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Abstract  

The deregulation of kinase cascades drives the development and survival of many 

human tumours. Kinase-targeted therapeutics therefore offer great promise for 

‘personalised’ medicine. However, the beneficial effects of kinase inhibition are often 

short-lived due to the evolution of drug resistance. Whilst we know that reprogramming 

of phosphorylation networks underpins drug resistance, the specific role of protein 

phosphatases in these processes remains largely unexplored. Using a mixture of 

conventional biochemical approaches and high content microscopy, we have 

evaluated spatial and temporal components of ERK activation in response to the 

administration or cessation of the MEK inhibitor AZD6244, in mutant BRAF- and 

KRAS-driven colorectal cancer (CRC) cell lines and their AZD6244-resistant 

derivatives. We have also determined the expression patterns of several MAPK 

phosphatases (MKPs) in these cell models and have correlated a robust induction of 

DUSP4, DUSP5 and DUSP6 with AZD6244 removal, ERK hyperactivation and nuclear 

accumulation of ERK in AZD6244-resistant CRC cells. The ablation of DUSP5 

expression in these conditions led to enhanced ERK hyperactivation and reduced E-

cadherin expression in AZD6244-resistant HCT116 cells which were previously shown 

to undergo an epithelial-to-mesenchymal transition in response to AZD6244 

withdrawal. In AZD6244-resistant HT29 cells, where AZD6244 deprivation leads to cell 

death, DUSP5 loss had subtle, but inconclusive effects on p-ERK and downstream 

effectors. This work emphasizes the influential and highly context-dependent role that 

MKP regulation has in ERK-driven oncogenesis and drug-resistance and has 

contributed to our current understanding of signal reprogramming events that 

frequently occur in response to ERK pathway inhibition.  
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Chapter 1. Introduction 

1.1. Mitogen-activated protein kinase (MAPK) signalling 

1.1.1. The structure and function of protein kinases in protein 
phosphorylation 

Protein phosphorylation is a key mechanism of post-translational regulation often 

associated with cell signalling cascades. While the hydrolysis of ATP is highly 

energetically favourable, the reaction is extremely slow in the absence of catalysts, 

providing an opportunity for kinetic control of these modifications by specialised 

regulatory enzymes. In addition to this, protein phosphorylation is reversible and so 

the addition and subsequent removal of phosphate molecules can serve as a 

biological “switch” able to induce and reverse major changes in protein structure and 

function (Jin and Pawson, 2012).  

The major biochemical implications of a phosphate moiety addition are a result of its 

negative charge, which can generate new interactions between nearby protein 

residues and/or disrupt existing ones. The negatively charged phosphate can attract 

positively charged protein residues, repulse negatively charged residues and form or 

disrupt hydrogen bonds, initiating the formation, stabilisation or disruption of local 

protein structure (Johnson and Lewis, 2001). If a phosphate molecule is added within 

or near to a protein’s active site, it may interact directly or indirectly with important 

catalytic residues, thereby inducing or preventing catalytic activity. Phosphorylation 

can also have longer range effects on tertiary or even quaternary protein structure, 

and act as a “mark” that initiates binding of other proteins or regulatory molecules 

(Johnson and Lewis, 2001). Through these mechanisms, phosphorylation can be 

functionally linked to protein activity and serves as a dynamic form of regulatory protein 

signalling. 
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Protein kinases are an extensive family of enzymes that are key effectors of protein 

phosphorylation in the cell. Not only are they able to catalyse the transfer of ATP to a 

substrate peptide, but they too are frequently activated by phosphorylation. These 

ubiquitous signalling proteins share a kinase sequence of approximately 290 amino 

acids, which contains the highly conserved catalytic site (Meharena et al., 2013). 

