. Manipulating the environmental conditions, by regulating operation, 

allows some control to be exerted on the product spectrum, as it affects the thermodynamics 

of conversion processes, and therefore the microbiome composition that catalyses these 

conversions. However, current knowledge of control over the product outcome to improve 

MCCA yields in MMC fermentation is limited since experiments that use complex feedstock 

for MCCA production have only emerged in the past few years. 

While the operational conditions that select for other MMC fermentation products such as 

VFA [47] and H2 [48] have been reviewed, the operational conditions or process set-up that 

allow MCC to be steered towards MCCA formation have to be further evaluated. A recent 

review is available regarding the use of bio-electrochemical systems for MCCA production 

as a complementary technology to AD [49]. Certain other reviews include a section on 

MCCA as potential MMC fermentation products, either in the context of operational control 

applied in AD [50], or the contexts of a bio-refinery [51], wastewater treatment [11] or food 

waste treatment [21, 52-54]. However, a focussed analysis of the literature to identify and 

connect key operational parameters to target MCCA production from MMC fermentation of 

complex feedstocks is lacking. Therefore, this work aims to analyse the current literature, 
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and hence complement existing reviews. For this, studies were included that specifically 

target chain elongation, but the scope was extended to include other MMC-based studies 

that have noted MCCA as by-products from, for instance, VFA or H2 production. 

Concentrations and production rates are converted to a COD-basis to allow comparison 

between studies using different reporting concentrations (supplementary information Table 

S2-1). The review evaluates the key operational parameters for MCCA production from 

complex substrates using MMC, with the objective of stimulating and accelerating research 

to produce sustainable, bio-based fuels and chemicals from organic waste. In addition, a 

database was generated from the experimental data available in the literature regarding 

MCCA production using MMC fermentation [55]. 

2.1.2. Chain elongation behaviour of pure cultures can be extended 

for MMC 

Chain elongation via ethanol is the most studied pathway to date. The mechanism has been 

elucidated by studying Clostridium kluyveri, a gram-positive, spore-forming bacteria from 

the phylum of Firmicutes whose whole genome has been published [56]. For each molecule 

of ethanol oxidized to C2, resulting in substrate-level ATP-generation and production of H2, 

5 molecules of ethanol enter the reverse β-oxidation pathway as acetyl-CoA and elongate 

5 molecules of C2 to C4. Subsequently, C4 can be elongated to C6 via ethanol-derived 

acetyl-CoA addition (Table 2-1, Eq. 1 and 2) [29]. In reality, the pathway of C. kluyveri has 

a more flexible stoichiometry influenced by substrate concentrations, ratio of ethanol to 

acetate, and the partial pressure of H2 (Table 2-1, Eq. 3 to 6)[57-59]. It also has a broader 

substrate range including propanol as an electron donor, or propionate (C3), succinate, 

malonate, 3-butenoate, 4-hydroxybutyrate and crotonate as electron acceptors [39, 60, 61]. 

Pure culture fermentations of C. kluyveri fed with ethanol and C2 mixtures have been 

reported to produce C6 up to 10.2 gCOD L-1d-1 in continuous culture [62] and to reach 

concentrations up to 30.7 gCOD L-1 after 72 h of batch culture [60].  

Chain elongation via lactic acid has been reported for other bacteria in the phylum of 

Firmicutes, such as Megasphaera elsdenii [63] and a Ruminococcaceae bacterium CPB6 

[64]. Other wild-type bacteria are known to perform chain elongation and produce C6 (and 

C8) using more “exotic” chain elongating substrates such as simple sugars, polyols, 

methanol, amino acids and H2 and CO2 gas mixtures as reviewed by Angenent et al. [58]. 

In addition, pathways have been engineered to produce C6. For instance, to improve yields 

the genes from Megasphaera sp. were expressed in Escherichia coli, and approx. 1.17 

gCOD L-1d-1 C6 was obtained after 36 h of batch fermentation [65]. To develop a more 
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thermo-tolerant and acid-resistant biocatalyst, biosynthetic pathways have been 

constructed in the yeast Kluyveromyces marxianus [66]. Single-strains or engineered 

cultures have their place when the product is of high enough value and requires a certain 

purity. Overall, the production of MCCA, and other medium chain chemicals, using pure, 

engineered cultures has been recently reviewed by other authors, e.g., Sarria et al. [67] and 

Su et al. [68]. 

Table 2-1 Chain elongation reactions via ethanol and lactic acid and thermodynamic 

information with concentrations and pressures of all components at 1 M or 1 bar, pH 7 at 

25 °C. 

Equation Chain Elongation Stoichiometry 

ΔGr° 

[kJ 

mol-1] 

Ref 

Via Ethanol - Coupled Reactions: As Determined in C. kluyveri  

 Overall chain elongation to C4   

1.a 1× - Ethanol oxidation   10.50 [29] 

 ( CH3CH2OH + H2O  CH3COO- + H+ + 2 H2 ) ×1   

1.b 5× - Reverse β-oxidation to C4 -193.00 [29] 

 ( CH3CH2OH + CH3COO-  CH3(CH2)2COO- + H2O ) ×5   

1.  6 CH3CH2OH + 4 CH3COO-  5 CH3(CH2)2COO- + H+ + 2 H2 + 4H2O -182.50 [29] 

 Overall chain elongation to C6   

2.a 1× - Ethanol oxidation   10.50 [29] 

 ( CH3CH2OH + H2O  CH3COO- + H+ + 2 H2 ) ×1   

2.b 5× - Reverse β-oxidation to C6 -194.00 [29] 

 ( CH3CH2OH + CH3COO-  CH3(CH2)4COO- + H2O ) ×5   

2. 
 6 CH3CH2OH + 5 CH3(CH2)4COO-  CH3COO- + 5 CH3(CH2)4COO- + H+ + 2 H2

 

+ 4 H2O 

-183.50 [29] 

 Via Ethanol - Alternative Stoichiometry   

 Overall chain elongation to C6   

3. 12 CH3CH2OH + 3 CH3COO-   5 CH3(CH2)4COO- + 4 H2 + 8 H2O + 2 H+  -30.55 [69] 

4. 6 CH3CH2OH + 3 CH3COO-  CH3(CH2)2COO- + CH3(CH2)4COO- + 2 H2 + 4 

H2O + H+ 

-183.00 [56] 

5. CH3COO- + 2 CH3CH2OH  CH3(CH2)4COO- + 2 H2O  -79.00 [70] 

 Reverse β-oxidation to C8   

6. CH3CH2OH + CH3(CH2)4COO-  CH3(CH2)6COO- + H2O    NS [62] 

 Via lactic acid   

7. Lactic acid to C2 for ATP generation    -8.79 [69] 

 CH3CH2(OH)COO-
 +H2O  CH3COO-

 + 2 H2 + CO2   

8. Overall chain elongation to C4   -57.52 [69] 

 CH3CH2(OH)COO-
 + CH3COO- + H+  CH3(CH2)2COO- + H2O + CO2   

9. Overall chain elongation to C6: as determined for M. elsdenii   -57.65 [69] 

 CH3CH2(OH)COO-
 + CH3(CH2)2COO- + H+  CH3(CH2)4COO- + H2O + CO2   

NS, not specified  
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However, when it comes to breaking down a complex feedstock such as organic waste, the 

focus of this review, pure cultures have limited metabolic capacity, reducing their potential 

for an effective treatment and requiring more expensive processing such as media 

sterilisation [71]. This can be circumvented by using MMC instead of pure cultures. Chain 

elongation in MMC happens in a similar manner than with pure cultures. For instance, 

microbiomes grown in ethanol-rich conditions show similar characteristics to pure culture 

fermentation, such as higher specificity towards longer chain carboxylates at higher 

ethanol/acetate ratios [72, 73] and elongation towards a mixture of even- and uneven MCCA 

in the presence of propanol or C3 [74, 75]. It should be noted that MMC are unable to use 

either 4-carbon alcohols or 5-carbon carboxylates as initial substrate sources for chain 

elongation at similar concentrations than for example ethanol or acetate [75]. This may be 

due to longer chain substrates having higher toxicity and possible inhibition of the 

microbiome. In addition, microbiomes are capable of adapting to substrate fluctuations: 

MMC obtained from ethanol-based chain elongation reactors acclimatised to produce C6 

when fed with methanol or lactic acid as an alternate electron donor [76, 77]. 

2.1.3. Thermodynamic models and MMC composition determine 

competitive processes 

Successful production of MCCA requires elimination of competing reactions that could 

consume the substrate or product. Some example reactions include methanogenesis, 

sulphate reduction, lactate reduction to propionate (C3), excessive oxidation of ethanol and 

reduction or oxidation of carboxylic acids, and are described in Table 2-2. Since anaerobic 

ecosystems are energy-limited with ΔG of conversion processes being close to 0 kJ mol-1 

(Table 2-1 and Table 2-2) [78], the thermodynamic favourability of bioconversion processes 

can shift by small changes in substrate or product concentrations, pH and temperature, 

partial pressure of gases in reactor headspace, or substrate availability [50, 79, 80]. The 

resulting thermodynamic constraints select for the viable bioconversion reactions and, 

hence, the composition of microbiome that has the most efficient catabolic system [81, 82]. 

Therefore, strategies to inhibit competitive reactions can be classified as; (i) the inhibition 

of a specific, competitive trophic group, or (ii) the engineering of the fermentation 

environment to reduce the potential competitive reactions. For instance, methanogenesis, 

the ability to produce CH4, is limited to certain archaea. Since CH4 has the lowest free 

energy content per electron upon oxidation to CO2 under anaerobic conditions, and 

automatically leaves the reactor as a gas, it will be produced by methanogens in MMC to 

optimally use the energy available [71]. To ensure that C2 or H2 are not lost to CH4 and CO2 

(Table 2-2, Eq. 10), specific methanogenic inhibitors can be added to promote for chain 
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elongation. For instance, in batch fermentation of a synthetic substrate containing ethanol 

and C2, the addition of 2-bromoethylsulfonate (BES) tripled C6 production to 19 gCOD L-1 

[83]. Alternatively, to avoid the cost of such chemicals, specific operational conditions such 

as pH or hydraulic retention time (HRT) can be selected to inhibit methanogens as 

discussed subsequently. Another unwanted trophic group are the sulphate reducing 

bacteria. A sulphur-rich feedstock will result in sulphate reduction, as this is more 

thermodynamically favourable than C6 production (Table 2-2, Eq. 11), generating sulphide, 

which is both toxic for most bacteria and corrosive to fermentation equipment [84]. 

Thermodynamic models are useful tools to improve understanding of the chain elongation 

pathway in MMC and to determine which operational parameters allow to regulate the 

product spectrum. Research has developed kinetic and thermodynamic models based on 

pure culture chain elongation using C. kluyveri [69, 85] or metabolic energy-based models 

to predict MMC fermentation of simple substrates such as glucose [86]. Such models can 

help understanding the occurrence of chain elongation at different ethanol concentrations 

[58], or at varying H2:CO2 ratios [30]. There is a lack of models that evaluate the 

thermodynamics of the lactic acid-based chain elongation route. At standard conditions 

lactate reduction (Table 2-2, Eq. 12) releases more energy than chain elongation via lactic 

acid (Table 2-1, Eq. 9). Experimentally, Kucek et al. [77] found increasing lactate loading 

rate with a synthetic feedstock initially improved chain elongation in MMC fermentation, yet 

increasing influent lactic acid from 9.1 to 16.2 gCOD L-1d-1 led to a collapse of C6 

productivity to 3.0 gCOD L-1d-1 while C3 production increased to 5.5 gCOD L-1d-1. This was 

attributed to the competitive acrylate pathway being stimulated ahead of chain elongation 

at elevated lactic acid concentrations [77, 87]. In contrast, another study operating with an 

excess of lactic acid did not report C3 production; the addition of three spikes in a fed batch-

style adding a total about 26.7 gCOD L-1 lactic acid to the synthetic medium resulted in C6 

accumulation of up to 51.7 gCOD L-1 [88]. The development of thermodynamic models 

focusing on lactic acid-based chain elongation might shed more light on these competitive 

pathways.  

Modelling thermodynamics only goes so far, and the composition of the microbiome must 

be considered as this can influence the microbiome’s metabolic capacity. The results from 

microbial community composition analysis using 16s rRNA gene sequencing of the 

mentioned studies cited above indicate they had a different microbiome structure. The 

fermentation where the acrylate pathway took over, had a wider variety of prokaryotic 

families and was dominated by Acinetobacter spp. (approx. 60% relative abundance) and 

the operational taxonomic units belonging to Ruminococcaceae were less than 10% [77]. 
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On the contrary, the study with minimal C3 production was dominated by a Clostridium 

cluster IV group (79.1%, belonging to Ruminococcaceae) [88].  

Table 2-2 Biochemical reactions that compete with chain elongation and their 

thermodynamic information with concentrations and pressures of all components at 1 M or 

1 bar.   

Equation Competitive reactions for chain elongation 
ΔGr° or ΔGr°’ 

[kJ mol-1] 
Ref 

10.a Hydrogenotrophic methanogenesis -125.84a [26] 

 4 H2 + CO2  CH4 + 2 H2O  

10.b Acetoclastic methanogenesis -39.06a [26] 

 CH3COO- + H+  CH4 + CO2  

11. Sulphate reduction  [69] 

 CH3COO-
 + SO4

-2  H2S + 2 H2O + 2 CO2 

2 CH3CH2(OH)COO- + SO4
-2  H2S + CH3COO- + 2 HCO3

- 

2 CH3CH2OH + SO4
-2  H2S + 2 CH3COO- + 2 H2O 

4 H2 + SO4
-2  H2S + 4 H2O 

-64.39b 

-82.92b 

-69.29b 

-39.70b 

12.a Lactate reduction to C3: as found in Selenomonas 

ruminantium 

 [26] 

 CH3CH2(OH)COO- + H2O  CH3COO- + CO2 + 2H2 ×1 

CH3CH2(OH)COO- + H2  CH3CH2COO- + H2O ×2 

28.51a 

-86.63a 

12.b Lactate reduction to C3: as determined for C. 

propionicum 

 [47] 

 CH3CH2(OH)COO- + H2  CH3CH2COO- + H2O -83.80b 

13. Carboxylate to alcohol reduction with H2  [12] 

 CH3COO- + H+ + 2H2  CH3CH2OH + H2O 

CH3CH2COO- + H+ + 2H2  CH3(CH2)2OH + H2O 

CH3(CH2)2COO- + H+ + 2H2  CH3(CH2)3OH +H2O 

CH3(CH2)4COO- + H+ + 2H2  CH3(CH2)5OH +H2O 

-7.22a 

-7.49a 

-3.58a 

-7.55a 

14.a Ethanol oxidation: as determined for C. formicoaceticum  [47] 

 2 CH3CH2OH + 2CO2  3 CH3COO- + 3H+ -76.90b 

14.b Coupled ethanol oxidation and C3 reduction  [26] 

 CH3CH2OH + H2O  CH3CHOO- + H+ + 2 H2 ×1 

CH3CH2COO-
 + H+ + 2 H2  CH3(CH2)2OH + H2O 

7.22a 

-7.49a 

a at 37 °C, pH 6.82; b at 25 °C, pH 7 
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Studying the microbiome composition improves the understanding of the MMC fermentation 

mechanisms. For instance, when following the microbial community dynamics of maize 

silage fermentation in a leach bed reactor (LBR), Sträuber et al. [89] found Lactobacillus 

and Acetobacter strains dominated during the first days of operation, with lactic and acetic 

acid as concurrent products. However, Clostridium species became dominant on Days 3 

and 4 resulting in a pH increase and C4 and C6 production, and in turn these were 

overgrown during Days 5 to 7 by other phylotypes capable of using more complex 

polysaccharides by different metabolism [89]. Further investigation of microbial interactions 

and synergies will allow better design of MCCA production processes from complex 

feedstocks, for example operating in sequential batch mode to allow the different trophic 

groups to first accumulate ethanol, lactic acid, H2 or VFA for subsequent chain elongation. 

Only 20 studies on MCCA production could be found, so far, that include an analysis of the 

microbial community. This usually involves DNA extraction and sequencing of 16s rRNA 

amplicon and comparison to sequence databases [23, 70, 73, 75, 77, 83, 88, 90-99], 

sometimes in addition to other community analysis such as flow cytometry [100], analysis 

of terminal restriction fragment length polymorphisms (T-RFLP) [101] or microscopic 

evaluation [102]. Recently, Scarborough et al. [103] combined metagenomic, 

metatranscriptomic and thermodynamic analysis of samples from a reactor microbiome 

fermenting a lignocellulosic-based feedstock in continuous stirred-tank reactor (CSTR) 

mode, which allowed, for instance, affiliation of Lactobacillus and members of the 

Coriobacteriaceae family to hydrolysis and primary fermentation, and organisms related to 

Lachnospiraceae and Eubacteriaceae to MCCA production. In addition, the recent 

advancements in metagenomic and metatranscriptomic analysis led to the proposition that 

other MCCA-producing pathways occur in a microbiome, such as the fatty acid biosynthesis 

pathway, alongside the reverse β-oxidation pathway [104].  

Research is necessary to expand the thermodynamic models to include both the MMC 

composition, which indicates the potential bio-reactions in a system, and the composition 

of complex feedstocks. The development of these models will complement the 

understanding obtained from experimental studies, and will help in determining the 

operational parameters which select for MCCA production over competitive reactions. In 

addition, culture-independent analysis and increased application of “omics” approaches on 

MMC fermentation studies will be essential to enhance our understanding of the underlying 

mechanisms that include competitive and synergistic processes and the importance of the 

MMC composition. 
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2.1.4. Bio-waste composition and its effect on chain elongation 

A feedstock suitable for chain elongation should provide the necessary substrates, i.e., VFA 

and electron donors such as ethanol or lactic acid. Chain elongation substrates can either 

be directly present in the feedstock, indirectly produced from primary fermentation in vivo, 

or supplemented. The highest MCCA production rates obtained in MMC fermentation used 

a synthetic feedstock, hence a readily bio-available substrate. In up-flow reactors (URs) 

with biomass retention, 115.2 gCOD L-1d-1 for C6 [105] and 19.4 gCOD L-1d-1 for C8 [96] 

were obtained from ethanol and C2 mixtures. These rates are more than 10 times higher 

than that achieved so far using complex, un-supplemented feedstocks (Table 2-3). If 

electron donors, such as ethanol or lactic acid, are supplemented, selectivity of secondary 

fermentation is enhanced towards chain elongation. Ethanol-supplemented organic waste 

streams have reached production rates that lie somewhat in between synthetic and complex 

feedstocks. The maximum reported is 60.7 gCOD L-1d-1 C6 and 2.13 gCOD L-1d-1 C8 for 

pre-fermented OFMSW supplemented with 97.4 gCOD L-1d-1 ethanol [106]. 

Supplementation of 21.3 gCOD L-1 lactic acid to pre-treated grass in batch fermentation with 

an adapted inoculum resulted in a total C6 concentration of 24.1 gCOD L-1 after 1 day [95].  

When applying a supplementation strategy, certain experiments show that excessive 

concentrations of ethanol and lactic acid should be avoided. An upper limit for ethanol-

based chain elongation is reported at 97.4 gCOD L-1 after which it exerts an inhibitory effect 

[107]. Grootscholten et al. [108] spiked a LBR processing OFMSW at four intervals with 

11.2 gCOD L-1 ethanol during batch fermentation. This increased MCCA concentration from 

4.0 to 6.0 gCOD L-1 for C6 and 0.0 to 1.2 gCOD L-1 for C8 compared to a non-supplemented 

control experiment, yet the total amount of carboxylic acids produced was lower [108]. This 

was attributed to ethanol inhibition of hydrolytic and acidogenic bacteria [108]. To avoid 

ethanol inhibition limiting primary fermentation, Grootscholten et al. [106] suggested the use 

of a two-stage system where hydrolysis and primary fermentation of OFMSW occurs in the 

first batch phase, and in the second the pre-fermented OFMSW is supplemented with 

ethanol to select for chain elongation in a CSTR. The disadvantages of two-stage systems 

are the increased operational complexity and additional capital and operational costs. 
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Table 2-3 Overview of feedstock, operating parameters and product outcome (as C6 production and C7 or C8 when data available) in continuous MMC fermentation. 

Feedstock Reactor (a) 
pH T OLR HRT C6 (C7, C8) Target 

product 
Ref. 

- °C gCOD L-1d-1 d gCOD L-1d-1 gCOD L-1  

Ethanol Rich 

Diluted yeast fermentation beer SBR (48h)b 5.5 30 10.70 15 7.52 NA MCCA [37] 

Diluted yeast fermentation beer SBR (48h) 5.5 30 5.70 12 4.62 NA MCCA [93] 

Diluted wine fermentation residue URb 5.2 37 51.90 0.9 4.1 (0.3, 2.5) NA MCCA [97] 

Yeast fermentation beer and thin stillage SBR (24h) 5.5 35 2.89 7 2.55 17.90 MCCA [92] 

Yeast fermentation beer SBR (48h) 6.5 30 7.64 15 1.74 NA MCCA [27] 

Syngas fermentation effluent, with nutrients URb
 5.5 30 51.80 0.58 3.80 2.25 MCCA [110] 

Lactic Acid Rich 

Acid whey from quark industry URb 5.5 30 28.80 2.5 5.12 NA MCCA [100] 

Pre-fermented acid whey yoghurt industry URb,ex 5.0 30 10.90 2.1 3.08 <1.00 MCCA [94] 

Diluted yellow water 
USBR 
(67.2h) 

6.0 30 8.67 28 1.85 51.70 MCCA [88] 

Diluted cheese whey powder URb 6.0 37 5.36 4 0.70 2.80 VFA [111] 

Cheese whey SBR (24h) NA 35 6.00 12 0.12* 1.45* VFA [123] 

(Ligno) Cellulosic Based 

Switchgrass-derived stillage CSTR 5.5 35 7.20 2 5.74 (NA, 0.66) 18.70 ( NA, 2.40) MCCA [99] 

Pre-fermented grass SBR (24h) NA 32 5.30 2 4.52 9.03 MCCA [95] 

Corn-derived thin stillage SBR (48h)ex 5.4-5.7 35 18.00 3 1.14 (0.10, 0.00) NA MCCA [23] 

Pre-treated corn fibre: dilute-acid/ dilute-alkali/ hot water SBR (48h) 5.5 55 1.92 15 0.6* / 0.39* / 0.12* NA VFA [36] 

Paper fines and industrial bio-sludge (40:60) SBRa NA 40 2.6 gVS L-1 16 0.42 (0.08, NA) 6.67 (1.36, NA) MCCA [124] 

Food Waste 

Simulated food waste SBR (24h) 5-6 34 30 gTS L-1 3 8.09* 24.30* H2 [116] 

Restaurant food waste LBR (7d) NA 37  16.60 7 3.12 21.80 MCCA [91] 

Cafeteria food waste SBR (24h) 5.5 45 9 gTS L-1 8 1.28 10.30 VFA [125] 

Vegetable and salad waste SBR (24h) 5-7.5 35   0.57 20 0.25*  5.08* VFA [126] 

Other 

Sucrose-rich synthetic wastewater UR 3.6 35  15.80 0.71  5.70   4.03 H2 [115] 

Synthetic glucose medium URb NA 30 204.00 0.10  4.13*   0.43* H2 [127] 

Primary and waste activated sludge SBR (24h) NA 35  79.90 1 < 0.08* < 0.08* VFA [123] 

Food Waste with Ethanol Supplementation 

Pre-fermented OFMSW, 44.8 gCOD L-1 ethanol, CO2 URb 6.75 30 NA 0.46 60.70 (4.59, 2.13) 27.80 (2.10, 0.98) MCCA [106] 

Pre-fermented food waste, 78.4 gCOD L-1 ethanol, CO2 CSTRb 6.8 30  28.90 4 12.80 51.20 MCCA [128] 

Pre-fermented food waste, 78.4 gCOD L-1 ethanol, CO2 CSTRb 6.8 30 115.00 1 12.40 (0.33, 0.42) 15.70 (0.18, 0.18) MCCA [128] 

SBR: sequential batch reactor; UR: up-flow reactor; CSTR: continuous stirred tank reactor; NA: not applicable; (a) fermentation cycle in case of SBR or semi-batch; b 
biomass retention; ex in situ extraction; * estimated from graphs. When values were not directly reported by cited study these were estimated as described in Supplementary. 
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A life-cycle assessment on C6 production from ethanol-supplemented food waste 

fermentation in a lab- and pilot-scale system revealed that the largest environmental effects 

(acidification and eutrophication potential) result from addition of caustic soda to control pH 

and ethanol as electron donor [109]. Thus, supplementation of electron donors to stimulate 

chain elongation should be minimized or avoided. Instead of supplementing the feedstock, 

several studies have split the overall fermentation into two stages. Firstly, specific 

operational conditions are selected to accumulate ethanol or lactic acid. Then in a second 

phase, the leftover organics in the effluent are fermented towards VFA and elongated with 

the electron donor under chain elongating conditions. Ethanol-rich substrates fed into chain 

elongation reactors have been obtained from yeast-based fermentations, such as for the 

production of bio-ethanol which generates an ethanol-rich beer and a residue after 

distillation called stillage [27, 37, 93], or residues from the production of wine [97], or effluent 

from syngas fermentation [110]. Lactate-rich substrates can be obtained via MMC 

fermentations selective for lactic acid, such as effluent from thermophilic acid whey 

fermentation [94], and pre-fermented grass (grass silage) [95] or maize silage [27, 89]. 

Whey is rich in lactose, simple sugars such as fructose that are easily fermented to produce 

lactic acid [111]. Food waste contains lactic acid bacteria that are easily enriched in MMC 

fermentation, to produce lactic acid up to concentrations of 21.3 to 48 gCOD L-1 [112-114]. 

Maximum production using ethanol- and lactic acid-rich streams in MMC fermentation 

without additional supplementation have been reached using diluted beer (7.52 gCOD L-1d-

1
 C6) [46] and acidified whey from the quark industry (5.12 gCOD L-1d-1

 C6) [85]. The 

disadvantages of two-stage systems for accumulation of electron donors are the increased 

operational complexity and additional capital and operational costs. 

An alternative to supplemented or pre-fermented organic feedstock, would be to operate a 

single-phase process where the substrate itself is converted to lactic acid and/or ethanol in 

parallel with the chain elongation reactions. Recently, C6 has been produced in a one-stage 

LBR from food waste up to concentrations of 21.8 gCOD L-1 and a rate of 3.12 gCOD L-1d-

1 [91], comparable to a supplemented and/or two-stage system. In this study, batch tests 

inoculated with the LBR leachate showed that lactic acid was consumed in favour of ethanol 

as the electron donor [91]. Other studies aimed at VFA or H2 production have produced C6 

in a single-stage approach from food waste, without supplementation, and at similar 

production rates. In studies aimed at H2 production using glucose-rich synthetic wastewater 

[115] or simulated food waste [116] as feedstock, C6 was produced at rates higher than 

experiments which targeted MCCA production (Table 2-3). Therefore food waste and similar 

complex substrates might be a promising feedstock. 
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The use of complex feedstock comes with a set of challenges. Firstly, the composition of 

the feedstock will influence certain competitive processes and the intermediates that result 

from hydrolysis and acidogenesis, and therefore affects the potential for chain elongation. 

For example, VFA yields in MMC fermentation have shown to be less for lipid-rich waste 

compared to carbohydrate- or protein-rich wastes, due to difficulties in hydrolysis [117]. In 

addition, the type of carbohydrates [118] or proteins [119] in the substrate also influences 

the metabolic pathways. Secondly, it is important to recognise that seasonal and 

geographical variation in organic waste streams impacts composition and availability of 

feedstock. This can often become a challenge when designing a suitable treatment or 

valorisation (bio-)process that is robust and flexible, especially when relying on pure 

microbial cultures. For instance, OFMSW may contain small quantities of bio-waste from 

various origins, such as discarded oils, fruits, animal-derived products and more 

lignocellulose-rich leaves and stems from vegetables, resulting in an overall feedstock 

comprising both easily biodegradable carbohydrates and proteins as more recalcitrant 

matter [120]. It was found that a LBR fed with OFMSW which was richer in green waste had 

lower production of carboxylic acids compared to OFMSW containing more food waste 

[121]. Lastly, not every type of substrate will allow chain elongation to occur. In batch 

experiments aimed at VFA production, seven types of “food waste” feedstocks were tested 

and only four produced C6. These were cheese whey, sugarcane molasses, the organic 

fraction of municipal solid waste, and winery effluent [122]. Similarly, in sequential batch 

reactors (SBRs), the fermentation of cheese whey resulted in 0.12 gCOD L-1d-1 C6, while in 

similar operating conditions the fermentation of sewage sludge produced more total 

carboxylic acids but very little C6 [123]. Therefore, the right type of complex feedstock 

should be selected for MCCA production to be successful – this is not well understood and 

requires further investigation. 

2.1.5. Environmental conditions that influence chain elongation 

2.1.5.1. Mesophilic temperatures seem to benefit chain elongation 

Temperature has a significant influence on energy released from reactions [80], alters the 

microbial community composition [129], and affects the kinetic rates of metabolic reactions. 

The amount of research focusing on the effect of temperature on chain elongation is limited, 

yet results so far indicate operation in the mesophilic range, typically between 30 °C and 45 

°C, is preferred over thermophilic conditions. In a long term experiment fermenting ethanol-

rich beer (from a yeast fermentation) in a SBR with in-line product extraction, selectivity for 

C6 nearly tripled after reducing the temperature from 55 to 30 °C [130].  
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The effect of temperature on acidogenesis and VFA production has been studied in more 

depth and could provide further insight. In a study evaluating acidogenesis of cafeteria food 

waste, trials at 25, 35 and 45 °C gave the highest overall carboxylic acid yield at 35 °C 

(~23.5 g L-1 total carboxylic acids with ~3.1% C6), yet the C6 yield was higher at 45 °C 

(~19.8 g L-1 total carboxylic acids with 24% C6) [125]. VFA-targeted fermentation of pre-

treated cellulosic biomass with meso- (40 °C) or thermophilic (55 °C) operation showed a 

significant divergence in the proteins and enzymes present and in MMC composition. 

Mesophilic operation allowed C6 formation to occur (3 to 4 % of carboxylic acids) while no 

C6 was found under thermophilic conditions [129, 131]. The thermophilic reactor maintained 

a community similar to the inoculum, rich in Clostridia, while the mesophilic system showed 

a wider variety of taxa which was dominated by members in the Bacteroidetes phylum [129]. 

While there are some indications that a mesophilic temperature favours chain elongation, 

more evidence is needed to understand the processes that affect chain elongation 

productivity at different temperatures. These could be attributed to changes in the collective 

microbiome metabolism and/or composition, as well as to thermodynamic and kinetic shifts 

to competing reactions. 

2.1.5.2. The influence of pH and buffer capacity on MCCA production 

Metabolic pathways, hydrolysis, thermodynamics and, product outcome are significantly 

influenced by pH in MMC fermentation [123]. For example, in fermentation of cheese whey 

poor control of pH led to fluctuating carboxylic acid concentrations and hindered 

establishment of steady state [111]. The specific effects of pH on chain elongation are not 

straightforward and various factors must be considered.  

Firstly, pH determines the dissociation/association equilibrium between carboxylic acids 

and carboxylates, and therefore the impact of product toxicity due to the acidic form. 

Secondly, pH determines the CO2 and carbonate distributions, which affects buffer capacity, 

and its availability to certain organisms. For instance C. kluyveri requires incorporation of 

CO2 in its biomass [132]. Thirdly, thermodynamic feasibility depends on pH. Indeed, chain 

elongation is less thermodynamically favourable under alkaline conditions [133]. Lastly, the 

effect on the microbiome composition and microbial competition has to be taken into 

account. For instance, the highest reported production rate of C6 and C8 was obtained at 

neutral pH, yet a specific methanogenic inhibitor had to be added since acetoclastic 

methanogens compete under these conditions, and consume C2 for CH4 production, 

reducing its availability for chain elongation [105]. Methanogenesis occurs within a pH range 

of 6.0-8.3 while acidogenic bacteria can tolerate lower pH [134]. Thus a strategy to minimize 
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CH4 production is to operate at slight acidic pH (5.0-5.5), and this has been applied in 

various VFA or MCCA producing experiments [100, 123, 130]. 

The effects of pH on primary fermentation also have to be considered. Experimental studies 

have shown that controlling pH at alkaline or neutral values improved liquefaction and 

hydrolysis of solids in organic waste, but it did not support chain elongation since short chain 

carboxylates were accumulated without production of MCCA [126, 135-137]. In addition, it 

is necessary to consider the cost of pH correction, as for example, food waste has an 

average pH of 5.1 [138]. Operating at neutral or alkaline pH would require substantial 

addition of pH-correcting chemicals, and hence lowering the economic feasibility [89].  

Despite the complex effects of pH on MMC fermentation, some general effects on product 

outcome are reported for organic or synthetic waste fermentation. A shift to lactic acid or 

ethanol production was observed in two separate studies, one at pH < 3.6 [115] and another 

at pH < 4.5 [139]. At slightly higher pH range of 5.0 to 5.5 C3 accumulated as main 

fermentation product [139]. Two studies have investigated the effect of pH on H2 production, 

an important element necessary for chain elongation, which found different results: one 

suggested optimal production around a pH of 4 [115] and another at pH of 8 [140]. Finally, 

MCCA production can occur under slightly acidic conditions (5 < pH < 6), although isolates 

of MCCA producers such as C. kluyveri operate best at near-neutral pH [106]. Therefore, 

in order to favour chain elongation the evidence so far suggests that whilst the target 

microbial communities might operate across a broader pH range, a slightly acidic or neutral 

pH might result in the best compromise between thermodynamics, kinetics and microbial 

competition. The pH might need optimisation depending on other operational parameters 

and fermentation characteristics, such as other factors influencing competitive reactions or 

substrate composition.  

2.1.5.3. The influence of pH on product toxicity 

Another aspect linked with operational pH is product toxicity from C6 and C8 compounds. 

Carboxylic acids up to a carbon chain length of 18 are potent antimicrobial compounds that 

interact with lipid bilayers of cell membranes, disrupting the energy generating mechanisms, 

internal pH, and cell integrity [141, 142]. At acidic pH a higher percentage of MCCA are 

present in their un-dissociated, toxic acid form. With a pKa of 4.85 for C6 and 4.89 for C8, 

50% of the total carboxylate is found in the acidic form at a pH equal to the pKa. C6 and C8 

showed similar toxicity in E. coli at 10.2 to 14.1 gCOD L-1 at pH 7 [143]. For mixed culture 

chain elongation, different inhibitory concentrations have been reported. Angenent et al. 

[58] observed the inhibitory concentration of protonated C6 to be 1.92 gCOD L-1  in a system 

using yeast-fermentation beer. Khor et al. [95] obtained stable C6 production around pH 5.5 
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at just below this limit during fermentation of grass silage with adapted MMC; however, 

supplementation of lactic acid led to accumulation of protonated C6 concentrations up until 

4.4 gCOD L-1, with total C6 concentrations close to the solubility limit of C6 (≈22.7 gCOD L-

1). 

Table 2-4 Reported environmental conditions to select for chain elongation in MMC fermentation for MCCA 
production. 

 Summarized Literature Finding Ref. 

 Temperature  

Preference Mesophilic range from 30 to 45 °C [49, 125, 129-
131] 

Effect Indications of influence on microbiome 
composition. 

[129] 

 pH  

Preference Slight acidic: preferred range from pH 5 to 6 [100, 123, 
130, 134] 

 Neutral pH, if specific methanogen inhibitors 
added 

[105, 106] 

Self-regulation Without control, pH usually stabilises between 
5.5 and 6.7 

[90, 95, 135] 

Product 
toxicity 

Protonated C6 toxicity limit: 1.92 gCOD L-1 
C6 accumulation over toxicity limits is possible 

(in batch, one point measurement) 

[37, 58] 
[95] 

 Alkalinity  

MCCA No data available  
AD 1 to 5 gCaCO3 L-1 [144, 145] 

H2 0.11 gCaCO3 L-1 [146] 
VFA 2.4 to above 30 gCaCO3 L-1 [122, 147, 

148] 

 

2.1.5.4. Buffering capacity and potential of self-regulation of pH 

The pH in MMC fermentation quickly drops to minimum of 3.0 due to acidification if there is 

limited buffer capacity or no continuous pH control [140, 149]. The buffering capacity or 

alkalinity of the fermentation broth is the capacity to neutralize acids via the presence of 

compounds such as phosphate, bicarbonate, carbonate and hydroxides. Fermentation of 

Brewer’s Spent Grain was shown to reduce pH from 6.5 to 3.8 after only 1 day due to lactic 

acid production [133]. Also ammonium (NH4
+) released during hydrolysis of nitrogen-rich 

feedstock neutralises acids during fermentation by anaerobic consortia [150]. Sometimes 

chain elongation experiments include a buffer in their synthetic medium [127]; alternatively 

bicarbonate is added as nutrient requirement for C. kluyveri [72, 74, 110].  

No studies could be found that evaluate the effect of alkalinity on chain elongation. 

However, for other types of MMC fermentation alkalinity and buffering mechanisms have 

been studied. Examples include AD, H2 production or acidogenesis for VFA production, 
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which sometimes include the reporting of C6. Alkalinity in MMC fermentation in AD is well 

studied and its measurement serves as a tool to indicate early warning of unwanted 

acidification and pH destabilisation [151]. The optimal value of alkalinity usually lies between 

1.0 – 5.0 gCaCO3 L-1 [144, 145]. For H2 production by MMC from organic waste, an alkalinity 

optimum was found around 0.11 gCaCO3 gCOD-1 with excessive alkalinity resulting in 

increased osmotic pressure [146]. Improved VFA production has been noted for 

fermentation reactors processing cheese whey, the organic fraction of municipal solid waste 

or synthetic soft drink wastewater with higher alkalinity ranging from 2.4 to above 30 gCaCO3 

L-1 [122, 147, 148]. Comparison of buffered (pH≈7) and unbuffered (pH drop to approx. 6) 

batch fermentation of vegetable and salad waste over 70 days showed that addition of ~13.3 

g L-1 NaHCO3 tripled C6 concentrations for the first 52 days to a maximum of 6.6 gCOD L-

1. However, over longer operating times production decreased in the buffered system due 

to methanogenesis resulting in similar C6 yield for the two systems at the end of operation 

[126]. Therefore, there are indications that a minimum alkalinity would benefit MCCA 

production, but this needs to be further investigated.   

Studies aimed at VFA production from complex substrates indicate a self-regulation of pH 

in MMC fermentation in the range of 5.2 to 6.7 [135]. A similar pH stabilisation effect has 

been noted by studies directed at MCCA formation. For example, batch fermentation of food 

waste generated a pH drop from 7 to ~5.3 due to hydrolysis and primary fermentation; after 

20 days it rose again to pH 5.8 with production of MCCA [90]. For continuous processes 

this effect results in an overall pH stabilisation. A stable pH between 5.5 and 6.2 occured 

while feeding a lactic-rich substrate at pH 4.5 to 5 [95]. Chain elongation via lactic acid 

consumes protons (Table 2-1, Eq. 7-9), although no studies have investigated the link 

between lactic acid-mediated elongation and the buffering of pH. Further studies are 

needed to show the minimal alkalinity required for chain elongation in MMC to sustain a 

minimum buffer capacity, which also allows continuous operation at optimal pH, and with 

limited or no pH control.  

2.1.6. The push towards chain elongation by organic overloading 

For AD applications, organic overloading is defined as the COD loading rate exceeding the 

degradation capacity of the anaerobic microbiome, leading to accumulation of VFA and 

hence a decrease of pH which inhibits methanogens [152]. For VFA and MCCA production, 

organic overloading is deliberately employed to promote carboxylic acid accumulation and 

limit competitive processes. Elevated carboxylic acid concentrations inhibit methanogens, 

as found, for instance, for C4 where only ~2.4 gCOD L-1 at pH 6 was shown to inhibit 90% 

of methanogens in a thermophilic batch fermentation [130]. 
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The organic load at start-up can be represented by the food-to-microorganisms ratio (F/M). 

This is defined as the amount of feedstock introduced, expressed as COD or volatile solids 

(VS), relative to the amount of biomass, estimated as VS or volatile suspended solids (VSS) 

in the inoculum [9, 153]. In anaerobic consortia fermenting food waste, organic overloading 

and VFA accumulation usually occur at start-up with a F/M ratio > 1 gCODfed gVSinoculum
 -1 

and carboxylates accumulate at an optimal F/M ratio of 5 gCODfed gVSinoculum
-1 [9]. As with 

the acidogenic fermentation of synthetic soft drink wastewater, a F/M ratio of 4.0 gCODfed 

gVSSinoculum
-1 was found to be optimum for C6 production compared to F/M ratios of either 

1.6 and 6.4 gCODfed gVSSinoculum
-1 [148]. 

A positive relationship is found for MCCA production and higher organic loading rates 

(OLRs) using synthetic or supplemented substrates and pure cultures or MMC [96]. 

However, for complex feedstock, whilst the same mechanism would be expected, the 

relationship between OLR and MCCA production is less straightforward (Figure 2-3). When 

using a synthetic medium or supplementation of electron donors the OLR, expressed in 

terms of total COD, is directly related to the amount of bio-available substrate. On the 

contrary, when using complex feedstock, the OLR does not necessarily indicate the 

presence of chain elongation substrates or anaerobic biodegradable content, which can be 

converted to chain elongation compounds. Namely, fractions can be present in complex 

feedstocks that can be chemically oxidised, and thus contribute to the total COD, but are 

not easily biologically degraded. For instance, bio-waste collected from municipalities had 

a higher anaerobic biodegradability (90.8 ± 3.7 %) compared to food waste collected from 

a vegetarian restaurant (66.9 ± 6.4 %) even though their total COD values were within a 

similar range, i.e., 337 ± 14 gCOD kgWW
-1 and 303 ± 18 gCOD kgWW

-1 respectively [17]. 

MMC fermentation experiments for MCCA products using complex feedstocks have only 

recently been conducted, and little is known regarding the need for easily biodegradable 

feedstock in order to exert sufficient OLR to accumulate chain elongation substrates for C6 

production. In AD, high-COD substrates such as food waste or food processing by-products 

result in problematic increased retention times and low throughput, to prevent organic 

overloading and hence such feedstocks show greater potential for production of MCCA 

rather than biogas. 
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Figure 2-3 The highest reported MCCA (C6 to C9) production rate as a function of OLR and type of feedstock 
from 27 different studies using (semi-)continuous MMC fermentation towards MCCA, VFA or H2. Experiments 
including in situ product removal or biomass retention are marked with “ex” or “b”, respectively. Studies using 
complex feedstock are only included which report production rates and OLR in gCOD L-1, or where such values 
can be estimated using calculations described in Supplementary. Studies using synthetic substrates only include 
those listed in Table 2-3 and three additional studies which used synthetic media comprising ethanol and C2 to 
represent highest reported rates with HRT optimisation [72],[105] and in situ extraction [96] respectively. Data 
collected from [23, 27, 36, 37, 72, 77, 88, 91-97, 100, 105, 106, 110, 111, 115, 116, 123, 125-128, 154], the full 
data for the figure can be consulted in the following database [55]. 