Protein kinases can be divided into two major sub-families, the Serine/Threonine 

(Ser/Thr) kinases and the Tyrosine (Tyr) kinases, based on the target amino-acids 

upon which the enzymes can act. The exquisite utility of protein kinases in regulating 

the structure and function of their substrates centres on their ability to catalyse protein 

phosphorylation. In both Ser/Thr and Tyr kinases this is enabled through the precise 

architecture of their catalytic domain, a folded and bilobed structure with binding sites 

for ATP and the substrate peptide group located within the groove of the “N” and “C” 

lobes (Figure 1.1) (Huse and Kuriyan, 2002; Johnson and Lewis, 2001; Meharena et 

al., 2013).  
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Figure 1.1. The prototypic protein kinase active site. Key catalytic residues Lys72, 

Asp184 and Asp166 (numbering based on the amino acid sequence of Protein Kinase 

C) are critical for ATP binding and phosphotransfer. The optimal configuration of the 

catalytic residues is co-ordinated by tertiary interactions with elements in the C-helix, 

catalytic loop and activation loop. 
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Within the catalytic domain, multiple conserved amino acid residues co-ordinate three 

critical catalytic mechanisms; ATP-binding, substrate-binding and phosphotransfer. In 

the N-lobe, a glycine rich “P loop” extends over the top of ATP, while a nearby lysine 

residue (Lys72 in Figure 1.1) interacts with the negatively-charged phosphate moieties 

of the ATP molecule. Together with aspartate (Asp184 in Figure 1.1) and asparagine 

(Asn171) residues in the C-lobe, these molecules bind and co-ordinate ATP in the 

active site (Huse and Kuriyan, 2002). Binding of the substrate peptide is largely 

coordinated by the C-helix in the N-lobe and the activation loop in the C-lobe. These 

“regulatory levers” facilitate or prevent substrate binding through their proximity to and 

interaction with residues adjacent to the catalytic residues (Johnson et al., 1996). In 

some protein kinases, the N- and C-lobes are in an inactive conformation prior to 

phosphorylation of conserved threonine and tyrosine residues in the activation loop 

and rely on phosphorylation to initiate the conformation changes required for substrate 

binding and catalysis (Huse and Kuriyan, 2002).  

The activation of ERK2, a highly abundant, prototypic kinase, by phosphorylation has 

been structurally characterised and demonstrates common biochemical features of 

this mechanism. In unphosphorylated ERK2, the N- and C-lobes of the active site are 

rotated apart, and the active site residues are misaligned (Canagarajah et al., 1997). 

Phosphorylation of threonine (Thr-183) induces the proper orientation of the C-helix 

and promotes the closure of the N- and C-lobes through the formation of multiple ionic 

contacts and hydrogen bonds with various surface arginine residues (Canagarajah et 

al., 1997; Huse and Kuriyan, 2002). This allows the C-helix residue Glu91 to 

coordinate the catalytic residue Lys72 through a network of hydrogen bonds (Figure 

1.1). The phosphorylation of tyrosine (Tyr-185) promotes it’s repositioning to the outer 

surface of the catalytic domain where it forms various bonds with nearby arginine 

residues. This results in refolding of the activation loop which contains a highly 

conserved Asp-Phe-Gly (DFG) motif comprised in part, of the catalytic Asp184 residue 

(Figure 1.1) (Canagarajah et al., 1997).  
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Once in the correct conformational arrangement, the kinase is able to bind both ATP 

and substrate. In the final catalytic step, a basic aspartate (Asp166) residue within the 

catalytic loop is able to remove the proton from the substrate peptide hydroxyl group, 

allowing nucleophilic attack of -phosphate and transfer of the phosphoryl group from 

ATP to the receiving substrate peptide (Figure 1.1) (Johnson et al., 1996). Through 

these intricately fine-tuned mechanisms of phosphorylation-induced activation, protein 

kinases can both receive and relay biochemical messages within the cell and thus 

serve as excellent signalling molecules. In many major cellular signalling pathways, 

these enzymes participate in protein kinase cascades where each kinase is primed to 

activate the next in a series of phosphorylation steps.  