2.1.7. Effect of inoculum on achieving MCCA 

Selection of the appropriate inoculum in biotechnological applications is critical to ensure 

catalysis of the required bio-conversion process. Cultures used for inoculating reactor 

experiments with complex substrates for carboxylate production contain a large variety of 

microorganisms (high richness) and include anaerobic sludges from AD [147] or wastewater 

treatment [133], marine sediments [107, 129], rumen samples [30, 40], mixtures of cultures 

[155] or microbiomes enriched in chain elongators obtained from lab-scale reactors [83, 91, 

96]. For production of VFA, H2 or other MMC fermentation products, the inoculum can be 

physico-chemically pretreated in order to suppress methanogenesis, e.g., heat shock 

and/or acid/alkali conditioning [156, 157]. However, no studies could be found on the effect 

of inoculum pretreatment on MCCA production specifically. Studies on MMC fermentation 

towards H2 or VFA have shown that the microbial composition was altered and the MMC 

fermentation product profile shifted depending on inoculum pretreatment method applied 

[7, 47, 158, 159]. For chain elongation in particular, Cavalcante et al. [69] has discussed 

thermal pretreatment as a potential selective pressure since various chain elongating 

bacteria have been allocated to the genus Clostridium, that due to its spore-forming abilities 

could be selected for by heat shock. The limited knowledge regarding pretreatment of 

inoculum to select for chain elongation would be worthwhile to further investigate. 

Separate inoculation is not always required. Some experiments showed C6 production from 

organic waste by simply using the endogenous MMC present in the feedstock [108, 135]. 



 

31 
 

In addition, regardless of the initial inoculum source (i.e., sludge from full-scale AD plant or 

lab-scale fermentation reactors) microbiomes grown on synthetic substrates with ethanol 

as the main electron donor are enriched by species closely related to C. kluyveri due to 

adaptation over time [70, 101].  

As shown in Figure 2-4, for batch experiments, the most commonly used inoculum types 

are AD sludge or enriched microbiomes, i.e., previously enriched and adapted to chain 

elongation conditions in the lab. Yields seem to be similar for both types of inoculum, 

perhaps due to high microbial richness. However, the total MCCA concentration 

accumulated with an AD inoculum had a 5 times lower upper range than when an adapted 

microbiome is used, indicating that tolerance towards toxic MCCA concentrations can be 

developed (Figure 2-4). This higher tolerance to higher C6 concentrations from acclimatised 

microbiomes has been recently reported using batch inhibition assays with synthetic media 

and differently cultured sludges [160]. The same adaptability hypothesis was used to 

explain productions of longer MCCA such as C8 [92]. However, batch experiments 

inoculated with an enriched microbiome are often operated at a higher organic load that 

could also enhance MCCA accumulation, and these parameters are inter-connected. From 

the analysed studies it also appears that bio-augmentation does not improve considerably 

the MCCA yields, but it does impact on the product concentration with more MCCA 

produced. It has been shown that bio-augmentation with C. kluyveri improves yields and 

even results in chain elongation up to decanoic acid (C10) [90]. From the data currently 

available, inoculum selection could contribute to MCCA specificity, yet further investigations 

are needed to evaluate the importance of inoculum selection.  
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Figure 2-4 Inoculum type used in 17 studies performing batch experiments of complex or synthetic feedstock 
in function of the obtained MCCA yield (top), MCCA concentration (middle), or organic load applied (bottom). 
Colours represent experimental results reported in the same study. Estimated values were calculated as 
reported in Appendix A. Data collected from [20,40,70,83,88,90,91,96,101,108,122,126,148,157,161-163], the 
full data for the figure can be consulted in the following database [55]. 

2.1.8. The influence of partial pressures in reactor headspace 

2.1.8.1. The aerotolerance of MMC fermentation 

M. elsdenii and C. kluyveri, two well-characterised bacteria capable of chain elongation, are 

both strictly anaerobic [61, 132]. Anaerobic conditions are easily maintained in laboratory 

experiments by flushing the headspace with N2, CO2 or H2 or mixtures thereof. However, 

full-scale or pilot reactors are not always operated fully anaerobically [161]. Therefore, it is 

important to understand the sensitivity to the presence of oxygen on MMC when producing 

MCCA.  

In a study investigating the aerotolerance of MMC fermentation of shredded paper and 

chicken manure, intermittent air exposure had no significant influence on bacterial 



 

33 
 

community composition, however, it did select for shorter chain carboxylates, whilst stricter 

anaerobic conditions improved chain elongation [161]. On the contrary, in another study 

using different types of pre-treated corn fibre, air exposure did not lower the C6 production 

rate [36]. There is still very little evidence of the capacity of MMC cultures performing chain 

elongation in regards to their tolerance of oxygen and its impact on the production of MCCA. 

This should be the subject of further studies as it is an important design parameter for 

experimental and full-scale chain elongation processes.  

2.1.8.2. Minimal and balanced CO2 and H2 required for chain elongation 

A sufficiently high H2 partial pressure (pH2) in the headspace gas is an important parameter 

to limit the impact of competitive processes and is seen as a central strategy to ensure 

reductive conditions for reverse β-oxidation [130]. However, the mechanism of how pH2 

affects chain elongation is not fully understood, and various values have been reported 

(Table 2-5). Similarly, pH2 controls the VFA yielding of anaerobic MMC fermentation such 

as AD. Different pH2 have been reported to inhibit or thermodynamically constrain certain 

bioconversion processes thereby influencing the VFA product spectrum [162, 163]. 

Table 2-5 Experimental and theoretical reported values of pH2 and/or pCO2 in reactor headspace to stimulate 
chain elongation in MMC fermentation. 

Headspace 

requirement 

Influence on Chain Elongation Ref 

 Hydrogen  

pH2 < 0.1 bar 
Theoretical maximum pH2 for oxidation of ethanol to C2 for 

ATP generation to be thermodynamically feasible 

[58] 

pH2 < 1.5 bar 
Experimental pH2 minimum for reduction of C2, C3 and C4 to 

alcohols (pH = 5) 

[165] 

pH2 = 1.5 bar Initiated production of C6 from ethanol and C2 in experiment [70] 

pH2 > 2.52 ×10-6 bar 
Theoretical minimum pH2 to prevent oxidation of C6 at 

experimental concentrations 

[37] 

0.03 bar < pH2 < 1.5 

bar 
Recommended pH2 for chain elongation 

[106] 

 Carbon dioxide  

CO2 or CO3
2- 

addition 
Lowered pH, improved MCCA production 

[105] 

 Mixture of Hydrogen and Carbon Dioxide  

pH2 ≈ 0.007% by 

dosing CO2 
Excess oxidation is thermodynamically prevented 

[98] 

H2/CO2 = 60/40 MCCA produced from H2 /CO2 mixture [166] 

H2/CO2 = 80/20  

at 0.5 bar 

Enhanced production of C6 from ethanol and C2 in 

experiment 

[91] 

pH2 = 2 bar,  

pCO2 = 2 bar 
Reduced C3 formation 

[117] 

pH2 = 1 bar,  

pCO2 = 0.3 bar 
Optimal thermodynamics for chain elongation 

[30] 
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In thermodynamic fermentation models, it is assumed that dissolved H2 affects the 

NADH/NAD+ ratio directly, and hence the thermodynamic feasibility of certain pathways 

[81]. Nevertheless, experimental work could not find a direct correlation between the two, 

thus possibly indicating a more complex effect where alternative electron carriers (e.g., 

ferrodoxin) are involved in MMC [164]. H2 is a product from ethanol- and lactic acid oxidation 

occurring during chain elongation [29], yet it is also an indirect electron donor for chain 

elongation by its capability of reducing C2 to ethanol [127]. A minimum pH2 (a composition 

> 0.007% at standard conditions) was found to prevent excessive oxidation of ethanol (i.e., 

ethanol oxidation to C2 not coupled to chain elongation) or oxidation of carboxylates [37, 

98]. In batch microbiome studies using synthetic C2-rich media, C6 and C8 were only 

produced in the presence of H2, even in the absence of ethanol [70, 91]. If pH2 is too high, 

carboxylates are reduced to their corresponding alcohol [165]. In addition, a pH2 above ~0.1 

bar reduces the thermodynamic favourability of ethanol oxidation to C2 for ATP generation 

[58, 81]. In general, it is stated that the pH2 should be above ~0.03 bar to avoid excessive 

ethanol oxidation to C2 while remaining below ~1.5 bar to prevent carboxylate reduction 

[106].  

Another important headspace component is CO2. With a MMC membrane biofilm reactor 

MCCA were produced solely from a 40/60 ratio of CO2 and H2 [166]. CO2 is also a nutritional 

requirement for some chain elongating bacteria [132]. In addition, CO2 partial pressure 

influences dissolved carbonate and thus the alkalinity. Experimental studies have shown 

CO2 addition in the headspace improved chain elongation [105], and a combination of CO2 

and H2 in the reactor headspace reduced C3 formation [117]. CO2 dosing within the reactor 

headspace was recently proposed as a key strategy in controlling ethanol-based chain 

elongation, where high CO2 loading rates for ethanol-rich feedstock could stimulate 

excessive ethanol oxidation to C2, and low values for VFA-rich (and low-ethanol) feedstock 

could ensure ethanol is used in chain elongation and not for C2 production [98]. Dosing of 

CO2 is inversely proportional to the pH2, thus care must be taken to ensure minimal pH2. 

Weimer et al. [30] calculated the H2:CO2 ratio that shows the optimal thermodynamics for 

chain elongation and suggested approx. 1 bar pH2 with 0.3 bar pCO2. 

Using a complex feedstock will lead to production of CO2 and H2, since they are both 

products of primary fermentation by various hydrolytic and acidogenic microorganisms 

[167]. Therefore, modifying the headspace composition by allowing these gases to 

accumulate in batch operation in closed vessels [83], working with pressure release in 

reactors [133] or intermittent opening of reactor headspace for sampling [148], is expected 

to affect chain elongation. This effect is usually not taken into account in experiments, and 

to our current knowledge, no studies have specifically assessed the effect of accumulation 
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of these gases in the reactor headspace during primary fermentation on chain elongation. 

The partial pressure of gases in the reactor headspace should be considered in the design 

and operation of reactors as plenty of studies demonstrate their influence on chain 

elongation. However, it must be noted that H2 is a highly soluble gas and its concentration 

in the liquid can be up to 70 times higher than the equilibrium value suggested from mass-

transfer coefficients in AD [168]. Therefore, care must be taken to relate pH2 with H2 

available for bioconversion processes. 

2.1.9. Reactor Design and the Relation to Retention and Organic 

Overload 

The type of feedstock will influence the choice of fermentation reactor [8]. In the case of a 

complex, solid-rich feedstock, such as OFMSW or unprocessed food waste, hydrolysis is 

rate limiting and stirring or pumping is impractical. Therefore, longer retention times are 

required to allow hydrolysis and solubilisation, and leach bed reactors (LBRs) are an 

effective option, as they generate a leachate rich in carboxylic acids. For instance, Yesil et 

al. [169] obtained ± 30 gCOD of carboxylic acids per kg of solid waste of which approx. 10% 

was C6, in batch LBR. Nzeteu et al. [91] used a LBR set-up that allowed semi-continuous 

operation and obtained a maximum C6 production rate (3.12 gCOD L-1d-1) from food waste 

by replacing 75% of the reactor content with fresh feedstock and diluting the leachate with 

water by 1/15 every 7 days. However, this approach does not easily allow operation with 

homogenous pH or temperature stability. Another study has shown that operation stability 

for the production of H2 by MMC fermentation of food waste is enhanced by mixing and 

agitation [116], however, this has not yet been determined for chain elongation.  

To exert better process control, complex feedstock can be mechanically pre-treated, i.e., 

crushing, chopping or blending, to obtain a mixture that can be pumped and stirred, and 

therefore allows the use of (semi-)continuous stirred tank reactors (sCSTRs). This has been 

done in some studies focussing on carboxylic acid production from food waste [125, 126]. 

In addition, the feed stream can be diluted with water, or blended with a liquid waste stream 

or recycled liquor from sludge dewatering to modify the composition. For a more fluid stream 

such as synthetic feedstock, e.g., ethanol and acetate mixtures, or more easily degradable 

substrates such as potato-processing or brewery wastewater or food waste leachate, less 

hydrolysis is required and the chain elongation itself becomes rate-limiting. To allow higher 

flow rates, whilst maintaining high biomass to counter the rate-liming effect of chain 

elongation, reactor configurations such as membrane bioreactors [166], CSTRs with in situ 

settlers [128] and up-flow reactors (UR) with mechanisms for biomass retention, e.g., filter, 

sludge blankets or packed beds, have been used (Table 2-3). It has been suggested that 
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biomass retention and cell density are important parameters which are often unreported for 

MMC fermentation [95]. Indeed, studies using reactors with biomass retention have shown 

the highest MCCA production rates so far (Figure 2-3). Such reactors are well established 

for other processes, and are worthy of investigation. 

In continuous systems, the inoculum acclimation and biomass retention, also expressed as 

sludge retention time (SRT), favour specific microbial populations. For instance, C4 

producers have often been shown to have a longer doubling time than lactic acid producers, 

and hence wash out more easily from continuous systems [47]. In stirred tank reactors 

without a settling phase, the SRT is equal to the hydraulic retention time (HRT) and inversely 

proportional to the OLR. Therefore, in order to operate at a sufficient biomass retention, the 

OLR can only increase with an increase of substrate COD composition. A suboptimal 

residence time results in lactic acid or VFA accumulation without chain elongation, and a 

reduction in hydrolysis [97, 128]. In fermentation of salad and vegetable waste in a sCSTR, 

a retention time of 10 days left a fraction of the substrate unutilized and no C6 was 

produced; whilst retention time of 20 and 30 days increased C6 production [126]. Similarly, 

a step-wise decrease of HRT from 20 to 12 to 8 days in cheese whey fermentation, 

generated C6 concentrations which decreased from 2.24 gCOD L-1 to 1.45 gCOD L-1 to 0.41 

gCOD L-1. Analysis of the microbiome composition revealed certain microbial groups were 

removed by lowering the HRT, via washout, with a dominant presence of lactic acid-

producing Lactobacillus sp. at HRT of 8 days [123]. Thus, a minimum HRT is required to 

sustain chain elongation when working with reactors without biomass retention. However, 

if the HRT is too high competing processes such as methane production are more favoured 

[36, 126]. Methanogens are relatively slow growers, thus reducing HRT has been suggested 

as a tactic to wash them out, and increase MCCA production rates [72, 106]. Therefore, a 

compromise to reduce methanogens and enhance chain elongation must be found. 

Studies on chain elongation have varied HRT from less than 1 day to over 2 weeks resulting 

in various MCCA production yields (Figure 2-5). A lower HRT can generate similar yields 

by altering reactor design to include biomass retention and hence decoupling the HRT from 

the SRT. Using an UR with biomass retention, chain elongation was performed using a HRT 

of only 4 h, resulting in a maximum MCCA production rate of 57.4 g L-1d-1 using a synthetic 

ethanol and C2 feed supplemented with methanogenic inhibitors, yeast extract and CO2 at 

neutral pH [105]. In addition, decreasing HRT reduces product toxicity by eliminating 

accumulation, e.g., by gradually reducing HRT from 20 to 2.5 days C6 production from 

cheese whey rate increased to ~5 gCOD L-1d-1 [100].  
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Figure 2-5 MCCA yield as a function of HRT in 24 studies performing (semi-)continuous experiments of complex 
or synthetic feedstock. Colours represent experimental results reported within the same study. Estimated values 
were calculated as reported in Supplementary. Data collected from [23, 27, 36, 37, 72, 77, 88, 93-98, 100, 105, 
106, 110, 111, 115, 123, 126-128, 170], the full data for the figure can be consulted in the following database 
[55]. 

It is important to note that other operational factors come in to play alongside HRT. For 

instance, increasing HRT from 8 to 12 days and operating at 35 °C increased C6 

concentrations in food waste fermentation from approx. 1.64 gCOD L-1 to 6.55 gCOD L-1, 

and even more C6 (10.26 gCOD L-1) was obtained at a HRT of 8 days by operating at 45 

°C [125]. Therefore, the optimal HRT to stimulate chain elongation in complex feedstock 

fermentations will vary according to the type of system used, as it strongly depends on the 

reactor configuration, hydrolysis rate, sludge retention time, and other operational 

parameters such as pH and temperature.  

2.1.10. Overcoming product toxicity by in situ extraction, biofilm 

formation or acclimation 

Low MCCA concentrations in the fermentation broth result in poor product recovery and 

high cost of down-stream processing. MCCA concentration can be limited in MMC 

fermentation for three reasons: (i) the substrate is poor in electron donors or in easily 

biodegradable organics, and hence prevents in situ substrate accumulation to drive chain 

elongation; (ii) product accumulation lowers the thermodynamic favourability of chain 

elongation; and (iii) the antimicrobial properties of MCCA in their protonated state can result 

in product toxicity. To evaluate which cause is limiting MCCA production, Weimer et al. [40] 

measured residual substrate and product concentrations and calculated ΔG for C6 

production. Incomplete substrate consumption in their MMC fermentation study enriched 

with C. kluyveri and ethanol-supplemented lignocellulosic feedstock still gave a negative 
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ΔG, thus suggesting product toxicity and/or limited incubation time had prevented further 

MCCA production [40]. Toxicity limits can be offset by employing in situ extraction, or biofilm 

formation and/or acclimation of the MMC. 

In situ extraction methods have the advantage of continuously removing carboxylic acids 

from the fermentation broth, thereby alleviating product toxicity and thermodynamic 

constraints [130]. Various in situ extraction systems for carboxylic acids have been 

proposed for pure culture and MMC fermentation (Table 2-6). Electrochemical extraction 

has been applied to recover C2 to C6 from stillage fermentation, and has shown to 

simultaneously control pH and stimulate chain elongation by OH-
 and H2 production at the 

cathode [23]. However, for MMC fermentation of a complex substrate, a MCCA-selective 

extraction method is preferred to maintain low MCCA concentrations, whilst VFA remain in 

the fermentation broth as substrates for chain elongation. Pertraction has been used in 

various MMC studies as an in situ extraction method selective for MCCA. This is an in-line 

liquid-liquid, membrane-assisted extraction method driven by a pH-gradient, and is usually 

performed with mineral oil containing a phase transfer catalyst, e.g., TOPO, and an alkaline 

recovery phase [37, 77, 93, 96, 130]. Pertraction can be combined with membrane 

electrolysis to drive further separation and obtain a MCCA-rich oil [171]. Whilst the majority 

of in situ extraction studies report enhanced production rates and chain elongation, two 

studies did not report a significant improvement [62, 155]. The advantages of implementing 

in situ extraction systems must outweigh the increased complexity and cost in process 

operation.  

Recently, different strategies to overcome product toxicity have been suggested. Allowing 

biofilms and microscale aggregates to develop improves interactions within a microbiome 

and tolerance to toxic compounds [172]. Addition of 2 g L-1 biochar to a UR fed with synthetic 

ethanol and C2 significantly improved MCCA production and reduced by-product formation 

[102]. In this case, microscopic observations revealed the community structure and the 

spatial distribution of microorganisms changed to dense microbial aggregates around the 

biochar; it was postulated this improved cell-cell interactions and energy efficiency via 

stabilising relationships between trophic partners, and increased tolerance to product 

toxicity [102]. Formation of microbial aggregates has been noted for bioreactors without 

providing a specific means of biofilm formation; granules were formed in a C3 and ethanol 

fed CSTR producing C7 as chain elongation product [170]. Therefore, reactor configuration 

and feedstock that allows microbial aggregates are expected to improve chain elongation, 

yet research on this is limited. In addition, recent research found the MCCA concentration 

in the fermentation broth influenced the microbial community structure. It has been 

suggested that elevated C6 and C8 concentrations lead to a more acclimatized and 
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resistant MMC [92, 166]. A microbiome adapted to operating at elevated C6 concentrations 

had a 10 times higher productivity in an environment with elevated C6 (33 gCOD L-1) [160]. 

Further development of a resistant, highly productive MMC would allow accumulation of 

MCCA resulting in less complex extraction methods with reduced economic burden due to 

downstream processing.  

Table 2-6 Overview of the results of applying in situ extraction in MCCA fermentation experiments. 

In Situ Extraction and Fermentation 

Method 

Results Ref. 

Biphasic Extractive Fermentation 

M. elsdenii strain, sucrose substrate 58.5 gCOD L-1 C6 in solvent [173] 

Clostridium sp. BS-1, galactitol substrate 70.6 gCOD L-1 C6 in solvent [174] 

Anion Exchange Resin 

M. elsdenii strain, glucose substrate Extraction doubled C6 to 24.3 gCOD L-1 [175] 

Integrated Cross-flow Nanofiltration 

MMC, pre-treated cellulosic feedstock 7× lower carboxylic acid concentration in 

fermenter, no significant yield 

improvement 

[155] 

Membrane electrolysis 

MMC, thin stillage feedstock Lower need for caustic soda addition, C4-

C6 from 46% to 70%, cathodic H2 

formation 

[23] 

Pertraction 

MMC, diluted yeast fermentation beer 

 

MCCA-specific, 4× increase in C6 

specificity to 32%, elongation to C8, 

extraction optimization 

[37, 

93, 

130] 

MMC, Synthetic substrate with C2 and 

ethanol 

4× increase C8 productivity to 0.8 gCOD 

L-1d-1 

[96] 

MMC, Synthetic substrate with C4 and lactic 

acid 

Productivity from 0.6 to 1 gCOD L-1 d-1 C6 

by implementing extraction 

[77] 

 

C. kluyveri, synthetic substrate with C2 and 

ethanol 

No significant difference in production 

rates 

[62] 

Pertraction and membrane electrolysis 

MMC, diluted fermentation beer Lower need for caustic soda addition, 

MCCA recovery of 87%, obtained >90% 

MCCA oil 

[171] 
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2.1.11. MMC fermentation scale up and integration within a bio-

refinery context 

Biological MCCA production is mostly in the experimental phase, but some scale-up has 

also been studied. For example, Hegner et al. [101] showed MCCA-producing MMC can be 

scaled up from 0.11 L serum bottles to 2.2 L bioreactors by maintaining similar reactor 

operation and without loss of performance or a change in microbial composition. Pilot scale 

projects are now being started. For instance, the MixAlcoTM process has been operated in 

four parallel 3.78 m3 scale fed-batch fermenters processing chicken manure, urea and 

shredded paper to produce a mixture of carboxylate salts from processed fermentation 

effluent (containing approx. 6.8 gCOD L-1 C6) in an 11-month time period as precursors for 

jet fuel and gasoline [176]. The first start-ups and university spin-offs using MMC 

fermentation for production of MCCA and other bio-based standard chemicals as starting 

to appear, such as ChainCraft B.V. in the Netherlands [177].  

In order to increase the potential of food waste as a feedstock for production of renewable 

chemicals, MCCA-producing MMC fermentation can be integrated within a bio-refinery. The 

term bio-refinery, defined as “the sustainable processing of biomass into a spectrum of 

marketable products and energy”, is inspired by traditional oil refineries where biomass 

replaces fossil fuels as feedstock for coproducing chemicals and power through various 

conversion technologies [178]. Process integration allows production of various compounds 

such as fuels, chemicals, solvents, biomaterials, food and feed ingredients, fibres and heat 

and power, thus increasing resilience and robustness against market price fluctuations 

while minimizing waste [179]. Using bio-waste as the renewable biomass feedstock, known 

as the 3rd generation bio-refinery concept, not only allows replacement of fossil fuel sources 

with a renewable alternative, but also stabilises waste streams with maximal use of 

resource, thus contributing to a circular economy [15]. Integration into a bio-refinery concept 

could include mechanical pre-treatment of waste streams to obtain pumpable mixtures, or 

pre-fermentation steps to obtain streams rich in lactic acid or ethanol. The combination of 

physical and biological processes for organic waste valorisation including MCCA will favour 

a myriad of product and energy goods that are market competitive (Table 2-7). Agler et al. 

gave an overview of bio-, thermo-, or electro-chemical post-processes, to convert carboxylic 

acids from fermentation into carbonyls, esters, alcohols or alkanes applicable as bulk fuels, 

solvents [26]. 
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Table 2-7 Processes and applications for carboxylic acid-rich (MCCA and VFA) fermentation effluent currently 
described in literature. 

Process/application Product Ref. 

MixAlco process Alcohol fuel [28] 

Secondary fermentation Lipid/biodiesel [180] 

Secondary fermentation Polyhydroxyalkanoates (PHA) [147, 154, 181] 

Microbial fuel cell feedstock Electricity [182] 

Carbon source for 

bioremediation 

Dechlorination of Chloroethenes [183] 

Extraction and Kolbe 

electrolysis 

Liquid alkane fuels, i.e., C10-C20 
hydrocarbons 

[14, 27, 95] 

 

2.1.12. Conclusions  

MCCA, such as caproic and caprylic acid, are compounds of interest due to their broad 

range of potential applications. In contrast to chemical or single-culture biotechnological 

processes, using the consorted action of MMC allows to produce MCCA from complex 

organic feedstocks, such as food waste, in open, non-sterile systems via the natural process 

of chain elongation. However, the yields, concentrations and selectivity of this process must 

be improved in order to increase its viability. Therefore, we have summarised the current 

knowledge on the underlying mechanism of chain elongation by MMC, discussed the 

current state of the art on the use of complex organic feedstock and reviewed key 

operational parameters, and their interactions.  

Some of the key findings lie with the fact that with complex substrates and microbial 

cultures, there must be a greater emphasis on managing competing reactions and positively 

selecting for chain elongation microbiomes. Since the microbial diversity of MMC 

ecosystems has been shown to be distinct from pure cultures and clean substrates, existing 

thermodynamic and kinetic models should be expanded to include complex feedstock and 

mixed cultures. Advances in microbial culture analysis, such as improved implementation 

of various “-omics” methods on complex samples, will boost current understanding of MMC 

fermentation. 

Most common complex feedstocks trialled so far include residues from the bio-ethanol and 

dairy industries, different types of cellulosic wastes, syngas fermentation effluent and 

different types of organic food waste. These type of feedstocks have resulted in maximum 

production rates up to 8.02 gCOD L-1d-1. Supplementation of complex waste-derived 

feedstock with chain elongation substrates such as ethanol  increased production rates, 
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with maxima reported up to 62.8 gCOD L-1d-1. However, the negative environmental effects 

from chemical addition have also been reported. The use of synthetic substrates allowed 

production rates up to 115.2 gCOD L-1d-1. 

Through an extensive review of the literature, including studies targeting MCCA or reporting 

MCCA as by-products, various key operational parameters were identified and discussed 

to highlight the research gaps. Mesophilic temperatures are so far a preferred choice for 

chain elongation, yet there is little justification for this. The preferred operational pH seems 

to lie in a slight acidic range from pH 5 to 7, in order to limit the activity of methanogens. 

The relationship between organic loading rate (OLR) and MCCA production rates showed 

a positive correlation to some extent, however this is complicated by the degree of 

biodegradability of the feedstock. Linked to the organic load is the substrate-inoculum ratio 

(F/M) at the start-up of the process which favours the accumulation of intermediate 

compounds instead of methane production when F/M > 5. In addition, whilst increased OLR 

tends to improve chain elongation, this must be coupled with sufficiently long residence 

times and biomass retention. OLR and retention times will have to be optimized depending 

on whether the reactor design has included mechanisms for biomass retention, and the 

biodegradability of the feedstock.   

The literature study revealed very little information is available on some specific operational 

parameters that have been studied for other MMC applications. For example, in similar 

MMC fermentation processes a minimal alkalinity was beneficial to stabilise the process 

and reduce the need for pH controlling agents. However, the buffer capacity required to 

stimulate chain elongation has not been thoroughly investigated. The partial pressures of 

CO2 and H2 in the reactor headspace have been identified to influence chain elongation, 

however production of these gases during fermentation, and their accumulation in reactor 

headspace is rarely considered. In order to circumvent the antimicrobial limitations imposed 

by MCCA on the microbiome, in situ extraction is often proposed, but the alternative 

strategies which promote the development of biofilm or granule formation, and MMC 

adaptation, are worthy of further research. Finally, the development of down-stream 

processing methods, and integration within a bio-refinery context, are crucial issues to 

transform MCCA production from organic waste streams into a competitive waste 

valorisation technology that will contribute to the development of a circular economy. 
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2.2. Supplementary information on published literature 

review 

Where literature values for concentration or rate are expressed in terms of mass, molarity, 

or carbon molarity, there were converted to COD (gCOD L-1 or gCOD L-1 d-1) according to 

the conversion constants given in Table S2-1. Where synthetic or supplemented feedstocks 

were employed, but overall feedstock COD was omitted, a value was estimated by summing 

COD concentrations of the individual compounds in the substrate. When OLR data were 

unreported, these were calculated by dividing feedstock COD concentration by the retention 

time, or by multiplying by feed flow rates, depending which values were available. Similarly, 

MCCA production rates are calculated via the MCCA concentration in the reactor outlet. 

Where retention times were un-reported, these were estimated from OLR and feedstock 

concentrations. Yields were calculated as the ratio of the product MCCA concentration, 

expressed as COD, to the COD concentration of the reactor inlet. 

Table S2-1 Conversion constants used to convert reported values to corresponding COD content. 

Compound Acronym Formula MW (g mol-1) Ox (-) C (mol C) 

Gas 

Methane CH4 CH4 16 2.0 1 

Carbon dioxide CO2 CO2 44 0.0 1 

Hydrogen H2 H2 2 0.5 0 

Carboxylic acids 

Formic acid C1 CH2O2 46 0.5 1 

Acetic acid C2 C2H4O2 60 2.0 2 

Propionic acid C3 C3H6O2 74 3.5 3 

n-Butyric acid C4 C4H8O2 88 5.0 4 

n-Valeric acid C5 C5H10O2 102 6.5 5 

n-Caproic acid C6 C6H12O2 116 8.0 6 

n-Heptanoic acid C7 C7H14O2 130 9.5 7 

n-Caprylic acid C8 C8H16O2 144 11.0 8 

n-Nonanoic acid C9 C9H18O2 158 12.5 9 

Substrates 

Lactic acid Lact C3H6O3 90 3.0 3 

Ethanol EtOH C2H6O 46 3.0 2 

Glucose Gluc C6H12O6 180 6.0 6 

Glycerol Glyc C3H8O3 92 3.5 3 

Sucrose Suc C12H22O11 342 12.0 12 

MW: molecular weight; Ox: oxidation reaction stoichiometry; C: carbon atoms 
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2.3. Literature update 

Since publication of the review paper and before submission of this thesis, some noteworthy 

advances in the field were made and summarized in the following section.  

New opportunities have emerged in terms of substrate and product spectrum and selection 

of inoculum for chain elongation. Additional substrates include carbon monoxide from 

syngas [1], glycerol from biodiesel production [2], xylose [3], leachate from municipal solid 

waste [4] or acidified sewage sludge [5, 6]. In addition, studies on the effects of storage and 

pretreatment of the feedstock on chain elongation have emerged [7, 8]. The potential 

product spectrum has expanded following reported selective production of isomerised or 

branched carboxylic acids, e.g., iso-butyrate and iso-caproate [9-11]. A direct comparison 

between effluent from anaerobic digestion, a caproic acid-producing reactor and animal 

faeces showed that all these environments house relatives to the renowned chain elongator 

C. kluyveri, yet their suitability as inoculum depends on the operational pH [12]. 

The research community reached a further understanding on competitive interactions to 

chain elongation in MMC. For instance, further reports have confirmed that bacteria 

performing lactate reduction to propionate outcompete lactate-based chain-elongating 

Caproiciproducens spp. at pH 6.0 and above [13]. Also butyrate-producing bacteria have 

been reported to take over in a long-term fermentation experiment fed with xylan and lactic 

acid resulting in a crash of caproic acid production [14]. Understanding these interactions 

between different trophic groups and metabolic processes is crucial to find the operational 

strategy needed to steer the community towards a selective and stable functionality. 

The initial literature review listed certain concepts that required further study and provided 

some prospects. These have since then seen further advances. For instance, the beneficial 

influence of H2 in the headspace on chain elongation has been studied further and showed 

to enhance electron efficiency and electron transfer capacity [15]. Two research groups 

have demonstrated the improved chain elongation potential of using granular fermentation, 

each for different complex feedstock, mainly solid-free [16, 17]. Others have further looked 

at alleviating product toxicity by applying biochar or anion-exchange resins [18, 19]. In the 

literature review, we suggested a potential pH-stabilising effect of lactic acid mediated-chain 

elongation. Contreras-Dávila et al. has since successfully demonstrated this concept in 

sequential batch fermentation of food waste where the initial build-up of lactic acid was 

followed by chain elongation, and thereby combated acidification by reducing available 

protons [20].  
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More studies are including omics approaches, mostly 16s rRNA gene sequencing analysis, 

to elucidate the MMC composition. Certain studies have included complementary types of 

community analysis providing a more robust discussion. For instance, flow cytometric 

fingerprinting statistically confirmed two distinct communities when operating at pH 5.5 or 

pH 7, while 16S rRNA gene-based fingerprinting did not allow to make this distinction due 

to statistical limitations of the data [12]. Flow cytometric analysis also enabled analysis at 

faster and shorter intervals of a lactate-based chain elongation community, thereby 

revealing a highly dynamic community, in contrast to the 16s rRNA sequencing analysis 

that found an unchanged core community [21]. By including fluorescence quantitative PCR 

the growth of C. kluyveri could be specifically followed in an ethanol-supplemented mixed 

culture fermentation of fruit and vegetable waste, showing how chain elongation took place 

predominantly during the middle and late stages of growth [22]. Other research labs have 

provided the field with the full genome sequences of newly isolated chain elongating species 

[23]. In addition, new metabolic models have been developed that can be used as tools to 

improve understanding of the various microbial roles in chain elongating MMC [24]. 

Advances have also been made on integrating chain elongation as a technology within a 

larger economic and bio-refinery context. Chwialkowska et al. included a brief techno-

economic model to evaluate the economic viability of their work on caproic acid production 

from supplemented acid whey fermentation with consecutive liquid-liquid extraction [25]. Hu 

et al. build a supply chain framework for recovery of biogas, n-caproic and n-caprylic acid 

from organic waste and found that the combined product generation, i.e., a hybrid recovery 

system, allowed optimal environmental and economic benefits [26]. Carvajal-Arroyo et al. 

have scaled up the production of MCCA from thin stillage and their separation through a 2-

compartment membrane electrolysis cells into oil at a kilogram scale [27]. 
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2.4. Concluding remarks 

To address the first thesis goal, the literature review provided an overview on the knowledge 

available regarding chain elongation in MMC fermentation of complex organic feedstock. 

This naturally led to addressing the second goal, identifying operational strategies to 

stimulate chain elongation in the fermentation of a complex feedstock. For instance, it can 

be concluded from the literature study that operating at slightly acidic pH (between 5.0-6.0) 

and starting operation at an organic overload, a F/M of 5 gCODfed gVSinoculum
-1 or more, are 

proven strategies to steer an AD microbiome towards accumulation of VFA, and potentially 

MCCA. However, it remained unclear what to choose for certain key operational 

parameters, such as how to provide a stimulus of an organic overload over long-term 

operation or which HRT or OLR would be sufficient to ensure hydrolysis of the complex food 

waste and accumulate chain elongation precursors.  

It was suggested in the literature review that a single-stage reactor would have to be 

operated in a way that stimulates the in situ production of VFA and electron donors such as 

ethanol, lactic acid and H2. We hypothesised operating semi-continuously, thus longer 

fermentation cycles, could stimulate the accumulation of chain elongation precursors more 

than continuous feeding.  

Lastly, the literature review stated that food waste is a promising feedstock for MCCA. 

However, limited work has been done on chain elongation in mixed food waste without 

supplementation of electron donors. Furthermore, for the application of resource recovery 

in recycling facilities, it is necessary to know how variability of the feedstock affects product 

outcome. 
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2.5. Research objectives 

The first thesis goal, which is acquiring knowledge regarding chain elongation in mixed 

culture fermentation of complex organic feedstock, was mainly addressed within the 

literature review (Chapter 2).  

In order to address the second goal, i.e., identifying operational strategies that enable chain 

elongation in food waste fermentation with minimal chemical addition in a simple STR, a 

clear set of research objectives was defined following the knowledge acquired in the 

literature study: 

1. Explore overloading a single-stage reactor with food waste as operational strategy 

to steer a MMC performing AD towards chain elongation in long-term operation 

(Chapter 3) 

2. Evaluate how OLR and HRT influence food waste fermentation in the context of 

MCCA production (Chapter 4) 

3. Assess the effect of a semi-continuous feeding pattern on the production of MCCA 

(Chapter 5) 

4. Monitor feedstock composition and its impact on the fermentation outcome (Chapter 

6) 

The third thesis goal is investigating the underlying mechanisms that steer MMC 

fermentation of food waste to MCCA production. To address it, two additional horizontal 

objectives were defined: 

5. Study the composition of the microbial communities that are formed in bioreactors 

under different operating conditions to relate the different microbial groups to a type 

of fermentation  (addressed in Chapters 3 to 5) 

6. Characterise the fermentation pathways in the production of MCCA and other AF 

products through cycle studies in the different MMC systems (addressed in Chapters 

3 to 6). 
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Chapter 3. Adjusting organic load as a strategy to 

direct single-stage food waste fermentation from 

anaerobic digestion to chain elongation 

It is valuable to demonstrate MCCA production in a simple setup similar to AD in order to 

ease integration within existing waste treatment facilities. Thus, in line with the scope of the 

thesis, this first research chapter targeted chain elongation in food waste fermentation using 

a single-phase stirred tank reactor with minimal chemical supplementation. Only sodium 

hydroxide was dosed to prevent acid inhibition.  

This chapter tackled the first research objectives concluded from the literature review. An 

organic overload was evaluated as operational strategy in long-term operation to shift 

fermentation from anaerobic digestion to chain elongation. Reactor performance was 

assessed in combination with the underlying fermentative pathway and microbial 

community structure to also address the fifth and sixth research objective. 

Reactor operation was performed during the first, introductory year of the integrated PhD 

(one year MRes and three years PhD). The data on reactor performance was partially 

processed for the MRes qualification. For this thesis and further publication, it was 

supplemented with further data processing, microbial community analysis and a deepened 

discussion of the results and its impact.  

This chapter is submitted in an alternative thesis format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University of 

Bath. This work was published in MDPI Processes’ Special Issue "Anaerobic Digestion for 

Bioenergy and Biochemicals Production": 

V. De Groof, M. Coma, T. C. Arnot, D. J. Leak, and A. B. Lanham, "Adjusting Organic 

Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic 

Digestion to Chain Elongation," Processes, vol. 8, no. 11, 2020. doi:10.3390/pr8111487 

The dataset was made available as: 

V. De Groof, M. Coma Bech, D. J. Leak, T. Arnot, and A. Lanham, "Dataset for "Adjusting 

organic load as a strategy to direct single-stage food waste fermentation from anaerobic 

digestion to chain elongation"," ed. Bath: University of Bath Research Data Archive, 2020. 

doi: 10.15125/BATH-00941. 
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manuscript. 
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Abstract 

Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-

chemicals, from food waste (FW), requires complicated reactor configurations and 

supplementation of chemicals to achieve product selectivity. This study evaluated the 

manipulation of organic loading rate in an un-supplemented, single-stage stirred tank 

reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation 

(AF), and thence to chain elongation. Increasing substrate availability by switching to a FW 

feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic 

(10.1 ± 1.7 g L-1) and n-caprylic (2.9 ± 0.8 g L-1) acid were produced at concentrations 

comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, 

a more specialised microbiome developed containing several MCCA-producing bacteria, 

lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an 

AD reactor that was operated in parallel to produce biogas, the retention times had to be 
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doubled when fed with the high-COD FW to maintain biogas production. The AD 

microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and 

acetoclastic methanogens. The results suggest that manipulation of organic loading rate 

and food-to-microorganism ratio may be used as an operating strategy to direct an AD 

microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a 

simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to 

repurpose existing AD assets operating on food waste for biogas production, to produce 

potentially higher value MCCA products, via simple manipulation of the feeding strategy.  

Graphical abstract 
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3.1.1. Introduction 

To achieve a sustainable and circular bio-economy, it is crucial to minimise food waste (FW, 

88M tonnes in EU annually) and use the unavoidable, inedible fraction as feedstock for the 

production of bio-chemicals [1, 2]. FW is rich in carbon, nutrients and moisture, making it a 

favourable substrate for mixed microbial culture fermentation, such as anaerobic digestion 

(AD) [3]. Recently, research has focused on the carboxylate platform where the liquid 

intermediates formed during the primary acidogenic fermentation (AF) steps of AD are 

targeted to generate products with a higher value than biogas [4]. Amongst the different 

compounds that can be obtained, medium-chain carboxylic acids (MCCA) are of particular 

interest due to their lower water solubility, which facilitates their recovery, their antimicrobial 

properties, and their potential application as platform chemical or liquid drop-in biofuels [5-

7]. 

Selective operational conditions in AF allow to direct the product outcome of FW towards, 

e.g., volatile fatty acids (VFA) [8, 9], lactic acid [10, 11] or hydrogen [12, 13]. Some bacteria 

in AF can elongate short VFA into MCCA with 6 (n-caproic acid) to 8 (n-caprylic acid) carbon 

atoms via the reversed β-oxidation pathway [14]. Selectivity towards chain elongation is 

subject to the absence of competitive pathways and the availability of electron donors such 

as hydrogen, lactic acid or ethanol [15]. External addition of electron donors is generally not 

desirable as it has associated costs and a negative impact on the environmental life cycle 

assessment of waste fermentation for MCCA production [16]. Finding the most suitable 

operational parameters to direct the complex network of biochemical reactions in mixed 

culture fermentation towards chain elongation is still a topic of research. 

One of the factors currently limiting MCCA yields is competition with methane generation, 

i.e., transformation of soluble organics into gaseous products. Strategies proposed to block 

methanogenesis, without the addition of chemical inhibitors, include inoculum pre-treatment 

by heat shock to select for spore-forming bacteria [17, 18] which are mainly fermentative, 

or lowering the sludge retention time (SRT) to wash out methanogens [8]. Additionally, 

methanogens are generally more sensitive to a lower pH (< 6.0) and the accumulation of 

VFA that follows from an organically overloaded bioreactor [19]. Organic overload can be 

obtained in batch operation by increasing the loading rate or food-to-microorganism ratio 

(F/M > 1 gCODfed gVSinoculum
-1 )[20].  

At low pH and high product concentrations, the carboxylate product species shift towards 

their acidic, undissociated forms. These acidic compounds have antimicrobial properties 

and can slow down or inhibit metabolism [21]; hence, chain elongation has been improved 

by alleviating product toxicity via in situ extraction of MCCA [22-24]. Elongation is also 
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improved by operating at low hydraulic retention time (HRT) and thus low product 

concentrations, whilst maintaining production rates, in systems with biomass retention, such 

as in an up-flow anaerobic sludge blanket reactor [25], or granular sludge reactors [26, 27]. 

Some of these solutions require high recirculation flow rates, which can prove challenging 

for substrates with high solid concentrations (e.g., >6% w/w total solids), such as FW. 

Alternatively, MCCA production from these types of feedstock has been improved by using 

two-stage systems. Hydrolysis and acidogenesis can be optimised in a separate bioreactor 

to chain elongation [28-30], or by using leach-bed reactors where soluble, inhibitory 

monomers are removed from the solid substrate [31]. Recent work has found hydrothermal 

and ultrasonic pre-treatment of FW can enhance MCCA production in fermentation [32]. 