1.1.2.  MAPK activation is initiated by cell membrane receptors and 
intracellular signalling complexes 

The mitogen-activated protein kinase (MAPK) signalling proteins are a family of highly 

abundant, evolutionarily conserved signal transduction pathways responsible for 

relaying a plethora of cellular stimuli to effectors of fundamental cellular processes. 

These include but are not limited to proliferation, differentiation, cell growth, immune 

responses and apoptosis (Meloche & Pouysségur, 2007; von Kriegsheim et al., 2009).  

MAPKs are proline-directed serine/threonine kinases that are activated through the 

phosphorylation of conserved threonine and tyrosine residues. Their catalytic domains 

contain most major features common to the protein kinase family (described 

previously), with some additional MAPK-specific regions. The “P+1” specificity site in 

the C-lobe of the MAPK activation domain is essential for proline recognition and 

substrate specificity while a 50 amino acid MAPK insertion and an extended C-

terminus facilitate conformational activation and protein-protein interactions 

(Canagarajah et al., 1997). The MAPK phosphorylation cascades share a common 

three-tiered architecture, comprised of a MAPK kinase kinase which phosphorylates 

a downstream MAPK kinase, which in turn, phosphorylates the MAPK itself (English 

et al., 1999). Activation of each cascade is initiated by extracellular signals and the 

membrane receptors that receive them.  
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Mammalian MAPKs are typically coupled to different receptor families that transfer 

signalling stimuli from the cellular environment to the intracellular signalling machinery. 

Specialised signalling receptors such as the cytokine receptors, the G protein-coupled 

receptors (GPCRs) and the RTKs have all been linked to MAPK cascade activation 

(Krishna and Narang, 2008). Receptor tyrosine kinases (RTKs) are an extensive and 

abundant family of signalling receptors with about 20 structural subfamilies each 

dedicated to a specific family of protein ligands. These include the growth factors EGF 

(epidermal growth factor), PDGF (platelet-derived growth factor) and FGF (fibroblast 

growth factor) (Lemmon and Schlessinger, 2010).  

Like many transmembrane signalling receptors, RTKs typically constitute an 

extracellular ligand-binding domain, a transmembrane domain and an intracellular 

tyrosine kinase domain. In the absence of extracellular stimuli, most RTKs exist in an 

inactive monomeric form. Upon ligand-binding RTK monomers are able to dimerise in 

the lipid bilayer which facilitates trans-autophosphorylation of both kinase domains 

(Lemmon and Schlessinger, 2010). In addition to kinase domain activation, this 

phosphorylation can generate high-affinity docking sites for intracellular signalling 

proteins that bind the receptor and go on to propagate the initiating signal. Signalling 

molecules able to bind phosphotyrosines are structurally and functionally varied 

however, commonly share a highly conserved phosphotyrosine-binding domain called 

a Src homology region or SH2 domain (Lemmon and Schlessinger, 2010). Similar to 

SH2 domains, many intracellular signalling proteins contain SH3 domains which bind 

proline-rich motifs in other signalling proteins. Through these SH2 and SH3 domains 

intracellular signalling proteins are able to form large complexes at or near the site of 

RTK phosphorylation which cooperatively function to activate or inhibit downstream 

signalling. Adaptor proteins act specifically for this purpose and are composed almost 

entirely of SH2 and SH3 domains (Lemmon and Schlessinger, 2010). 

The largest family of cell-surface receptors are the G-protein-coupled receptors 

(GPCRs) which form part of a highly dynamic and widely-used signal relay system. 

The binding of signalling ligands to an extracellular site in the GPCR causes a 

conformational change in protein structure which enables it to activate a GTP-binding 

protein (G protein) (Rosenbaum et al., 2009). In general, G-proteins that interact with 

GPCRs are heterotrimeric and are comprised of three protein subunits, ,  and . In 
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their inactive form the  subunit is bound by guanosine diphosphate (GDP). When 

bound to a GPCR, G-proteins become activated by the exchange of GDP for GTP 

(guanosine triphosphate). GTP-binding initiates the release of the G-protein as well as 

the disassociation of the  subunit from the  pair. The monomeric GTP-bound -

subunit is a GTPase which, depending on its control by regulatory enzymes, is able to 

hydrolyse bound GDP to GTP. In this way it is able to function as an enzyme-coupled 

molecular switch which is active when bound by GTP and inactive when bound by 

GDP (Rosenbaum et al., 2009).  