Such adaptions are a trade-off between achieving higher yields and the costs related to 

more complicated operation and reactor design. For these reasons, AD reactor 

configurations at a commercial scale in waste valorisation facilities are typically single-step 

systems, such as single-stage stirred-tank reactors (STR), as they allow simpler processing 

and lower investment costs [33, 34]. It is, therefore, valuable to explore the potential of such 

simpler reactor setups for MCCA production from FW to facilitate commercial 

implementation. 

Lab-scale trials have demonstrated that, for maize and switch grass stillage as feedstock, 

long-term MCCA formation can be achieved in STRs, without the need for addition of 

electron donors [35, 36]. This was due to the in-situ production of lactic acid as electron 

donor during the fermentation process. A similar mechanism was found for short-term 

sequential batch fermentation of FW [37]. However, the long-term conversion of FW to 

MCCA in a STR setup without electron donor supplementation has yet to be demonstrated. 

In addition, these studies inoculated their reactors with enriched microbiomes and hence 

the strategy required to operationally transform functionality from a microbiome performing 

AD to one performing chain elongation remains largely unknown. Therefore, the aim was to 

demonstrate how an AD microbiome fermenting FW in a simple STR can be redirected, 

during long-term operation towards either biogas or MCCA production, by solely changing 

operating conditions, predominantly organic overload, i.e., without addition of methanogenic 

inhibitors or electron donors. This simple approach allows repurposing of existing food 

waste AD assets to produce higher value products (MCCA), which is an attractive means 

for accelerating the deployment of circular economy practices. To allow direct comparison 

of functionality and microbial community development, two STRs, one for AD and the other 

for AF, were operated in parallel with the same inoculum and fed with the same FW 

substrate. 
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3.1.2. Materials and methods 

Food waste (FW) and inoculum were sourced from a full-scale industrial AD plant (GENeco, 

Bristol, UK). The FW in the AD plant comprises packaged and unpackaged Category 3 FW 

collected from households, supermarkets, restaurants and other catering services, and is 

ground and mixed with a variety of liquid streams from the food-processing industry and/or 

the liquid fraction of anaerobic digester effluent, to form a slurry-like mixture. Two batches 

of FW slurry were collected one month apart (FW 1 and FW 2). Upon collection each batch 

of FW was characterised (Table 3-1) and frozen in aliquots (-18 °C) for reactor feeding. The 

inoculum was collected from the effluent of a mesophilic continuous anaerobic digester 

(2,400 m3, STR) processing pasteurised FW. The inoculum was diluted with tap water to 

reach a set VS in the reactors and acclimated overnight to operating temperature before 

initiating the feed. 

Table 3-1 Characteristics of the two food waste substrates (FW 1 and FW 2) used in this study. Analysis was 
performed in duplicate and presented with standard deviation. 

Parameter FW 1 FW 2 

pH 5.0 ± 0.1 5.4 ± 0.1 

Conductivity (mS cm-1) 6.20 6.16 

Solid Content (% w/w) 

Total Solids  9.94 ± 0.07 17.7 ± 1.6 

Volatile Solids 8.832 ± 0.002 16.3 ± 1.1 

Chemical Oxygen Demand (gCOD L-1) 

Total COD  150 ± 1 297 ± 9 

Soluble COD 37.4 ± 1.1 38.2 ± 0.1 

Soluble Compounds (g L-1) 

Acetic acid 1.27 ± 0.18 0.89 ± 0.16 

n-Propionic acid 0.63 ± 0.02 0.63 ± 0.19 

n-Butyric acid <0.31 0.35 ± 0.24 

MCCA (C5-C8) 0.00 ± 0.00 0.00 ± 0.00 

Glucose 3.61 ± 0.14 5.03 ± 0.87 

Sugar compounds* 0.55 ± 0.07 5.34 ± 2.13 

Lactic acid 7.27 ± 0.34 2.48 ± 0.02 

Ethanol 1.39 ± 0.71 0.80 ± 0.16 

* fructose, overlap with sucrose and xylose; % w/w: mass fraction; MCCA (C5-C8): 

medium chain carboxylic acids (chain length of 5 to 8 carbon atoms).  

Two 2 L STRs were operated semi-continuously (1 L working volume, magnetic stirrer 

mixing, 35 °C). Feeding events took place every 3.5 days, where a fixed volume of reactor 

effluent, determined by the set OLR, was manually replaced by the same amount of FW. 

One STR was set up for AD by starting operation with a F/M of 0.8 gCOD gVS-1 and 20 gVS 

L-1 of inoculum, feeding at an average OLR of 4.2 ± 0.4 gCOD L-1d-1 (2.5 ± 0.2 gVS L-1 d-1). 

The second STR was set up for AF by organic overload at a F/M ratio of 8.4 gCOD gVS-1 

and 5 gVS L-1 of inoculum, feeding at an average OLR of 8.5 gCOD L-1 d-1 (5.0 gVS L-1 d-1). 

Following start-up, reactors were operated in two distinct phases according to the conditions 
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in Table 3-2. The pH was manually corrected to a minimum of 7.3 ± 0.1 for the AD reactor, 

or 6.0 ± 0.2 for the AF reactor with sodium hydroxide (1 or 2 M) after each substrate addition. 

Reactors were operated as airtight, but at intervals were briefly open to atmosphere during 

feeding and pH correction. 

Table 3-2 Overview of operational parameters for the AD and AF reactors. 

STR Feedstock Days OLR (gCOD L-1 d-1) HRT (d) 

Phase 1 – Shift functionality with increased organic load 

AD FW 1 0 – 14 4.2 ± 0.4 35 ± 3 

 FW 2 14 – 32 8.5 ± 0.8 35 ± 3 

AF FW 1 0 – 14 8.5 ± 0.7 18 ± 2 

 FW 2 14 – 32 17.1 ± 1.5 18 ± 2 

Phase 2 – Establish longer term operation 

AD FW 2 0 – 80 4.4 ± 0.5 69 ± 6 

AF FW 2 0 – 10 NA* NA* 

 FW 2 10 – 87 21.3 ± 1.6 14 ± 1 

* Gradual start-up from Phase 1 AF after reactor pause where OLR was increased 

from 9.2 to 21.3 gCOD L-1 d-1 (HRT decrease from 32 to 14 days). 

The F/M was determined at start-up and each point of feeding as the amount of total COD 

(tCOD) fed, over the volatile solids (VS) concentration in the reactors at that time (Equation 

(3-1)). 

F/M(i) = (Cfeed(i) × Vfeed(i))/VSreactor(i) [gCOD gVS-1], (3-1) 

where i represents the feeding event, Cfeed is the organic content expressed as tCOD in the 

feed in gCOD L-1 and V represents volume in L. The OLR was calculated as an average 

between feeding events as a proxy for continuous operation as the amount of total chemical 

oxygen demand (tCOD) fed, over the time in between feedings in days per reactor volume 

(Equation (3-2)). 

OLR(i) = (Cfeed(i) × Vfeed(i))/(Vreactor(i) × (t(i+1) – t(i))) = Cfeed(i)/HRT(i) [gCOD L-1
 d-1], (3-2) 

where t represents the day of reactor operation, and t(i+1)-t(i) is the time between feeding 

points. 

AD performance was determined from the methane yield, i.e., volume of methane produced 

at Standard Temperature and Pressure (STP, 273.15 K and 100 kPa) in between feeding 

events over the amount of substrate fed, expressed in VS or tCOD. The performance of AF 

was assessed by: (i) the average net production rate (NPCA), i.e., the increase of a given 

carboxylic acid (CA) in the effluent expressed as COD and corrected for feedstock content 

(Equation (3-3)); (ii) the average net yield (YCA), ,i.e., NPCA over OLR (Equation (3-4)); and 

(iii) selectivity (SCA) of carboxylic acid formation, i.e., the NPCA of a specific single CA over 

the net production rate of all carboxylic acids expressed as COD (Equation (3-5)). 



 

69 
 

 

NPCA(i) = (CCA(i), effluent - CCA(i-1), feed)/HRT(i-1) [gCOD L-1
 d-1], (3-3) 

YCA(i) = NPCA(i) / OLR(i-1) [%], (3-4) 

SCA(i) = NPCA(i) / ∑NPCA(i) [%] (3-5) 

Waste stabilization was evaluated by the removal efficiency of VS (VSrem) or tCOD 

(tCODrem) over the respective load (Equation 3-6). 

VSrem = (VSfeed - VSeffluent )/ VSfeed, tCODrem = (tCODfeed - tCODeffluent )/ tCODfeed [%] (3-6) 

Total solids (TS) and VS were determined according to Standard Methods 2540G [38]. The 

COD was assessed with cuvette tests (LCK014, LCI400, Hach, Dusseldorf, Germany) 

before and after filtration (0.45 µm) for tCOD and soluble COD (sCOD), respectively. 

Liquid samples were taken from the reactor effluent before each feeding event to follow 

process performance. Carboxylic acids (chain length 2 to 8) were measured by a method 

adapted from Manni and Caron (1995) using gas chromatography (GC, 7890B, Agilent 

Technologies, Santa Clara, CA, USA) equipped with a DB-FFAP 122-3232 column (30 m × 

0.25 mm × 0.25 m; Agilent Technologies) with a flame ionization detector (FID) [39]. Liquid 

samples were conditioned with sulphuric acid, sodium chloride and 2-methyl hexanoic acid 

as internal standard for quantification, before extraction with diethyl ether. Samples (1 µL) 

were injected at 250 °C with a split ratio of 10, 3 mL min-1 purge flow, and N2 carrier gas at 

2.4 mL min-1 flow rate. The oven temperature increased by 8 °C min-1 from 110 °C to 165 

°C where it was kept for 2 min and the FID temperature was set at 300 °C. The FW samples 

were further characterised for ethanol, lactic acid, and sugars by high pressure liquid 

chromatography (HPLC, 1260 Infinity, Agilent Technologies, Santa Clara, CA, USA) as in 

Coma et al. [16] with the oven temperature adjusted to 65 °C. 

Volumetric biogas production was evaluated by determining the displacement of acidified 

water (pH < 4.3, HCl) in calibrated glass columns connected to the reactor headspace and 

reported at STP. Biogas samples were collected from the glass columns just before effluent 

withdrawal and feed addition. CH4 and CO2 were measured by GC (7890A, Agilent 

Technologies, Santa Clara, CA, USA) with a HP-PLOT/Q column (Agilent Technologies, 

Santa Clara, CA, USA) whereby CH4 was detected by FID and CO2 was detected with a 

thermal conductivity detector (TCD)[34]. H2, N2 and O2 percentages were determined by 

GC-TCD (3800GC, Varian, Agilent Technologies, Santa Clara, CA, USA) equipped with a 

molecular sieve column (13 × 60-80 mesh, 1.5 m × 1/8" x 2.0 mm) with a run time of 1 min. 

Injection, column, and TCD were set at 250, 40, and 200 °C, respectively. Argon was used 

as the carrier gas at total flow rate of 75 mL min-1. Calibration was carried with multiple 
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injections of a mixture containing permanent gases at 1%. Gas composition was corrected 

for air intrusion assuming biogas produced comprised only CH4, CO2 and N2 and normalised 

to 100%. 

Biomass samples for community analysis were taken in duplicate on Day 77 from AD and 

Day 84 from AF reactor (Phase 2). Samples were stored at -18°C and processed by 

DNAsense (Aalborg, North Jutland, Denmark). In short, DNA was extracted using the 

FastDNA Spin kit for Soils (MP Biomedicals, Solon, OH, USA) [40]. The 16S rRNA gene 

region V4 sequencing libraries were prepared by an Illumina-based custom protocol [41]. 

PCR amplifications were done with 515FB (5’-GTGYCAGCMGCCGCGGTAA-3’) and 

806RB (5’-GGACTACNVGGGTWTCTAAT-3’) as primer pair to cover both archaeal and 

bacterial domains [42]. The amplicons were paired-end sequenced (2x300 bp) on a MiSeq 

sequencer (Illumina, San Diego, CA, USA). Forward and reverse reads were prepared for 

use in the UPARSE workflow [43-45]. The reads were clustered into operational taxonomic 

units (OTUs) at 97% similarity. Taxonomy was assigned using the RDP classifier in QIIME 

(80% confidence cut-off) and the SILVA database (release 132) [46-48]. The results were 

analysed in R (v.3.5.1, https://www.r-project.org/, 2018) through the Rstudio IDE using the 

ampvis package (v.2.5.8) and the DNAsense app (DNAsense, Aalborg, North Jutland, 

Denmark) [40, 49]. Sequences have been deposited with the ENA database (accession 

number PRJEB39281). Rarefaction curves, relative abundances, alpha-diversity measures 

and taxonomic classifications for all samples are made available within a comprehensive 

dataset on the University of Bath Research Data Archive [50]. 

3.1.3. Results 

3.1.3.1. Elevated organic load directed anaerobic digester sludge towards 

acidogenic fermentation 

A start-up strategy of higher F/M and OLR, and hence indirectly lower HRT compared to 

traditional AD, led in the AF reactor to a net production of carboxylic acids with minimal 

biogas generation. After two weeks (less than one HRT), VFA (acetic (C2), n-propionic (C3) 

and n-butyric acid (C4)), accumulated to a total 19.0 gCOD L-1 and n-valeric (C5) and n-

caproic (C6) acid to 6.1 gCOD L-1. The biogas had an average composition of 77 ± 1 % 

CO2, 23 ± 1 % H2 and < 1 % CH4, (Figure 3-1). In contrast, the operational strategy in the 

AD reactor resulted in conventional anaerobic digestion of the FW with a methane yield of 

0.32 m3 CH4 kgVS-1 (0.19 m3 CH4 kgCOD-1) on Day 14. This falls within the range of values 

reviewed for the anaerobic digestion of FW [3]. 
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Figure 3-1 Key chemical compounds in Phase 1 of reactor operation in AD (left) and AF (right). Concentrations 
(top) and yields (middle) of liquid fermentation compounds and biogas composition (bottom). Dashed lines 
represent change of feed from FW1 to FW2. *Not determined. 

Due to the increased COD content of FW2, the OLR doubled from Day 14 for each reactor 

while maintaining the HRT. The OLR increased to 17 ± 2 gCOD L-1d-1, in the AF reactor and 

to 8.5 ± 0.8 gCOD L-1 d-1 in the AD reactor. In the AF reactor production of carboxylic acids 

increased and chain elongation occurred up to caprylic acid (C8). By Day 32 MCCA (C6, 

heptanoic (C7) and C8) totalled 25.2 gCOD L-1, i.e., 54% selectivity of all carboxylic acids 

(Figure 3-1). Both feedstocks, FW1 and FW2, contained electron donors for chain 

elongation, but with FW1 containing slightly more ethanol and nearly three times more lactic 
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acid than FW2. Therefore, with the shift from FW1 to FW2, the loading rate of electron 

donors decreased from 0.60 ± 0.09 gCOD L-1 d-1 to 0.25 ± 0.02 gCOD L-1 d-1, nevertheless 

chain elongation was stimulated. 

The doubling of OLR in AD increased F/M to 1.7 gCOD gVS-1, i.e., higher than typical AD 

values (1 gCOD gVS-1) [20]. After two weeks of operating at the elevated OLR, which was 

similar to the initial OLR of AF at start-up, the pH dropped to 6.0 in between feeding events. 

This caused methanogenesis to decrease, with less biogas production and a reduction of 

methane to 45 % of biogas composition, with a resulting yield of 0.02 m3CH4 kgVS-1. 

Carboxylic acids accumulated simultaneously, reaching concentrations similar to those 

found during the start-up of AF reactor, namely 21.9 gCOD L-1 VFA and 5.4 gCOD L-1 of C5 

and C6 (Figure 3-1). 

Total biogas production in AF remained at least 9 times lower than the AD reactor. Despite 

the high organic load, some methanogenic activity did persist in AF. From Day 7 to 14, less 

than 1% of CH4 was detected in the biogas, but it peaked on Day 21 to 48.4 % CH4 (Figure 

3-1). During the previous period, an increase in organic solids concentration in the reactor 

was observed, from 5 to 22 gVS L-1, lowering F/M to 1.38 gCOD gVS-1 on Day 14, with a 

lower F/M enhancing methanogenesis. This could be due to the accumulation of substrate 

particles or biomass growth. By Day 32 methanogenesis subsided again to 3.1% CH4 

content in the off gas probably due to a consistent overload from FW2 with higher COD. 

To verify whether methanogensis could recover, no fresh substrate was added to either 

reactor for 2 weeks (equivalent to 4 feeding events) and pH was corrected. The pH dropped 

again from 7.1 to 5.5 regardless of the absence of fresh organic material. The overall 

carboxylic acid content did not reduce, and methanogenic activity did not recover. The high 

carboxylates concentrations in AD before starvation (27.3 gCOD L-1, C2-C6) continued to 

inhibit methanogenesis as they were far above inhibitory levels, even at neutral pH, i.e., 

approx. 9.5 gCOD L-1 [51, 52]. Similarly, in the AF reactor, methane in the biogas remained 

low (≈1% CH4). 

3.1.3.2. High-COD food waste required increased retention times for AD but 

promoted chain elongation in AF 

The AD reactor was restarted similar to Phase 1 with fresh inoculum and operated in parallel 

as control during Phase 2 of operation. The HRT was increased to 69 ± 7 days to 

compensate for the increased tCOD content of the feedstock. The AD reactor was giving 

methane yields of 0.51 m3 CH4 kgVS-1 by Day 24, which was similar to Phase 1. Thus, the 

AD operation could be adapted for the COD-rich substrate by moving to a longer HRT. After 
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56 days of operation, i.e., less than one HRT, VFA increased again peaking at 7.3 gCOD L-

1 and methane yield reduced to 0.17 m3 CH4 kgVSadded
-1 (Figure 3-2). The increase in HRT 

could therefore only temporarily restore the AD functionality when applying the high COD-

FW. Microbial community analysis revealed that methanogens were still present and thus, 

were likely inhibited by the VFA. The OLR of 4.4 ± 0.5 gCOD L-1 d-1 (2.4 ± 0.3 gVS L-1 d-1) 

is near the upper limit for stable mono-digestion of FW (2.5 gVS L-1 d-1) [3]. 

 

Figure 3-2 Key chemical compounds in Phase 2 of reactor operation in AD (left) and AF (right). Concentrations 
(top) and yields (middle) of liquid fermentation compounds and biogas composition (bottom). *Not determined 
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In Phase 2, operation of AF was resumed and maintained over five HRT to evaluate the 

long-term effects of an elevated OLR on product outcome and community enrichment. The 

average OLR in AF was gradually increased after starvation over 4 feeding events from 9.2 

to 21 ± 2 gCOD L-1 d-1, slightly higher than at the end of Phase 1. The increase in OLR 

resulted in an accumulation of carboxylic acids averaging 48 ± 7 gCOD L-1, similar to the 

end of Phase 1, but with a larger fraction of C5-C8 (73 ± 8 %). On resuming operation, C2 

immediately decreased, followed by a decline in C4 four feeding events later (Figure 3-2). 

The drop in short VFA was accompanied by an increase in C6 and C8, indicating chain 

elongation. The simple STR setup used in the current study, analogous to current industrial 

AD setups, resulted in C6 and C8 concentrations of 10.1 ± 1.7g L-1 (22.3 ± 3.6 gCOD L-1) 

and 2.9 ± 0.8 g L-1 (7.2 ± 2.0 gCOD L-1), respectively, averaged over five HRT. The 

maximum concentration of undissociated C6 (with antimicrobial properties) was 2.3 g L-1 

(Day 17 - Phase 2, pH 5.55, total C6 of 13.8 g L-1). This is far above the reported inhibitory 

concentration of 0.87 g L-1 [53].  

By increasing OLR in Phase 2, the loading rate of electron donors, i.e., ethanol and lactic 

acid present in FW2, slightly rose from 0.25 ± 0.02 gCOD L-1 d-1 to 0.31 ± 0.03 gCOD L-1 d-

1. However, the net production rate of MCCA nearly doubled from 1.3 ± 0.1 gCOD L-1 d-1 to 

2.4 ± 0.5 gCOD L-1 d-1, so the improved chain elongation could not have been due to 

electron donors in the influent alone, further indicating stimulation of their in situ production 

by increased OLR. 

All carboxylates with an uneven carbon chain length decreased, with C3 dropping below 

detection levels, followed by a decline in C5 and C7 concentrations (Figure 3-2). C3 

production from lactic acid through the acrylate pathway is characterised as a competitive 

pathway of chain elongation, and occurs at high concentrations of lactic acid and at a pH 

above 6 [54-56]. It is hypothesised that by operating at a pH between 5.5 and 6.0 in AF, C3 

production was minimized due to increased chain elongation consuming lactic acid. The 

limited presence of C3 resulted in a higher selectivity for MCCA with even numbers of 

carbon (C6 and C8). 

At the start of Phase 2, the F/M in AF operation dropped below 1 gCOD gVS-1, likely due to 

solid accumulation, yet CH4 in the biogas remained below 2 % (with the rest being CO2 and 

H2). From Day 56 onwards, the methane fraction increased again and reached a maximum 

of 17 % on Day 80, despite carboxylic acids and OLR being far above accepted values for 

inhibition of methanogenesis. 
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3.1.3.3. Presence of hydrogen and pH stabilisation indicate chain elongation 

To gain an insight into the cascade of reactions occurring in AD and AF in between feeding 

events, gas production and carboxylic acid concentrations were followed by regular 

sampling between two feeding events (Phase 2, Days 21 to 24) (Figure 3-3). For the AD 

reactor, the pH profile steadily increased, as often observed with methane production. Only 

C3 was present in AD, which remained relatively constant (less than 7 % change from time 

0). Methane production showed a batch-like production profile with a maximum production 

rate obtained within the first 24 hours from readily biodegradable matter, followed by a 

slower production rate as further bioavailable matter was consumed. 

 

Figure 3-3 Concentration of carboxylic acids (top), biogas production (middle) and pH profile (bottom) in 
between two feeding events (Day 21 and 24 of Phase 2) for AD (left) and AF (right). Time 0 corresponds to a 
sample taken straight after feed addition. 
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In the AF reactor, the pH decreased from 5.8 to a minimum of 5.2 during the first 32 hours 

after feeding. This is in line with primary acidogenic fermentation where short VFA 

accumulate and acidification occurs. C5-C8 concentrations were nearly halved while C2-

C4 increased by 32 %. The reactor headspace had to be opened to introduce feed, thus 

reducing the pH2 near 0 atm. An elevated H2 partial pressure (pH2), higher than 0.003 atm, 

has to be maintained to ensure a sufficiently reductive environment and avoid the 

degradation of MCCA into short VFA via the β-oxidation pathway [53]. In between feeding 

events, the reactors were kept airtight and after 32 hours of primary fermentation, the pH2 

in AF headspace reached approximately 0.21 atm. The H2 could have been produced by 

various metabolic pathways such as primary fermentation, C4 fermentation, acetogenic 

activity where C2 is converted to CO2 and H2 and within the first step in chain elongation, 

namely ethanol and lactic acid oxidation [4, 14, 57, 58]. In the following 46 hours, pH 

increased again to 5.7, and H2 and MCCA increased, indicating a secondary fermentation 

stage of chain elongation [37]. These consecutive fermentation stages where an initial 

acidification stage is followed by chain elongation is similar to that reported for other chain 

elongation studies [37, 57]. It can be hypothesised that this metabolism was the same in 

our reactor, although we were unable to analyse the lactic acid and ethanol concentrations 

to confirm it in this case. 

3.1.3.4. A distinct enriched microbiome for chain elongation 

The effect of reactor operation on the enrichment of the microbial community was evaluated 

at the end of Phase 2 (Figure 3-4). An average of 159 unique observed operational 

taxonomic units (OTUs) was found in the AD reactor, whereas only an average of 104 OTUs 

was observed in AF. Similarly, alpha-diversity, richness and evenness measures were lower 

for the AF microbiome than for AD (Table 3-3). The AD reactor showed a high relative 

abundance of Firmicutes (43 ± 2%), Bacteroidetes (18.8 ± 0.1%), Euryarchaeota (10.3 ± 

0.1%), and other phyla that are commonly found in anaerobic digesters processing FW 

(Figure 3-4) [59, 60]. Several hydrolytic and acidogenic groups were detected, such as the 

proteolytic Firmicutes Gallicola (10 ± 2%) and Fastidiosipila (12 ± 1%), and the lactic acid-

producing Enterococcus (1.3 ± 0.3%). The detected bacteria belonging to Bacteroidetes 

and Synergistetes are generally important hydrolysers in AD that degrade carbohydrates 

and proteinaceous substrates, and contribute to acidogenesis by producing VFA and other 

acids [61-64]. This is in line with stabilization of waste streams by reducing the solid and 

organic content of the feedstock in AD, with an average VS and COD removal of 84 ± 9 % 

and 83 ± 5 %, respectively, similar to other FW AD studies (42 to 95%) [65]. The various 

genera that play crucial roles in hydrolysis and acidogenic fermentation present in AD could 

not be found in in the AF reactor, although some other genera were detected. In the AF 
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reactor, the VS removal only achieved 36 ± 21% in accordance with a lower hydrolytic 

community. Meanwhile, COD removal in AF accounted for 28 ± 16%, as most of the 

organics were retained as VFA instead of degassed via methane, although the relative 

abundance of the archaeal community was similar to that in AD, as discussed below. 

 

Figure 3-4 Taxonomic composition of the bacterial and archaeal community by the end of Phase 2: the 
anaerobic digestion reactor on Day 77 (top) and, the acidogenic fermentation reactor on Day 84 of operation 
(bottom). The concentric circles represent the taxonomic classification from phylum (bold, centre ring) to genus 
(outer ring), colours represent classification, and bandwidth and percentages relate to relative abundance. 
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Table 3-3 Alpha-diversity indices for the microbial community in the AD and AF reactors. Averaged over 
duplicate samples and calculated based on 20,314 reads per sample. 

Index AD AF 

Observed OTUs 159 ± 4 102 ± 7 

Shannon 3.49 ± 0.04 1.70 ± 0.08  

Simpson 0.945 ± 0.007 0.66 ± 0.04 

InvSimpson 18.6 ± 0.8 2.9 ± 0.3 

Chao1 (richness) 182 ± 16 129 ± 5 

ACE (richness) 184 ± 18 135 ± 14 

Pielou evenness 0.625 ± 0.007 0.31 ± 0.01 

The community during AF was dominated by Actinobacteria, comprising of predominantly 

the genus Olsenella (66 ± 4% over 8 OTUs in AF, <0.1% in AD). The acidotolerant Olsenella 

sp. and the highly diverse genus of Lactobacillus (3 ± 2% over 13 OTUs in AF, <0.1% in 

AD) are linked with hydrolysis and the acidogenic production of, for instance, lactic acid, 

acetate, CO2, and ethanol from hexoses and pentoses [66-68]. In addition, these genera 

have been correlated with lactic acid-based chain elongation. Olsenella sp. have been 

found in reactors processing lignocellulosic substrates in co-occurrence with bacteria from 

the chain elongating genus Pseudoramibacter, the third most abundant genus (7.83 ± 

0.08%) in our reactor [35, 36, 69]. Pseudoramibacter spp. produce VFA, MCCA and H2 by 

fermenting carbohydrates, and, as recently suggested, glycerol, and lactic acid [70, 71]. 

Lactobacillus spp. have been detected in FW fermentation alongside Caproiciproducens 

spp., which only had a low relative abundance of 0.53 ± 0.09% in our reactor [37]. Other 

abundant genera in AF were from the order of Clostridiales. The genus classified as the 

Eubacterium nodatum group (6.4 ± 0.5%) is known for the decomposition of organic matter 

into VFA and was found before to compete with chain elongation bacteria resulting in 

excessive C4 production in a xylan-fed fermentation [69]. The genus E. coprostanoligenes 

group (1.8 ± 0.3%) has been found before in FW digesters producing C2, succinic acid and 

H2 and has a phospholipase activity to reduce cholesterol [60, 72]. 

In terms of the archaeal community, the relative abundance of methanogenic 

Euryarchaeota was similar in the AD and AF reactor (Figure 3-4). In the AD reactor, the 

dominant genus was the acetoclastic methanogen Methanoseata in AD, which is typical for 

full-scale AD of organic solid waste [73-75]. In contrast, in AF the hydrogenotrophic 

Methanobrevibacter was the lead methanogenic genus. Hydrogenotrophic methanogens 

have been found to increase in relative abundance during organic overloading of AD 

systems, and they are generally more tolerant to environments with high carboxylic acids 

content [8, 76]. This could explain why methane in the AF reactor increased again from Day 

56 (Phase 2) onwards, despite the high carboxylic acid concentration. 
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3.1.4. Discussion 

The functionality of the AD seeding sludge shifted to AF when starting reactor operation at 

a higher F/M and OLR compared to traditional AD. This is consistent with the response of 

an anaerobic microbiome to a high organic load, whereby accumulation of VFA inhibits 

methanogenesis [19, 77]. Increased substrate availability by operating at a higher OLR (and 

indirectly F/M), while maintaining HRT (i.e., increased COD in the FW 2) shifted product 

outcome further from methane to VFA, and from short VFA to MCCA. Chain elongation 

improved despite a decreased supply of electrons donors in the influent (i.e., FW2). 

Normally, the elongation of VFA to MCCA via the reversal of the β-oxidation pathway 

becomes less thermodynamically favourable with less electron donors available [53, 78]. 

However, Arslan, et al. [79] reviewed several mixed culture AF studies and showed that an 

increase in organic load generally resulted in a more reduced product spectrum of 

carboxylic acid. During FW fermentation, the electron donors for chain elongation can be 

produced in situ [37]. The co-occurrence of lactate producing Olsenella spp. and lactate 

consuming chain elongation bacteria with increased availability of substrates confirms that 

the AF microbiome was able to produce the electron donors required for chain elongation 

in situ, alongside using the few electron donors in the feedstock.  

Increased availability of organics, either by high F/M or OLR, lead to VFA accumulation, 

which in the case of AD jeopardised the main goal of the process. Doubling the HRT, and 

thus decreasing OLR, temporarily restored the functionality of the AD reactor. However, in 

the long-term, working at maximum AD capacity accumulated n-propionic acid, difficult to 

degrade, which inhibited methanogenesis. Thus, whereas AD requires a more dilute FW 

feedstock or operation with extended retention times to allow mitigation of OLR stress, high-

COD FW streams lend themselves well as feedstock for MCCA production as they allow 

accumulating electron donors from primary fermentation. 

The overall values for C6 are higher than reported for similar un-supplemented STR setups; 

for instance, 8.5 g L-1 C6 were produced with switch-grass stillage feedstock [36]. The 

concentrations in the current study were closer to those fermenting FW using more 

sophisticated reactor set-ups, such as a leach bed reactors (9.9 g L-1 C6) [31], or a two-

stage ethanol-supplemented up-flow anaerobic reactor (12.6 g L-1) [28]. Higher 

concentration of 23 ± 1 g L-1 C6 have been reported but only when chain elongation was 

further stimulated by using pre-treated FW, ethanol supplementation and a microbiome 

previously enriched with synthetic media [80]. However, these FW substrates might differ 

in composition such as solid or COD content, similar, as FW 1 was different from FW 2. For 

fermentation of acid whey it has recently been found that the quality of the feedstock had 



 

80 
 

significant impact on MCCA production [81]. Further research should evaluate the impact 

of FW composition as the application of this technology would have to deal with the inherent 

variability of a FW substrate caused by differences in sources, collection and storage [82, 

83]. 

Concentrations of C8 have reached higher concentrations in similar reactor set-ups using 

alternative feedstocks, e.g., 3.2 g L-1 fermenting thin stillage and beer [84] and 3.1 ± 0.9 g 

L-1 for diluted cheese whey powder [85]. These specific feedstocks are high in ethanol from 

beer and lactic acid from whey, creating a more reductive environment that could stimulate 

further chain elongation. Thus, better operational control to ensure reductive conditions 

could enhance the elongation process. For instance, an airtight feeding strategy could 

improve maintaining a sufficient pH2. Kinetic studies between feed events indicated that C4-

C8 compounds were partially degraded right after a feed event, likely due to loss of pH2. 

Future work should also evaluate whether application of a semi-continuous feeding pattern 

instead of continuous, i.e., subjecting the microbiome to a fluctuating substrate availability, 

maximizes the benefits of consecutive fermentation stages as seen in batch-like operation. 

Namely, they stimulate the initial, rapid accumulation of electron donors by primary 

fermentation and, thus, ensure reductive conditions for consecutive chain elongation. 

For anaerobic microbiomes, it is generally regarded that in response to operational changes 

the hydrolytic and acidogenic bacteria are sufficiently dynamic and able to maintain overall 

functionality by replacing one another, whereas methanogenic activity will subside after 

operational disturbance and potentially rebound later on [86]. This typical quality of open 

fermentation systems where multiple distinct microorganisms are capable of performing 

similar biochemical function, i.e., functional redundancy, is seen as advantageous since it 

allows to stabilize reactor functionality following operational perturbation, e.g., substrate 

fluctuations, or adapt to new environmental conditions [87, 88]. Indeed, different genera 

were responsible for the main functionalities of hydrolysis and acidogenic fermentation in 

the AD and AF reactors. Thus, these key metabolic functionalities required for dealing with 

a complex feedstock in AD were maintained in AF. However, the same concept allowed for 

resilient methanogenic activity by the development of hydrogenotrophic methanogens in the 

AF reactor. Since a decrease of pH2 due to hydrogenotrophic methanogenic activity could 

potentially compromise MCCA yields, the implications for full-scale long-term application 

should be further evaluated. 

The lower pH, i.e., more acid-stress, and shorter retention times in the AF reactor, reduced 

degradation of the FW solids, as seen by the lower VS removal and reshaped the microbial 

community of AF into a more specialised and homogenous community than in the AD 
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reactor. This decrease in community richness, diversity and evenness is in line with what 

other studies reported for organic overloading of AD and for chain elongation studies 

producing C8 [76, 84, 89]. Improvements in hydrolysis and MCCA yield, or integration within 

a broader bio-refinery context that includes post chain elongation treatment will be required 

in practise if equivalent waste reduction and stabilization to AD are to be obtained. 

High investments in highly specific infrastructure and/or lack of skills and expertise are some 

of the main technical barriers hindering adoption of advanced wastewater treatment 

technologies [90, 91]. Here we have shown that MCCA production can be stimulated from 

FW fermentation without supplementation of methanogenic inhibitors, electron donors or 

growth medium in a simple, single-stage STR by manipulation of the organic load. Thus, it 

is similar to the current operation of established AD systems, in particular it is comparable 

to acid-phase digesters that also operate at increased organic load and lower pH. In 

addition, the high-COD FW substrate that required extended retention times or dilution for 

AD, is more advantageous to apply as substrate for MCCA production hence overcoming 

some of the difficulties faced in FW AD. However, while the fermentation process itself could 

allow repurposing current digesters, significant research efforts are still required regarding 

separation and purification of MCCA to obtain marketable products. 
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Chapter 4. Selecting fermentation products for food 

waste valorisation with HRT and OLR as the key 

operational parameters 

This chapter tackled the second research objective concluded from the literature review: 

evaluating how HRT and OLR affect food waste fermentation and MMC composition. In 

doing this, it build further on identifying operational strategies to produce MCCA from food 

waste. The mechanisms underlying fermentation were analysed by microbial community 

analysis and cycle studies, thus, tackling research objectives five and six. 

It was critical to evaluate how the interplay between HRT and OLR affect fermentation 

outcome and the microbial community. Namely, the previous chapter demonstrated that an 

increased OLR due to an increase in COD-content of the feedstock, stimulated chain 

elongation (Chapter 3). The effect of HRT was unaddressed. As outlined in the literature 

review (Chapter 2), the HRT dictates the time available for feedstock hydrolysis and 

microbial growth. Since the HRT and OLR are inversely related in the stirred tank reactors 

used, i.e., the reactor setup determined by the thesis scope, it is crucial to understand the 

implications when trying to target MCCA by increasing OLR, and inevitably decreasing HRT 

when the COD-content of the feedstock is fixed.  

Three combinations of HRT and OLR were tested and three different fermentation profiles 

were obtained. These results highlighted the product flexibility of acidogenic MMC 

fermentation. An adaptable product portfolio is attractive for bio-waste valorisation. 

Therefore, the results were discussed in this context and submitted as a manuscript for 

publication to the journal Waste Management. 

This chapter is submitted in an alternative thesis format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University of 

Bath. This work was submitted for publication in Waste Management: 

V. De Groof, M. Coma, T. Arnot, D. J. Leak, and A. B. Lanham, “Selecting fermentation 

products for food waste valorisation with HRT and OLR as the key operational parameters,” 

Waste Management, Submitted manuscript 

The dataset was made available as: 

V. De Groof, M. Coma Bech, T. Arnot, D. J. Leak, and A. Lanham, "Dataset for "Selecting 

fermentation products for food waste valorisation with HRT and OLR as the key operational 

parameters"," ed. Bath: University of Bath Research Data Archive, 2020. 

doi:10.15125/BATH-00946 
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Abstract 

Acidogenic fermentation is an attractive emerging food waste valorisation technology 

because a range of value-added products can be obtained. However, to improve product 

selectivity, a better understanding is required on how operating strategies impact the 

microbial community and fermentation outcome. This study demonstrated that selection of 

the hydraulic retention time (HRT) and the organic loading rate (OLR) allowed targeting 

different fermentation pathways in a single-stage, semi-continuous stirred tank reactor. 

Three combinations of HRT and OLR were tested in duplicate reactors to distinguish the 

effect of each operating parameter. Three fermentation profiles with distinct microbial 

communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of 

carboxylates) was produced when operating at an HRT of 8.5 days and OLR around 12 

gCOD L-1d-1. Operating at an HRT that was two days longer, yet with similar OLR, stimulated 

chain elongation (up to 13.6 gCOD L-1
 of n-caproic acid). This was reflected by a more 

diverse microbial community with a higher relative abundance of genera related to 

secondary fermentation such as chain elongation. Operating at a higher OLR (20 gCOD L-

1d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) 

harbouring a community richer in acid-resistant homofermentative Lactobacillus spp. Thus, 

different fermentation products were obtained in the same reactor configuration by small 

adjustments in two key operating conditions. These findings demonstrate that a flexible 

product portfolio can be achieved which improves the economic potential of acidogenic 

fermentation as food waste valorisation technology. 
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4.1.1. Introduction 

Effective food waste (FW) management systems should provide cost-efficient resource and 

energy recovery to enable a circular bio-economy and reach international sustainability 

targets [1, 2]. However, landfilling and incineration are still widely used for FW disposal, 

which lead to greenhouse gas emissions, are energy intensive and result in an irrevocable 

loss of resources [3, 4]. To attain the full material and economic potential of FW valorisation, 

recycling systems that allow for an assortment of products are key [5, 6]. 

A range of promising technologies are emerging that use acidogenic fermentation with 

anaerobic microbial communities to generate different value-added products from bio-

wastes, often alternative or supplementary to more conventional anaerobic digestion (AD) 

[7, 8]. For instance, carbohydrates in FW can be fermented to produce lactic acid, ethanol, 

volatile fatty acids (carboxylic acids with 1 to 4 carbon atoms, VFA) or hydrogen [9-11]. 

Consecutive fermentation steps can occur, for instance, lactic acid can be further 

metabolised to VFA, or VFA can be elongated with lactic acid or ethanol as electron donor 

to generate medium chain carboxylic acids (5-8 carbon atoms, MCCA) [12, 13]. These 

products can be extracted to serve as renewable commodity chemicals or liquid fuels [14-

16]. Alternatively, the enriched fermentation effluent could serve as feedstock for other 

biological processes, e.g., polyhydroxyalkanoate (PHA) production, a biodegradable 

substitute to fossil fuel plastics [17].  

However, microbial communities in acidogenic fermentation have a wide and complex 

metabolic capacity, which makes it challenging to steer acidogenic fermentation selectively 

towards a target product [18]. Generally, specific fermentation products are targeted in 

studies by manipulating operating conditions, such as the operating temperature, pH, 

applied organic loading rate (OLR) and retention times [19]. However, when it comes to 

industrial-scale operation as currently applied in AD, control is most commonly exerted by 

manipulating the feeding rate, which determines retention time and OLR [20]. Continuous 

stirred tank reactors (CSTRs) are the most common reactor configuration for AD on 

commercial scale due to their ease of operation and low investment and operating costs 

[21]. Being able to select for target acidogenic fermentation products within a CSTR 

configuration by adjusting the HRT or OLR, thus similar as current AD operation, would be 

very attractive as supplementary FW valorisation technology.  

Retention time can be defined as (i) in relation to the liquid, i.e., the hydraulic retention time 

(HRT); or (ii) the solid feedstock fraction and microorganisms, i.e., the sludge retention time 

(SRT). The SRT drives the composition of the microbial community via differential growth 

rates between species. For instance, due to the slow growth rate of methanogens, AD must 
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operate at long SRT values. For the same reason, acidogenic fermentation can be selected 

instead of methanogenesis by reducing the SRT to less than 5-8 days [22, 23]. The HRT 

dictates the time available for the feedstock to be hydrolysed and fermented, and hence 

overall throughput. For complex organic feedstocks, acidification generally improves by 

operating at retention times of 15 days or more [24, 25]. In addition, increased HRT 

generally results in a shift in the product spectrum towards more reduced compounds, i.e., 

longer carboxylic acids [18].   

A combination of the HRT and the organic content of the feedstock will determine the 

organic loading rate (OLR) and the feed-to-microbial ratio (F/M) exerted [18]. Raising the 

OLR to increase F/M is a strategy applied to target carboxylic acid production by inhibiting 

methanogenesis via organic overload [26].  Extensive literature reviews show that an 

increase in OLR generally increases carboxylic acid production, up to a peak between 50 

to 100 gCOD L-1d-1, which then plateaus or declines [27]. In addition, operating at increased 

OLR can be used as strategy to shift AD of FW towards VFA accumulation and further to 

stimulate chain elongation for MCCA production [28]. However, other studies have found 

that increasing the OLR in acidogenic FW fermentation systems stimulated lactic acid 

production rather than carboxylic acids [29, 30].  

Thus, depending on the study, either VFA, lactic acid or MCCA were targeted by 

manipulating OLR or retention times. However, in CSTRs, the SRT equals the HRT, and 

the OLR is inversely related to the HRT. Thus, the selection of an optimal HRT or SRT to 

target a specific product will affect which OLR can be applied with a particular feedstock 

and vice versa, which is often overlooked. In addition, limited studies provide a systematic 

investigation of the impact of these operating parameters on the microbial community. 

Improved understanding is required on how the OLR and HRT each direct fermentation 

pathways so that an operating strategy can be designed to target each specific product in 

acidogenic FW fermentation in CSTRs. This would allow developing manageable operating 

strategies similar as currently applied in AD that provide a broad and flexible product 

portfolio for FW valorisation. Therefore, this study aimed at untangling the effect of OLR 

and HRT on acidogenic fermentation in a semi-continuous STR system. To observe the 

impact of HRT and OLR on product outcome and on the respective microbial community, 

duplicate semi-continuous STRs were operated at three different conditions: high HRT with 

low OLR (HH/LO), low HRT with low OLR (LH/LO), and low HRT with high OLR (LH/HO). 