Other monomeric GTPases which are structurally similar to the -subunit of 

heterotrimeric G proteins, known as the small GTPases, are not reliant on GPCRs for 

their activation. Members of the Ras superfamily of small GTPases can interact with 

other cell membrane receptors like RTKs. Three major, closely related Ras proteins 

have been identified in humans, H-, K- and N-RAS. Subtle differences in function have 

been delineated in these RAS isoforms, however, they are commonly referred to 

collectively as RAS. Inactive Ras GTPases are activated by guanine nucleotide 

exchange factors (GEFs), which stimulate the dissociation of GDP and subsequent 

loading of GTP. In contrast, GTPase-activating proteins (GAPs) catalyse the 

hydrolysis of GTP to GDP, deactivating GTPases (Mitin et al., 2005). RTKs are able 

to facilitate the activation of Ras GTPases bound to the cytoplasm by recruiting and 

binding Ras-GEFs, such as the Son of Sevenless protein, SOS (Figure 1.2). The 

association of RTKs to Ras-GEFs is mediated by the SH2 and SH3 domains of adapter 

proteins like growth factor receptor-bound protein 2 (GBR2) (Figure 1.2) (Mitin et al., 

2005).  
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Figure 1.2. RAS activation by receptor tyrosine kinases. Adaptor protein GRB2 is 

able to bind phosphorylated tyrosine on an activated RTK via its SH2 domain. 

Recruitment and association with SOS is enabled through two SH3 domains. Once in 

proximity with membrane bound RAS, SOS activates RAS through the catalytic 

exchange of GDP for GTP. This figure was adapted from Alberts et al. (2011) with 

permission from Garland Science.  

The autophosphorylation of RTKs and the subsequent activation of G proteins induced 

by extracellular ligand binding are important but short-lived events in signalling 

dynamics and can be quickly reversed by the action of phosphatases (enzymes that 

dephosphorylate their substrates) and GAPs. In order to propagate and enhance 

signals that occur at the cell membrane, cells utilise the dynamic and far-reaching 

signal relaying power of protein kinase cascades such as the MAPK signalling 

pathways. 

  



9 
 

1.1.3.  Commonalities and specificities of conventional MAPK 
pathways  

Three conventional MAPK pathways have been well characterized in mammals; the 

extracellular signal-regulated kinase (ERK) 1 and 2, the c-jun amino-terminal kinases 

(JNKs 1-3) and the p38 MAPK isoforms (English et al., 1999). While several other 

MAPKs have been discovered (ERK7/8, ERK3/4 and ERK5), they have not yet been 

as extensively studied. MAPK pathways are initiated by varied stimulants and direct 

multiple, different cell fate outcomes, however they share a common architecture. 

Ser/Thr MAPKKKs (MAPKK kinases) form the first tier of the cascade and are 

activated by phosphorylation or interactions with small GTPases such as Ras. 

MAPKKKs go on to phosphorylate dual-specificity MAPKKs (MAPK kinase), which in 

turn, phosphorylate conserved threonine and tyrosine residues in their MAPK targets 

(Krishna and Narang, 2008).  

MAPKKs are highly substrate-specific and are only able to phosphorylate a few MAPK 

targets each. In contrast, a single MAPKKK can regulate several different MAPK 

cascades (Pearson et al., 2001). Interestingly, while MAPKKKs tend to be more 

diverse in type, they are not abundant, and are most commonly present in much lower 

numbers than their downstream MAPKK targets. This disparity in the relative 

concentrations of MAPKKK and MAPKK proteins may constitute a mechanism of 

signal amplification, where each successive kinase in the cascade is more abundant 

than its activator (Pearson et al., 2001).  