These results provide a concrete strategy to direct acidogenic fermentation of FW into 

different and specific products of interest, and thus, demonstrate the opportunity of 

repurposing existing single stage AD assets to diversify the product range from FW 

valorisation. 
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4.1.2. Materials and Methods 

4.1.2.1. Feedstock and inoculum 

The feedstock comprised unpackaged Category 3 mixed FW from a full-scale industrial 

digestion plant (GENeco, Bristol, UK). The FW is a slurry-like mixture obtained in the plant 

by grounding FW collections from households, restaurants, supermarkets and other 

catering services, with liquid streams from the food-processing industry and/or the liquid 

fraction of AD effluent. Upon collection, the FW was stored in aliquots for feeding purposes 

at -18 °C. Two batches of FW were collected, and each set of duplicate semi-continuous 

reactors were operated with the same feed throughout (Table 4-1). The fermentation runs 

HH/LO and LH/LO were inoculated with an acidogenic fermentation culture from an in-

house reactor that operated under similar conditions, which was stored at 4°C [28]. The 

LH/HO systems were inoculated with effluent from HH/LO reactors. 

Table 4-1 Characteristics of the two batches of food waste (FW) collected and the reactor system in which they 
were used. HH/LO was operated at 10.4 ± 1.4 days HRT and 12.7 ± 1.6 gCOD L-1d-1 OLR, LH/LO at 8.5 ± 0.5 
days HRT and 11.9 ± 0.6 gCOD L-1d-1 OLR, and LH/HO at 8.3 ± 0.4 days HRT and 19.6 ± 1.0 gCOD L-1d-1 OLR. 
Samples were analysed in duplicates. 

Parameter Unit FW1 FW2 

Reactor run  HH/LO LH/LO, LH/HO 

pH  4.05 ± 0.10 4.07 ± 0.02 

Conductivity mS cm-1 6.9 ± 0.2 8.3 ± 0.4 

Total Solids % w/w 10.7 ± 0.7 11.3 ± 0.2 

Volatile Solids % w/w 8.8 ± 0.3 10.3 ± 0.2 

Total COD gCOD L-1 130 ± 9 163 ± 2 

Soluble COD gCOD L-1 63.7 ± 0.8 76.4 ± 1.5 

Ethanol g L-1 12.7 ± 0.5 4.9 ± 0.4 

Lactic acid g L-1 19.7 ± 1.3 21.7 ± 0.2 

Acetic acid g L-1 4.5 ± 0.3 2.6 ± 0.2 

n-Propionic acid g L-1 0.7 ± 1.0 2.1 ± 0.6 

4.1.2.2. Experimental set-up and reactor operation 

For each combination of OLR and HRT, a pair of 2 L glass bioreactors were operated in 

duplicate, each with a 0.6 L working volume, vertical mechanical stirrers (Bioprocess 

Control, Lund, Sweden), and regulated at 35 °C provided by a regulated warm water bath. 

Reactors were operated semi-continuously. A fixed volume of reactor effluent determined 

by the operating HRT was replaced every 3.5 days with thawed FW (Table 4-2). The FW 

used for LH/LO systems was diluted with tap water to obtain the required organic content 
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as determined by the operating OLR. After addition of fresh feed, the pH was corrected to 

5.9 ± 0.1 by addition of sodium hydroxide (1 or 2 M). Gas production was monitored via 

water displacement using 2 L graduated glass columns containing acidified water (pH < 3.5, 

HCl) to avoid carbon dioxide absorption in the water, and calibrated at Standard 

Temperature and Pressure (STP, 273.15 K and 100 kPA). The columns were connected to 

the reactor headspaces via a buffer bottle to prevent liquid from the columns from entering 

the reactors.  

Table 4-2 Operating conditions for semi-continuous fermentation of food waste (FW) – duplicates were used. 

Condition HRT (days) OLR (gCOD L-1 d-1) FW batch 

HH/LO 10.4 ± 1.4 12.7 ± 1.6 1 

LH/LO 8.5 ± 0.5 11.9 ± 0.6 2 (2/3 dilution) 

LH/HO 8.3 ± 0.4 19.6 ± 1.0 2 

At start-up, reactors were inoculated and diluted with tap water to obtain a biomass content 

of approx. 14 gVS L-1. They were then left to acclimatise overnight to operating temperature 

(35 °C). During start-up for low OLR fermentations (LH/LO and HH/LO), the first feed was 

diluted 50% with tap water. For the higher OLR fermentation (LH/HO), the first feed cycle 

comprised a full feed. Day 0 of operation corresponds to the first day of feeding at full 

organic strength. 

4.1.2.3. Evaluation of fermentation performance 

To monitor fermentation performance, liquid fermentation products and pH were analysed 

in each effluent sample, solids and COD were measured weekly and gas composition in the 

water displacement columns was evaluated before feed addition (analysis see Section 

4.1.2.4.). After operating for three HRT to equilibrate, cycle studies were performed to 

elucidate the underlying fermentation metabolism. The reactor content was sampled at 

structured time intervals between feeding events without opening the reactor headspace. 

Samples were immediately processed for product analysis. Only one of the two HH/LO 

reactors was subjected to a cycle study as the second reactor had ingested water from the 

water displacement gas measurement column in the final feeding cycle due to under 

pressure. 

The rate of acidification was calculated as the amount of OH- required to correct the pH in 

the reactor at the point of feeding, normalized over the time in between feeding events 

(Equation (4-1)). 
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𝐴𝑐𝑖𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑖) =  
𝐶𝑁𝑎𝑂𝐻(𝑖)×𝑉𝑁𝑎𝑂𝐻(𝑖)

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟×(𝑡(𝑖)−𝑡(𝑖−1))
 [mM d-1], (4-1) 

where 𝑖 represents the feeding event, 𝐶𝑁𝑎𝑂𝐻 is the molar concentration of the sodium 

hydroxide solution applied,  𝑉 represents volume in L, and 𝑡 represents the day of reactor 

operation, with 𝑡(𝑖) − 𝑡(𝑖−1) being the time between feeding events. The OLR, HRT and net 

product yields (𝑌𝑝) were calculated for each feeding cycle as a proxy to continuous operation 

according Equations (4-2) and (4-3) [28]. 

𝑂𝐿𝑅(𝑖) =  
𝐶𝑓𝑒𝑒𝑑(𝑖) × 𝑉𝑓𝑒𝑒𝑑(𝑖)

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟(𝑖) ×(𝑡(𝑖+1)−𝑡(𝑖)) 
=  

𝐶𝑓𝑒𝑒𝑑(𝑖)

𝐻𝑅𝑇(𝑖)
   [gCOD L-1

 d-1], (4-2) 

𝑌𝑝(𝑖) =  
𝐶𝑝(𝑖),𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡− 𝐶𝑝(𝑖−1),𝑓𝑒𝑒𝑑

𝐶𝑓𝑒𝑒𝑑 
 [%], (4-3) 

where 𝐶𝑝 is the product concentration in the effluent in gCOD L-1 and 𝐶𝑓𝑒𝑒𝑑 is the total COD 

in the feed in gCOD L-1. The average OLR and HRT were then obtained by averaging over 

the entire operation. The average product concentration, 𝑌𝑝 and rate of acidification were 

calculated by averaging the values obtained at each feeding event. This was done for each 

operating condition tested and started after one full HRT cycle to exclude start-up 

conditions. All data has been made available as a dataset [31]. 

4.1.2.4. Chemical analysis 

C1-C4 carboxylic acids, ethanol, lactic acid, glucose were measured by high pressure liquid 

chromatography with a refractor index detector as previously described [26] with the oven 

temperature adjusted to 65 °C. The more hydrophobic MCCA (C5-C8) were analysed by 

gas chromatography (GC) equipped with flame ionization detector (FID), and the gas 

composition (N2, O2, H2, CH4 and CO2) for the HH/LO and LH/HO fermentations were 

determined by GCs equipped with FID and thermal conductivity detector as previously 

described [28]. Due to a technical problem, composition from the biogas produced in the 

LH/LO system could not be analysed. Air intrusion was corrected by assuming produced 

biogas contains 0% O2 and N2.  

Total solids (TS) and volatile solids (VS) were determined according to Standard Methods 

2540G using fresh samples [32]. Chemical oxidation demand (COD) was measured using 

kits (LCK014, LCI400, Hach, Düsseldorf, Germany) before and after filtration (0.45 µm) for 

total and soluble COD, respectively. 

4.1.2.5. Microbial community analysis 

Biomass samples for microbial community analysis were taken and stored at -18°C. The 

inoculum was sampled in duplicate at the start-up of each duplicate reactor (i.e., n=4 for 

each operational condition), before the first feeding event. To evaluate the effect of 
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operating conditions on the microbial communities of the reactors, the final two effluent 

collections were sampled in each duplicate reactor and sequencing results were pooled 

together for bioinformatics processing (i.e., n=4 for each operational condition). Microbial 

samples were send to DNAsense (Aalborg Øst, Denmark) for DNA extraction, 16S rRNA 

gene amplicon sequencing and bioinformatics processing where reads were clustered by 

operational taxonomic units (OTUs), taxonomy assigned and relative abundance 

determined, as previously described [28]. Sequences were deposited with the ENA 

database (accession number PRJEB40478). The results were analysed using the 

DNAsense app (DNAsense, Aalborg Øst, Denmark), which is based on the ampvis package 

(v.2.5.8) in R (v. 3.5.1) [33, 34]. The number of sequencing reads per sample was between 

7705 and 27323. Rarefraction curves, sequences, relative abundances and taxonomic 

classifications for all samples have been made available as part of a dataset [31]. The OTUs 

with less than 0.1% relative abundance in any sample were removed and a Non-Metric 

Multidimensional Scaling (NMDS) plot on the Bray-Curtis dissimilarity matrix was 

constructed to compare similarity of the microbial community structures in each biomass 

sample [35]. Alpha-diversity indices were calculated as indicator for biodiversity of the 

microbial communities and converted to effective diversity based on Hill numbers 1D and 

2D [36-38].  

4.1.3. Results and Discussion 

4.1.3.1. Stimulating chain elongation at longer retention times 

The effects of HRT and OLR were evaluated separately by comparing the performance of 

semi-continuous fermentation of FW in duplicate STRs. Reactors operated as HH/LO were 

fed with the first batch of substrate, FW1, at a HRT of 10.4 ± 1.4 days and OLR of 12.7 ± 

1.6 gCOD L-1 d-1. To determine the impact of HRT, a second batch of substrate was 

obtained, FW2, and diluted to allow operation of the LH/LO reactors at an HRT that was 2 

days lower than HH/LO but with a similar OLR (Table 4-2). The total carboxylic acid (CA) 

yield was similar for HH/LO and LH/HO, i.e., 𝑌𝐶𝐴 of 26 ± 3 % and 22 ± 4 % respectively. 

However, the product distribution differed (Figure 4-1).  
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Figure 4-1 Average concentration profiles and net yields of liquid fermentation products for three sets of 
operating conditions: (A) HH/LO at 10.4 ± 1.4 days HRT and 12.7 ± 1.6 gCOD L-1d-1 OLR, (B) LH/LO at 8.5 ± 
0.5 days HRT and 11.9 ± 0.6 gCOD L-1d-1 OLR, (C) LH/HO at 8.3 ± 0.4 days HRT and 19.6 ± 1.0 gCOD L-1d-1 
OLR. Values are averaged over duplicate reactors. Net yields are determined over time from after start-up 
(indicated by dotted line) to end of operation. 

The LH/LO system mainly produced n-butyric acid (C4, 𝑌𝐶4of 13 ± 2%), resulting in an 

average concentration of C4 in the effluent of 13 ± 2 gCOD L-1, i.e., 55 ± 14% of the total 

CAs (Figure 4-1 B). In other studies focusing on butyrate-type FW fermentation selectivity 

was improved to 80% by, for example, control of pH at 6 [39, 40]. In the LH/LO systems in 

this work the pH decreased to a minimum of 5.5 between feeding events as pH was only 

corrected after feed addition (Figure 4-2 B). Thus, a more constant pH control might have 

improved selecting for C4 during fermentation. 
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Figure 4-2 Concentration profiles of liquid fermentation products and pH between semi-continuous feeding 
events. Time represents hours after the initial feed addition. Three sets of operating conditions were compared: 
(A) HH/LO at 10.4 ± 1.4 days HRT and 12.7 ± 1.6 gCOD L-1d-1 OLR, (B) LH/LO at 8.5 ± 0.5 days HRT and 11.9 
± 0.6 gCOD L-1d-1 OLR, (C) LH/HO at 8.3 ± 0.4 days HRT and 19.6 ± 1.0 gCOD L-1d-1 OLR. Values are averaged 
over duplicate reactors and error bars present standard deviations (with the exception of the HH/LO system 
which show only 1 replicate, as the second replicate became contaminated).  
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In comparison, at longer HRT (HH/LO systems) less C4 acid (𝑌𝐶4 of 10 ± 3%) and more 

acetic acid (C2, 𝑌𝐶2 of 3 ± 1%) and n-caproic acid (C6, 𝑌𝐶6 of 7 ± 3%) were produced (Figure 

4-1 A). Thus, a more mixed-acid metabolism was obtained in this system, where C2, C4 

and C6 respectively comprised on average 21 ± 2%, 33 ± 10% and 21 ± 11% of the total 

CAs. The maximum C6 concentration reached in the effluent of the HH/LO reactors (13.6 

gCOD L-1) was over three times higher than those in the LH/LO reactors (3.4 gCOD L-1). 

Trace concentrations of heptanoic (C7) and caprylic acid (C8) were detected near the end 

of operation (<0.5 gCOD L-1). The higher concentrations of these MCCA in the HH/LO 

systems is likely from chain elongation of VFA to MCCA with ethanol and lactic acid being 

utilised as electron donors [41]. Ethanol accumulated under all operating conditions, as it 

was present in the influent (Table 4-1). However, in the HH/LO systems ethanol was net 

consumed (𝑌𝑒𝑡ℎ𝑎𝑛𝑜𝑙 of -6 ± 4%) while in the LH/LO reactors it was net produced (𝑌𝑒𝑡ℎ𝑎𝑛𝑜𝑙 of 

3.4 ± 0.5%). The ethanol concentration averaged 9.7 ± 0.5 gCOD L-1 and 18 ± 5 gCOD L-1 

in LH/LO and HH/LO systems, respectively, and these are concentrations which promote 

chain elongation [42]. For both LH/LO and HH/LO operating conditions, lactic acid from the 

influent (Table 4-1) was detected in the effluent at the start but was nearly fully consumed 

once semi-continuous operation was established.  

To evaluate the fermentation mechanism, the reactor contents were sampled between 

feeding points after operating for 3 HRT (Figure 4-2). In the LH/LO systems lactate fell below 

detection limits and ethanol and CAs, mostly C4, increased in the first 13 hours after feeding 

(Figure 4-2 B). After, limited further fermentation was observed. In contrast, when operating 

at a longer HRT in the HH/LO reactors, primary acidogenic fermentation was followed by a 

consecutive fermentation stage of chain elongation (Figure 4-2 A). Lactic acid and VFA 

showed no net change for the first 10h after feed addition, however, the pH dropped to 5.68 

indicating acidogenic fermentation. After 24h of fermentation, the pH recovered to 5.83 due 

to lactic acid being fully consumed, ethanol decreased slightly, and MCCA increased to 18.7 

gCOD L-1. This is in line with reports for repeated batch fermentation of FW, where initial 

acidogenic fermentation is followed by lactate-based chain elongation where the pH 

increases [13]. When lactate was depleted, no major changes were seen in the 

concentrations of fermentation products over the following two days. No more chain 

elongation took place even though ethanol and VFA were still present. Inhibition of further 

fermentation was not likely as the concentration of protonated C6 (maximum HC6 of 0.72 g 

L-1), the most antimicrobial form, and ethanol remained below reported inhibitory levels 

(0.87 g L-1 HC6 and 40 g L-1 for ethanol) [42, 43]. It is more likely that the limited availability 

of lactate hindered further fermentation. Production of MCCA could probably be optimised 



 

100 
 

by operating at a higher organic load to stimulate in situ lactic acid production, yet without 

compromising on retention times, thus by using a feedstock with a higher COD content [28]. 

To date chain elongation in FW fermentation, without supplementation of electron donors, 

has predominantly been attributed to lactate as the electron donor [13]. However, several 

studies have reported that addition of ethanol to pre-fermented FW also resulted in chain 

elongation [44]. Wu et al. found that combining ethanol and lactic acid resulted in a 

syntrophic interaction improving MCCA production in the fermentation of Chinese liquor 

wastewater [62]. An initial ethanol content around 4 gCOD L-1 initiated chain elongation in 

batch fermentation of liquid FW (nearly 2 gCOD L-1 C6 was formed) [26]. Due to the net 

consumption of ethanol in the HH/LO reactors, we hypothesize that either chain elongation 

occurred with both the electron donors, and/or that ethanol due to its high concentration in 

the HH/LO systems could be oxidized to C2, resulting in a higher 𝑌𝐶2, with co-production of 

H2 [44]. The HH/LO reactors produced 0.6 ± 0.1 L L-1d-1 biogas containing 22 ± 9 % H2 . The 

increased level of C2 and H2 production stimulate chain elongation, the former as a 

substrate and the latter to ensure a reductive environment preventing MCCA degradation 

[43].  

4.1.3.2. Lactic acid production at elevated organic loading rate 

The effect of varying OLR was evaluated by comparing the performance of the LH/LO 

systems to operation at higher OLR with the same HRT (the LH/HO reactors). The same 

substrate, FW2, was used and an increased OLR was obtained by not diluting the substrate 

as was done for the LH/LO systems (Table 4-2). In the LH/HO reactors, lactic acid was the 

dominant product (34 ± 5 gCOD L-1, 𝑌𝑙𝑎𝑐𝑡𝑎𝑡𝑒of 7 ± 2 %) (Figure 4-1 C). Ethanol also 

accumulated up to 14 ± 5 gCOD L-1, but with 𝑌𝑒𝑡ℎ𝑎𝑛𝑜𝑙 near zero as it was present in the FW2 

feed. Longer chain carboxylic acids, i.e., C5 and C6, were present at start-up of the LH/HO 

systems due to their presence in the inoculum, but they were fully washed-out after two 

HRT cycles. Biogas was produced at an average rate of 0.13 ± 0.09 L L-1d-1, and CO2 

comprised over 99%. Fermentation studies focusing on synthesis of lactic acid from FW 

reached similar outcomes, i.e., 30 to 40 gCOD L-1 lactic acid, but at lower HRT values of 3 

to 5 days [9, 30]. Thus, yields for lactic acid might increase by shortening the HRT below 

8.5 days. 

The lactic acid production in the LH/HO reactors was accompanied by strong acidification. 

NaOH was dosed at an average of 33 ± 5 mM d-1 to maintain pH, whereas only 11 ± 2 and 

15 ± 4 mM d-1 of NaOH were required for the LH/LO and HH/LO systems, respectively. In 

LH/HO the pH decreased rapidly in the first 12 hours after feed addition and plateaued at 

5.0 (Figure 4-2 C). This was accompanied by minimal change in the concentrations of liquid 
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products, with only C2 and C3 increasing slightly by 2 ± 1 and 1.6 ± 0.7 gCOD L-1 

respectively. Rapid acidification of the environment is a known outcome of the biotic activity 

of lactic acid bacteria (LAB), which gives them a competitive advantage over 

microorganisms with lower acid tolerance (Bachmann et al., 2017). Tang, et al. [45] found 

FW to be fermented mostly into lactic acid at pH 5, while VFA were obtained at pH 6. 

Because pH was not corrected during the cycle, and only at the feeding points, the 

acidification of the media by LAB likely allowed them to outcompete other fermentation 

bacteria. This effect did not take place in the LH/LO or HH/LO reactors as the pH remained 

above 5.5 during the entire cycle in each case (Figure 4-2).  

Gu, et al. [46] noted in their leach bed reactor that a load of 100g per day of FW gave C4 

as the dominant VFA product. However, when operating at 200g per day of FW the product 

spectrum contained mainly lactic acid. Thus, similarly, at an HRT around 8.5 days and OLR 

around 12 gCOD L-1 d-1 in the LH/LO system C4 was produced while at the same HRT but 

nearly double OLR (20 gCOD L-1 d-1), acidogenic lactic acid-type fermentation occurred. 

However, the OLR was still within a suitable range for carboxylic acid fermentation (5-50 

gCOD L-1 d-1) according to literature [18]. Another study, seemingly in contrast, reported 

MCCA production to be stimulated in FW fermentation by an OLR around 20 gCOD L-1 d-1 

because it allows to accumulate electron donors, i.e., precursors of chain elongation [28]. 

However, in that study HRT was almost double (14 days) than the HRT applied in the LH/HO 

system (8.5 days). Hence, suggesting that at insufficiently long HRT, an increase in OLR 

will overload the system and result in acidogenic lactic acid production. To determine if the 

effects observed are simply due to the operational parameter or if these have in fact 

selected for different microbial communities, a microbial community analysis was 

undertaken. 

4.1.3.3. Reactor operation selected different lactic and carboxylic acid bacteria 

Duplicate samples were taken from each replicate reactor before the first feeding to 

characterise the inoculum, and at the end of operation to characterise the microbial 

communities at quasi-steady state. The communities from sample duplicates, and reactor 

duplicates were highly similar (Figure 4-3 A). In contrast, the microbial communities from 

each reactor at quasi-steady state were very distinct from those of the respective inoculums, 

suggesting that each set of operational conditions influenced a shift in the microbiome. The 

cultures of the inoculum for the LH/LO reactors and of the LH/HO reactors in quasi-steady 

state were in proximity on the NMDS plot, which is expected since the first was inoculated 

from the second. However, despite the HH/LO and LH/LO reactors being given the same 

inoculum, i.e., effluent from an enriched chain elongation reactor fermenting FW, their 
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microbial cultures differed. This could be explained since before inoculation of the LH/LO 

system the inoculum had been stored around ten months longer at 4 °C compared to the 

inoculum used in HH/LO. This resulted in an alpha-diversity for the LH/LO inoculum that 

was less than half of that for HH/LO based on comparison of Hill numbers (Table 4-3). 

Interestingly, Rummeliibacillus stabekisii, a strictly aerobic Firmicute isolated from Antarctic 

soil [47], was found at high relative abundance (45 ± 3 %) in the inoculum of the LH/LO 

reactors. The change of microbial community composition during storage is in agreement 

with previous reports on preservation of microbial communities performing chain elongation 

[48]. Nevertheless, eventually similar communities evolved in the LH/LO and LH/HO 

systems and alpha-diversity increased again over operation. Thus, while storage of 

microbial communities for research purposes of environmental biotechnological 

applications remains a challenge, reactor operation eventually dictated community 

structure.  

Table 4-3 Biodiversity parameters of the microbial community in the inoculum and in the reactors operated 
according three sets of conditions (HH/LO at 10.4 ± 1.4 days HRT and 12.7 ± 1.6 gCOD L-1d-1 OLR; LH/LO at 
8.5 ± 0.5 days HRT and 11.9 ± 0.6 gCOD L-1d-1 OLR; LH/HO at 8.3 ± 0.4 days HRT and 19.6 ± 1.0 gCOD L-1d-

1 OLR). Four biomass samples were averaged per reactor operation, i.e., two samples from each of duplicate 
reactors. Samples were rarefied to a depth of 10,000 reads. 

Sample 
Observed 

OTUs 

1D 2D 
Pielou 

evenness 

Inoculum     

HH/LO 268 ± 5 26 ± 3 8.7 ± 0.7 0.53 ± 0.02 

LH/LO 151 ± 5 8.5 ± 0.6 4.0 ± 0.4 0.35 ± 0.01 

LH/HO 210 ± 12 20.6 ± 0.3 10.1 ± 0.2 0.50 ± 0.00 

Operation     

HH/LO 201 ± 10 24 ± 4 12 ± 3 0.52 ± 0.01 

LH/LO 49 ± 5 11 ± 1 6.5 ± 0.4 0.38 ± 0.02 

LH/HO 44 ± 3 8.0 ± 0.7 5.1 ± 0.9 0.34 ± 0.02 
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Figure 4-3 Microbial community analysis for each set of operating conditions (n=4, 2 reactor duplicates and two 
sample duplicates). (A) Non-Metric Multidimensional Scaling Analysis (NMDS) based on the Bray-Curtis 
distance measure of 24 samples and 177 OTUs. Each point represents the community in a specific sample. 
The closer the sample points on the plot, the more similar the communities in the samples are. Arrows indicate 
the connection from inoculum to corresponding reactor culture for each set of operating condition. (B) Microbial 
community composition on the genus level with relative abundance >1% and coloured per phylum: red = 
Proteobacteria; green = Firmicutes; orange = Bacteroidetes; grey = Actinobacteria. HH/LO operation at 10.4 ± 
1.4 days HRT and 12.7 ± 1.6 gCOD L-1d-1 OLR, LH/LO at 8.5 ± 0.5 days HRT and 11.9 ± 0.6 gCOD L-1d-1 OLR, 
and LH/HO at 8.3 ± 0.4 days HRT and 19.6 ± 1.0 gCOD L-1d-1 OLR. 
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Generally, less OTUs were detected in the reactor communities compared to the inocula 

(Table 4-3). The alpha-diversity in the reactors operated at an HRT that was two days longer 

(HH/LO) was double based on the first and second order Hill number (1D = 24 ± 4, 2D = 12 

± 3) compared to the other systems, i.e., LH/LO and LH/HO. Thus, a more diverse 

community was obtained at longer HRT likely due to slower growing fermenters being able 

to remain in the system.   

The major dominant phyla were Firmicutes, Actinobacteria and Bacteroidetes for all the 

three operational strategies (Figure 4-3 B). The genera with high relative abundances were 

mostly obligate or facultative anaerobic bacteria, tolerant to mildly acidic environments, with 

wide-ranging hydrolytic capabilities, and the ability to produce organic acids such as lactic 

acid and VFA from fermentable sugars [49-53].  Various VFA-producing genera were 

detected, especially in the LH/LO reactors, which is in line with their predominant 

functionality, i.e., C4 production. For example, Prevotella 7 was present in all reactors but 

was most abundant in the LH/LO systems (Figure 4-3 B). This species converts lactic acid 

to VFA in FW fermentation [54]. The VFA-producing Megasphaera and Acidaminococcus 

were almost exclusive to the LH/LO reactors. 

LAB consistently showed the highest relative abundance values. The LAB were assigned 

predominantly to the genus of Lactobacillus in the reactors operated at shorter HRT (41 ± 

4 % in LH/LO and 68.8 ± 0.6 % in LH/HO). Lactobacillus spp. are known to be dominant in 

lactate-type fermentation of FW at low pH (<4.5) [54, 55].The high relative abundance of 

Lactobacillus spp. in LH/LO, but the absence of lactic acid in the effluent, indicates C4 likely 

resulted from lactate being metabolised [12]. 

In the microbial communities of the reactors, up to 31 different OTUs were classified as 

Lactobacillus spp., and these had varying relative abundances according to reactor 

operating conditions. The OTUs classified in the genus of Lactobacillus with a relative 

abundance > 1% were fed into a BLAST search to distinguish them according their novel 

genera, as recently proposed by Zheng, et al. [52]. For instance, some of the most relatively 

abundant Lactobacillus OTUs were reclassified into the novel genus of heterofermentative 

Limosilactobacillus spp, common for food fermentation where they metabolise 

carbohydrates into lactate, ethanol and/or C2 and CO2 (Table 4-4).
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Table 4-4 Overview of the different OTUs assigned to the genus Lactobacillus with a minimal relative abundance of 1% in at least one of the reactors (HH/LO at 10.4 ± 1.4 days 
HRT and 12.7 ± 1.6 gCOD L-1d-1 OLR; LH/LO at 8.5 ± 0.5 days HRT and 11.9 ± 0.6 gCOD L-1d-1 OLR; LH/HO at 8.3 ± 0.4 days HRT and 19.6 ± 1.0 gCOD L-1d-1 OLR). The OTU 
sequences were run in BLAST, and the hits with highest identity match (%) were used to indicate potential reclassification of these Lactobacillus OTUs into the new classification 

of 25 genera proposed by Zheng, et al. [52].  

OTU_ID 
Relative abundance (%) 

BLAST result Reclassification 
HH/LO LH/LO LH/HO 

OTU_1 11 ± 6 32 ± 2 36 ± 8 98.63% with various L. mucosae and L. reuteri strains Limosilactobacillus 

OTU_6 0.9 ± 0.7 3 ± 3 14 ± 7 98.63% with various L. amylovorus and L. acidophilus strains Lactobacillus 

OTU_27 0.1 ± 0.1 0.0 ± 0.0 6 ± 1 98.97% with unclassified homofermentative L. [56] Lactobacillus 

OTU_24 0.1 ± 0.2 0.0 ± 0.0 5 ± 2 98.29% with various L. oris, L. reuteri and L. vaginalis strains  Limosilactobacillus 

OTU_171 0.5 ± 0.2 5 ± 2 1.8 ± 0.6 98.63% with various L. mucosae and L. fermentum strains Limosilactobacillus 

OTU_13 4 ± 2 0.0 ± 0.0 0.1 ± 0.2 97.26% with various L. johnsonii strains Lactobacillus 

OTU_9 3 ± 2 0.0 ± 0.0 0.0 ± 0.0 
98.63% with various strains: L. kimchicus, L. pentosiphilus, L. odoratitofui, L. 

silage 
Secundilactobacillus 

OTU_35 1.7 ± 0.3 0.3 ± 0.1 0.3 ± 0.2 98.63 % with various L. ginsenosidimutans and L. versmoldensis strains Companilactobacillus 
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The reclassification of the Lactobacillus genus by Zheng, et al. [52] allowed a better 

comparison of microbial community and function across different operating conditions 

(Table 4-4). For instance, in the LH/HO reactors the relative abundance of 

homofermentative Lactobacillus (e.g., OTU_6 at 14 ± 7%) was higher compared to the 

systems operated at lower OLR (e.g., OTU_6 at 3 ± 3% in LH/LO and <1% in HH/LO). This 

aligns with the high lactate yield in the LH/HO system. Another example is the almost 

exclusive detection of Secundilactobacillus spp. in the HH/LO reactors.  

Secundilactobacillus spp. generally appear in systems after primary fermenters have 

depleted hexoses and disaccharides, where they perform secondary fermentation of 

metabolizing pentoses to pyruvate. Thus, by operating at an HRT of two days longer, 

secondary fermentation was stimulated which was reflected in the microbial community. 

Caproiciproducens spp. was detected in the HH/LO (5 ± 2%) and LH/LO (3 ± 2%) systems 

but not in the LH/HO reactor. The sequence of the OTU assigned to the genus 

Caproiciproducens with the highest relative abundance was closely similar to the bacteria 

Ruminococcaceae CPB6, found in several lactic acid-based chain elongation systems 

(98.63% identity match in BLAST) [57, 58]. Caproiciproducens spp. belongs to a distinct 

lineage of Clostridium group IV in the family of Ruminococcaceae, and can produce ethanol, 

lactic acid, C2, C4 and C6 via chain elongation [59, 60]. It was enriched during cheese whey 

fermentation for VFA production by increasing SRT from 10 to 15 days [61]. Thus, operating 

at longer HRT in the HH/LO selected for a higher relative abundance of Caproiciproducens 

spp. However, this genus was also detected at lower HRT in LH/LO, thus at the lower HRT 

it did not fully wash out. Its absence (undetected) in the LH/HO system suggests that at 

higher OLR it was unable to compete in the microbial community of acidogenic lactate-

fermentation.  

Caproiciproducens was not the only genus found that relates to C6 production. Some OTUs 

were assigned to Clostridium sensu stricto 12 with a relative abundance larger than 1% only 

found in the HH/LO systems. Members of this genus have been found to either produce C6 

via ethanol-based chain elongation or compete with it by excessive production of C4 [48, 

58, 62]. The presence of both genera that contain chain-elongating species using both lactic 

acid and ethanol strengthens the hypothesis that both types of chain elongation could take 

place.  

Other prominent LAB included Olsenella, which had the highest relative abundance (38 ± 

4%) outscoring Lactobacillus spp. (22 ± 8 %) in the HH/LO reactors. Olsenella spp. were 

also detected in the LH/LO systems but to a lesser extent (6 ± 1 %), whilst in the LH/HO 

reactors the relative abundance was below 1%. This genus ferments carbohydrates to 
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predominantly lactic acid and is linked with hydrolysis and primary fermentation in chain 

elongating systems, usually co-occurring with the chain-elongating Pseudoramibacter spp. 

[50, 58, 63]. However, the latter were not detected here.  

The other LAB detected were part of the family of Bifidobacteriaceae where the dominant 

genus depended on which OLR was employed. Bifidobacterium spp. had a relative 

abundance of 7 ± 4% in the LH/LO and HH/LO systems but were less than 1% when 

operating at higher OLR (LH/HO reactors). In contrast, Aeriscardovia spp. were the second 

most abundant in the LH/HO reactors (15.3 ± 0.9%) but showed < 1.1 % in the reactors 

operated at lower OLR, i.e., LH/LO and HH/LO. They are oxygen and acid tolerant bacteria 

that produce C2 and lactate, and were found before in lactic acid fermentation from FW and 

lactate-based chain elongation reactors [30, 58, 63]. Thus, operating at elevated OLR or 

HRT selected for different types of LAB, each linked to different fermentation pathways to 

lactic acid, C4 or C6 and in accordance with the kinetic profiles and phenotypes observed 

for each set of reactors.

4.1.4. Conclusion 

This study has demonstrated how separately manipulating only two of the key operational 

parameters in semi-continuous STR, i.e., the HRT and OLR, is sufficient to stimulate three 

different pathways in FW fermentation. n-Butyric acid was the main product at the lowest 

HRT and OLR tested (8.5 d and 12 gCOD L-1d-1). An HRT of two days longer stimulated 

secondary fermentation mostly to n-caproic acid from chain elongation. Instead, operating 

at higher OLR (around 20 gCOD L-1d-1) while using a similar HRT (8.5 d) led to lactate-type 

fermentation. This metabolic shift was reflected in the microbial communities. Longer HRT 

allowed for higher relative abundances of Olsenella spp., Secundilactobacillus spp. and 

species related to chain elongation. Operating at higher OLR resulted, instead, in higher 

relative abundances of homofermentative Lactobacillus spp.. Thus, to target n-butyric acid 

in FW fermentation: operating at lower OLR can avert excessive lactic acid production; and 

a lower HRT can limit secondary fermentation. Targeting lactic acid requires a higher OLR 

whereby rapid acidification allows homofermentative Lactobacillus spp. to outcompete other 

fermentative bacteria. When the goal is MCCA production, a sufficient HRT is required for 

consecutive secondary fermentation such as chain elongation. These findings provide an 

essential contribution on how OLR and HRT can serve as key parameters in the design of 

a flexible acidogenic FW fermentation platform. The possibility of having an adaptable 

product range according to market demand by repurposing existing single stage AD assets 

will allow integrating this technology within waste management systems, and hence 

accelerate a broader range of circular economy outcomes from FW valorisation. 
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Chapter 5. Feeding pattern affects balance between 

lactic acid fermentation and microbial chain 

elongation 

In the discussion of the literature review, it was hypothesized that chain elongation might 

be stimulated in acidogenic food waste fermentation by operating with a semi-continuous 

feeding pattern instead of continuous feeding. The idea was further explored in this chapter 

by comparing feeding patterns. This is in line with the third research objective of this thesis: 

assessing the effect of a semi-continuous feeding pattern on production of MCCA. 

Furthermore, to understand how feeding pattern affected fermentation, the microbial 

community and fermentation pathways were analysed, in line with research objectives five 

and six respectively. 

To allow for more continuous feeding and relate the immediate impacts to the mixed culture 

a more advanced reactor system and knowledge regarding the analysis of MMC was 

required. Therefore, a collaboration was set up with the Environmental Engineering cluster 

under the supervision of Prof. Stefan Wuertz at the Singapore Centre for Environmental Life 

Sciences Engineering (SCELSE, NTU, Singapore). The work presented in this chapter was 

performed as part of a four-month research placement.  

Some additional technical assistance was received for reactor operation, sample analysis 

and microbial community analysis. Abeed Fatima Binti Mohidin Batcha from SCELSE 

performed DNA extraction, library preparation, sending for sequencing and initial 

bioinformatics processing up to the generation of an amplicon sequence variant table. The 

microbial community statistics presented in the current work have been performed by the 

author of the thesis with guidance and examples received from experts at SCELSE. 

This chapter is submitted in an alternative thesis format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University of 

Bath. 
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5.1. Prepared manuscript: Feeding pattern affects 

balance between lactic acid fermentation and 

microbial chain elongation 

Vicky De Groof1,2, Abeed Fatima Binti Mohidin Batcha3, Ezequiel Santillan.3, Marta Coma4, 

Tom Arnot2,4,5, David J Leak4,5,6, Stefan Wuertz3, Ana B Lanham2,4,5* 
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Abstract 

Acidogenic mixed culture fermentation for the production of medium chain carboxylic acids 

(MCCA) via microbial chain elongation is a promising technology to improve bio-waste 

recycling. However, the lack in understanding on how to control the various possible 

fermentation pathways is limiting product selectivity and yields. Here, we show that feeding 

pattern affected the microbial community composition and fermentation outcome in single-

stage food waste fermentation. Co-fermentation of food waste with soybean soaking 

wastewater resulted in the predominant production of lactic acid, ethanol, and even-chained 

MCCA where n-caproic and n-caprylic acid were produced at average concentrations of 16 

± 6 gCOD L-1 and 8 ± 3 gCOD L-1
, respectively. Longer batch cycles, as evaluated by a bi-

weekly feeding pattern, resulted in a more stable product profile where a balance of lactic 

acid, ethanol and acetate fermentation was followed by chain elongation. In comparison, 

shorter batch cycles, i.e., daily feeding, attained similar yields of overall liquid fermentation 

products, yet the process was more unstable due to more frequent peaks of lactic acid 

concentration in the effluent which went up to 43 gCOD L-1. In addition, nearly double the 

amount of pH-correcting chemicals were required when operating at a daily feeding pattern. 

Thus, longer cycles in semi-continuous stirred tank reactors (sCSTR) operation improved 

not only process stability but also reduced the need for chemical addition. Statistical tests 

on reactor performance and evaluation of the microbial community through 16S rRNA gene 

amplicon sequencing revealed two competing fermentation pathways. Namely, a syntrophic 

mailto:A.Lanham@bath.ac.uk


 

115 
 

fermentation pathway whereby primary fermentation with production of lactic acid, ethanol 

and volatile fatty acids was followed by chain elongation on one side, and homolactic 

fermentation on the other. Daily reactor feeding provided homolactic Lactobacillus spp. with 

a competitive advantage over other fermentative bacteria by the more frequent introduction 

of highly biodegradable content. These results highlight how understanding competitive and 

syntrophic interactions in fermentative microbial communities can be used to improve 

process design for MCCA production. 

5.1.1. Introduction 

Recovery of energy and bio-chemicals from unavoidable bio-waste, creates opportunities 

to use resources in a more economic, effective and environmentally friendly way [1]. Food 

waste (FW) is a bio-waste with a high organic and water content and its disposal and 

treatment pose a health and environmental risk. For example, traditional FW management, 

such as landfilling and incineration, results in the emissions of greenhouse gasses and 

odours via natural fermentation [2, 3].  

Controlled anaerobic fermentation with microbial communities is an attractive bio-waste 

valorisation technology. Because distinct metabolic pathways co-exist, different 

fermentation compounds can be recovered that have application as energy carriers or as 

chemical building blocks, for instance, biogas from anaerobic digestion (AD) [4]. In microbial 

culture fermentation of FW, hydrolysis products, i.e., organic monomers, are converted to 

a mixture of ethanol, volatile fatty acids (VFA, carboxylic acids with 1 to 5 carbon atoms), 

hydrogen and/or lactic acid [5, 6]. Lactate-type fermentation can be further categorized into 

homolactic or heterolactic fermentation where, respectively, either only lactic acid or a 

combination of acetic acid and/or ethanol with lactic acid is obtained [7]. Consecutive 

fermentation steps can occur, for instance, lactic acid can be subsequently degraded to 

VFA and H2 [8], and/or VFA can undergo chain elongation with lactic acid and/or ethanol as 

electron donor to medium chain carboxylic acids (MCCA) [9]. MCCA are of particular 

interest due to their hydrophobic properties, potentially easing separation, and higher 

energetic and monetary value compared to other fermentation intermediates.  

Production of MCCA via microbial chain elongation requires a sufficient cell retention time 

in the bioreactor, inhibition of methanogenesis and reductive conditions [10]. Systems with 

biomass retention typically used for MCCA production are unsuitable for FW. This is due to 

FW generally having a high solids content (228 ± 100 g kgwet weight
-1 of total solids, TS [11]) 

leading to problems with pumping or solids accumulation. Therefore, previous lab-scale 

research aiming at MCCA production from FW in a single-stage system used semi-

continuous fermentation in leach bed or sequential batch stirred tank reactors [12, 13]. 
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During such batch-like, semi-continuous operation, the accumulation of electron donors 

during primary fermentation is followed by chain elongation, resulting over time in a MCCA-

producing microbial community [14].  

Limited information is available on the impact of operating with semi-continuous feeding on 

fermentation with anaerobic microbial communities. Even so, such feeding strategies will 

affect the way resources are available to the microbial community in the reactors. 

Differences in resource availability will shape the various competitive and cooperative 

interactions in microbial communities [15]. In other biotechnological processes relying on 

microbial communities, such as production of polyhydroxyalkanoates, dynamic feeding 

patterns influence process performance [16]. Some studies mention the impact of the 

duration of a sequential batch for lactic acid or VFA production [8, 17]. Studies on the 

feeding pattern for AD note that frequent short feeds or even continuous operation of a 

diluted feed is optimal as it creates a nearly imperceptible organic overload [18]. Decreasing 

the frequency of feeding events in AD, but maintaining the overall average organic loading 

rate (OLR), leads to larger fluctuations in actual organic load as higher substrate loads are 

introduced per feed event, and this causes VFA accumulation and methanogenesis 

inhibition [19, 20]. Similarly, we hypothesise that by operating with a semi-continuous 

feeding pattern to concentrate the organic load at fewer feeding events, the precursors of 

chain elongation, i.e., VFA, lactic acid and ethanol can more readily accumulate and provide 

the reductive conditions to promote chain elongation. Thus, the aim of the current work was 

to explore the impact of feeding pattern on chain elongation in FW fermentation. Four 

anaerobic bioreactors co-fermenting a mixture of FW and soybean processing wastewater 

were set up to compare the impact of feeding daily versus feeding twice a week on 

fermentation performance and microbial community composition. The aim of this evaluation 

was to shed light on optimal feeding strategies to maximise production of value-added 

compounds from FW via chain elongation. 

5.1.2. Materials and methods 

5.1.2.1. Feedstock and inoculum 

Fresh solid FW was collected twice a week from a local cafeteria (Nanyang Technological 

University, Singapore). The FW was mixed with food processing wastewater to obtain a 

pumpable feedstock. Specifically, we used soybean soaking wastewater (Soy) obtained 

after soaking yellow soybeans for four hours, which was collected weekly from a soybean 

processing plant and stored at 4 °C (Mr. Bean, Singapore). Upon collection of the FW, hard 

residuals such as animal bones or shells were manually removed. Then the fresh FW was 

shredded and mixed with Soy in an electrical blender. Two mass ratios of FW/Soy were 
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used, namely 0.5 kg L-1 and 0.38 kg L-1, to obtain tCOD contents of 132 ± 19 gCOD L-1 and 

90 ± 19 gCOD L-1, respectively. Feedstock characterisation, variability and degradation 

during storage were evaluated (available in supplementary information Table S5-1 and 

Table S5-2). Six samples of fresh feedstock were taken and stored (- 80 °C) for subsequent 

characterisation of the community in the feed. 

Reactors were inoculated with fresh AD effluent from a wastewater treatment plant (pH = 

7.19 ± 0.02, VS = 21.97 ± 0.05 g L-1) (Changi, Singapore). Inoculum was diluted with tap 

water to obtain 10 gVS L-1 in each reactor and acclimated at an operating temperature of 

35 °C for 3 days to remove residual organics from the seeding sludge. Before the first 

feeding event, a sample was taken of the acclimated inoculum in each reactor and stored 

(- 80 °C) to determine its microbial composition.  

5.1.2.2. Bioreactor setup and operation 

Four 5 L double-jacketed semi-continuous stirred tank reactors (sCSTR) were operated in 

duplicate pairs (3 L working volume, 35 °C). Two reactors were fed bi-weekly (sCSTRBW 1 

and 2) and two reactors were fed daily (sCSTRD 1 and 2). Other operational parameters 

were kept the same. The reactors operated at an average hydraulic retention time (HRT) of 

10.5 days. The pH was controlled at a minimum of 5.5 by automated dosing of 2 M NaOH 

to prevent acid inhibition. After a period equating to 8 HRT, the sCSTRD reactors were 

switched to bi-weekly feeding following sCSTRBW operation (sCSTRBW-new 1 and 2). 

Start-up occurred by feeding all reactors with an organic overload, with a feed-to-

microorganism ratio of 5 gCOD gVS-1, and then letting fermentation take place over 3.5 

days to inhibit methanogenesis and initiate acidogenic fermentation. After the first feeding 

event, sCSTR operation began at Day 0 of operation. During reactor feeding a fixed volume 

of reactor content was replaced with a fixed volume of feedstock either daily or twice a 

week. Feedstock was prepared within 24 hours of feeding sCSTRBW and kept at 4 °C for up 

to 3 days for feeding sCSTRD. The FW/Soy ratio in the feedstock was 0.5 kg L-1 during the 

first 70 days of operation, leading to an organic loading rate (OLR) of 12.6 ± 2.0 gCOD L-

1d-1. From Day 70 of operation, the FW/Soy ratio was changed to 0.38 kg L-1 to reduce the 

organic load (OLR of 8.6 ± 1.8 gCOD L-1d-1) since it was noticed that lactic acid instead of 

chain elongation products started accumulating in the effluent. Our previous study had 

reported that operating at lower OLR selects for carboxylic acids over lactic acid in 

acidogenic FW fermentation [21]. Average operating conditions per reactor are outlined in 

Table S5-3. The start-up phase was defined as the period required to reach a stable volatile 

solids (VS) content in the reactor effluent (< 20% variation), which was found to be after two 

HRTs (Figure S5-1).  
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The OLR, HRT and product yields (𝑌𝑝) were determined for each feeding event as an 

average over the fermentation cycle, to allow comparison between the different feeding 

patterns. The HRT was calculated from the influent flow rate (𝑄), determined from the 

feeding volume (𝑉𝑓𝑒𝑒𝑑) and duration of fermentation cycle (Equation (5-1)). The OLR was 

calculated using the total COD (tCOD) content measured for each prepared feedstock, i.e., 

twice a week (𝐶𝑓𝑒𝑒𝑑)(Equation (5-2)). Reactor performance was evaluated by calculating 

the yield of liquid fermentation products, i.e., the carboxylic acids (C1-C8), ethanol, and 

lactic acid concentrations in COD (𝐶𝑝) with respect to the tCOD fed before obtaining these 

concentrations and corrected for their presence in the feed (Equation (5-3)). 

𝐻𝑅𝑇(𝑖) =  
𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 × (𝑡(𝑖+1) − 𝑡(𝑖))

𝑉𝑓𝑒𝑒𝑑(𝑖)
=  

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝑄(𝑖)

 [𝑑] (5-1) 

𝑂𝐿𝑅(𝑖) =
𝐶𝑓𝑒𝑒𝑑(𝑖)

𝐻𝑅𝑇(𝑖)

 [𝑔𝐶𝑂𝐷 𝐿−1𝑑−1] (5-2) 

𝑌𝑝(𝑖) =  
𝐶𝑝(𝑖),𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 −  𝐶𝑝(𝑖−1),𝑓𝑒𝑒𝑑

𝐶𝑓𝑒𝑒𝑑(𝑖−1) 
[%] (5-3) 

where 𝑡 represents the day of reactor operation, and 𝑡(𝑖+1) − 𝑡(𝑖) is the time between feeding 

points, i.e., the time of one semi-continuous fermentation cycle. The instantaneous organic 

load (IOL) was calculated to distinguish between the average OLR and the organic load 

applied at the moment of feeding (Equation (5-4)). 

𝐼𝑂𝐿(𝑖) =
𝐶𝑓𝑒𝑒𝑑(𝑖) ×  𝑉𝑓𝑒𝑒𝑑(𝑖) 

𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟

 [𝑔𝐶𝑂𝐷 𝐿−1] (5-4) 

5.1.2.3. Chemical analysis 

Samples of reactor effluent were collected to analyse liquid fermentation products twice a 

week and for solids and COD once a week. Samples were stored at -20 °C, except for solid 

analysis. During cycle studies, liquid samples were taken throughout the fermentation cycle, 

i.e., in between feeding,via the outlet port, and immediately diluted, filtered and frozen at -

20 °C following analysis protocol. C1-C5 carboxylic acids, ethanol, lactic acid, and sugars 

in the FW samples were measured by high pressure liquid chromatography with a refractive 

index detector (HPLC-RID, Shimadzu, Kyoto, Japan) equipped with Aminex® HPX-87H 

column (Bio-Rad, CA, USA) as in Coma, et al. [22] with the oven temperature adjusted to 

65 °C. MCCA (C6-C8) were measured by gas chromatography with a flame ionization 

detector (GC-FID, Shimadzu, Kyoto, Japan) on a DB-FFAP (30m×0.25mm×0.25µm) 

column (Agilent Technologies, Santa Clara, CA, USA) following a sample preparation and 

method adapted from Manni and Caron [23], as published previously [14]. 
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Solids content was determined using fresh samples according to Standard Methods 2540 

D and E [24]. Chemical oxidation demand (COD) was measured after diluting samples into 

the measuring range by colorimetric test kits (Cat. 2125915, Hach, Düsseldorf, Germany) 

following Standard Method 5220 D before and after filtration (0.45 µm) for total and soluble 

COD, respectively [24]. 

5.1.2.4. 16s rRNA amplicon sequencing 

To characterise the microbial community composition biomass samples were taken and 

immediately stored (-80 °C) at the start of reactor operation, and then at regular intervals 

from the feedstock and reactor effluent. This amounted to 6 samples for the feedstock and 

17 samples for each reactor. DNA was extracted using the FastDNA Spin kit for Soil (MP 

Biomedicals, Santa Ana, CA, USA) following the manufacturer’s protocol with a slight 

modification in the homogenization step. Sludge homogenization using a FastPrepTM FP120 

instrument (MP Biomedicals, Santa Ana, CA, USA) was increased from 1 × 40 s to 4 × 40 

s at 6 m s-1 to increase the DNA yield [25]. The extracted DNA was purified using the DNA 

Clean and ConcentratorTM-10 purification kit (Zymo Research, Irvine, CA, USA). The 

purified DNA was quantified and the quality checked with a QubitTM 2.0 Fluorometer 

(Invitrogen, Carlsbad, CA, USA) and NanoDropTM 2000 Spectrophotometer (Thermo 

Fischer Scientific, Massachusetts, USA), respectively. The DNA samples were stored (- 80 

°C) prior to preparation of the 16S rRNA gene region V4 sequencing amplicon library. To 

cover both archaeal and bacterial domains, PCR amplifications targeting the v4 region were 

done with the primer pair of 515FB (5’-GTGYCAGCMGCCGCGGTAA-3’) and 806RB (5’-

GGACTACNVGGGTWTCTAAT-3’) [26]. The PCR program involved an initial denaturation 

for 2 min at 95 °C followed by 25 cycles of amplification (95 °C for 20 s, 55 °C for 15 s, 72 

°C for 1 min) and a final elongation for 10 min at 72 °C. A quality check was performed for 

size and success of PCR with TapeStation (Agilent Technologies, Santa Clara, CA, USA). 

PCR products were purified and quantified using Agencourt Ampure XP Beads (Beckman 

Coulter, Brea, CA, USA) similar to the standard protocol with a modified 1:0.8 bead ratio, 

and QubitTM dsDNA HS Assay kit (Invitrogen, Carlsbad, CA, USA), respectively. The PCR 

products were submitted to the SCELSE sequencing facility (Singapore) for indexing and 

sequencing (paired-end, 2×300 bp) using an Illumina MiSeq sequencer (Illumina, San 

Diego, CA, USA). Forward and reverse reads were trimmed (i.e., at 240 and 220 nucleotides 

for forward and reverse reads, respectively, as this was when average quality dropped 

below a Phred score of 20). Reads were then dereplicated and merged to construct an 

amplicon sequence variant (ASV) table following the DADA2 pipeline (1.16) [27]. The reads 

were clustered and taxonomy assigned at 97% identity using the SILVA v137 database [28].  
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5.1.2.5. Statistical analysis and data visualisation 

Statistical analysis was performed in R version 4.0.3 through the RStudio IDE using 

functions in the R Stats Package (v3.6.2) and additional packages described below [29].  

5.1.2.5.1. Comparison of reactor performance 

Reactor performance was evaluated using the net product yields and concentrations of 

liquid fermentation compounds, i.e., carboxylic acids, ethanol and lactic acid, and the pH of 

reactor effluent and NaOH dosing. Differences between duplicate reactors and the effect of 

OLR or feeding pattern were determined with a Wilcoxon-Mann-Whitney test [30]. This test 

was chosen as normal distribution of pairwise differences was not guaranteed for all 

fermentation compounds. This test does assume independence of all samples taken at 

different time points in the same reactors, which is an inherent limitation of the approach. 

The resulting p-values were corrected for multiple comparisons using a false discovery rate 

(FDR) of 5% [31]. The figures used to visualise statistical differences were made using the 

R package ggplot2 (v3.3.2) and its accompanying sub-packages [32]. 

5.1.2.5.2. Microbial community evaluation 

To evaluate and compare microbial community dynamics, the 16S rRNA sequencing results 

were analysed and visualised using the vegan (v2.5-6) and ampvis2 (v2.6.6) packages in 

R [33, 34]. ASV that were not classified as Bacteria or Archaea were removed. The resulting 

ASV abundance data had an even sequence depth across samples (all within 66k and 

104k) and was rarefied to the lowest sequence read (rarefaction curves in Figure S5-2) and 

normalised [35]. Effective alpha-diversity, i.e., 1st and 2nd Hill number (1D and 2D), were 

calculated using the amp_alphadiv function to obtain Simpson and Shannon indices and 

converted according to reference to compare community structures [36-38]. Effective alpha-

diversity indices are preferred over more traditional ecological indices, e.g., Shannon or 

Simpson index, and measures of richness since they are more robust, intuitive, and 

comparable among different studies [38, 39]. The relative abundance data was analysed 

using heatmap visualisations, indicator species analysis and ordination plots. Heatmaps 

were constructed using the amp_heatmap function. Indicator species analysis with 

correlation indices was performed to determine the ecological preference of ASVs among 

bi-weekly or daily fed reactors using the multipatt function with “r.g.” from the indicspecies 

package (v1.7.8, 2020) [40]. The relative abundance data was Hellinger transformed and 

analysed using a Non-Metric Multidimensional Scaling (NMDS) plot on the Bray-Curtis 

dissimilarity matrix using the metaMDS function. The Hellinger transformation is preferred 

for species abundance data as it corrects for low counts with many zeros by giving them a 

low weight [41]. The NMDS plots were visualised using the ggplot2 and ggordiplots package 

to include ellipses based on standard deviation (95% confidence interval) to group per 
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feeding pattern [32, 42]. Values of stress below 0.2 on the NMDS plots are acceptable [41]. 

Permutational multivariate analysis of variance (PERMANOVA) tests were performed using 

the adonis function (9,999 permutations) on the same data used to generate the NMDS 

plots to evaluate whether differences in community structure depending on feeding pattern 

were significant [43]. A permutation test for homogeneity of multivariate dispersion 

(PERMDISP, 9,999 permutations) tests was performed to check this assumption that is 

required for the PERMANOVA test [34, 44]. The p-values from the multivariate test were 

corrected for multiple comparisons using a FDR of 5% [31]. 

5.1.2.5.3. Correlation analysis 

The Spearman’s rank correlation coefficient (rS) was determined between different products 

and between the relative abundance of specific ASV and product yield (R Stats package 

(v3.6.2)). Matrix of correlation coefficients were made for reactor performance and 

visualised using the Hmisc (v4.4-1) and corrplot (v0.84) packages [45, 46]. Data during 

reactor start-up and outliers were excluded. Outliers in operation were caused by 8 

disrupted feeding events (less than 5% of total feeding events) due to pumping faults. The 

p-values from the correlation analysis were corrected for multiple comparisons using a FDR 

of 5% [31]. 

5.1.3. Results and discussion 

5.1.3.1. Co-fermentation of soy wastewater and food waste selects for even-

chain carboxylates, ethanol and lactic acid 

Four sCSTR were fed with a mixture of FW and Soy as described in Section 5.1.2.2. 

Although the effluent composition varied over time (Figure S5-3) and in relation to feeding 

pattern, the main products of fermentation were ethanol, lactic acid and even-chain MCCA, 

i.e., mostly n-caproic (C6) and some n-caprylic (C8) acid (Figure 5-1). During the first 70 

days of reactor operation the average tCOD of the feedstock was 132 ± 19 gCOD L-1 

resulting in an average OLR of 13 ± 2 gCOD L-1 d-1. Half of the tCOD from the feedstock (51 

± 9 %) was metabolised into liquid products (i.e., carboxylic acids, ethanol or lactic acid) in 

all reactors. To improve yields and reduce lactic acid accumulation, on Day 70 the OLR was 

lowered by decreasing the FW/Soy ratio in the feedstock, giving an average tCOD content 

of 90 ± 19 gCOD L-1 and, thus an average OLR of 9 ± 2 gCOD L-1 d-1. The overall product 

yield (i.e., soluble products/feedstock COD) significantly increased and the amount of 

feedstock converted to liquid products increased to 67 ± 13 % (p<0.0001) (Figure S5-4).  

The total yield of shorter chain carboxylates, i.e., acetic (C2) and n-butyric (C4) acid, 

generally remained below 20% for all operating conditions. The MCCA were produced at 

average concentrations of 16 ± 6 gCOD L-1 for C6 and 8 ± 3 gCOD L-1
 C8, which are in a 
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similar range to previous reports on semi-continuous, single-stage MCCA production from 

FW fermentation without supplementation of external electron donors [12, 14]. Thus, co-

fermentation of FW and Soy lead to MCCA production in a single-stage reactor without 

physically separating primary and secondary fermentation. Considering the residual 

concentrations of primary fermentation products, chain elongation could potentially be 

further optimised by, for instance, increasing retention times or applying in-line product 

extraction. A FW feedstock requires a long HRT to allow for sufficient hydrolysis and time 

for secondary fermentation to occur [10, 21]. In-line product extraction could potentially help 

to overcome limits imposed by thermodynamics or toxicity due to product accumulation [47, 

48].  

 

Figure 5-1 Distribution of organics in the effluent at different feed ratios of food waste (FW) to soybean 
wastewater (Soy). Results are averaged over the four reactors. The residual tCOD is determined by 
measurement of the tCOD of the effluent. The tCOD that could not be accounted for was attributed to loss of 
organics and hydrogen in the gas phase. 

Odd-chain carboxylic acids were detected in very low quantities. n-Propionic acid (C3) was 

only present at concentrations above 1 gCOD L-1 during the start-up phase, and longer odd-

chained carboxylic acids, i.e., n-valeric (C5) and n-heptanoic (C7) acid were washed out 

(Figure S5-5). C5 and C7 are products from chain elongation of C3 [49]. C3 is usually a 

common FW fermentation product obtained via lactate reduction or the reversible 

transcarboxylase cycle in e.g., Propionibacterium or Bifidobacterium spp. [5]. Accumulation 

of C3 in FW fermentation has been shown to compromise chain elongation performance at 

high lactic acid influent rates and when pH is maintained above 6 [50, 51]. Even though pH 

averaged between 5.8 and 6.2, and lactic acid concentration peaked occasionally in the 
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reactors, i.e., up to 43 gCOD L-1, there was no net production of C3. This could be due to 

the relatively long HRT (10.5 days), which caused the actual lactic acid accumulation rate 

to never exceed 5 gCOD L-1 d-1. This was below the lactate loading rates found necessary 

for C3-production to compete with chain elongation by Kucek, et al. [50], who used a clean, 

synthetic feed and operated at an HRT of <2 days. Thus, due to the long HRT required for 

chain elongation in FW fermentation, lactic acid accumulation rates were too low to allow 

for C3 production, which aids product selectivity.  

5.1.3.2. Longer batch cycles reduced acidogenic lactic acid accumulation 

From the four reactors operated, two reactors were fed bi-weekly, i.e., every 3.5 days 

(sCSTRBW), and two reactors were fed daily (sCSTRD). Thus, while the average OLR was 

similar for all reactors, the instantaneous organic load (IOL), i.e., organic load applied at 

feeding events, was 3.5 times higher when feeding twice a week compared to feeding daily. 

All four reactors presented a fluctuating output composition regardless of the feeding 

pattern, especially with respect to lactic acid content (Figure 5-2). However, despite this 

instability in product outcome, some clear observations could be made.  

 

Figure 5-2 Product yields from co-fermentation of food waste and soybean soaking wastewater. Yields are 
averaged over duplicate reactors fed twice a week (A, sCSTRBW), or daily and switched to bi-weekly feeding 
after 8 HRT of operation (B, sCSTRD/BW-new). The dashed lines represent the day on which the OLR was 
reduced from 13 to 9 ± 2 gCOD L-1. Product yields for the individual reactors are available in Figure S5-3. 

5.1.3.2.1. Daily feeding led to more lactic acid in the effluent 

The total conversion of organics to liquid fermentation products was similar for all reactors 

regardless of feeding pattern (i.e., 52 ± 7% for sCSTRBW and 51 ± 8% for sCSTRD). 

However, yields of specific compounds differed significantly between bi-weekly and daily 
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fed reactors according to statistical tests (Figure 5-3 A). The average yield of lactic acid in 

the daily fed reactors (sCSTRD: YLA = 16 ± 12 %) was nearly double than in the bi-weekly 

fed ones (sCSTRBW: YLA = 7 ± 8 %) (p<0.001). This is in line with the more variable and 

higher lactic acid concentrations observed in the effluent of sCSTRD as discussed later. In 

contrast, the ethanol, C2 and C8 yields were nearly halved for daily fed reactors (sCSTRD: 

Yethanol = 7 ± 2%, YC2 = 3 ± 1%, YC8 = 6 ± 3%) compared to bi-weekly feeding (sCSTRBW: 

Yethanol = 14 ± 5%, YC2 = 5 ± 2%, YC8 = 8 ± 2) (p<0.01). The increased C8 yields in the bi-

weekly fed reactors could result from the increased ethanol concentrations, as ethanol-

based chain elongation has been linked before to C8 production rather than lactate-based 

chain elongation [52].  

After 8 HRTs, the two sCSTRD systems were switched to a bi-weekly feeding pattern (and 

labelled sCSTRBW-new) to confirm whether the feeding pattern impacted fermentation 

performance. The resulting lactic and ethanol yields of sCSTRBW-new were similar to the 

sCSTRBW systems (Figure 5-3 B). Thus, while overall conversion was not affected by the 

feeding pattern, more organics were fermented to lactic acid instead of C2 or ethanol when 

feeding daily compared to bi-weekly. To better understand the potential impact of feeding 

pattern, other aspects of reactor performance, namely addition of pH-correcting chemicals, 

repeatability, and microbial community composition, were analysed. 

5.1.3.2.2. Reducing the need for pH correction by feeding bi-weekly 

Lactic acid-type fermentation is characterised by rapid acidification and the potential to 

ferment at a pH as low as 3.5 [53, 54]. By contrast, chain elongation in FW fermentation 

has a pH-neutralising effect since lactic acid and VFA are net consumed [13]. The pH in all 

reactors was controlled at a minimum of 5.5. This is sufficiently high for VFA fermentation, 

and prevents chain elongation from being hindered by acid inhibition [10, 52]. The amount 

of NaOH dosed to maintain a minimum pH reflected the level of acidification of the 

fermentation. The pH in the bi-weekly fed reactors was regularly higher and averaged 6.2 

± 0.5, in line with the pH-increasing effect of chain elongation and the slightly higher C8 

yields. The fermentation in the daily-fed reactors was more acidogenic with the effluent 

having a lower average pH at 5.8 ± 0.4. The average NaOH dosing for the two sCSTRBW 

reactors (1.1 ± 0.7 g L-1d-1) was only half of that for the two sCSTRD systems (2 ± 2 g L-1d-

1) (p<0.05) (Figure 5-4 A). This difference disappeared when all reactors were operated with 

a bi-weekly feeding pattern, i.e., when the two sCSTRD were switched to a bi-weekly feeding 

pattern (sCSTRBW-new) (Figure 5-4 B). The addition of pH-correcting chemicals increases the 

operational and environmental cost of FW fermentation for MCCA production [55]. Thus, by 

operating with bi-weekly feeding, less acidogenic lactic acid fermentation occurred, and 

hence NaOH dosing requirements were reduced, so operating costs were reduced. 
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Figure 5-3 Evaluation of product yields per feeding pattern. A: bi-weekly and daily feeding is compared during 
the first 8 HRT of operation (excluding start-up). B: yields from after 8 HRT to end of operation are compared 
between reactors fed bi-weekly and reactors that were previously fed daily and switched to bi-weekly feeding 
(Bi-weekly new). Symbols “ns”, “**”, “***” and “****” represent p-values of >0.5 (not significant), <0.01, <0.001 
and <0.0001, respectively, resulting from a Wilcoxon-Mann-Whitney test. A similar analysis is available on 

product concentrations (Figure S5-6). 
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Figure 5-4 Effluent pH (left) and NaOH dosing requirements (right) to maintain minimum pH (5.5) for the different 
feeding patterns. A: bi-weekly and daily feeding is compared during the first 8 HRT of operation (excluding start-
up). B: yields from after 8 HRT to end of operation are compared between reactors fed bi-weekly and reactors 
that were previously fed daily and switched to bi-weekly feeding (Bi-weekly new). Symbols “ns”, “*” and “****” 
represent p-values of >0.05 (not significant), <0.05 and < 0.0001, respectively. 

5.1.3.2.3. Bi-weekly feeding improved performance stability 

In terms of repeatability, the duplicates of the bi-weekly fed reactors (sCSTRBW 1 and 2) 

had similar overall reactor performance (Figure 5-5 A). By contrast, the reactors fed daily 

(sCSTRD 1 and 2) had greater differences in performance when compared to each other. 

sCSTRD 2 had significantly (p<0.01) lower yields for C4 (2 ± 2 %) and C6 (3 ± 6 %) but 

higher C8 (7 ± 2 %) compared to sCSTRD 1 (YC4 = 5 ± 1 %, YC6 = 15 ± 4 %, YC8 = 4.1 ± 0.9 

%) (Figure 5-5 B). In addition, the two sCSTRD systems showed more fluctuation in product 

outcome and higher peaks in lactic acid yield compared to sCSTRBW (Figure 5-6). Thus, the 

performance of the bi-weekly fed reactors showed better control of product outcome with 

less lactic acid production than the daily-fed reactors.  
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Figure 5-5 Performance of duplicate reactors during the first 8 HRT of operation (excluding start-up)  compared 
using a Wilcoxon-Mann-Whitney rank sum test. A: the duplicate reactors that were fed bi-weekly (sCSTRBW 1 
and 2). B: the duplicate reactors that were fed daily (sCSTRD 1 and 2). Comparative analysis was also performed 
on data after 8 HRT of operation until end (Figure S5-7). Symbols “ns”, “***” and “****” represent p-values of > 
0.5, < 0.001 and < 0.0001, respectively. 
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Figure 5-6 The net lactic acid and MCCA yields fluctuated throughout operation in the four reactors. A: reactors 
fed bi-weekly. B: reactors fed daily and switched to bi-weekly later as indicated on top of the graph. Symbols 
represent reactor system and colours indicate compound. 

5.1.3.2.4. Lactic acid and MCCA yields were negatively correlated 

Regardless of the feeding pattern, lactic acid concentrations in the effluent fluctuated over 

time from 0 gCOD L-1 to peaks as high as 43 gCOD L-1. The presence of lactic acid in the 

effluent appeared to change in inversely proportion to MCCA concentration (Figure 5-6). 

Correlation analysis confirmed a negative correlation between lactic acid and C6 (rS = -0.76, 

p<0.001) (Figure S5-8). With increased lactic acid yield the medium acidified and more 

NaOH was required to maintain the minimum pH (rS = 0.54, p<0.001). By contrast, with 

increased C6 and C8 yields less NaOH had to be dosed (rS = -0.48 and rS = -0.36, 

respectively, p<0.001). This is because lactic acid production is acidogenic whereas chain 

elongation increases pH. Similar trends were seen for different reactors, OLR or feeding 

patterns (Figure S5-9). Furthermore, the yields of carboxylic acids and ethanol were weakly 

correlated to each other (0.31 < rS < 0.56, p<0.01). Thus, regarding reactor performance 

two types of fermentation alternated. On one hand acidogenic lactic acid-type fermentation 

occurred and on the other hand, a mixed acid and ethanol fermentation with chain 

elongation took place. Thus, a balance between two net metabolic pathways was observed. 

A bi-weekly feeding pattern seemed to stabilise this balance more towards ethanol and 

chain elongation compared to a daily feeding.  
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5.1.3.3. Microbial community dynamics reflected reactor performance 

5.1.3.3.1. Development of a specialised microbial community for acidogenic food 

waste fermentation 

To better understand the processes governing reactor performance, the microbial 

community composition of the inoculum, the feedstock and reactors was analysed. The 

microbial community in the inoculum was distinct from that in the feedstock or reactors 

(Figure 5-7), and based on the Hill numbers 1D and 2D, the alpha-diversity of the inoculum 

was 10 times higher (Table 5-1). The inoculum was obtained from a full-scale sewage 

sludge anaerobic digester. The diverse bacterial community is typical for full-scale AD of 

sewage sludge and co-digestion at phylum level for Firmicutes, Actinobacteria, 

Proteobacteria, Bacteroidetes, Chloroflexi and Synergistetes, in combination with a lower 

relative abundance of Euryarchaeota [56, 57].  

 

Figure 5-7 Microbial community composition at the phylum level in the inoculum, feedstock and reactors 

averaged over 4, 6 and 64 samples, respectively. 

The feedstock harboured a less diverse community than the inoculum (Table 5-1). It 

contained predominantly Firmicutes (65 ± 22%), Cyanobacteria (18 ± 15%) and 

Proteobacteria (17 ± 13%). The presence of Cyanobacteria can be attributed to their use 

as food in certain cuisine [58].   



 

130 
 

Table 5-1 Alpha-diversity indices based for the microbial community in the inoculum, feedstock and reactors. 

Index Inoculum Feed Reactors 

Number of samples 4 6 64 

Observed ASVs 748 ± 28 144 ± 28 80 ± 14 

1D (exponent Shannon) 76 ± 4 8 ± 3 6 ± 3 

2D (inverse Simpson) 182 ± 7 17 ± 5 11 ± 4 

Proteobacteria included members of Pseudomonas spp. (3 ± 2%) and Acinetobacter spp. 

(6 ± 8%) which have been linked to potential pathogen development in food waste [59]. The 

Firmicutes were mostly lactic acid bacteria typical of fermented foods or food spoilage, such 

as Weissella spp. (25 ± 15%), Lactobacillus spp. (10 ± 17%), Leuconostoc spp. (14 ± 4%) 

and Lactococcus spp. (8 ± 8%) [60, 61]. Their presence resulted in acidification of the 

feedstock within a couple of days of storage. Within three days of storage at 4 °C, lactic 

acid fermentation occurred (from 0.19 ± 0.01 g L-1 to 1.84 ± 0.02 g L-1), resulting in the pH 

of the feedstock dropping from 6.24 ± 0.02 to 4.49 ± 0.02 (Table S5-2). Changes of 

feedstock quality during storage is an important consideration, especially for a highly 

fermentable feedstock such as FW [62]. It can affect yields in AD, hydrogen fermentation, 

and chain elongation [63-65]. 

The reactors showed the least diverse and rich communities, with the formation of a more 

specialised community of Firmicutes (62 ± 12%) and Actinobacteria (36 ± 12%). This is 

similar to previous work directing FW fermentation towards acidogenic fermentation and 

chain elongation products [14].  

5.1.3.3.2. Communities per feeding pattern align with fermentation outcome 

To evaluate the influence of feeding pattern on microbial community composition, ordination 

plots were made, and statistical tests were run, to compare the community in reactors fed 

bi-weekly with those in daily fed reactors. It was also possible to test whether communities 

converged when daily fed reactors were switched to bi-weekly feeding (bi-weekly new) in a 

second operational phase. Significantly different communities were found for different 

feeding patterns during the first operational phase (PERMANOVA, p < 0.001, Table S5-4) 

(Figure 5-8 A). In the second operational phase, when all reactors were operated with a bi-

weekly feeding pattern, the communities in the reactors previously fed daily were more 

similar to those kept on a bi-weekly feeding approach (see the overlap of ellipses in Figure 

5-8 B). However, communities still differed, albeit at a lower significance (PERMANOVA, p 

= 0.0024, Table S5-4). Thus, feeding pattern had some influence on microbial community 

composition, however many other factors such as operating time, feedstock composition or 

even minor disturbances could have affected community dynamics. Determining what 
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governs the link between operation and the resultant microbial community composition and 

structure remains a challenging and compelling topic in the field of microbiome research 

and engineering [39, 66].  

 

Figure 5-8 Non-metric multidimensional scaling analysis (NMDS) of Hellinger transformed relative ASV 
abundance data using the Bray-Curtis dissimilarity matrix (stress = 0.11). Each point represent the community 
in a specific sample. The closer the sample points on the plot, the greater the similarities between the 
communities in the samples. A: The community in bi-weekly and daily fed reactors (36 samples from the first 8 
HRT of operation excl. start-up). B: Reactors fed bi-weekly and reactors that were previously fed daily but 
switched to bi-weekly feeding (Bi-weekly new). Filled symbols show different duplicates: sCSTRBW 1 ; 
sCSTRBW 2 ; sCSTRD/BW-new 1  ; sCSTRD/BW-new 2 ).  

A heatmap was constructed to visualise which genera had the highest relative abundance 

for each feeding pattern (Figure 5-9). The daily fed reactors showed a higher relative 

abundance of the lactic acid bacteria Lactobacillus spp. (47 ± 12 %) and Olsenella spp. 

(28.5 ± 14 %) compared to the bi-weekly fed reactors (34.4 ± 13 and 20.3 ± 14 %, 

respectively). Since the genus of Lactobacillus is very large and diverse, the most abundant 

ASVs that linked to this genus were further analysed (Figure 5-10). It was noted that 

Lactobacillus ASV 1 was generally more abundant for bi-weekly fed reactors whereas 

Lactobacillus ASV 2 had a much higher abundance in the daily fed systems. An indicator 

species analysis comparing the different feeding patterns confirmed that ASV 2 was 

indicative for the daily fed reactors (p<0.001) (Table S5-5). Running the sequence of ASV 

2 through a BLAST search gave high similarity (ID 100%) to strains of L. amylovorus and 

L. acidophilus, thus ASV 2 was likely to have a similar homolactic metabolism [67]. The 

increased presence of homolactic bacteria in the daily fed reactors is consistent with the 

reactor performance of higher lactic acid yield and NaOH dosing requirements. 
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Figure 5-9 Heatmap of the relative abundance of the genera present in (A) bi-weekly and daily fed reactors 
(from the first 8 HRT of operation excl. start-up) and (B) in the reactors fed bi-weekly and reactors that were 
previously fed daily but switched to bi-weekly feeding (Bi-weekly new). Only genera with an average relative 

abundance >1% are shown. 

 

Figure 5-10 Heatmap of the ASV linked to Lactobacillus spp. in (A) bi-weekly and daily fed reactors (from the 
first 8 HRT of operation excl. start-up) and (B) the reactors fed bi-weekly and reactors that were previously fed 
daily but switched to bi-weekly feeding (Bi-weekly new). Only ASV with an average relative abundance >1% are 
shown. 

The indicator species analysis also associated ASVs with a relative abundance >1% with 

the bi-weekly feeding strategy as ASV 8 (Olsenella spp.), ASV 6 (Pseudoramibacter spp.) 

and ASV 7 ([Eubacterium] nodatum group spp.) (Table S5-5). The heatmap visually 

confirmed that Pseudoramibacter spp. and species belonging to [Eubacterium] nodatum 

group were present at higher relative abundance in the bi-weekly fed reactors compared to 

daily fed systems (Figure 5-9). Pseudoramibacter spp. have been linked with lactic acid-

based chain elongation [68]. Species belonging to [Eubacterium] nodatum group have been 

linked to n-butyrate production and were present in chain elongation microbiomes 
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processing FW [14, 69-71]. Thus, bi-weekly fed reactors evolved a microbial community 

comprising genera typically linked to chain elongation by contrast to the daily fed reactors. 

5.1.3.3.3. Microbial community changed in line with oscillations in effluent 

composition 

The microbial community composition fluctuated over time, as observed with reactor 

performance, regardless of feeding pattern (Figure 5-11). Therefore, an additional 

correlation analysis was performed with 15 of the most abundant ASVs (Table S5-6). 

Several ASVs were found to have strong correlations with either lactic acid, ethanol, C2 or 

MCCA. Different ASV in the same genera showed opposite correlations, such as the most 

abundant ASVs, ASV 1 and ASV 2. Both were classified as part of the Lactobacillus genus. 

ASV 2 was found to be an indicator species for the daily fed reactors with likely a homolactic 

fermentation metabolism. Correlation analysis confirmed that it was positively correlated 

with lactic acid (p<0.0001, rS = 0.52), and negatively with ethanol, C2 and C6 yields 

(p<0.0001, rS,ethanol = -0.77, rS,C6 = -0.47) (Figure S5-11). In contrast, ASV 1 had a strong 

positive correlation with ethanol, C2 and C6 yields (p<0.01, rS,ethanol = 0.72, rS,C2 = 0.49, rS,C6 

= 0.41). ASV 1 is therefore more likely to code for a heterolactic fermentation metabolism 

which produces ethanol and acetic acid alongside lactic acid, and thereby providing all the 

necessary precursors for chain elongation to C6.  

The highest positive correlation with chain elongation products was found for ASV 6, 

belonging to Pseudoramibacter spp. with C6 yield (p<0.0001, rS = 0.62) and for ASV 7 with 

C8 yield, [Eubacterium] nodatum group spp. (p<0.0001, rS = 0.48) (Table S5-6). Both of 

these were characteristic species for the bi-weekly fed reactors and they are known to 

perform lactic acid-based chain elongation (Section 5.1.3.3.2.). It is interesting to note that 

the Pseudoramibacter ASV 6 was strongly negatively correlated with lactic acid (p<0.0001, 

rS =-0.76). Overall, the differences observed in the reactor performance, i.e., favouring of 

either chain elongation or lactic acid production, was reflected in the microbial community 

composition. However, what factors dictate the switch between homolactic fermenters and 

a community performing heterolactic and ethanol-acetate type fermentation followed by 

chain elongation?  
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Figure 5-11 Heatmap of the relative abundance of the ASVs with their corresponding classification at the genus 
level over time. Values are averaged over duplicates in (A) the bi-weekly fed reactors and (B) the reactors fed 
daily and switched to bi-weekly feeding after 8 HRT as indicated on top of the graph. Only genera with an 
average relative abundance >1% are shown. Heatmap of the relative abundances averaged at the genus level 
are provided in Figure S5-10. 
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5.1.3.4. Unravelling the balance between homolactic fermentation and chain 

elongation via cycle studies 

To gain an insight into the bioconversion processes taking place between feeding events, 

cycle studies were performed. Here, the reactor contents were sampled at regular intervals 

over 3.5 days, i.e., the time interval between feeding for the bi-weekly fed reactors. The 

results of the cycle studies are summarised in supplementary information (Figure S5-12 

and S5-13). During the cycle studies, the C6, lactic acid and ethanol concentrations 

changed the most, whereas concentrations of C2 and C4 did not vary more than 2 gCOD 

L-1 from start to end of the sampling intervals. 

Regardless of feeding pattern, glucose was detected during the first hours after feeding due 

to organics solubilisation. In cycle studies where chain elongation products increased, two 

consecutive fermentation stages could be distinguished after this initial stage of hydrolysis 

(Figure 5-12 A). In primary fermentation, glucose was consumed, and lactic acid and 

ethanol were produced. In sCSTRBW 1 glucose was detected in the first 30 hours followed 

by lactic acid and ethanol peaking at 7.2 gCOD L-1 and 16.9 gCOD L-1, respectively. The 

pH dropped to 5.7 during this primary fermentation stage. This primary fermentation was 

followed by a second fermentation stage of chain elongation where lactic acid was net 

consumed, MCCA accumulated up to a maximum of 37 gCOD L-1, and pH increased to 6.5. 

In addition, ethanol started to decrease slightly after lactic acid reached < 1 gCOD L-1 and 

more MCCA were produced. In the daily fed reactors, the changes in concentration were 

smaller compared to the bi-weekly fed reactors, and some residual glucose remained 

present throughout the shorter cycle time of 24 hours (Figure 5-12 B). 

The co-existence of these two fermentation pathways is typical for single-stage, lactic acid-

based chain elongation systems using a complex feedstock [12, 13]. This is generally 

characterised by a microbial community structure containing both lactic acid bacteria (LAB), 

such as Olsenella, Bifidobacterium or Lactobacillus spp. and chain elongating bacteria, 

such as Pseudoramibacter spp. [52, 69], and as found in this work.  

In cycle studies during net lactic acid accumulation, acidogenic lactic acid production 

occurred, similar to the primary fermentation phase previously discussed. However, after 

the acidogenic lactic acid production, minimal further fermentation took place. No increase 

in C6 was observed in any reactors where lactic acid was net produced. During onecycle 

study glucose increased in the bi-weekly fed reactors up to a peak of 1.8 gCOD L-1 in the 

first 10 to 27 hours. After this glucose decreased to below detection limits while lactic acid 

rose rapidly to 20.9 gCOD L-1 and the pH dropped to 5.7 (Figure S5-12). However, no 

secondary fermentation took place in the remaining time of the feed cycle.  
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Figure 5-12 Cycle studies during chain elongation. The pH and concentration profiles of fermentation 
compounds over 84 hours in (A) a bi-weekly fed reactor (sCSTRBW 1, between Days 73 and 76.5), and (B) a 
daily fed reactor (sCSTRD 1, between Days 73 and 76.5). Time 0 corresponds to a sample taken straight after 
feed addition and the dashed lines indicate feeding events for daily fed reactors. An overview of allcycle studies 
can be found in SI (Figure S5-12 and S5-13). 

It could be hypothesised that acid inhibition and/or product toxicity hindered further chain 

elongation. However, pH was controlled above 5.5, i.e., sufficiently high for lactic acid to be 

converted into VFA or MCCA [8, 72]. Product toxicity can be caused by MCCA 

accumulation, as their protonated fraction is antimicrobial [73, 74]. However, it is unlikely 

that this could have prevented secondary fermentation, since for similar amounts of 

protonated MCCA, both lactic acid accumulation and further chain elongation took place. In 

sCSTRD 2, one cycle study resulted in chain elongation and another in lactic acid 

accumulation, yet the concentration of protonated MCCA was similar in each case, 

fluctuating between 6 and 12 mM (Figure S5-14). Thus, product toxicity was unlikely to be 

the decisive factor for secondary fermentation to occur or not.  
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The difference in net fermentation outcome and community structure could be driven by 

differences in the availability of easily degradable sugars. The glucose concentrations 

reached in cycle studies where lactic acid accumulated were double those where chain 

elongation took place. The presence of sugars has been shown to give LAB a competitive 

advantage over other fermentative micro-organisms. Rombouts, et al. [75] recently showed 

that in a microbial community fermenting a complex medium LAB, e.g., Lactobacillus spp., 

will outcompete VFA-producing bacteria. The LAB have a higher biomass-specific glucose 

uptake rate that provides them with a kinetic advantage despite their metabolism being less 

energy efficient. Similarly, Park, et al. [76] showed that a Lactobacillus sp. would 

outcompete a Clostridium sp. in the presence of glucose (at <1 g L-1) whilst the opposite 

occurred when feeding galactose. Again glucose provided a selective advantage for the 

Lactobacillus sp.. Certain LAB switch from mixed-acid/heterolactic fermentation to 

homolactic fermentation at increased growth rates and sugar levels, also known as the 

anaerobic version of the Crabtree/Warburg effect [77]. The heterolactic-type metabolism is 

more energetically efficient (i.e., it provides more ATP per glucose) nevertheless, at high 

sugar levels e.g., at the start of a batch fermentation, LAB opt for a less efficient, but 

generally quicker homolactic fermentation that can be performed with lower investments in 

metabolic structures. Various theories have been developed, such as the theory of resource 

allocation, to explain why this provides LAB with a competitive advantage [78].  

Lower concentrations of glucose are more often present in the daily fed sCSTR compared 

to bi-weekly feeding, providing homolactic LAB with a competitive advantage. During bi-

weekly feeding other fermentative bacteria could regain territory once easily fermentable 

sugars are consumed as the time between feed addition is longer. In one cycle study with 

sCSTRBW 1, pH started increasing again near the end, with a small decrease in lactic acid 

concentration (Figure S5-12), indicating that secondary fermentation might have occurred 

if the fermentation was allowed to continue before feeding. This agrees with the reactor 

performance and microbial community analysis for the daily-fed reactors, in contrast to 

those fed bi-weekly. Changes in availability of glucose, and potentially other easily 

degradable sugars, due to natural fluctuations in the feedstock, could result in homolactic 

fermenters taking over. This hypothesis is strengthened by the fact that lactic acid peaks 

generally occurred at similar times in duplicate reactors which were subjected to the same 

feedstock variations (Figure 5-6). 
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5.1.4. Conclusion  

This study has shown that feeding patterns in semi-continuous operation affected the 

acidogenic fermentation outcome and microbial community composition during food waste 

fermentation. A more stable product profile was obtained by operating sCSTR with a longer 

batch cycle time by feeding bi-weekly. A balance of lactic acid, ethanol and acetate 

fermentation was followed by chain elongation. By contrast, a daily feeding pattern resulted 

in less stable effluent composition with more fluctuation of lactic acid content, even though 

similar yields of overall liquid fermentation products were attained. Thus, operation at longer 

batch cycles promotes the formation of products resulting from chain elongation. This was 

coupled with reduced need for pH-correcting chemicals and hence reduction in operating 

and environmental costs. 

Careful analysis of correlations in reactor performance and microbial community dynamics 

has shown that homolactic fermentation, and a heterolactic acetate-ethanol fermentation 

with chain elongation, are likely to be two competing pathways. From the cycle studies the 

former was more favoured by a daily feeding pattern, due to greater availability of easily 

biodegradable sugars. By contrast, a bi-weekly feeding pattern promoted higher yields of 

ethanol and n-caprylic acid. In order to maximize MCCA yields and process stability in 

acidogenic food waste fermentation, future work should work to improve understanding of 

the syntrophic and competitive interactions between different LAB and other fermentative 

bacteria. This is of particular importance when considering application of FW fermentation 

as a waste valorisation technology where feedstock variations and other small disturbances 

in operation are inevitable. In general, longer time in between feeding events in semi-

continuous anaerobic fermentation of FW results in more stable MCCA product formation 

and reduced need for pH correction, and hence reduced operating costs. 
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5.2. Supplementary information 

Feeding pattern affects balance between lactic acid 
fermentation and microbial chain elongation 

5.2.1. Feedstock characterisation and storage 

Table S5-1 Summary of COD and solids content of the feedstock used throughout continuous operation. 
Averages (AVG), standard deviations (SD), relative SD (RSD) and minima (Min) and maxima (Max) were 
determined over 37 mixtures of feed that were prepared throughout reactor operation comprising a blend of 

cafeteria food waste (FW) and soybean soaking wastewater (Soy). 

 Feed day 0-69  Feed day 70-122  

 AVG ± SD  RSD Min Max AVG ± SD  RSD Min Max 

FW/Soy (kg L-1) 0.5    0.38    

tCOD (gCOD L-1) 132 ± 19 14% 97 167 90 ± 19 22% 62 118 

sCOD (gCOD L-1) 49 ± 9 19% 34 68 45 ± 8 18% 33 65 

TS (g L-1) 100 ± 8 8% 91 121 82 ± 6 7% 86 118 

VS (g L-1) 97 ± 9 9% 76 93 78 ± 5 7% 71 89 

Table S5-2 To determine the effect of substrate storage a blend of 0.5 kg FW and 1 L Soy (FW:Soy), and pure 
Soy were characterised when freshly prepared, and after 3, 7 or 8 days of storage at 4 °C. Values represent 
averages of analytical duplicates and their standard deviation. 

 FW:Soy    Soy 

 unit Fresh 3 days 7 days Fresh 8 days 

pH -- 6.24 ± 0.02 4.49 ± 0.02 4.20 ± 0.01 6.01 ± 0.02 5.91 ± 0.01 

TS (*TSS) g L-1 93.3 ± 0.7 95.4 ± 1.1 93.6 ± 0.8 *0.056 ± 0.000 *0.050 ± 0.006 

VS (*VSS) g L-1 89.7 ± 0.6 91.8 ± 1.1 90.0 ± 0.7 *0.043 ± 0.001 *0.041 ± 0.012 

VS/TS (*VSS/TSS) % 96 ± 1 96 ± 0 96 ± 0 *77 ± 3 *80 ± 15 

Total COD (tCOD) gCOD L-1 127 ± 8 120 ± 22 na ± na 1.39 ± 0.06 1.42 ± 0.02 

Soluble COD (sCOD) gCOD L-1 43.5 ± 0.4 55.2 ± 0.3 na ± na 1.51 ± 0.01 1.46 ± 0.00 

Glucose g L-1 1.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.26 ± 0.00 0.18 ± 0.00 

Sugars** g L-1 0.77 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.00 0.09 ± 0.00 

Lactic acid g L-1 0.19 ± 0.01 1.84 ± 0.02 2.78 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 

Ethanol g L-1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.17 ± 0.00 0.16 ± 0.00 

Carboxylic acids g L-1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

**Calibrated using fructose, incl. sucrose and xylose 

Within three days, the easily degradable sugars present in FW:Soy are fermented to lactic 

acid leading to acidification of the feedstock during storage. Soy without FW acidified to a 

much lesser extent, even after 8 days of storage at 4 °C. Solid and COD content did not 

change significantly during storage, suggesting hydrolysis in Soy was limited.  



 

145 
 

5.2.2. Reactor operation 

Table S5-3 Summary of operating conditions for the four semi-continuous stirred tank reactors (sCSTR) during 
the different operational phases. The average hydraulic retention time (HRT) was maintained throughout with 
minor variations resulting from variations in pumping volume. From Day 0 to 84, two sCSTR were being fed 
twice a week (sCSTRBW) and two sCSTR were fed daily (sCSTRD). From day 84 onwards, i.e., after 8 HRT, the 
sCSTRD were changed to twice a week feeding (sCSTRBW-new) similar to sCSTRBW. Feedstock varied as outlined 
in Table S5-1. On Day 70 onwards the COD and solids in the feedstock were reduced to prevent lactic acid 

accumulation, thus lowering average organic loading rate (OLR), and instantaneous organic load (IOL).  

Parameter 

Time of operation 

sCSTRBW 1 sCSTRBW 2 sCSTRD/BW-

new 1 

sCSTRD/BW-

new 2 

HRT (days) 10.3 ± 0.6 10.3 ± 0.6 10.9 ± 1.2 10.8 ± 1.1 

Feeding strategy     

Day 0 - 83 Bi-weekly Bi-weekly Daily Daily 

Day 84-end Bi-weekly Bi-weekly Bi-weekly Bi-weekly 

Fermentation cycle (days)     

Day 0 - 83 3.5 ± 0.2 3.5 ± 0.2 1.0 ± 0.0 1.0 ± 0.0 

Day 84-end 3.5 ± 0.2 3.5 ± 0.2 3.5 ± 0.2 3.5 ± 0.2 

OLR (gCOD L-1 d-1)     

Day 0 - 69 13 ± 2 13 ± 2 12 ± 2 12 ± 2 

Day 70-end 9 ± 2 9 ± 2 9 ± 2 9 ± 2 

IOL (gCOD L-1 )     

Day 0 - 69 46 ± 6 46 ± 6 12± 2 12 ± 2 

Day 70-83 37 ± 3 37 ± 3 10.3 ± 0.5 9.7 ± 0.4 

Day 84-end 29 ± 5  29 ± 5 29 ± 5 29 ± 5 

 

Figure S5-1 Volatile solids (VS) concentration of effluent from duplicate semi-continuous stirred tank reactors 
fed bi-weekly (sCSTRBW) or fed daily for the first 84 days of operation before switching to bi-weekly feeding 
(sCSTRD/BW-new). Marked area was selected as the start-up phase after which VS varied less than 16% for all 
reactors.  
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5.2.3. Microbial community analysis 

 

Figure S5-2 Rarefaction curves calculated as the number of observed ASVs as function of the sequencing 
depth. Curves are grouped per samples taken from the feedstock (Feed), the reactors (sCSTRBW 1, 2 and 
sCSTRD/BW 1 and 2) and at the start of reactor operation after inoculation (inoculum). For further analysis, data 
was rarefied to 65,749 reads, which was the minimum sequencing depth obtained for one of the samples and 
located within the flattening range for all curves. Flattening of the curve indicates exhaustive sequencing of the 

diversity in the samples. 
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5.2.4. General reactor performance 

 
Figure S5-3 Product yields from co-fermentation of food waste and soybean soaking wastewater in four sCSTR 
fed twice a week, or daily as indicated on top of the graphs. The dashed lines represent the day from which 
OLR was reduced from 13 to 9 ± 2 gCOD L-1d-1 to prevent lactic acid accumulation and improve overall 
conversion. 
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Figure S5-4 Total product yield during operation of the four reactors at an organic loading rate (OLR) of 13 ± 2 
gCOD L-1d-1 (number of samples, n=52) and 9 ± 2 gCOD L-1d-1 (n=40). Data from reactor start-up is excluded. 
Symbol “****” represents p-values of < 0.0001, resulting from a Wilcoxon-Mann-Whitney test corrected for a 
FDR of 5%. 
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Figure S5-5 Concentration profiles of the uneven carboxylic acids in the effluent of the semi-continuous reactors 
fed bi-weekly (sCSTRBW) or fed daily for the first 8 HRT of operation (84 days) before switching to bi-weekly 
feeding (sCSTRD/BW-new).
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5.2.5. Statistical analysis on reactor performance 

5.2.5.1. Comparing product concentration per feeding pattern 

 

Figure S5-6 Evaluation of product concentrations in the effluent per feeding pattern. A: bi-weekly and daily 
feeding is compared during the first 8 HRT of operation (excluding start-up). B: yields from after 8 HRT to end 
of operation are compared between reactors fed bi-weekly and reactors that were previously fed daily and 
switched to bi-weekly feeding (Bi-weekly new). Symbols “ns”, “**”, “***” and “****” represent p-values of >0.5 (not 
significant), <0.01, <0.001 and <0.0001, respectively, resulting from a Wilcoxon-Mann-Whitney test and 

corrected for multiple comparisons with a FDR of 5%. 
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5.2.5.2. Comparing performance of duplicates  

 

Figure S5-7 Performances of duplicate reactors from after 8 HRT of operation until end were compared. A: the 
duplicate reactors that were fed bi-weekly (sCSTRBW 1 and 2). B: the duplicate reactors that were previously fed 
daily and had switched to a bi-weekly feeding pattern (sCSTRBW-new 1 and 2). Data Symbols “ns”, “**” and “***” 
represent p-values of > 0.5, < 0.01 and < 0.001, respectively, resulting from a Wilcoxon-Mann-Whitney test and 
corrected for multiple comparisons with a FDR of 5%. 
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5.2.5.3. Correlation analysis  

 

Figure S5-8 Spearman correlation matrix of product yields and acidification in all four reactors. Variables on the 
left of the graph are significantly correlated (p<0.01) with the variables on the top by the correlation coefficient 
(rs) given in the overlapping squares. The level of acidification during fermentation is presented by the amount 
of NaOH required to maintain minimum pH (NaOH dosing in g L-1d-1). The closer the rs is to 1 (blue) or -1 (red), 
the more the two variables are positively or negatively correlated. C2: acetic acid; C4: n-butyric acid; C6: n-
caproic acid; C8: n-caprylic acid. The p-values from all correlation analysis were corrected for multiple 

comparisons using a FDR of 5%.
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Figure S5-9 Lactic acid yields correlated negatively with MCCA yield (top) and positively with NaOH dosing (bottom). Spearman correlation coefficient (R) and significance of 
correlation (p-value) is determined on the variables per organic loading rate (OLR, left), per type of feeding pattern (middle) and per reactor (right). The p-values from all correlation 
analysis were corrected for multiple comparisons using a FDR of 5%. 
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5.2.6. Additional statistical data on microbial community analysis 

Table S5-4 Evaluating significant difference between microbial community structure according to feeding 
pattern. Multivariate tests (PERMANOVA and PERMDISP) were performed on Hellinger transformed relative 
abundances of communities using feeding pattern as factor and Bray-Curtis dissimilarities. The p-values were 
calculated using 9,999 permutations and corrected for multiple comparisons using a FDR of 5%. Bi-weekly and 
daily fed reactors are compared for sample points during the first 8 HRT of operation excluding start-up, and bi-
weekly fed reactors are compared with reactors switched from daily feeding to bi-weekly (Bi-weekly new) in 
samples taken after 8 HRT of operation. PERMDISP p-values >0.05 ensure assumption of homogeneity of 
multivariate dispersion is met.  

  PERMANOVA PERMDISP 

Comparison n Df Pseudo-F p Df F p 

Bi-weekly VS. Daily 36 1 8.8656 0.0004 1 0.0034 0.96 

Bi-weekly VS. Bi-weekly new 28 1 2.8974 0.0024 1 0.0217 0.96 

n, number of samples; Df, degree of freedom  

Table S5-5 Indicator species analysis on ASVs with a relative abundance >1% per feeding pattern. Comparison 
1 determines the indicator species for two reactors that were fed bi-weekly compared to two reactors that were 
fed daily during the first 8 HRT of operation (excluding start-up). Comparison 2 determines the indicator species 
for two reactors that were fed bi-weekly  compared to two reactors that were previously fed daily but switched 
to bi-weekly feeding (Bi-weekly new) after 8 HRT of operation until end. The p-values were calculated using 

9,999 permutations and corrected for multiple comparisons using a FDR of 5%.  

 n Genus Stat p-value 

Comparison 1     

Bi-weekly 18    

ASV_8  Olsenella 0.615 0.001 

ASV_6  Pseudoramibacter 0.545 0.002 

ASV_7  [Eubacterium] 

nodatum group 

0.491 0.002 

Daily 18    

ASV_2  Lactobacillus 0.582 0.002 

ASV_4  Olsenella 0.508 0.005 

Comparison 2     

Bi-weekly  14    

ASV_13  Acetitomaculum 0.441 0.02 

Bi-weekly new 14    

ASV_14  Olsenella 0.519 0.002 

n, number of samples; Stat, strength of association 
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Figure S5-10 Heatmap of the relative abundance of the genera in the MMC of the different samples over time 
in (A) the bi-weekly fed reactors and (B) the reactors fed daily and switched to bi-weekly feeding after 8 HRT 
as indicated on top of the graph. Only genera with an average relative abundance >1% are shown. 
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Table S5-6 Overview of the correlation analysis between the most abundant ASVs in the reactors with reactor 
performance, calculated over 64 samples. The spearman correlation coefficient (rS) and the p-value of 
correlation are presented for each ASV in respect with its correlation to the yield of lactic acid (LA), ethanol 
(EtOH), acetic acid (C2), n-butyric acid (C4), n-caproic acid (C6) or n-caprylic acid (C8). Colour intensity 
highlights strength where red indicates a negative and green a positive correlation. The p-values were corrected 
for multiple comparisons using a FDR of 5%. 

  LA EtOH C2 C4 C6 C8 

Lactobacillus; ASV 1 
p 

rS 

< 0.01 

-0.36 

< 0.0001 

0.72 

< 0.0001 

0.49 
ns 

< 0.01 

0.41 
ns 

Lactobacillus; ASV 2 
p 

rS 

< 0.0001 

0.52 

< 0.0001 

-0.77 

< 0.01 

-0.40 
> 0.05 

< 0.0001 

-0.47 

< 0.001 

-0.44 

Olsenella; ASV 3 
p 

rS 

<0.05 

0.32 
ns ns ns ns ns 

Olsenella; ASV 4 
p 

rS 
ns 

< 0.05 

-0.26 

<0.0001 

-0.53 
ns ns ns 

Bifidobacterium; ASV 5 
p 

rS 
ns ns 

< 0.01 

0.42 

< 0.01 

0.39 
ns ns 

Pseudoramibacter; ASV 6 
p 

rS 

< 0.0001 

-0.76 

< 0.01 

0.36 

<0.05 

0.34 

<0.05 

0.34 

<0.0001 

0.62 

<0.001 

0.45 

[Eubacterium] nodatum 

group; ASV 7 

p 

rS 
ns 

<0.01 

0.36 

<0.001 

0.44 
ns ns 

<0.0001 

0.48 

Olsenella; ASV 8 
p 

rS 

<0.001 

-0.45 
ns ns ns 

<0.05 

0.29 
ns 

Lactobacillus; ASV 10 
p 

rS 

<0.05 

0.31 
ns ns 

<0.01 

-0.39 
ns ns 

Olsenella; ASV 12 
p 

rS 
ns ns ns ns ns ns 

Acetitomaculum; ASV 13 
p 

rS 
ns 

<0.0001 

0.67 
ns ns ns 

<0.01 

0.37 

Olsenella; ASV 14 
p 

rS 
ns ns ns ns ns ns 

Corynebacterium; ASV 15 
p 

rS 
ns ns ns ns ns ns 

Lactobacillus; ASV 17 
p 

rS 
ns 

<0.0001 

-0.49 
ns ns ns ns 

Caproiciproducens; ASV 19 
p 

rS 
ns 

<0.05 

-0.29 
ns 

<0.01 

0.36 
ns ns 

ns, not significant (p>0.05) 
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Figure S5-11 Scatter plots with spearman correlation (R) between the relative abundance of (A) Lactobacillus 
ASV 1 and (B) Lactobacillus ASV 2 to ethanol, acetic acid, n-caproic acid and lactic acid yield as indicated by 

title axis. Symbols represent samples taken from reactors fed bi-weekly (  before 8 HRT of operation, after 
8 HRT of operation), daily (+) or switched to bi-weekly feeding after daily feeding for 8 HRT ( ). Data Symbols 
“**”, “***” and “****” represent p-values of < 0.01, < 0.001 and <0.0001, corrected for multiple comparisons with 
a FDR of 5%. 
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5.2.7. Cycle study 

 

Figure S5-12 Cycle study performed in between Day 49 to 52.5 of operation. The pH and concentration profiles 
of fermentation compounds over 84 hours in bi-weekly fed reactors (sCSTRBW 1 and 2) and daily fed reactors 
(sCSTRD 1 and 2). Time 0 corresponds to a sample taken straight after feed addition and the dashed lines 
indicate feeding events in the daily fed reactors.  
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Figure S5-13 Cycle study performed in between Day 73 to 76.5 of operation. The pH and concentration profiles 
of fermentation compounds over 84 hours in bi-weekly fed reactors (sCSTRBW 1 and 2) and daily fed reactors 
(sCSTRD 1 and 2). Time 0 corresponds to a sample taken straight after feed addition and the dashed lines 
indicate feeding events in the daily fed reactors.  
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Figure S5-14 Concentration of protonated MCCA in reactor sCSTRD 2 during two different fermentation cycles 
whereby in one lactic acid accumulated and in the other MCCA were produced. 
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Chapter 6. The inherent variability of a food waste 

feedstock and its consequences on acidogenic 

fermentation 

The previous research chapters focussed on the manipulation of operating parameters to 

steer the outcome in food waste fermentation in line with the second thesis goal (identifying 

operational strategies for MCCA production from food waste). By working with a real food 

waste feedstock, variations in organic content and composition are to be expected. As 

mentioned in the previous chapters, it is necessary to understand how these changes in the 

feedstock might influence the fermentation process and affect the selection of operating 

conditions. Therefore, this chapter addressed research objective four on monitoring 

feedstock composition and its impact on the fermentation process. Batch tests with 

intermittent sampling and cycle studies were included to characterise the fermentation 

pathways as outlined by research objective six. 

This chapter is submitted as a traditional chapter part of an alternative thesis format in line 

with Appendix 6A of the “Specifications for Higher Degree Theses and Portfolios” as 

required by the University of Bath
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6.1. Introduction 

Food waste (FW) is rich in moisture and nutrients, making it a suitable feedstock for 

anaerobic biotechnologies such as anaerobic digestion (AD) or the carboxylate platform as 

a means of treatment and resource recovery. However, FW is a highly varying feedstock, 

for instance, the composition varies significantly depending on geographical location, 

source of collection, and there are also seasonal variations [1]. Literature data shows this 

inherent scatter and generally has high standard deviations. This is true not only for 

physicochemical characteristics such as total COD (198 ± 89 g kgww
-1), but also for 

nutritional elements such as total ammonia nitrogen (731 ± 958 mg L-1). It is also the case 

that differences in pretreatment or storage will affect the feedstock, for example the high 

biodegradability of FW will cause it to spontaneously ferment during storage [2]. This can 

be used to an advantage for AD, as the storage conditions and time can be adjusted to 

enhance hydrolysis and hence increase methane productivity [3]. 

This complex and variable composition of FW makes it difficult to predict its anaerobic 

biodegradability [4]. In AD, general day-to-day variations in FW do not compromise methane 

yields [5, 6]. Neither does pasteurisation, a pretreatment to AD commonly applied to sterilise 

organic waste containing animal by-products if the digestate is to be used as fertiliser [7]. 

Song, et al. [8] suggest that the long hydraulic retention time (HRT) used in FW digesters 

(average of 44 days) is likely to smooth moderate fluctuations in daily loading. However, 

unexpected sudden increases in organic content of the feedstock can result in an organic 

overload, and subsequent carboxylate accumulation and process failure [9]. For processes 

relying on acidogenic fermentation, the retention times are generally much shorter than for 

AD, ranging from a couple of hours to 16 days, to force carboxylate accumulation [10]. 

Therefore, a variation in the feedstock or changes in its storage will have a higher impact 

on process stability in such systems. Acidogenic fermentation has a wider product range 

compared to AD, including H2, lactic acid, short chain volatile fatty acids (VFA) or medium 

chain carboxylic acids (MCCA). Thus, instability of the feedstock quality could change the 

predominant metabolic pathways and generate different, and undesired, products.   

Different liquid FW streams generate different acidogenic fermentation products depending 

on their sugar, ethanol and lactic acid content [11, 12]. This has been shown for FW 

feedstocks including carbohydrate, protein or lipid-rich pre-consumer restaurant FW, 

cheese whey, maize silage, microalgae, fruit pulps, brewery residues, tofu, egg white, olive 

mill effluent, or winery wastewater [13-18]. Chatellard, et al. [19] noted performance 

differences due to carbohydrate content. They fermented different model lignocellulosic 

compounds, from monomers to more complex compounds, and observed that each 
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influenced acidogenic batch fermentation and the resulting microbial community in a 

different manner. For acid whey valorisation it has been shown that feedstock composition, 

i.e., lactose, lactate and ethanol content, influences MCCA production rate [20]. It is 

generally known that different FW feedstock composition and quality influences acidogenic 

fermentation outcomes, but there is little information on how variations in solid-rich, mixed 

FW, such as is used in recycling centres, affect acidogenic fermentation outcome. Research 

is particularly limited for production of chain elongation products (MCCA). To use acidogenic 

fermentation of FW in resource recovery at recycling facilities, we need to understand how 

the inherent feedstock variability affects the product outcome. Therefore, this chapter 

assesses variations in the feedstock used, and how these affect acidogenic fermentation. 

6.2. Material and methods 

6.2.1. Food waste collections 

Three different types of FW were collected: FW used as feedstock for AD at an industrial 

recycling plant (FWrec, GENeco, Avonmouth, UK), cafeteria FW (FWcaf), and liquid food-

processing wastewaters (Table 6-1). Each FW collection underwent chemical analysis 

(Section 6.2.3.) to determine the feedstock variation. Data was obtained from the full-scale 

AD plant and from the literature to evaluate the feedstock composition in a wider context. 

Eight samples of FWrec were collected, two of which had undergone pasteurisation. The 

FWrec comprised packaged and unpackaged FW collected from households, supermarkets, 

catering facilities and restaurants. The FW is unpacked at the plant, and then ground and 

mixed with liquid streams from food-processing industries, and/or the liquid fraction of AD 

effluent, to form a slurry. The blended mixture is stored in buffer tanks and pasteurised (70 

°C for 60 min) before being fed to mesophilic anaerobic digesters. FW samples were 

characterised and stored in aliquots (-18 °C) before use in fermentation experiments. Fresh 

FWcaf was obtained from a cafeteria (NTU, Singapore) as the solid cooked food fractions 

discarded by customers, and hard residuals such as shell and bones were manually 

removed. It was then suspended in reverse osmosis (RO) water for characterisation and 

used fresh in fermentation experiments. The liquid food-processing waste streams were 

from soaking yellow or black soybeans (Ysoy, Bsoy) or brewery cleaning water 

(Brew)(Singapore). The former was collected from a processing facility where the soybeans 

are soaked for 4 hours to improve digestibility before further processing. The later was 

collected from a brewery as the residue from rinsing the fermentation tanks. These FW 

waters were characterised fresh and stored for less than one day at 4 °C prior to 

fermentation experiments.  
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Table 6-1 Overview of food waste (FW) feedstock collections and their application. Each collection was characterised and summarised in the result section (Table 6-3). 

ID Date Location Info Application 

FWrec 1 09/11/2016 

Avonmouth, 

UK 

Non-pasteurised FW from buffer tank Chapter 3: reactor operation 

FWrec 2 06/12/2016 Non-pasteurised FW from buffer tank Chapter 3: reactor operation 
    

FWrec 3 07/06/2017 Non-pasteurised FW from buffer tank (FWpre-past) Chapter 6: BMP assay (FWpre-past) 

FWrec 4 07/06/2017 Pasteurised food waste (FWpost-past) Chapter 6: BMP assay (FWpost-past) 
    

FWrec 5 25/01/2018 Non-pasteurised FW from buffer tank Chapter 4: Reactors HH/LO 
    

FWrec 6 10/05/2018 Pasteurised FW  
Chapter 4: Reactors LH/LO and LH/HO, Chapter 6: 

kinetic test  
    

FWrec 7 28/01/2019 
Blend of non-pasteurised FW collected on 

03/12/2018 and 28/01/2019 

Chapter 6: kinetic test and sucrose supplementation, 

long term evaluation of sucrose enrichment  
    

FWrec 8 09/07/2019 Non-pasteurised FW from buffer tank 
Chapter 6: AFP assay, kinetic test and sucrose 

supplementation 

FWcaf  

twice a week 

from 10/09/2019 

to 24/01/2020 

Singapore 

Cafeteria FW 
Chapter 5: reactor operation 

Chapter 6: AFP assay 

Ysoy  

weekly from 

29/08/2019 to 

24/01/2020 

Yellow soybean soaking wastewater 
Chapter 5: reactor operation 

Chapter 6: AFP assay 

Bsoy 1 05/09/2019 
Black soybean soaking wastewater Chapter 6: AFP assay 

Bsoy 2 30/09/2019 

Brew 1 26/09/2019 
Brewery cleaning water Chapter 6: AFP assay 

Brew 2 06/11/2019 

BMP, biochemical methane potential; AFP, acidogenic fermentation potential 
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6.2.2. Experimental setup 

6.2.2.1. Anaerobic biodegradability tests 

The biochemical methane potential (BMP) of FWrec was determined as a benchmark for the 

maximum anaerobic biodegradability of the feedstock [21]. The BMP assay was done on 

FWrec samples pre- and post-pasteurisation (FWpre-past, FWpost-past). Fresh digestate from the 

full-scale AD plant (GENeco, Avonmouth, UK) was collected as inoculum 4 days prior to the 

test and stored at 4 °C until use (20.9 ± 0.2 g L-1
 VS). Batch tests were set up using the 

Bioprocess Control AMPTS II system (Bioprocess Control, Lund, Sweden). This comprises 

500 mL reactors submerged in a water bath, sealed with a cap incorporating a vertical 

stirrer, and connected to a gas volume analyser (Bioprocess Control AB, Lund, Sweden). 

The reactor working volume was 300 mL. The produced CH4 volume was measured after 

CO2 stripping and reported at Standard Temperature and Pressure (STP, 273.15 K, 100 

kPa). Reactors were set up with a food-to-microorganisms (F/M) ratio of 0.5 gCODfed 

gVSinoculum
-1 by diluting the inoculum to 10 gVS L-1 in the reactor by addition of tap water. 

This corresponded to a VS addition per substrate of 3.58 and 3.44 gVS L-1 for FWpre-past and 

FWpost-past, respectively. The pH was corrected to 7 at the start. The BMP reactors were 

incubated at 35 °C for 30 days. Tests were run in triplicate with a control to correct for the 

autodigestion capacity of the inoculum.  

The BMP values (based on tCOD or VS fed), the anaerobic biodegradability (BD), and 

estimated kinetic hydrolysis constant (kh), were determined following Raposo, et al. [22]. 

BMP was determined from the net experimental methane yield, as the amount of CH4 

produced at STP (corrected for CH4 production from the controls), normalised for organic 

material added and expressed per total COD or VS in the feed. BD was calculated as the 

ratio of the experimental BMPCOD over the theoretical maximum BMP (355 mL of CH4 STP 

per gCOD fed). The kh was estimated by fitting the net cumulative methane yield on COD 

to a first order degradation model (Equation (6-1)), solving for kh using the Goal Seek 

function in Excel: 

𝐵𝑡 = 𝐵𝑜(1 − 𝑒−𝑘ℎ𝑡) (6-1) 

Where t is the time (day) and 𝐵𝑡 and 𝐵𝑜 represent the net cumulative methane yield (mL 

CH4 gCOD-1, STP) produced at time t and at the end of the assay.  

6.2.2.2. Acidogenic fermentation potential tests 

Seven-day batch tests of the different types of FW and FW enriched with sucrose were 

performed to determine the impact of composition on acidogenic fermentation potential 
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(AFP) (Table 6-2). The AFP of the liquid wastewaters (Ysoy, Bsoy and Brew) were assessed 

individually and in co-fermentation with FWcaf. For co-fermentation, FWcaf was blended with 

food-processing wastewaters in a 1:2 weight ratio. To determine the effect of variations in 

the feedstock, different collections of the same type of FW were tested. These are indicated 

via a superscript, e.g., FWcaf
a and FWcaf

b are time separated samples of the same waste. 

Acid inhibition was estimated in two sets of experiments on Days 1 and 3 of fermentation, 

by measuring and correcting pH if needed (Table 6-2).  

Table 6-2 Specifications of AFP batch tests according to the feedstock tested. Pressure from biogas 
accumulation was released after Days 1 and 3 of fermentation to measure pH and correct to a minimum of 5.5 
if needed. 

Feedstock F/M Gas release pH correction 

 gCODfed gVSinoculum
-1 Yes / No Yes / No 

Pure feedstock    

Bsoy 0.19 ± 0.01 No No 

Ysoy 0.30 ± 0.03 No No 

Brew 0.41 ± 0.02 No No 

FWcaf 5.0 ± 0.2 No No 

FWrec 5.08 ± 0.05 No No 

Co-fermentation    

FWcaf : Brew 5.0 ± 0.9 No No 

FWcaf : Ysoya 5.0 ± 0.1 No No 

FWcaf : Ysoyb 5.0 ± 0.7 Yes No 

FWcaf : Ysoy b - pH 5.0 ± 0.7 Yes Yes 

FWrec : 2%w/w sucrose 5.08 ± 0.04 No No 

FWrec : 5%w/w sucrose 5.08 ± 0.04 No No 

FWrec: 10%w/w sucrose 5.08 ± 0.03 No No 

Batch tests were performed in triplicate in 120 or 140 mL serum flasks with the working 

volume set at 80 mL by addition of tap water. AD effluent was seeded at 5 gVS L-1 and 

feedstock was added to obtain an organic load of 25 gCOD L-1 to give an F/M ratio of 5, as 

found to be optimal for acidogenic fermentation with AD effluent as inoculum [12]. If the total 

COD of the feedstock was not high enough to reach the set organic load, the maximum 

obtainable F/M was used (Table 6-2). Reactors were seeded with AD effluent from a 

sewage sludge digester at a wastewater treatment plant (Changi, Singapore) with a pH of 

7.6 ± 0.1 and estimated biomass content of 24.5 ± 0.9 gVS L-1. The FWrec tests were 

inoculated with AD effluent from FW AD (GENeco, Avonmouth, UK) with a pH of 7.7 and 
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17.96 ± 0.01 gVS L-1
 biomass. After collection the digestate was left to degas at 35°C for a 

minimum of 24 hours to minimize residual organics prior to inoculation.  

At the start, pH in the reactors was corrected to between 7.2 and 7.7 and headspaces were 

flushed with N2 for 1 minute. Reactors were incubated for 7 days at 35 °C in a water bath 

or incubator equipped with a horizontal shaking plate. Biogas production was monitored by 

pressure build-up either determined with a manometer or volume displacement in a syringe, 

and normalised to STP. Control reactors were run to determine the auto-fermentation of the 

inoculum. Product yields were determined as the concentrations measured on Day 7, 

corrected for concentrations on Day 0, divided by the organic content of the feed (expressed 

in tCOD). Gas production yields were corrected for biogas from the inoculum by subtracting 

the biogas yield from control reactors. Solids reduction was calculated as the percentage of 

solids removed relative to the initial solids content (feedstock + inoculum).  

6.2.2.3. Kinetic batch tests 

Three different FWrec samples (FWrec 6, 7 and 8 in Table 6-1) and two FWrec samples 

enriched with 2% w/w sucrose (FWrec 6 and 8 in Table 6-1) were fermented in a reactor 

setup allowing intermediate sampling to track product evolution and evaluate feedstock 

variation and effect of readily biodegradable sugar. Tests were performed in triplicate in 250 

mL glass bottles with the working volume made up to 200 mL by addition of tap water. As 

with the AFP assays, the pH was corrected to around 7.2 and headspaces were flushed 

with N2 for 1 minute on Day 0. Reactors were incubated over 7 days at 35 °C in a water 

bath equipped with a horizontal shaking plate. Reactors were sealed with modified caps to 

include a gas and liquid sampling port. Due to limitations in reactor design, gas pressure 

was released automatically if it exceeded 3.7 bar through the sampling ports opening the 

headspace to atmosphere until closed again within 12 hours. On Days 1, 2, 5 and 7, biogas 

production was monitored by volume displacement in a syringe and normalised to STP. 

After gas pressure was released, samples of the gas and liquid phases were taken, and pH 

and composition analysed. If the pH was below 5.5 after sampling, NaOH was dosed to 

increase pH above 5.5 to avoid acid inhibition. 

6.2.2.4. Semi-continuous stirred tank reactors 

To evaluate the effect of a higher fraction of easily biodegradable sugars in the feedstock 

on functionality and microbial community enrichment, FW enriched with 2 w/w% sucrose 

was fermented semi-continuously at long-term (over 7.2 HRT). The semi-continuous stirred 

tank reactors (sCSTR) were operated in the same way as Chapters 3 and 4 [23, 24]. In 

summary, two 2 L glass bioreactors were run in duplicate with a 0.6 L working volume, 
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equipped with mechanical vertical stirrers (Bioprocess Control, Lund, Sweden) and kept at 

35 °C. A fixed volume of reactor effluent was replaced every 3.5 days with thawed FW 

(collection FWrec 7 in Table 6-1) and 2 % w/w of added sucrose to achieve an OLR of 11 ± 

1 gCOD L-1d-1 and a HRT of 15 ± 1 days. The OLR and HRT were chosen to be similar and 

higher, respectively, to those used in Chapter 4 for targeted MCCA production (i.e., in 

comparison to the system labelled HH/LO)[24]. The pH was corrected to 5.9 ± 0.1 with 

sodium hydroxide (1 or 2 M) each feeding event. Gas production was monitored via water 

displacement using 2 L graduated glass columns containing acidified water (pH < 4.3, HCl), 

and normalised to STP. The water columns were connected to the reactor headspace via 

a buffer bottle, to avoid liquid running back to the reactors at low headspace pressures.  

At start-up, reactors were inoculated with enriched acidogenic fermentation culture from an 

in-house reactor, which had been stored at 4°C [23]. The seeding culture was diluted with 

tap water to obtain a biomass content of 14 gVS L-1, and left to acclimatise overnight to 

temperature (35 °C) in a water bath. The first feed was diluted 1:2 with tap water. Day 0 of 

operation corresponds to the first day of feeding at full organic strength. After operating for 

three HRT, fermentation cycle studies were performed as per De Groof, et al. [23].  

The OLR, HRT, net product yields (𝑌𝑝), and extent of acidification were calculated for each 

feeding cycle, approximated to continuous operation, as per De Groof, et al. [23]. The 

average OLR and HRT were calculated over the entire operation for the two duplicate 

reactors. Statistical analysis was performed using R v.4.0.0 through the Rstudio IDE using 

the R Stats package v.3.6.2 [25]. Correlations in fermentation product yield and sodium 

hydroxide dosing were determined using the Spearman’s rank correlation coefficient (rS), 

and visualised in a matrix of correlation coefficients using the Hmisc (v4.4-1) and corrplot 

(v0.84) packages [26, 27]. The p-values resulting from the correlation analysis were 

corrected for multiple comparisons using a false discovery rate (FDR) of 5% [28].  

Biomass samples were taken to study the microbial community enrichment using 16S rRNA 

gene amplicon sequencing, targeting the bacterial and archaeal variable region V4 (Section 

6.2.4). Duplicate samples were taken from both reactors on Day 0 for inoculum 

characterisation. Duplicate samples were taken during operation at the peak of caproic acid 

production (Day 28) and during a peak in lactic acid production (Day 94 Reactor 1, Day 70 

Reactor 2) to evaluate the microbial communities. 

6.2.2.5. Phase separation of MCCA 

During two of the FW fermentations, floating oil and grease-like layers were observed in the 

reactors and at the top of samples. The layers were analysed for the presence of carboxylic 



 

169 
 

acids to evaluate the potential for phase separation of protonated carboxylic acids. The 

samples were left to settle, and the immiscible top layer was pipetted into a separate vial. 

Carboxylic acid concentrations were measured by HPLC-RI or GC-FID (see Section 6.2.3.). 

Enrichment was determined as the concentration in the oil phase relative to the 

concentration in the whole sample. 

Insoluble top layers with a more solid consistency were harder to separate manually, so the 

carboxylic acid concentration was measured in the whole sample (C2-C6 following GC-FID, 

Section 6.2.3.) to obtain the total, bulk concentration (𝐶𝑡𝑜𝑡). Then the same sample was 

weighed (𝑚𝑡𝑜𝑡) and centrifuged (15min × 4.500g) to separate a top floating layer (Phase A), 

the liquid supernatant (Phase B), and the solid bottom (Phase C). Each of these layers was 

weighed (𝑚𝐴,𝐵 𝑜𝑟 𝐶) and the concentration of carboxylic acids (𝐶𝐴,𝐵 𝑜𝑟 𝐶) was measured in 

each of them. By converting the concentrations in each phase to mass it was possible to 

estimate the overall concentration resulting from measuring each phase separate (𝐶𝑝ℎ𝑎𝑠𝑒𝑠), 

which allowed comparison against 𝐶𝑡𝑜𝑡 to evaluate mass balance. See Equations (6-2) and 

(6-3). 

𝐶
𝑝ℎ𝑎𝑠𝑒𝑠= 

𝑚𝐴𝐶𝐴+𝑚𝐵𝐶𝐵+𝑚𝐶𝐶𝐴𝐶
𝑚𝑡𝑜𝑡

 (gCOD kg-1) (6-2) 

𝑅𝑒𝑙. 𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =  
√(𝐶𝑡𝑜𝑡 − 𝐶𝑝ℎ𝑎𝑠𝑒𝑠)2

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑡𝑜𝑡 , 𝐶𝑝ℎ𝑎𝑠𝑒𝑠) 
 

(%) (6-3) 

  

6.2.3. Chemical analysis 

Total solids (TS), volatile solids (VS), total suspended solids (TSS), and volatile suspended 

solids (VSS) were determined using fresh samples according to Standard Methods 2540 D 

and E, and expressed on a fresh weight basis [29]. The total chemical oxygen demand 

(tCOD) represents the content of both particulate and soluble matter. The soluble COD 

(sCOD) was measured from filtered samples (0.45 µm). Chemical oxidation of the organic 

content in the samples was performed in cuvette tests (LCK014, 1-10 gCOD
 L-1 and LCI400, 

0-1 gCOD
 L-1 or Cat. 2125915 Hach, Düsseldorf, Germany), based on a dichromate oxidation 

method (5220-C and D, [29]), and measured with a Hach DR 2800 Spectrophotometer. 

C1-C5 n-carboxylic acids, ethanol, lactic acid, and glucose were measured by HPLC-RI 

using an adapted method from Coma, et al. [12], with the oven temperature adjusted to 65 

°C. The more hydrophobic MCCA (C5-C8), and all C2-C8 n-carboxylic acids for phase 

separation tests, were analysed by GC-FID as per Chapters 3 and 4 following the method 

adapted from Manni and Caron [30]. 
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Gas samples were taken for composition analysis (N2, O2, H2, CH4 and CO2) from reactor 

headspaces in the batch tests, or from the glass gas collection columns in the semi-

continuous reactors, immediately before sample withdrawal and feed addition. For the 

anaerobic biodegradability tests (Section 6.2.2.1.) and sCSTRs (Section 6.2.2.4.) gas 

composition was analysed using two systems: GC-FID/TCD for CH4 and CO2 quantification, 

and GC-TCD for H2, N2 and O2, see Chapter 3 and 4 [23, 24]. During AFP tests fermenting 

FWcaf, Ysoy, Bsoy, Brew or mixtures thereof, gas composition was determined by GC-TCD, 

see Chapter 5. Gas composition for the remaining AFP and kinetics tests was measured by 

GC-TCD (Trace 1300, ThermoFisher Scientific, MA, USA) equipped with split/splitless 

injector module, micropacked Shincarbon-ST column (ShinCarbon ST, 100/120 mesh, 2 m, 

1/16 in. OD, 1.0 mm ID (Cat.# 19808)). Samples were injected at 0.50 µL with split ratio of 

2 and inlet temperature of 150 °C. Argon was used as carrier gas at constant total flow rate 

of 10.0 ml min-1 with oven temperature at 40 °C for 4.00 min, then ramped at 120 °C min-1 

to 100 °C and held for 2.50 min. Gases were detected by TCD at 280 °C and filament 

temperature of 380 °C and reference gas flow at 1.0 mL min-1. Quantification was achieved 

by one-point calibration forced through 0 with a 10 volume% calibration mixture (10% H2, 

10% CO2, 10% CH4, β-grade, BOC, Surrey, UK) and air (21% O2, 78% N2). 

6.2.4. Microbial community analysis 

Samples were stored at -18°C before sending to DNAsense (Aalborg Øst, Denmark) for 

DNA extraction, library preparation, 16S rRNA gene amplicon sequencing and 

bioinformatics processing. This included clustering reads by operational taxonomic units 

(OTUs) at 97% similarity and assigning taxonomy using the SILVA database, as per De 

Groof, et al. [23]. The results were analysed using the DNAsense app (DNAsense, Aalborg 

Øst, Denmark), which is based on the ampvis package (v.2.5.8) in R (v. 3.5.1) [25, 31]. The 

number of sequencing reads per sample was between 17579 and 25383 and rarefaction 

curves were generated (Figure 6-1). To allow linear comparison of community structures, 

effective alpha-diversity, i.e., 1st and 2nd Hill number (1D and 2D), were calculated from the 

common alpha-diversity measures available from the DNAsense app [32-34]. 
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Figure 6-1 Rarefraction curves for reactor biomass samples calculated as the number of observed OTUs 
(Species) as function of the sequencing depth. Flattening of the curve indicates exhaustive sequencing of the 
diversity in the samples. Two reactors were operated in duplicate and 3 timepoints were sampled in duplicate, 
i.e. a total of 6 biomass samples per reactor. 

6.3. Results and discussion 

6.3.1. Variations of the food waste feedstock  

The composition of the different FW samples collected were characterised to determine 

natural variability (Table 6-3). Compositions per type of FW feedstock were averaged to 

cross reference with studies (Table 6-4). Previous characterisation of the mixed FW from 

the full size AD plant (GENeco, Avonmouth) over 2 years indicated a highly varying 

feedstock with TS ranging from 5.5 to 18.5 %, tCOD from 69.2 to 264 gCOD kgww
-1, and VFA 

2.1 to 11.3 g L-1 VFA (internal report). Most FW samples from this AD plant (GENeco, 

Avonmouth) in this work fall within that range (FWrec in Table 6-3). The second solid FW 

used in this work, FWcaf, had solids and tCOD contents that were nearly three times higher 

than FWrec. By contrast, the liquid FW waters from soybean processing and brewery 

cleaning had a much lower organic content.  
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Table 6-3 Overview of feedstock characteristics of the different types of food waste (FW) collected (location, time of collection and for which study these feedstocks were used 
are available in Table 6-1). Chemical analysis was performed in duplicate unless specified otherwise (n). *Where VS or TS could not be determined because the feedstock was 
too dilute, the VSS and TSS were reported instead. FWrec: feedstock from an industrial AD plant (GENeco, Avonmouth), FWcaf: cafeteria FW, Y/Bsoy: yellow and black soybean 

soaking water, Brew: brewery wash water. 

 pH Conductivity TS (*TSS) VS (*VSS) tCOD sCOD Lactic acid Ethanol 
VFA 

(C1-C4) 
Glucose 

  mS cm-1 % w/w (*g L-1) % w/w (*g L-1) gCOD kgww
-1 gCOD kgww

-1 gCOD kgww
-1 gCOD kgww

-1 gCOD kgww
-1 gCOD kgww

-1 

FWrec 1 4.99 ± 0.08 NA 9.94 ± 0.07 8.83 ± 0.00 150 ± 1 38 ± 1 7.8 ± 0.4 3 ± 2 2.7 ± 0.2 3.9 ± 0.2 

FWrec 2 5.30 ± 0.06 6.3 ± 0.2 18 ± 2 16 ± 1 297 ± 9 38 ± 0.1 2.65 ± 0.02 1.7 ± 0.3 2.6 ± 0.6 5.4 ± 0.9 

FWrec 3 4.03n=1 8.6 n=1 10.2 ± 0.1 9.27 ± 0.1 129 ± 7 21.4 ± 0.5 NA NA NA NA 

FWrec 4 4.48 n=1 8.8 n=1 12.79 ± 0.01 9.59 ± 0.08 139 ± 23 44.3 ± 0.3 NA NA NA NA 

FWrec 5 4.1 ± 0.1 6.9 ± 0.2 10.7 ± 0.7 8.8 ± 0.3 130 ± 9 63.7 ± 0.8 21 ± 1 27 ± 1 7 ± 2 1.5 ± 0.3 

FWrec 6 4.07 ± 0.02 8.3 ± 0.4 11.3 ± 0.2 10.3 ± 0.2 163 ± 2 76 ± 2 23.1 ± 0.2 10.1 ± 0.8 3.7 ± 0.9 0.1 ± 0.1 

FWrec 7 4.02 ± 0.01 8.7 ± 0.2 9.4 ± 0.2 8.5 ± 0.2 146 ± 6 62 ± 3 20 ± 7 16.0 ± 0.3 7 ± 1 0.00 ± 0. 00 

FWrec 8 3.79 ± 0.02 9.73 ± 0.08 10.3 ± 0.2 9.3 ± 0.1 147 ± 1 53 ± 12 30 ± 6 7.0 ± 0.9 4.7 ± 0.7 0.00 ± 0.00 

FWcaf 1 6.31 ± 0.01  NA 30.3 ± 0.4  29.65 ± 0.01 409 ± 11 136 ± 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.99 ± 0.01 

FWcaf 2 5.92 ± 0.05 NA 31.06 ± 0.05 30.25 ± 0.01 420 ± 14 155.8 ± 0.8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.38 ± 0.01 

FWcaf 3 6.22 ± 0.00 NA 28.65 ± 0.07 27.79 ± 0.07 406 ± 17 168 ± 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.99 ± 0.09 

Ysoy 1 5.88 ± 0.01 NA *0.06 ± 0.01 *0.035 ± 0.001 1.54 ± 0.06 1.44 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.00 

Ysoy 2 6.01 ± 0.02 NA *0.06 ± 0.04 *0.043 ± 0.001 1.39 ± 0.06 1.42 ± 0.02 0.00 ± 0.00 0.17 ± 0.00 0.00 ± 0.00 0.26 ± 0.00 

Bsoy 1 6.16 ± 0.02 NA *0.028 ± 0.000 *0.028 ± 0.000 0.67 ± 0.02 0.65 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.09 ± 0.00 

Bsoy 2 6.68 ± 0.01 NA *0.024 ± 0.002 *0.024 ± 0.002 1.19 0.04 1.16 ± 0.01 0.00 ± 0.00 0.08 ± 0.00 0.00 ± 0.00 0.10 ± 0.01 

Brew 1 10.99n=1 NA *0.433 ± 0.001 *0.409 ± 0.001 4.31 ± 0.01 3.58 ± 0.03 0.00 ± 0.00 0.09 ± 0.05 0.00 ± 0.00 0.30 ± 0.00 

Brew 2 9.16 ± 0.03 NA *0.70 ± 0.04 *0.67 ± 0.04 2.5 ± 0.1 2.07 ± 0.03 0.00 ± 0.00 0.66 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 

NA, not available; ww, wet weight 
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Table 6-4 Comparison of food waste parameters used as feedstock in acidogenic fermentation studies. 

Type of FW pH 
TS 

% w/w 

VS 

% w/w 

tCOD 

gCOD kgww
-1 

sCOD 

gCOD kgww
-1 

Reference 

Recycling centre 

(FWrec) 
4.3 ± 0.5 12 ± 3 10 ± 3 163 ± 55 50 ± 18 this study 

Cafeteria (FWcaf) 6.1 ± 0.2 30 ± 1 29 ± 1 412 ± 13 153 ± 14 this study 

Recycling centre 4.6 10.5 ± 0.0 9.6 ± 0.1 157 ± 11 NA [12] 

Recycling centre NA 20.0 ± 0.2 17.9 ± 0.1 277 ± 53 125.2 ± 0.6 [38] 

Cafeteria FW NA 20 ± 1 19.4 ± 0.3 NA NA [39] 

Restaurant FW 3.6 ± 0.3 28 ± 2 26 ± 2 376 ± 51 NA [35] 

OFMSW NA 37.1 ± 0.1 24 ± 4 333 ± 25 NA [40] 

OFMSW 7.7 ± 0.8 NA NA 380 ± 22 NA [17] 

OFMSW NA 45 ± 2 22 ± 2 204 ± 29 NA [41] 

Simulated FW 4.1 ± 0.1 6 ± 1 5.5 ± 0.2 NA NA [42] 

Vegetable and 

salad waste 
4.6 ± 0.1 0.5 ± 0.0 0.4 ± 0.0 57 ± 4 28 ± 5 [43] 

Acid whey 

wastewater 
4.7 5.8 ± 0.2 5.1 ± 0.1 72 ± 0.2 71 ± 0.1 [14, 44] 

NA, not available; ww, wet weight 

Different FW feedstocks have been used in acidogenic fermentation studies that reported 

n-caproic acid production (Table 6-4). Comparing these to the feedstock in this work shows 

that FWrec had a slightly lower solid and COD content, whereas FWcaf was generally similar. 

This difference is due to processing of FWrec within the industrial AD plant, where it is mixed 

with a liquid stream to obtain a pumpable mixture. It can therefore be expected to have a 

lower solids content and lower or higher COD content depending on the liquid used for 

mixing. One of the eight FWrec samples stood out as it had a high tCOD of 297 ± 9 gCOD 

kgww
-1 and TS of 18 ± 2 % (FWrec 2 in Table 6-3). According to site operators, the high COD 

content could have resulted from mixing the solid FW with oily washings from savoury snack 

manufacturing. Overall, the liquid used to dilute solids in the AD plant varied from recycled 

liquors from digestate dewatering, to food processing liquids including waste streams from 

fruit juice, cheese, potato, ice cream or meat processing, and washing waters from juice, 

wine, beer, or cider production. Acidogenic fermentation studies with a feedstock with higher 

solid and COD content than FWrec either diluted the feed to allow operation in stirred tank 

reactors or used leach bed reactors [35-37]. FWcaf was mixed with yellow soybean 

processing wastewater when used as feedstock for semi-continuous fermentation in a 

stirred tank configuration (Chapter 5). Mixing of solid and liquid FW streams could lead to 

significant variation in feedstock characteristics if the liquid used is highly concentrated in 

dissolved organics. On the other hand, careful blending or appropriate selection of the liquid 
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source gives the opportunity to control COD content. This requires improved stream 

characterisation, and hence increases process complexity, but it leads to potentially 

enhanced and consistent process performance. Further work should determine how to 

obtain an optimal blend and the practical feasibility of the whole process. 

6.3.2. The high anaerobic biodegradability of food waste 

An initial biochemical methane potential (BMP) assay was carried out on the feedstock to 

have an indication of the maximum anaerobic biodegradability (BD) and rate of 

biodegradation (kinetic hydrolysis constant, kh). The assay evaluated FW that was not 

pasteurised (FWpre-past, FWrec 3 in Table 6-1) and pasteurised FW (FWpost-past, FWrec 4 in 

Table 6-1). There was no significant difference in BD and kh between the FW pre- and post-

pasteurisation samples (Figure 6-2), and values were in the upper range of those in the 

literature (Table 6-5). Within 6.5 days of fermentation 95% of the total biodegradable matter 

is digested at an estimated kh of 0.46 day-1. This high biodegradability and rapid digestion 

rate justifies the use of FW as feedstock for valorisation in anaerobic fermentation 

processes. Although the FWrec feedstocks are within the range identified for the AD plant, 

extrapolating the results as a general for FWrec is speculative as its composition varies. 

Nevertheless, these results confirm the high and rapid biodegradability of the feedstock. 

 

Figure 6-2 Cumulative methane yield from the BMP assay and fitted curves following a first order degradation 
solved for the estimated kinetic hydrolysis constant (kh). 
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Table 6-5 Biochemical methane potential (BMP), anaerobic biodegradability (BD) and kinetic hydrolysis 
constant (kh) of food waste (FW) collected from an industrial anaerobic digestion plant before (FWpre-past) and 
after (FWpost-past) pasteurisation (60 min, 70°C), compared to literature data. 

Feedstock    BMPCOD BMPVS BD kh  Reference 

  mLCH4 gCOD,fed
-1 mLCH4 gVS,fed

-1 % Day-1  

FWpre-past (avg ± sd) 284 ± 23 396 ± 32 80 ± 6 0.46 this study 

FWpost-past (avg ± sd) 271 ± 35 394 ± 47 76 ± 9 0.50 this study 

3 types of FW  (range) NA 372 – 421 67 – 91 NA [4] 

10 types of FW (range) NA 99 – 645 NA NA. [45] 

11 types of FW  (range) NA 165 – 496 56.1 – 99.1 0.26 - 0.64 [46] 

FW and OFMSW, 

pasteurised and 

non-pasteurised  

(range) NA 330 – 475 86 – 93.7 NA [7] 

NA, not available 

6.3.3. The acidogenic fermentation of different food waste feedstock  

The acidogenic fermentation potential (AFP) of different types of FW feedstock, individually 

and in combination, were determined in 7-day batch tests with (i.e., kinetic tests) or without 

intermittent sampling. The AFP tests were performed on different samples of the same FW 

source to characterise the effect of inherent feedstock variations. Results of the AFP assays 

and kinetic tests were summarized in Figure 6-3. 

6.3.3.1. Type of food waste determines type of acidogenic fermentation 

The COD content of the brewery wastewater (Brew) and the soybean wastewater (Ysoy, 

Bsoy) was too low to achieve a F/M ratio of 5 gCODfed gVSinoculum
-1. The low F/M (< 1 gCODfed 

gVSinoculum
-1) prevented inhibition of methanogenesis and no acidogenic fermentation 

products accumulated (Figure 6-3 A).  

For the AFP tests with solid FW (FWcaf or FWrec), there was enough COD to operate at a 

F/M of 5 gCODfed gVSinoculum
-1, and hence inhibit methanogenesis by organic overload. A 

different fermentation outcome was obtained for each type of FW. Fermentation of FWcaf, 

or co-fermentation of FWcaf with one of the liquid wastewaters at a 1:2 weight ratio, resulted 

in a total yield of liquid products of up to 73 ± 3 % (gCODliquid products gCODfed
-1) and 

accumulation of predominantly lactic acid and ethanol up to 10.0 ± 0.3 gCOD L-1 and 6.6 ± 

0.4 gCOD L-1, respectively. (Figure 6-3 B). During this lactic acid-type fermentation the pH 

dropped to between 3.65 and 3.94, i.e., around the pKa of lactic acid (3.86, 25 °C). This is 

in line with some previous reports on FW fermentation where acidification occurred within 

2 days via lactic acid accumulation in the absence of pH control [47]. 
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Figure 6-3 Acidogenic fermentation potential of the different feedstock collected: (A) wastewaters from yellow 
and black soybean processing (Ysoy, Bsoy) and brewery cleaning water (Brew); (B) cafeteria food waste (FWcaf) 
and the effect of minimal pH control and; (C) food waste collected from a full-scale AD plant (FWrec, numbered 
according to Table 6-1). The top part shows the pH change and the bottom the net product yields. Tests with 
intermittent sampling were indicated by “(kin)” as these might underestimate gas production due to gas release 
at overpressure (3.7bar). Negative yields for biogas compounds indicate less gas was produced than in the 
accompanying blank assay. Negative yields for liquid compounds indicate they were net consumed from the 

feedstock. 

Lactic acid production is generally the predominant fermentation type in microbial 

communities when high concentrations of easily biodegradable compounds are present 

[48]. By contrast, the total yield of liquid products for fermentation of FWrec (57 ± 2%) was 

lower than for FWcaf. Carboxylic acids were the main liquid products (total 14.2 ± 0.5 gCOD 

L-1), with 2.1 ± 0.1 gCOD L-1
 as C6. The final pH in fermentation of FWrec remained above 

5.3, higher than for FWcaf (Figure 6-3 C). This may not relate to differences in buffer capacity 

between FWrec, and FWcaf, but to their storage before fermentation. The FWrec is usually 
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collected, transported, blended with water or food-processing wastewaters, and stored over 

several days in the AD plant. By contrast, FWcaf was freshly prepared within 24 hours from 

post-consumer food scraps. Spontaneous hydrolysis and acidification by indigenous lactic 

acid bacteria occurs during FW storage [49]. Thus, FWrec generally undergoes more 

acidogenic fermentation prior to its use, thus lowering the amount of readily available 

organic content when fed to a reactor. This was reflected in the characteristics of the 

feedstock, as the pH was lower in FWrec than FWcaf, and the presence of higher 

concentrations of primary fermentation products such as VFA, lactic acid and ethanol (Table 

6-4). Therefore, if the target is to produce lactic acid, fresh FW should be used as reactor 

feedstock or stored in a way to maintain freshness, e.g., chilling. However, minimising 

degradation during storage might prove challenging at industrial scale, where large volumes 

of waste from different locations must be collected prior to use. By contrast, pre-

fermentation during storage is beneficial for targeting carboxylic acid products and even 

chain elongation for MCCA production. For AD in general, 5 to 7 days of FW storage are 

recommended to improve the digestibility, as hydrolysis of solids into soluble organics may 

be enhanced [3]. 

6.3.3.2. pH control alters products of cafeteria food waste in batch 

fermentation 

Although lactic acid bacteria have been shown to operate at pH values as low as 3.5 (Itoh 

et al., 2012), acid inhibition can compromise hydrolysis and overall fermentation yields 

(Gänzle, 2015; Tang et al., 2017; Wu et al., 2015). Acid inhibition was evaluated for FWcaf 

b:Ysoy 
b by adding a test condition where pH was increased if it dropped below 5.5 on Days 

1 and 3 of fermentation (marked as FWcaf 
b:Ysoy 

b – pH in Figure 6-3 B). Only Day 1 required 

pH correction from 4.39 ± 0.03 to 6.4 ± 0.3 by NaOH addition. The pH on Day 3 was 5.8 ± 

0.1 for FWcaf 
b:Ysoy 

b – pH and 3.81 ± 0.00 for the test without pH control. The pH decreased 

to 5.57 ± 0.02 by Day 7 but was again significantly higher compared with tests without pH 

control (3.94 ± 0.02).  

When pH was controlled the product spectrum mainly comprised carboxylic acids (total of 

14.0 ± 0.6 gCOD L-1), including chain elongation products up to C6 (2.9 ± 0.1 gCOD L-1) 

and C8 (0.28 ± 0.01 gCOD L-1), without any lactic acid or ethanol. This is a product profile 

more similar to fermentation of FWrec. Lactic acid is converted to mainly acetic and butyric 

acid in FW fermentation when the pH is kept above 5, or sufficient buffering capacity is 

provided (Gu et al., 2018; Tang et al., 2017). Therefore, due to the acidogenic nature of the 

hydrolysis and primary acidogenic fermentation of cafeteria FW, pH should be maintained 

above a minimum if carboxylic acids are targeted as main products. Methanogenesis is less 
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inhibited as 1.3 ± 0.5 L L-1 of CH4 was produced in reactors with NaOH addition, which was 

more than double that produced without pH control (0.46 ± 0.06 L L-1 CH4). Despite the loss 

of organic to methane, more of the feed COD was converted into liquid products when pH 

was corrected (56 ± 2%) compared to the tests without pH control (50.5 ± 0.5%). Thus, pH 

control improved overall fermentation. If lactic acid is targeted as main product, yields could 

be further optimised by starting fermentation at lower pH and shortening fermentation time 

to prevent lactic acid conversion [50]. 

6.3.3.3. Inherent food waste variations affect acidogenic fermentation in batch 

FWcaf:Ysoy and FWrec samples from different collection times were subjected to an AFP test 

to evaluate how inherent feedstock variations affect acidogenic fermentation.  

For FWcaf:Ysoy, the main difference was lower overall liquid product yields for FWcaf 
b:Ysoyb 

(50.5 ± 0.4 %) with more C4 (14.4 ± 0.2%) and more biogas (16.0 ± 0.3% CODgas/CODfed) 

in comparison with  FWcaf 
a:Ysoya (73 ± 3 % Ytotal, 2.3 ± 0.0% YC4, 9.4 ± 0.4% biogas) (Figure 

6-3 B). This could be caused by natural heterogeneity and variations in the feedstock, for 

instance FWcaf 
a:Ysoya had a larger fraction of soluble organics (sCOD/tCOD = 41 ± 2 %) 

compared to  FWcaf 
b:Ysoyb (26 ± 4 %).  

The three different samples FWrec were subjected to a 7-day acidogenic fermentation 

potential (AFP) test (FW 6, 7 and 8 in Table 6-1), with intermittent sampling to evaluate the 

effect of variations on fermentation mechanism. The three samples of FWrec had similar 

COD and solid contents ranging between 146 and 163 gCOD L-1 and 9.4 and 11.3 g L-1 

TS, respectively. Ethanol and lactic acid concentrations showed the largest variation, 

ranging from 7 to 16 gCOD L-1 for ethanol and 20 to 30 gCOD L-1 for lactic acid. This could 

be due to pre-fermentation during storage or from the industrial liquid streams used to dilute 

the FW within the facility. Regardless of the differences in the feedstock collected, the final 

product profile and pH of the AFP tests were comparable, and the overall carboxylic acid 

production was essentially the same (Figure 6-3 C).  

Three stages of fermentation could be distinguished in the tests: 1) oxidation of easily 

accessible compounds and hydrolysis; 2) primary fermentation of hydrolysis products to 

VFA and ethanol; and 3) formation of chain elongation products (Figure 6-4). In the first 24 

hours, biogas production peaked and exceeded pressure limits on the sampling system 

(around 3.7 bar) resulting in the reactors headspace opening to atmosphere. Residual 

biogas composition included 3 to 9 % H2, with CO2 up to 66%, and CH4 up to 17%. During 

this biogas production phase, net lactic acid concentrations dropped to 0, and ethanol 

decreased below 1 gCOD L-1 for all FW, regardless of the difference in initial concentrations 



 

179 
 

of these compounds. The average pH dropped from 7.2 to between 6.0 and 6.3. This 

activity, especially H2 and CO2 generation, is indicative of hydrolytic fermentative bacteria 

and syntrophic acetogenic bacteria consuming the soluble compounds, as expected with 

an inoculum sourced from AD [51-53]. In a second phase of fermentation (Day 1 to Day 5), 

the predominant liquid products were acetic acid (C2) and C4, with minor n-propionic acid 

(C3) production. Ethanol was net produced for two of the three FW substrates. The H2 

content in the biogas decreased, whereas CH4 increased to 28%, which is indicative of 

hydrogenotrophic methanogenesis. Acidogenesis continued as the average pH dropped to 

5.74 ± 0.04. This agrees with what Zhou, et al. [54] described as a mixed-acid metabolic 

pathway typical for some types of FW fermentation. In a third phase, ethanol eventually 

decreased for all FW reactors, coupled with an increase in n-caproic acid (C6), and 

indicating chain elongation via in situ production of ethanol. The final MCCA yield (YMCCA) 

from fermentation of FWrec 7 was double that of FWrec 6 and FWrec 8 (Table 6-6). The initial 

ethanol concentration was higher for FWrec 7 and was not completely removed when ethanol 

production started, contributing to a higher product accumulation. To a lesser extent, FWrec
 

6 behaved the same way. Therefore, higher initial concentrations of ethanol promoted chain 

elongation. The differences in initial lactic acid concentration did not appear to affect product 

outcome, as it was completely removed during oxidation, and no lactic acid was observed 

in the second phase.  

Thus, for batch operation the minor variations seen in FWcaf:Ysoy and FWrec resulted in 

slight differences in fermentation outcome (Table 6-6). However, the predominant 

fermentation pathways occurred in a similar manner for all three collection of FW rec.  It is 

unlikely that these small variations in feedstock affect long term operation, as they are 

normally smoothed out during large scale, continuous operation [2]. However, evaluating 

the range at which these variations occur with an acclimated microbial community, until they 

start affecting long-term, continuous acidogenic fermentation could reveal approaches to 

improve process stability.  
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Figure 6-4 Average concentration and pH profiles of liquid fermentation products in batch fermentation of food 
waste collected at a recycling centre (FWrec) at 3 different times (numbered according to collection in Table 6-
1). Error bars present standard deviations over triplicate reactors. 
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Table 6-6 Performance parameters for the acidogenic fermentation potential tests of the same feedstock 
collected at different times. Feedstocks tested were a mixture of cafeteria food waste and soybean processing 
wastewater (FWcaf:Ysoy where superscripts a and b indicate collection at different time) or food waste from a 

recycling centre (FWrec numbered according to collection in Table 6-1).  

 FWcaf
a:YSoya FWcaf

bYSoyb FWrec 6 FWrec 7 FWrec 8 

F/M 5 5 5.6 ± 0.1 5.6 ± 0.3 4.8 ± 0.1 

Final pH 3.69 ± 0.00 3.94 ± 0.02 5.5 ± 0.1 
5.31 ± 

0.04 
5.71 ± 0.04 

Net YVFA (C1-C4) (%) 6.5 ± 0.4 21.9 ± 0.5 34 ± 2 31 ± 5 34 ± 3 

Net YMCCA (C5-C6) (%) 0.3 ± 0.3 0.1 ± 0.1 6 ± 3 21 ± 2 9.1 ± 0.2 

Net Ylactate (%) 40 ± 1 18.3 ± 0.4 -13 ± 0 -13 ± 0 -20 ± 0 

Net Yethanol (%) 27 ± 2 10.2 ± 0.2 -8 ± 2 -17 -6 ± 0 

CH4 in biogas* (%) 7 ± 3 18 ± 3 18 ± 4 23 ± 5 30 ± 3 

TS removal (%) 32.1 ± 0.2 35 ± 3 53 ± 12 35 ± 5 42 ± 7 

VS removal (%) 34.4 ± 0.5 37 ± 5 62 ± 14 32 ± 3 53 ± 11 

*Averaged over each sampling day 

6.3.4. Increased sucrose in food waste stimulates butyric acid 

production in batch 

6.3.4.1. Higher quantities of available sugars do not enhance MCCA 

production 

MCCA production in semi-continuous FW fermentation is improved when using a high-COD 

feedstock (Chapter 3)[23]. MCCA yields were also higher in batch tests with a fresh 

feedstock, FWcaf, compared to FWrec if pH was corrected, due to a greater content of 

biodegradable matter (Section 6.3.3.2.). It was hypothesised that a feedstock with more 

readily degradable organics stimulates chain elongation by providing more in situ produced 

lactic acid. Thus, AFP tests were performed with FWrec supplemented with different 

proportions of sucrose, but with the same organic load (25 gCOD L-1 substrate for 5gVS L-

1 inoculum) (Figure 6-5). Sucrose was supplemented as it is the most abundant sugar in 

many food products, such as fruits and grain legumes, and lactic acid bacteria have a range 

of metabolic pathways to consume it [55]. Additionally, some chain elongation bacteria 

consume sucrose, glucose or fructose for C6 production [56-58]. 
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Figure 6-5 The pH profile (top) and net product yields (bottom) of the AFP tests evaluating the acidogenic 
fermentation of food waste collected from a full-scale AD plant (FWrec  9 in Table 6-1) with different amounts of 
enrichment of sucrose (w/w%). Negative yields for biogas compounds indicate less gas was produced than in 
the accompanying blank assay. Negative yields for liquid compounds indicate they were net consumed from the 
feedstock.  

Sucrose addition did not improve C6 yields (Figure 6-5). Adding 2% w/w sucrose gave a 

similar product spectrum to fermentation of pure FWrec, predominantly carboxylates, and 

slightly increased the overall conversion to liquid products, including chain elongation. A 

different product spectrum occurred when 5 or 10% w/w sucrose was added. The yields of 

C4 increased with 5% w/w sucrose addition and at 10% w/w addition (38 ± 1%) were nearly 

double those for fermentation of pure FWrec (19 ± 2%). H2 was only detected (0.25 ± 0.04 L 

L-1) at 10% w/w sucrose addition, ethanol was produced, and lactic acid not fully consumed. 

Thus, primary fermentation increased with addition of 5 or 10% sucrose but chain elongation 

bacteria did not take advantage of the increased available substrate.  
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6.3.4.2. Sucrose increased intermediate lactic acid and acidification 

Previous tests showed that a small addition of sucrose (+2% w/w) improved carboxylic acids 

production. A 7-day AFP test with intermittent sampling was performed on two different 

FWrec samples (to account for inherent variations), enriched with 2% w/w sucrose, to 

evaluate the fermentation pathways. (Table 6-7). The pH decreased after 1 day of 

fermentation, with a minimum of 5.42 ± 0.06 for FWrec 7 + 2% sucrose. To avoid acid 

inhibition, NaOH was dosed to increase pH to 5.67 ± 0.03.  

Table 6-7 Performance parameters for the acidogenic fermentation potential tests with intermediate sampling 
of food waste collected at a recycling centre (FWrec) at different times (numbered according to collection in Table 
6-1) and enriched with 2% w/w sucrose. 

 FWrec 7 
FWrec 7 + 2% 

sucrose 
FWrec 8 

FWrec 8 + 2% 
sucrose 

F/M 5.6 ± 0.1 5.6 ± 0.1 5.9 ± 0.1 5.9 ± 0.1 

Final pH 5.31 ± 0.04 5.14 ± 0.08$ 5.65 ± 0.02 5.64 ± 0.03 

Net YVFA (C1-C4) (%) 31 ± 5 42 ± 4 38 ± 2 40.3 ± 0.7 

Net YMCCA (C5-C6) (%) 21 ± 2 1.5 ± 0.1 9.4 ± 0.8 9.6 ± 0.4 

Net Ylactate (%) -13.0 ± 0.0 - 11.5 ± 0.0 -18.0 ± 0.0 -5.4 ± 0.0 

Net Yethanol (%) -16.5 ± 0.0 - 9.3 ± 0.7 - 6.5 ± 0.0 -15.6 ± 0.0 

CH4 in biogas* (%) 23 ± 5 1 ± 2 8 ± 2 4 ± 2 

TS removal (%) 35 ± 5 33 ± 4 30 ± 3 27 ±  

VS removal (%) 32 ± 3 52 ± 9 37 ± 5 37 ± 6 

*averaged over each sampling day; $NaOH dosed on sampling days if pH <5.5 

Sucrose stimulated in situ lactic acid production as almost no lactic acid was detected after 

24 hours of fermentation of FWrec, whereas it was present with sucrose supplementation 

(Figure 6-6). Lactic acid is generally the main fermentation product when easily degradable 

sugars are available, due to the higher specific biomass uptake rate for sugars of lactic acid 

bacteria (LAB) compared to other fermentative bacteria [48, 59]. The final product was 

predominantly C4 for all feedstocks. It is likely that the lactic acid produced after Day 1 was 

converted to C4, as C4 concentrations peaked after consumption of lactic acid. 

Concentrations of C4 were consistently higher with sucrose addition than the un-

supplemented test. Chain elongation of C4 to C6 occurred via ethanol as FWrec
 7 and FWrec 

8 showed inversely proportional rates of ethanol consumption and C6 synthesis. Addition 

of sucrose either did not affect chain elongation (FWrec
 8 + 2% sucrose) or affected it 

negatively, potentially by lower pH, as  more intermediate ethanol and less C6 was found 

for FWrec 7 + 2% sucrose. Lactic acid was thus elongated to C4, but not to C6. Certain 

bacteria in the genus of Clostridium lead to lower MCCA yields during long-term 

experiments as they elongate lactic acid to C4 with acetic acid but do not elongate further 
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to C6 [60-62]. The additional sucrose increased in situ lactic acid synthesis and subsequent 

fermentation to C4, but chain elongation to C6 occurred predominantly via ethanol, which 

was mainly unaffected or potentially slowed down by a lower pH. 

 

Figure 6-6 Average concentration and pH profiles of liquid fermentation products in batch fermentation of food 
waste collected at a recycling centre (FWrec)  at different times (numbered according to Table 6-1) and enriched 

with 2% w/w sucrose. Error bars present standard deviations over triplicate reactors. *ꞏꞏ○ꞏꞏ NaOH was added to 

increase pH in the reactors from 5.42 ± 0.06 to above 5.5 to avoid acid inhibition. 
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6.3.5. Long-term effects of easily biodegradable sugars in FW  

To determine how increased availability of sucrose affects the microbial community, a long-

term reactor experiment was performed. Two STRs were operated semi-continuously in 

duplicate, in a similar manner to long-term reactor operation in Chapters 3 and 4, with a FW 

feedstock supplemented with 2% w/w sucrose. In this case pH was corrected every 3.5 

days with NaOH after introducing new feedstock, thus decreasing exposure to acidic pH.  

6.3.5.1. Sucrose in food waste destabilises fermentation with lactic acid 

accumulation 

During the first 60 days of operation (4 HRT), a mixed acid type fermentation was obtained, 

as characterised by consumption of lactic acid from the feedstock and C4 and C6 production 

(Figure 6-7). Several peaks of net lactic acid production occurred in both reactor replicates 

(Days 38.5 and 49 for Reactor 1, and Days 17, 38.5 and 56 for Reactor 2, Figure 6-7). 

During the following 30 days lactic acid was the predominant product, reaching 

concentrations up to 50 g COD L-1. Near the end of reactor operation lactic acid dropped 

and C4 and C6 were produced again. Thus, the presence of lactic acid in the reactor 

appeared to be inversely proportional to carboxylic acid production, as found with co-

fermentation of FWcaf and Ysoy under analogous operation (Chapter 5).  

Correlation analysis confirmed lactic acid yield was negatively correlated with the yields of 

C4, C5 and C6 (p<0.05, Figure 6-8), indicating chain elongation via consumption of lactic 

acid. Lactic acid yield was positively related to C2 yield and acidification, i.e., the amount of 

NaOH required to bring pH to 5.5 at point of feed addition. Both C2 and lactic acid are 

products from primary fermentation and lead to a decrease in pH. Thus, the lactic acid was 

switching from final product to intermediate substrate. 
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Figure 6-7 The liquid product yield from fermenting food waste enriched in 2% w/w sucrose in duplicate. 
Negative values indicate net consumption, positive indicate net production. Arrows indicate where biomass 
samples were taken for microbial community analysis (16s rRNA sequencing). Red brackets indicate points 
where cycle studies were performed, i.e., fermentation compounds were analysed in between two feeding 
events.  
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A. 

 

 

B.

 

Figure 6-8 Correlation analysis of product yields and acidification (NaOH_dosing) in the two reactors. (A) 
Spearman correlation matrix where the variables on the left of the graph are significantly correlated (p<0.05) 
with the variables on the top by the correlation coefficient (rs) given in the overlapping squares. The closer the 
rs is to 1 or -1, the more the two variables are positively or negatively correlated. (B) The scatter plots present 
the correlation (p<0.05)  between the data points of lactic acid yield and, from left to right, acetic, butyric and 
caproic acid yield and NaOH dosing. The amount of NaOH required to correct for minimum pH at feeding events 
(NaOH dosing, g L-1d-1) is representative of the acidification during fermentation. Data points from < 1 HRT 

operation are omitted, n = 52. 
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6.3.5.2. Presence of chain elongation precursors does not 

necessarily lead to chain elongation 

The fermentation cycles were studied during a phase of chain elongation (Cycle Study 1, 

Days 45.5 to 49) and when primary fermentation to lactic acid prevailed (Cycle Study 2, 

Days 59.5 to 63). In all cases the pH decreased during the first 24 hours after feed addition 

via primary lactic acid fermentation. In Cycle Study 1 where net chain elongation took place, 

the pH increased again due to net consumption of lactic acid and production of C4, C6 and 

H2 (Figure 6-9 A). This profile with consecutive fermentation stages is typical for single-

stage FW fermentation [23, 38]. The kinetic AFP batch tests in Section 6.3.3.3. showed 

MCCA production followed a net consumption of ethanol. In these cycle studies on semi-

continuous fermentation, lactic acid appeared to be used instead of ethanol in chain 

elongation. Conversion reactions in anaerobic communities are flexible as they occur close 

the thermodynamic equilibrium, and follow the most efficient catabolic systems due to 

syntrophic interactions [63]. These behaved differently when comparing batch FW 

fermentation with a non-acclimatised inoculum to semi-continuous operation with an 

enriched microbial community.  

During Cycle Study 1, Reactor 1 showed more conversion of lactic acid to C4, whereas 

Reactor 2 gave more C6, H2 and CO2 production, which is typical for chain elongation of 

lactic acid to MCCA. In Reactor 1, the pH dropped to 5.12 compared to Reactor 2 which 

stabilised around 5.5. It could be that elongation to C6 was hindered in Reactor 1 by the 

lack of H2 accumulation, as less H2 was produced compared to Reactor 2, or that pH 

became too low. The latter is unlikely since the pH in Reactor 2 increased from 5.12 to 5.32 

after primary fermentation, indicating a second fermentation phase, and chain elongation to 

C6 can still occur down to pH 5.0 [60]. The role of H2 in these systems is still unclear as it 

is both a consequence of and a driver for microbial chain elongation. On one hand it is a 

product from ethanol oxidation, which precedes the reverse β-oxidation pathway to make 

chain elongation energetically feasible, and on the other hand its presence is critical to 

ensure sufficiently reduced conditions for microbial chain elongation [64]. Experimental 

trials have confirmed that a supply of H2 improved lactate-based chain elongation to C6 

[65]. In organic waste fermentation with mixed microbial communities, H2 can accumulate 

via various fermentation pathways, such as carbohydrate degradation [66, 67]. Further 

analysis of the interplay between the metabolic pathways resulting in H2 or chain elongation 

when fermenting complex organic waste such as FW should allow improved process 

design. 
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In Cycle Study 2, chain elongation did not follow primary lactic acid fermentation even 

though all necessary precursors, i.e., ethanol, lactic acid and VFA, were present. In Cycle 

Study 2, less biogas was produced (H2 and CO2) and fewer changes in carboxylic acid 

content were observed (Figure 6-9 B), indicating reduced fermentation activity overall. The 

lack of available H2, or acid inhibition, could explain the lack of chain elongation.  
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Figure 6-9 Comprehensive overview of cycle studies performed in duplicate over (A) Day 45.5 to 49 with net 
chain elongation and (B) Day 59.5 to 63 with net lactic acid production. Data is included from both reactors (left 
vs. right) regarding the liquid product concentration (top) and pH (middle) measured in the fermentation broth 
from point of feed addition (time = 0 hours), and cumulative biogas production as measured from the gas 
collection tubes (bottom). 
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6.3.5.3. Microbial community reflects fermentation outcome 

To see whether the fluctuations in fermentation outcome correlated with the microbial 

community composition, duplicate biomass samples were analysed for each reactor from 

the inoculum on Day 0, during a C6 concentration peak (Day 28), and during lactic acid 

accumulation (Day 94 for Reactor 1 and Day 70 for Reactor 2). All samples showed a low 

alpha-diversity due to some highly dominant genera belonging predominantly to the phyla 

of Firmicutes, Bacteroidetes and Actinobacteria (Figure 6-10). The effective alpha-diversity 

numbers, 1D and 2D, and dominant genera in the microbial communities were similar to 

those performing acidogenic fermentation with FWrec or co-fermentation of FWcaf and Ysoy 

(Chapters 3-5).  

 

Figure 6-10 Microbial community composition on the genus level (unless specified otherwise) with a relative 
abundance >1% and effective alpha-diversity indices (1st and 2nd order Hill number, 1D, 2D). Communities are 
compared in the inoculum (n=4, 2 reactor duplicates and 2 sample duplicates), and in each reactor (1 or 2, n=2 
samples per reactor) sampled at a peak in n-caproic acid concentration (Day 28) and lactic acid accumulation 
(Day 94 for Reactor 1 and Day 70 for Reactor 2). Colours reflect phylum: green = Firmicutes; orange = 
Bacteroidetes; blue = Actinobacteria. 

The genus with the highest relative abundance was Lactobacillus spp. at nearly double in 

the lactic acid accumulation phase (65 ± 8%), compared to the C6 concentration peak (37 

± 20%); this agrees with the predominant metabolism of this genus. Other abundant genera 

were Aeriscardovia spp. and Prevotella 7 spp., which are typical of acidogenic FW 
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fermentation where the former produces lactic acid, C2 and ethanol, and the latter converts 

lactic acid to VFA such as C4 [68, 69]. In the samples at high C6 concentrations, the C6-

producing Caproiciproducens spp. (7.6 ± 0.5%) and the lactic acid producing Olsenella spp. 

(8 ± 1%) were detected, whereas their relative abundance was less than 1% during the 

lactic acid accumulation phase. Clostridium senso stricto 12 spp., reported to produce C4 

and compete with chain elongation for C6 production [61], were also more abundant in the 

C6 phase (5.3 ± 0.9 %) than the lactic acid phase (1.3 ± 0.9 %). Thus, whilst the most 

abundant OTUs were similar for all reactor samples, the microbial community composition 

did change according to reactor phenotype observed. This is consistent with results from 

co-fermentation of fresh FW feedstock, FWcaf and Ysoy (Chapter 5). 

Within the genus of Lactobacillus spp., 31 different OTUs were identified, with certain OTUs 

having a far higher relative abundance than others depending on the dominant fermentation 

product. For instance, OTU_6, classified in the genus of Lactobacillus, had a higher relative 

abundance during the lactic acid phase (25 ± 3%) than during the C6 phase (4 ± 2%). This 

OTU was previously described in Chapter 4 and has a homolactic metabolism. It was more 

abundant in lactate-producing reactors operated at an HRT of 8.5 days and an OLR of 20 

gCOD L-1d-1, compared to the C6-producing reactors operated at lower OLR (12 gCOD L-

1d-1) and higher HRT (10.5 days) (Chapter 4)[24]. The current reactors fed with FWrec + 2% 

w/w sucrose were operated at a similar OLR of 11 gCOD L-1d-1 and an even longer retention 

time of 14 days to stimulate chain elongation, yet instability related to acidogenic lactic acid 

production occurred. The addition of sucrose to FWrec enriched similar OTUs responsible 

for homolactic fermentation that were also observed when operating at higher OLR with 

pure FWrec. The sucrose content in the FW feedstock, and the generally larger amount of 

easily biodegradable carbohydrates, will affect the optimal OLR/HRT combination for 

production of MCCA or other fermentation products. 

In Chapter 5, the fluctuations between MCCA and lactic acid production were linked to 

potential changes in the feedstock, which was freshly prepared twice a week (FWcaf blended 

with soybean wastewater). However, here the operating conditions and substrate were the 

same, providing no potential reason for this unstable performance in the fermentation of 

FWrec + 2% w/w sucrose. The drivers of microbial community evolution are still being 

investigated in the field of ecological theory due to the many factors that can influence it 

[70]. Improved understanding of these factors would allow more strategic design of reactor 

operating conditions to minimize competitive interactions and mitigate the risk of reactor 

failure [71]. An example of this could be adjusting OLR depending on the sugar content in 

the feedstock. 



 

193 
 

6.3.6. Natural phase separation of MCCA  

During the fermentation of FWcaf:Ysoy (Chapter 5) and for fermentation of FWrec 

supplemented with 2% w/w sucrose (Section 6.3.5.) reactors occasionally contained an 

immiscible low-density layer that separated from the bulk broth if left to sit. The top layer 

was a clear, reddish oil in the reactors processing FWcaf:Ysoy, whereas, it looked more 

greasy and had a slurry-like consistency in the reactors fed with FWrec + 2% sucrose (Figure 

6-11). The top layer was separated and analysed each reactor system. 

A.1  A.2  

  
B.1 B.2  

Figure 6-11 Examples of reactor effluent where phase separation was observed. (A) effluent from fermentation 
of FWcaf:Ysoy Day 76.5 (Chapter 5). (B) effluent from fermentation of FWrec with 2% w/w sucrose was fermented 
on Day 90 (Chapter 6, Section 6.3.5.). A.1 and B.1 show effluent from the reactor at that time that showed 
minimal phase separation. A.2 and B.2 show effluent from the other reactor operated in duplicate where an 

immiscible lower-density layer was observed and separated. 
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6.3.6.1. Cafeteria food waste fermentation results in a C8-rich top layer 

The immiscible top layer seen in the effluent in Figure 6-11 A.2 was separated from the 

broth by pipetting, and the MCCA concentrations were measured and compared to the bulk 

liquid. C6 and C8 were enriched 1.7 and 22 times in the top layer, respectively, compared 

to the bulk concentration (Table 6-8). C6 and C8 have low solubility in water, and a lower 

density than water, so it is feasible that they would separate from the aqueous fermentation 

broth and become enriched in a non-aqueous phase. C8 is more hydrophobic than C6 and 

was therefore more concentrated in the oily layer.  

The feedstock only contained an oily top layer after centrifugation (10min × 11000rpm, 

Figure 6-12). This was attributed to the oil-fraction in the cafeteria food from the cooking 

and seasoning oils. C6 and C8 naturally occur in pure plant oils such as coconut oil and 

palm kernel oil (0-10 w/w %)[72]. However, they were not detected in the feedstock. The 

presence of an oily component in the FW enhanced the natural extraction of hydrophobic 

product compounds from the aqueous fermentation medium.  

Table 6-8 Concentration of n-caproic (C6) and n-caprylic (C8) acid in the top layer and the bulk liquid in reactor 
effluent (collected on Day 76.5, a bi-weekly fed semi-continuous reactor processing cafeteria food waste and 
soybean soaking wastewater, pH = 6.01 ) and their maximum solubility in water at 20 °C [73]. 

  C6  C8  

Top layer (analytical duplicate) (g L-1) 19.1 ± 0.4 79 ± 3 

Bulk phase (g L-1) 11.3 3.6 

Maximum solubility in water 
(g L-1) 10.8 0.68 

(gCOD L-1) 23.8  1.7 

 

A. Feedstock B. Effluent 

Figure 6-12 Example of the three different layers observed after centrifuging (10min × 11000rpm) the feedstock 
(blend of cafeteria food waste and soybean soaking wastewater) or the reactor effluent. The solid layer settled 

to the bottom with a middle aqueous phase and an orange, oily top layer.  
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6.3.6.2. Hydrophobic compounds separate into a fat layer 

A floating greasy layer occasionally appeared in the reactors fed with FWrec 7 and 2% 

sucrose (Section 6.3.5.) (Figure 6-11 B). After centrifugation (15min × 4,500rpm) of the 

reactor contents three phases could be distinguished: a layer of solids (Phase C), an 

aqueous supernatant (Phase B), and an insoluble fatty layer (Phase A) (Figure 6-13). 

 

Figure 6-13 Three phases could be distinguished after centrifugation of a reactor sample (15min × 4,500rpm). 
These phases were more distinct when samples were acidified by addition of 0.5mL of 50 % H2SO4 prior to 
centrifugation (right). 

The carboxylic acid content of the three different layers were compared to the 

concentrations in the bulk medium for three different reactor samples. A mass balance is 

available in Table 6-9, and results are visualised in Figure 6-14. One of the samples was 

acidified prior to centrifugation by addition of 0.5 mL of 50% H2SO4, since at lower pH the 

hydrophobicity of carboxylic acids increases due to the acid-dissociation equilibrium. At a 

lower pH, a larger fraction of carboxylic acids are protonated, and are hence less water 

soluble than their conjugate base or carboxylate form. They therefore separate from the 

aqueous phase more easily. The pKa of the target  VFA and MCCA lies between 4.8 and 

4.9 [74]. The shorter chain carboxylic acids (C2-C5) had similar concentrations in the three 

phases and the bulk for samples that were not acidified (Figure 6-14). However, in the case 

of the acidified sample, the concentration in the top layer (Phase A) was 2 and 6 times 

higher for C4 and C5, respectively (Table 6-9). Indeed, the lower the pH and the longer the 

alkyl chain of a carboxylic acid, the more hydrophobic it is. This effect was even more 

pronounced for C6. In the samples at near neutral pH (pH 6.68, Figure 6-14 Sample2), the 

distribution of C6 was similar for all 3 phases and the bulk. The total C6 concentration (22.04 

gCOD L-1) was just below the maximum water solubility (23.8 gCOD L-1, Table 6-8), thus, 

no spontaneous phase separation occurred. By contrast, at lower pH, either naturally from 

the reactor (Sample 1 at 5.60 and Sample 3 at 5.65) or when the reactor sample was 

acidified (Sample 2, pH 1.20), C6 was enriched in the top Phase A, and to a lesser extent 
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in the solid Phase C. The concentration of C6 in the middle Phase B was reduced. The C6 

concentration in Phase A peaked for the acidified Sample 2 at 117.6 gCOD L-1, i.e., over 5 

times higher than the bulk fermentation medium concentration. 

Table 6-9 Data overview of the concentrations of the different carboxylic acids measured 

in the different phases of the effluent including mass balance. 

Total measurement: bulk concentration (gCOD kg-1) 

 C2 C3 C4 C5 C6 

Sample 1 10.37 5.86 5.22 1.39 5.92 

Sample 2 8.47 4.32 8.25 4.92 22.04 

Sample 3 8.66 3.78 7.68 4.58 19.22 

Sample 2 - acid 8.47 4.32 8.25 4.92 22.04 

Phase separation: Mass fraction (g) 

 total Phase A Phase B Phase C 

Sample 1 48.59 1.18 40.15 7.27 

Sample 2 13.12 0.05 10.32 2.72 

Sample 3 13.41 0.57 10.13 2.69 

Sample 2 - acid 13.75 0.34 10.83 2.79 

Phase separation: Phase A concentration (gCOD kg -1) 

 C2 C3 C4 C5 C6 

Sample 1 9.62 4.26 3.65 1.04 13.76 

Sample 2 6.79 2.86 4.52 2.53 20.39 

Sample 3 4.90 0.00 4.73 4.80 42.66 

Sample 2 - acid 6.00 0.00 11.78 15.41 117.60 

Phase separation: Phase B concentration (gCOD kg -1) 

 C2 C3 C4 C5 C6 

Sample 1 7.96 4.75 4.79 1.20 4.86 

Sample 2 8.92 4.58 8.86 5.19 22.79 

Sample 3 8.59 3.79 7.79 4.51 17.31 

Sample 2 - acid 8.34 4.11 7.40 3.52 9.08 

Phase separation: Phase C concentration (gCOD kg -1) 

 C2 C3 C4 C5 C6 

Sample 1 9.48 5.39 4.60 0.92 6.65 

Sample 2 8.03 3.79 6.46 3.69 20.57 

Sample 3 7.17 3.47 6.94 4.70 23.27 

Sample 2 - acid 7.20 3.86 8.47 7.27 41.90 

Phase separation: mass balance (Equations 6-2 and 6-3) 

 C2 C3 C4 C5 C6 

Sample 1 23% 19% 10% 19% 10% 

Sample 2 3% 2% 1% 1% 1% 

Sample 3 6% 6% 3% 1% 2% 

Sample 2 - acid 3% 7% 5% 6% 17% 
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Figure 6-14 The carboxylic acid concentration in the bulk liquid (total) and after centrifugation, in the immiscible 
top phase A, the middle liquid phase B, and the solid layer C for three effluent samples collected from Reactor 
2 described in Section 6.3.5. with corresponding pH. Sample 2 was also analysed after acidification with H2SO4. 
Compounds analysed were acetic acid (C2), n-propionic acid (C3), n-butyric acid (C4), n-valeric acid (C5) and 

n-caproic acid (C6). 

6.3.6.3. Potential implications for spontaneous phase separation of MCCA 

Oils and fats are expected in FW with average concentrations around 15.4 ± 8.0 %VS [1]. 

However these values can be higher, for instance 31.4 ± 0.04 %VS, depending on location 

[6]. The spontaneous separation of MCCA into an oil or solid phase is a positive benefit to 

commercial application, as it will simplify product recovery and downstream processing via 

the potential for in situ extraction. If FW feedstocks contained an oily component that is 

effectively inert during fermentation, this could be used to extract MCCA, and especially C8. 

In situ biphasic extraction of C6 from pure culture fermentation on sucrose has been 

demonstrated, but the synthetic extractants used had some toxic effects [75]. Using 

sunflower oil as diluent for the extractant reduced toxicity in the extraction of other carboxylic 

acids [76]. Further downstream processing would be possible using an oil-trap mechanism 

or a gravitational separation based on differential liquid density [77, 78]. Subsequent 

product purification could be performed as per traditional oleochemistry approaches [72]. 

Spontaneous removal of MCCA from the aqueous phase into an oily, fatty or solid phase is 

likely to improve chain elongation by reducing its presence (and hence toxicity/inhibition) 

within the aqueous phase, as the concentration that the microorganisms are exposed to 
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would be reduced. A similar concept was reported when MCCA was adsorbed onto biochar 

in situ [79]. This reaction/separation effect might have contributed to the high MCCA 

concentration reached in some of the FW fermentation studies presented in this thesis. 

6.4. Conclusion 

This chapter evaluated variations seen in the feedstock samples, which were within an 

expected range according to literature. However, this range is broad with, for instance, solid 

and COD content of solid cafeteria FW being triple those of slurry-like mixtures used in AD 

for FW recycling. For a FW feedstock collected from a recycling centre, it was observed that 

total COD can vary from 129 to 297 gCOD L-1 depending on time of collection. This is due 

to the range of liquid mixers used to turn the feedstock to a slurry suitable for pumping into 

the AD reactors, and variations in the feedstock itself. Batch tests indicated increased 

ethanol content stimulated MCCA production, whereas sucrose stimulated production of n-

butyric acid. This can either be a challenge due to variability, or a potential opportunity to 

fine-tune the feedstock by careful blending. For instance, targeting lactic acid or C4 

production by addition of sucrose-rich mixers, or targeting MCCA by using ethanol-rich or 

oily mixtures. Whilst improving targeted product generation, this could increase operation 

complexity. 

This chapter highlighted how not all types of FW are the same when it comes to their use 

as feedstock for acidogenic fermentation. Low COD wastewaters are unsuitable by 

themselves, as they do not inhibit methanogenesis due to their low organic strength. 

However, they can be co-fermented with cafeteria FW to increase the organic content. 

Batch fermentation with cafeteria FW predominantly leads to an acidogenic lactic acid-type 

fermentation without pH control. By contrast, fermentation with FW from a recycling centre 

leads to accumulation of carboxylic acids, including MCCA. Different product outcomes are 

due to differences in readily biodegradable content resulting from variations in preparation 

and storage. Hence, storage should be optimised depending on the targeted fermentation 

product. Alternatively, pH control can be used to steer lactic acid type fermentation towards 

carboxylate accumulation, however this involves additional operational and environmental 

costs. 

Interestingly, batch tests showed that chain elongation predominantly occurred via ethanol, 

whereas semi-continuous operation with an adapted microbial community leads to 

predominantly lactic acid-based chain elongation. Thus, both mechanisms may be exploited 

in acidogenic FW fermentation, and determining the drivers for each would allow the design 

of a system where both compounds are used optimally. For instance, in the semi-continuous 
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reactors, residual ethanol remained in the effluent. The production of H2 could play an 

interesting role in this. Untangling the microbial pathways, and the interplay between H2 

fermentation from carbohydrates, and subsequent chain elongation, could reveal some 

interesting synergistic mechanisms which could be exploited to optimise resource recovery. 

This chapter confirms the findings from Chapter 5, that the fermentation instability between 

lactic acid accumulation and carboxylic acid production results from a competition between 

homolactic Lactobacillus spp. and a team of primary fermenters and chain elongation 

bacteria. In Chapter 4 a lower OLR was shown to mitigate acidification and lactic acid 

accumulation, and a higher HRT promoted chain elongation. Hence, these operating 

conditions can be manipulated to direct these competitive processes one way or another. 

The level of biodegradable matter in the feedstock composition will determine the optimal 

values for OLR and HRT. 

The amount of oils and fats in the feedstock influenced the process as well as the ethanol 

and sugar content. MCCA will spontaneously separate into an immiscible low-density layer 

at low pH due to their hydrophobic nature. This is unique for this type of acidogenic 

fermentation, namely chain elongation in mixed FW, and provides the potential for in situ 

product separation and hence simplified and less expensive MCCA recovery opportunities. 

The suitability of acidogenic fermentation to produce MCCA from food waste as technology 

for resource recovery in recycling facilities requires a level of control of feedstock 

composition. Preparation, storage and pretreatment of the feedstock should be designed in 

a way that promotes chain elongation over other competitive processes such as homolactic 

fermentation or methanogenesis. Fine-tuning of the feedstock by blending different types of 

food waste is promising and could increase yields, and potentially facilitate downstream 

processing. 

Acknowledgements 

This chapter would not have been possible without the regular and reliable support and help 

in the collection of feedstock samples from Tom Phelps, Wesley Wong, and other technical 

colleagues from GENeco (Avonmouth, UK), Liew Chee Wai from SCELSE, and the staff at 

Quad Café (NTU, Singapore). In addition, experimental help was received from 

undergraduate MEng project students Emma Jarvis, Rosie Buzova, Chak Chan and Orla 

Douds (Department of Chemical Engineering, University of Bath, UK). I am also grateful for 

the experience in student supervision that this afforded. 

  



 

200 
 

References 

[1] H. Fisgativa, A. Tremier, and P. Dabert, "Characterizing the variability of food waste 
quality: A need for efficient valorisation through anaerobic digestion," Waste Manag, 
vol. 50, pp. 264-74, Apr 2016. 

[2] A. Degueurce, S. Picard, P. Peu, and A. Trémier, "Storage of Food Waste: 
Variations of Physical–Chemical Characteristics and Consequences on Biomethane 
Potential," Waste and Biomass Valorization, vol. 11, no. 6, pp. 2441-2454, 2019. 

[3] F. Lu, X. Xu, L. Shao, and P. He, "Importance of storage time in mesophilic 
anaerobic digestion of food waste," J Environ Sci (China), vol. 45, pp. 76-83, Jul 
2016. 

[4] H. Fisgativa, A. Tremier, S. Le Roux, C. Bureau, and P. Dabert, "Understanding the 
anaerobic biodegradability of food waste: Relationship between the typological, 
biochemical and microbial characteristics," J Environ Manage, vol. 188, pp. 95-107, 
Mar 1 2017. 

[5] R. Zhang et al., "Characterization of food waste as feedstock for anaerobic 
digestion," Bioresour Technol, vol. 98, no. 4, pp. 929-35, Mar 2007. 

[6] S. Heaven, Y. Zhang, R. Arnold, T. Paavola, F. Vaz, and C. Cavinato, "Valorgas 
Seventh Framework Programme Theme Energy: Composition analysis of food 
waste from study sites in geographically distinct regions of Europe," 2011. 

[7] Y. Zhang, S. Kusch-Brandt, S. Heaven, and C. J. Banks, "Effect of Pasteurisation 
on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion," 
Processes, vol. 8, no. 11, 2020. 

[8] H. Song, Y. Zhang, S. Kusch-Brandt, and C. J. Banks, "Comparison of Variable and 
Constant Loading for Mesophilic Food Waste Digestion in a Long-Term 
Experiment," Energies, vol. 13, no. 5, 2020. 

[9] G. Srisowmeya, M. Chakravarthy, and G. Nandhini Devi, "Critical considerations in 
two-stage anaerobic digestion of food waste – A review," Renewable and 
Sustainable Energy Reviews, vol. 119, 2020. 

[10] W. S. Lee, A. S. M. Chua, H. K. Yeoh, and G. C. Ngoh, "A review of the production 
and applications of waste-derived volatile fatty acids," Chemical Engineering 
Journal, vol. 235, pp. 83-99, 2014. 

[11] S. Bengtsson, J. Hallquist, A. Werker, and T. Welander, "Acidogenic fermentation 
of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty 
acids production," Biochemical Engineering Journal, vol. 40, no. 3, pp. 492-499, 
2008. 

[12] M. Coma et al., "Organic waste as a sustainable feedstock for platform chemicals," 
Faraday Discuss, vol. 202, pp. 175-195, Sep 21 2017. 

[13] E. Jankowska, J. Chwialkowska, M. Stodolny, and P. Oleskowicz-Popiel, "Volatile 
fatty acids production during mixed culture fermentation – The impact of substrate 
complexity and pH," Chemical Engineering Journal, vol. 326, pp. 901-910, 2017. 

[14] E. Jankowska, A. Duber, J. Chwialkowska, M. Stodolny, and P. Oleskowicz-Popiel, 
"Conversion of organic waste into volatile fatty acids – The influence of process 
operating parameters," Chemical Engineering Journal, vol. 345, pp. 395-403, 2018. 

[15] A. Perimenis, T. Nicolay, M. Leclercq, and P. A. Gerin, "Comparison of the 
acidogenic and methanogenic potential of agroindustrial residues," Waste Manag, 
vol. 72, pp. 178-185, Feb 2018. 

[16] D. Shen et al., "Acidogenic fermentation characteristics of different types of protein-
rich substrates in food waste to produce volatile fatty acids," Bioresour Technol, vol. 
227, pp. 125-132, Mar 2017. 

[17] F. C. Silva, L. S. Serafim, H. Nadais, L. Arroja, and I. Capelaa, "Acidogenic 
fermentation towards valorisation of organic waste streams into volatile fatty acids," 
Chem. Biochem. Eng. Q., vol. 27, no. 4, pp. 467-476, 2013. 



 

201 
 

[18] S. E. Daly, J. G. Usack, L. A. Harroff, J. G. Booth, M. P. Keleman, and L. T. 
Angenent, "Systematic Analysis of Factors That Affect Food-Waste Storage: 
Toward Maximizing Lactate Accumulation for Resource Recovery," ACS 
Sustainable Chemistry & Engineering, vol. 8, no. 37, pp. 13934-13944, 2020. 

[19] L. Chatellard, E. Trably, and H. Carrere, "The type of carbohydrates specifically 
selects microbial community structures and fermentation patterns," Bioresour 
Technol, vol. 221, pp. 541-549, Dec 2016. 

[20] A. Duber, R. Zagrodnik, J. Chwialkowska, W. Juzwa, and P. Oleskowicz-Popiel, 
"Evaluation of the feed composition for an effective medium chain carboxylic acid 
production in an open culture fermentation," Sci Total Environ, vol. 728, p. 138814, 
Aug 1 2020. 

[21] I. Angelidaki et al., "Defining the biomethane potential (BMP) of solid organic wastes 
and energy crops: a proposed protocol for batch assays," Water Sci Technol, vol. 
59, no. 5, pp. 927-34, 2009. 

[22] F. Raposo et al., "Biochemical methane potential (BMP) of solid organic substrates: 
evaluation of anaerobic biodegradability using data from an international 
interlaboratory study," Journal of Chemical Technology & Biotechnology, vol. 86, no. 
8, pp. 1088-1098, 2011. 

[23] V. De Groof, M. Coma, T. C. Arnot, D. J. Leak, and A. B. Lanham, "Adjusting Organic 
Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic 
Digestion to Chain Elongation," Processes, vol. 8, no. 11, 2020. 

[24] V. De Groof, M. Coma Bech, T. Arnot, D. Leak, and A. Lanham, "Selecting 
fermentation products for food waste valorisation with HRT and OLR as the key 
operational parameters [submitted]," Waste Management, 2020. 

[25] R Core Team, "R: A language and envionment for statistical computing," ed. Vienna, 
Austria: R Foundation for Statistical Computing, 2017. 

[26] F. E. Harrell Jr and C. Dupont, "Package 'Hmisc' version 4.4-1," ed: CRAN, 2020. 
[27] T. Wei and V. Simko, "R package "corplot": Visualization of a Correlation Matrix 

(version 0.84)," ed, 2017. 
[28] Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing," Journal of the Royal Statistical Society. 
Series B (Methodological), vol. 57, no. 1, pp. 289-300, 1995. 

[29] APHA, "Standard methods for the examination of water and wastewater," vol. 23, 
2017. 

[30] G. Manni and F. Caron, "Calibration and determination of volatile fatty acids in waste 
leachates by gas chromatography," Journal of Chromatography A, vol. 690, pp. 237-
242, 1995. 

[31] M. Albertsen, S. M. Karst, A. S. Ziegler, R. H. Kirkegaard, and P. H. Nielsen, "Back 
to Basics-The Influence of DNA Extraction and Primer Choice on Phylogenetic 
Analysis of Activated Sludge Communities," PLoS One, vol. 10, no. 7, p. e0132783, 
2015. 

[32] R. Lucas, J. Groeneveld, H. Harms, K. Johst, K. Frank, and S. Kleinsteuber, "A 
critical evaluation of ecological indices for the comparative analysis of microbial 
communities based on molecular datasets," FEMS Microbiol Ecol, vol. 93, no. 1, Jan 
2017. 

[33] S. H. Hurlbert, "The nonconcept of species diversity: a critique and alternative 
parameters," Ecology, vol. 52, pp. 577-586, 1971. 

[34] L. Jost, "Entropy and diversity," Oikos, vol. 113, no. 2, pp. 363-375, 2006. 
[35] C. O. Nzeteu, A. C. Trego, F. Abram, and V. O'Flaherty, "Reproducible, high-

yielding, biological caproate production from food waste using a single-phase 
anaerobic reactor system," Biotechnol Biofuels, vol. 11, p. 108, 2018. 

[36] S. Dahiya, O. Sarkar, Y. V. Swamy, and S. Venkata Mohan, "Acidogenic 
fermentation of food waste for volatile fatty acid production with co-generation of 
biohydrogen," Bioresour Technol, vol. 182, pp. 103-113, Apr 2015. 



 

202 
 

[37] E. den Boer et al., "Volatile fatty acids as an added value from biowaste," Waste 
Manag, vol. 58, pp. 62-69, Dec 2016. 

[38] C. A. Contreras-Davila, V. J. Carrion, V. R. Vonk, C. N. J. Buisman, and D. Strik, 
"Consecutive lactate formation and chain elongation to reduce exogenous 
chemicals input in repeated-batch food waste fermentation," Water Res, vol. 169, p. 
115215, Feb 1 2020. 

[39] S. J. Lim, B. J. Kim, C. M. Jeong, J. D. Choi, Y. H. Ahn, and H. N. Chang, "Anaerobic 
organic acid production of food waste in once-a-day feeding and drawing-off 
bioreactor," Bioresour Technol, vol. 99, no. 16, pp. 7866-74, Nov 2008. 

[40] H. Yesil, A. E. Tugtas, A. Bayrakdar, and B. Calli, "Anaerobic fermentation of organic 
solid wastes: volatile fatty acid production and separation," Water Sci Technol, vol. 
69, no. 10, pp. 2132-8, 2014. 

[41] T. I. M. Grootscholten, F. Kinsky dal Borgo, H. V. M. Hamelers, and C. J. N. 
Buisman, "Promoting chain elongation in mixed culture acidification reactors by 
addition of ethanol," Biomass and Bioenergy, vol. 48, pp. 10-16, 2013. 

[42] X. Gómez, M. J. Cuetos, J. I. Prieto, and A. Morán, "Bio-hydrogen production from 
waste fermentation: Mixing and static conditions," Renewable Energy, vol. 34, no. 
4, pp. 970-975, 2009. 

[43] I. O. Bolaji and D. Dionisi, "Acidogenic fermentation of vegetable and salad waste 
for chemicals production: Effect of pH buffer and retention time," Journal of 
Environmental Chemical Engineering, vol. 5, no. 6, pp. 5933-5943, 2017. 

[44] A. Duber et al., "Exploiting the real wastewater potential for resource recovery – n-
caproate production from acid whey," Green Chemistry, vol. 20, no. 16, pp. 3790-
3803, 2018. 

[45] V. Cabbai, M. Ballico, E. Aneggi, and D. Goi, "BMP tests of source selected OFMSW 
to evaluate anaerobic codigestion with sewage sludge," Waste Manag, vol. 33, no. 
7, pp. 1626-32, Jul 2013. 

[46] J. H. Ebner, R. A. Labatut, J. S. Lodge, A. A. Williamson, and T. A. Trabold, 
"Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing 
biochemical parameters and synergistic effects," Waste Manag, vol. 52, pp. 286-94, 
Jun 2016. 

[47] J. Tang, X. Wang, Y. Hu, Y. Zhang, and Y. Li, "Lactic acid fermentation from food 
waste with indigenous microbiota: Effects of pH, temperature and high OLR," Waste 
Manag, vol. 52, pp. 278-85, Jun 2016. 

[48] M. T. Agler, B. A. Wrenn, S. H. Zinder, and L. T. Angenent, "Waste to bioproduct 
conversion with undefined mixed cultures: the carboxylate platform," Trends 
Biotechnol, vol. 29, no. 2, pp. 70-8, Feb 2011. 

[49] S. Im, M.-K. Lee, Y.-M. Yun, S.-K. Cho, and D.-H. Kim, "Effect of storage time and 
temperature on hydrogen fermentation of food waste," International Journal of 
Hydrogen Energy, vol. 45, no. 6, pp. 3769-3775, 2020. 

[50] F. Asunis et al., "Control of fermentation duration and pH to orient biochemicals and 
biofuels production from cheese whey," Bioresour Technol, vol. 289, p. 121722, Oct 
2019. 

[51] N. Azbar, P. Ursillo, and R. E. Speece, "Effect of process configuration and substrate 
complexity on the performance of anaerobic processes," Water Research, vol. 35, 
no. 3, pp. 817-829, 2001. 

[52] J. Dolfing, "The Microbial Logic behind the Prevalence of Incomplete Oxidation of 
Organic Compounds by Acetogenic Bacteria in Methanogenic Environments," 
Microb Ecol, vol. 41, no. 2, pp. 83-89, Feb 2001. 

[53] D. G. Cirne, A. Lehtomaki, L. Bjornsson, and L. L. Blackall, "Hydrolysis and microbial 
community analyses in two-stage anaerobic digestion of energy crops," J Appl 
Microbiol, vol. 103, no. 3, pp. 516-27, Sep 2007. 

[54] M. Zhou, B. Yan, J. W. C. Wong, and Y. Zhang, "Enhanced volatile fatty acids 
production from anaerobic fermentation of food waste: A mini-review focusing on 



 

203 
 

acidogenic metabolic pathways," Bioresour Technol, vol. 248, no. Pt A, pp. 68-78, 
Jan 2018. 

[55] M. G. Ganzle and R. Follador, "Metabolism of oligosaccharides and starch in 
lactobacilli: a review," Front Microbiol, vol. 3, p. 340, 2012. 

[56] H. Wang et al., "Improvement of n-caproic acid production with Ruminococcaceae 
bacterium CPB6: selection of electron acceptors and carbon sources and 
optimization of the culture medium," Microb Cell Fact, vol. 17, no. 1, p. 99, Jun 25 
2018. 

[57] S. Esquivel-Elizondo et al., "The isolate Caproiciproducens sp. 7D4C2 produces n-
caproate at mildly acidic conditions from hexoses: genome and rBOX comparison 
with related strains and chain-elongating bacteria," Biotechnology for Biofuels, 2020. 

[58] R. Nelson, D. Peterson, E. Karp, G. Beckham, and D. Salvachúa, "Mixed Carboxylic 
Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic 
Hydrolysate," Fermentation, vol. 3, no. 1, 2017. 

[59] J. L. Rombouts, E. M. M. Kranendonk, A. Regueira, D. G. Weissbrodt, R. 
Kleerebezem, and M. C. M. van Loosdrecht, "Selecting for lactic acid producing and 
utilising bacteria in anaerobic enrichment cultures," Biotechnol Bioeng, vol. 117, no. 
5, pp. 1281-1293, May 2020. 

[60] P. Candry, L. Radic, J. Favere, J. M. Carvajal-Arroyo, K. Rabaey, and R. Ganigue, 
"Mildly acidic pH selects for chain elongation to caproic acid over alternative 
pathways during lactic acid fermentation," Water Res, vol. 186, p. 116396, Sep 7 
2020. 

[61] B. Liu, S. Kleinsteuber, F. Centler, H. Harms, and H. Strauber, "Competition 
Between Butyrate Fermenters and Chain-Elongating Bacteria Limits the Efficiency 
of Medium-Chain Carboxylate Production," Front Microbiol, vol. 11, p. 336, 2020. 

[62] A. Detman, D. Mielecki, A. Chojnacka, A. Salamon, M. K. Blaszczyk, and A. Sikora, 
"Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and 
microbial communities from dark fermentation bioreactors," Microb Cell Fact, vol. 
18, no. 1, p. 36, Feb 13 2019. 

[63] B. E. Jackson and M. J. McInerney, "Anaerobic microbial metabolism can proceed 
close to thermodynamic limits," Nature, vol. 415, pp. 454-456, 2002. 

[64] C. M. Spirito, H. Richter, K. Rabaey, A. J. Stams, and L. T. Angenent, "Chain 
elongation in anaerobic reactor microbiomes to recover resources from waste," Curr 
Opin Biotechnol, vol. 27, pp. 115-22, Jun 2014. 

[65] Q. Wu et al., "Concentrating lactate-carbon flow on medium chain carboxylic acids 
production by hydrogen supply," Bioresour Technol, vol. 291, p. 121573, Nov 2019. 

[66] T. Noike and O. Mizuno, "Hydrogen fermentation of organic municipal wastes," 
Water Science and Technology, vol. 42, no. 11, pp. 155-162, 2000. 

[67] N. H. Yasin, T. Mumtaz, M. A. Hassan, and N. Abd Rahman, "Food waste and food 
processing waste for biohydrogen production: a review," J Environ Manage, vol. 
130, pp. 375-85, Nov 30 2013. 

[68] K. Feng, H. Li, and C. Zheng, "Shifting product spectrum by pH adjustment during 
long-term continuous anaerobic fermentation of food waste," Bioresour Technol, vol. 
270, pp. 180-188, Dec 2018. 

[69] Y. Wu, H. Ma, M. Zheng, and K. Wang, "Lactic acid production from acidogenic 
fermentation of fruit and vegetable wastes," Bioresour Technol, vol. 191, pp. 53-8, 
Sep 2015. 

[70] E. Santillan, H. Seshan, F. Constancias, and S. Wuertz, "Trait-based life-history 
strategies explain succession scenario for complex bacterial communities under 
varying disturbance," Environ Microbiol, vol. 21, no. 10, pp. 3751-3764, Oct 2019. 

[71] J. De Vrieze et al., "Stochasticity in microbiology: managing unpredictability to reach 
the Sustainable Development Goals," Microb Biotechnol, vol. 13, no. 4, pp. 829-843, 
Jul 2020. 



 

204 
 

[72] D. J. Anneken, S. Both, R. Christoph, G. Fieg, U. Steinberner, and A. Westfechtel, 
"Fatty Acids," in Ullmann's Encyclopedia of Industrial Chemistry, vol. 14Weinheim: 
Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 73-116. 

[73] The Merck Index, "The Merck Index online - An Encyclopedia of Chemicals, Drugs, 
and Biologicals," ed. Whitehouse Station: Merck Sharp & Dohme Corp., 2013. 

[74] C. S. Lopez-Garzon and A. J. Straathof, "Recovery of carboxylic acids produced by 
fermentation," Biotechnol Adv, vol. 32, no. 5, pp. 873-904, Sep-Oct 2014. 

[75] K. Choi, B. S. Jeon, B. C. Kim, M. K. Oh, Y. Um, and B. I. Sang, "In situ biphasic 
extractive fermentation for hexanoic acid production from sucrose by Megasphaera 
elsdenii NCIMB 702410," Appl Biochem Biotechnol, vol. 171, no. 5, pp. 1094-107, 
Nov 2013. 

[76] K. L. Wasewar, D. Shende, and A. Keshav, "Reactive extraction of itaconic acid 
using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent," 
Journal of Chemical Technology & Biotechnology, vol. 86, no. 2, pp. 319-323, 2011. 

[77] B. M. Dolman, C. Kaisermann, P. J. Martin, and J. B. Winterburn, "Integrated 
sophorolipid production and gravity separation," Process Biochemistry, vol. 54, pp. 
162-171, 2017. 

[78] J. Xu, J. J. Guzman, S. J. Andersen, K. Rabaey, and L. T. Angenent, "In-line and 
selective phase separation of medium-chain carboxylic acids using membrane 
electrolysis," Chem Commun (Camb), vol. 51, no. 31, pp. 6847-50, Apr 21 2015. 

[79] Y. Liu, P. He, L. Shao, H. Zhang, and F. Lu, "Significant enhancement by biochar of 
caproate production via chain elongation," Water Res, vol. 119, pp. 150-159, Aug 1 
2017. 

  



 

205 
 

Chapter 7. Conclusions and future work 

This chapter contains a concluding overview of the main findings of this thesis and their 

contributions to the field of bio-waste valorisation by mixed anaerobic processes. The initial 

thesis goals and objectives are assessed and a future perspective is provided on how the 

research could be carried forward to advance in the field of anaerobic microbial processes 

for bio-waste valorisation.
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This thesis explored the potential of mixed culture fermentation for bio-waste valorisation. 

In particular, it focussed on the production of medium chain carboxylic acids (MCCA) from 

mixed food waste (FW) fermentation in a single-stage stirred tank reactor (STR). MCCA 

were targeted due to their potential for easier separation and higher economic value 

compared to other acidogenic fermentation (AF) products. Processes producing MCCA are 

typically complex. The need to invest in specific infrastructure and develop new expertise 

hinder the implementation of novel technologies in the waste management sector. 

Therefore, a reactor setup was used that was similar to those established in current 

anaerobic digestion (AD) treatment facilities. The feedstock (i.e., FW), relevant for the 

industry, was facilitated by the partnership with Wessex Water and GENeco (Avonmouth, 

UK).  

Three general goals were set to evaluate the production of MCCA from mixed culture 

fermentation of FW. The first goal was to acquire knowledge on chain elongation in microbial 

communities fed with complex organic feedstock. This was addressed in the literature study 

(Chapter 2) that characterized current research gaps. The second goal was identifying 

operating strategies that enable microbial chain elongation in FW fermentation with minimal 

chemical addition in a single-stage STR. This was addressed by outlining four specific 

research objectives explored in the next four research chapters (Chapters 3-6). The findings 

from addressing these four objectives resulted in outlining an operating guideline for 

production of MCCA from food waste, presented in the following section. The third goal, 

investigation of the MMC and underlying fermentation pathways, was defined in two more 

research objectives (5 and 6, respectively). These were evaluated in parallel with the other 

objectives in the same research chapters by including microbial community analysis, cycle 

studies and batch studies. 

7.1. Towards an operating guideline to target MCCA in 

single-stage acidogenic food waste fermentation  

The combination of the operating strategies found from the literature review and the 

experimental work from this thesis can be summarised into a set of practical guidelines. 

These target MCCA in mixed culture fermentation of FW, in line with the second goal of this 

thesis (Figure 7-1).  

The literature study (Chapter 2) concluded that operating at a pH of 5.5, mesophilic 

temperature around 35°C and an organic overload at start-up (≥ 5 gCODfed per gVSinoculum
-

1) were suitable to switch from methane to MCCA production. In Chapter 3, these operating 

parameters were tested and the first research objective addressed, i.e., exploring an 
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organic overload as strategy to steer an AD community in long-term operation of a single-

stage STR towards chain elongation with minimal chemical addition. The start-up strategy 

of higher F/M (8.4 gCOD gVS-1) and operating at higher OLR (depending on feedstock from 

8.5 up to 21 ± 2 gCOD L-1 d-1), and indirectly lower HRT (18 to 14 ± 2 d) compared to the 

AD reactor operated in parallel (0.8 gCOD gVS-1, 4.2 to 4.4 gCOD L-1 d-1 and 35 to 69 ± 6 

d), led to a net production of MCCA and inhibited methanogenesis. The high organic load 

allowed producing MCCA at concentrations similar to more complicated reactor setups (22 

± 4 gCOD L-1 for n-caproic and 7 ± 2 gCOD L-1 for n-caprylic acid). However, it also resulted 

to reduced degradation of the FW solids in comparison with AD processes. Thus, for waste 

management purposes, hydrolysis and yields of single-stage MCCA production need to 

improve. Alternatively, this process could fit within a broader biorefinery context that 

includes post chain elongation treatment by, e.g., AD processes that stabilise the solids and 

produce biogas from the remaining organics. 

 

Figure 7-1 Simplified overview of parameters considered in this thesis for the production of MCCA from 
acidogenic food waste fermentation. 

Chapter 4 addressed the second research objective, evaluating the effect of HRT and OLR 

on fermentation. It was found that operating at an OLR of 12 gCOD L-1d-1 and HRT of 8.5 

days gave n-butyric acid as the main carboxylic acid. At the same HRT of 8.5 days and 

operating at an OLR of 20 gCOD L-1d-1, similar to the OLR that stimulated chain elongation 

in Chapter 3, gave predominantly lactic acid. Chain elongation was stimulated instead, 

when reactors were operated at a higher HRT of 10.5 days keeping OLR at 12 gCOD L-1d-
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1
 (n-caproic acid up to 13.6 gCOD L-1). Microbial community analysis revealed that at shorter 

HRT, the relative abundance of genera related to chain elongation and other types of 

secondary fermentation were much lower, whereas homolactic fermentation dominated at 

higher OLR. Thus, while in Chapter 3 organic overload stimulated chain elongation, Chapter 

4 uncovered that a high OLR should not come at the cost of lowering HRT. Understanding 

the interplay between HRT and OLR on MCCA production is crucial for industrial operation 

as they are the parameters most commonly used to exert control on industrial-scale AD 

processes. The three different types of fermentation that were achieved by operating at 

different combination of HRT and OLR highlighted the potential for a flexible product 

portfolio, and thus the attractiveness of acidogenic fermentation for bio-waste valorisation. 

Chapter 5 tackled the third research objective, evaluating the effect of a semi-continuous 

feeding pattern. The discussion from the literature review (Chapter 2) hypothesised this 

could stimulate chain elongation in a single-stage system. Feeding twice a week was 

compared with feeding daily in semi-continuous stirred tank reactor while operating at an 

HRT and OLR suitable for chain elongation (10.5 days, 9 to 13 ± 2 gCOD L-1d-1). Operating 

with bi-weekly feeding gave a more stable product profile and reduced the need for pH-

correcting chemicals compared to daily feeding. A more fluctuating lactic acid content was 

observed in the effluent of the daily-fed reactors since the greater availability of easily 

biodegradable sugars favoured homolactic fermentation over heterolactic acetate-ethanol 

fermentation with chain elongation. Thus, semi-continuous operation is more favourable for 

MCCA production from FW than continuous feeding. 

In Chapter 6, the composition of the FW feedstock was evaluated for variation and its impact 

on fermentation, thereby addressing the fourth research objective. This chapter revealed 

that the source of the feedstock affects acidogenic fermentation. For instance, fresh 

cafeteria FW will more easily accumulate lactic acid whereas pre-processed FW as 

obtained from recycling centres will naturally accumulate carboxylic acids. If aiming at 

MCCA production, fresh and highly biodegradable FW might require a two-step process 

(with pre-fermentation) or lower OLR and/or longer HRT compared to FW that has 

undergone some degradation during storage. Alternatively, it provides interesting research 

routes of fine-tuning the feedstock depending on which fermentation product is targeted.  

7.2. Community analysis and cycle studies elucidate the 

microbial pathways  

A clear outcome from the literature review (Chapter 2) is a need to better understand the 

underlying mechanisms to produce MCCA in MMC fermentation of complex bio-waste, 
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which set the base for the third thesis goal. It was addressed throughout the different 

chapters by analysing the composition of the MMC, as specified by the fifth research 

objective, and studying the succession of conversion reactions in cycle and batch studies, 

in line with the sixth research objective. 

From the literature review, it was postulated that competing reactions with chain elongation 

would be methanogenesis towards methane and lactate reduction to produce propionic 

acid. Indeed, methanogenesis persisted in some experiments even when applying an 

organic overload, specifically hydrogenotrophic methanogenesis (Chapter 3). However, 

limited propionic acid was produced. This selected for even-chained MCCA, even for 

reactor systems where lactic acid accumulated (Chapter 5). Contrarily, we observed an 

additional competition between chain elongation and lactic acid accumulation. Namely, 

fermenting fresh cafeteria FW with soybean wastewater (Chapter 5) or mixed FW with 

additional sucrose (Chapters 6) gave an alternating fermentation outcome of either lactic 

acid accumulation or chain elongation. This was reflected by changes in the microbial 

community. On one side, homolactic Lactobacillus spp. performed acidogenic lactic acid 

fermentation hindering other types of fermentation. On the other side, a partnership 

between other lactic acid bacteria (LAB), such as Olsenella spp. and Bifidobacterium spp., 

with chain elongation bacteria, e.g., Pseudoramibacter spp. and Caproiciproducens spp., 

allowed to accumulate MCCA. This was attributed to homolactic LAB having a kinetic 

advantage over other fermentative bacteria in complex, sugar-rich media. By operating at 

lower OLR (Chapter 4) or by feeding semi-continuously with longer feeding cycles, e.g., bi-

weekly feeding compared to daily (Chapter 5), the competitive advantage of homolactic LAB 

could be countered. By operating at longer HRT, secondary fermentation such as chain 

elongation bacteria were stimulated (Chapter 4), i.e., a sequence of 1) hydrolysis, 2) primary 

fermentation to accumulate VFA and electron donors to 3) chain elongation. Thus, this 

thesis exposed some of the competitive and synergistic pathways occurring in acidogenic 

FW fermentation in a single-stage reactor, and how understanding them allows to adjust 

operating strategy. 

7.3. The opportunities for high-COD and oily food waste 

The reactor experiment discussed in Chapter 3 indicated the potential of FW with a high 

COD (297 ± 9 gCOD L-1) as a preferred feedstock for MCCA production in single-stage STR 

since it allowed a high organic load and long HRT. Contrarily, in the AD reactor also 

operated in Chapter 3, switching to this high-COD FW crashed methane production due to 

an organic overload for methanogens. By addressing the fourth research objective in 

Chapter 6, it was found that this FW with high COD was an outlier in terms of COD content 
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compared to what is generally available in the targeted AD plant for FW recycling (average 

of collections at 163 ± 55 gCOD L-1). This particular FW collection was high in COD likely 

due to mixtures containing oily washings from food processing. By contrast, addition of 

sucrose to increase COD and biodegradability of the FW did not enhance chain elongation 

and instead resulted in process instability due to lactic acid accumulation by providing 

homolactic bacteria with a competitive advantage. 

Aside from enhancing elongation by supplementing organics, it was discussed in Chapter 

6 that the presence of oils resulted into separation from the bulk fermentation broth and 

extraction of MCCA into an immiscible layer due to their hydrophobicity. This is an 

interesting finding as it presents two new opportunities for oily FW, which is generally a 

difficult waste to treat. Firstly, one could work towards defining an optimal FW mixture to 

exert a high OLR with sufficiently long retention times to inhibit methanogenesis and 

stimulate chain elongation instead of lactic acid. Secondly, it could provide an in situ 

separating mechanism, potentially lowering toxicity effects and facilitating downstream 

processing. Further research is required to conclude the initial findings of this thesis. 

7.4. Perspective: A highly interdisciplinary route towards 

a new bio-waste valorisation technology 

The development of predictable and stable MMC fermentation processes where the target 

product can be adjusted according to market demand will require improved monitoring of 

the feedstock composition, understanding the microbial ecology, and expansion of 

downstream processing to generate marketable products.  

Optimising composition of the feedstock (e.g., mixing waste streams) or developing specific 

downstream processes will only be worthwhile if the value gained from the fermentation 

products outweighs the increased process complexity. A system-based approach will be 

required where bio-waste is regarded as a resource with its own supply chain. Thus, waste 

treatment becomes an analogue to a bio-refinery approach where value is maximised. 

Careful monitoring of these processes by, for instance, assessing their life cycle, will be 

critical to ensure the most sustainable and circular value chains are formed. For instance, 

the environmental cost of transporting bio-waste or the use of arable land and water to grow 

crops for direct use as feedstock instead for food production are some potential pitfalls.  

As the work in this thesis showed, optimising process design requires understanding how 

the changes in operating conditions steer the MMC and resulting fermentation outcome. 

The amount of “omics” approaches is rapidly evolving thereby improving the robustness of 

analysis and the level of possible interpretation. Yet, with this comes increased complexity 
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of the data generated. A collaborative approach is required between method improvement 

for community monitoring, advanced statistical data processing and programming, microbial 

ecology and reactor engineering. Luckily, as these techniques are maturing, more and more 

information is made accessible. For instance, various of the statistics and programming 

resources used in this thesis for microbial community analysis was possible thanks to 

researchers sharing software and writing blogs on platforms such as GitHub. Increased 

data sharing is allowing to pool results from different studies together and reach overarching 

conclusions. For instance, the MiDAS (Microbial Database for Activated Sludge) field guide 

is such a project aiming to collate the knowledge of the microbial communities present in 

wastewater treatment. It was in the light of open data sharing that all data from published 

material of this thesis was made publically available on the University of Bath data archive 

or on the European Nucleotide Archive for sequenced data. Increased data sharing and 

collaboration will be key to deepen the collective understanding of microbial ecology and 

how it can be applied. 

Lastly, product separation and formulation to generate a marketable product range will need 

to be developed before this technology can be implemented. While various publications 

state a wide range of applications for MCCA, sourcing them from mixed bio-waste will 

inherently limit certain applications. For instance, high purities could be required for 

chemical synthesis or, health and safety concerns will exclude the use of waste-derived 

caprylic acid as food supplement. Additional product development and market research will 

be key in unlocking how anaerobic mixed culture processes can fit within a global scope 

and be a sustainable bio-waste valorisation technology. 
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