The specific interactions that occur between MAPKKs and MAPKs as well as between 

MAPKs and their target substrates are regulated by biochemically distinct docking 

domains. These domains are generally separate from the protein catalytic sites and 

facilitate efficient, high-fidelity signalling (Bardwell, 2006; Tanoue et al., 2000). A 

docking domain that has been identified in a number of MAPK-targeted transcription 

factors is the D domain, comprised of a few positively charged residues encompassed 

by hydrophobic residues. D domains are recognised and bound by conserved 

common docking (CD) motifs found in the C terminals of many MAPKs. CD motifs are 

able to form electrostatic and hydrophobic interactions with D domains through their 

acidic and hydrophobic residues (Tanoue et al., 2000). 
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As previously mentioned, MAPKs are proline-directed Ser/Thr kinases that are able to 

phosphorylate a myriad of downstream effector proteins, including MAPK-activated 

protein kinases (MKs), transcription factors and various cytoplasmic proteins. While 

ERK 1/2 signalling typically responds to growth factors and hormones, the JNK and 

p38 MAPKs are predominantly implicated in cellular stress signalling (English et al., 

1999; Chang and Karin, 2001).  

In mammals, three genes encode JNK proteins, JNK1, JNK2 and JNK3, with JNK1 

and JNK2 being most prevalent (Barr and Bogoyevitch, 2001). JNK signalling has 

been implicated in response to a variety of cellular stresses including UV radiation, 

heat shock, DNA damage, growth factor withdrawal and exposure to inflammatory 

cytokines. Some studies have linked JNK activation to growth factors and serum, 

however this is relatively uncommon (Kyriakis and Avruch, 2001). MAPKKKs that have 

been identified as JNK signalling activators are diverse and many and include 

MAPKKK1-3 (or MAP3K1-3), DLK and TAK1 enzymes. These kinases relay signals 

to JNK targets by activating the MAPKKs MKK4 and MKK7 (Barr and Bogoyevitch, 

2001). Once phosphorylated on the conserved T-P-Y motif in their activation loops, 

JNK are able to target a number of downstream effectors, including c-jun, c-myc, p53 

and members of the BCL-2 protein family (Krishna and Narang, 2008). JNK-mediated 

phosphorylation of these proteins has frequently been associated with apoptosis (Barr 

and Bogoyevitch, 2001; Krishna and Narang, 2008) in response to cellular stress, 

strengthening the notion that JNKs are important mediators of stress signalling.  

To date, p38 MAPK has four known isoforms, p38α, β,γ and δ MAPK, with p38α MAPK 

being the most extensively studied. Similar to the JNKs, p38 MAPKs are activated by 

numerous cellular stress signals and to a lesser extent, by insulin and growth factors 

(Kyriakis and Avruch, 2001). Many, if not all upstream stress signals of JNK have been 

shown to activate p38 MAPK and several MAPKKKs active in JNK signalling can also 

initiate the p38 MAPK cascade. Primarily, p38 MAPK is phosphorylated by MAPKKs 

MKK3 and MKK6 however JNK MAPKK proteins MKK4 and MKK7 have been shown 

to phosphorylate p38 MAPK isoforms. These various points of crossover between the 

JNK and p38 MAPK pathways suggest that crosstalk plays an important role in their 

regulatory function (Krishna and Narang, 2008). Like JNK, p38 MAPK has been shown 

to regulate several transcription factors and cytoplasmic proteins implicated in 
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apoptosis however p38 MAPK has been most extensively studied in immune function, 

where its role appears to be critical in inflammatory responses (Ashwell, 2006).  

Both JNK and p38 MAPK signalling has been implicated in cancer, most likely a result 

of their prevalent roles in stress signalling. Numerous studies have demonstrated both 

tumour suppressive and oncogenic effects of the JNK and p38 MAPKs. The discovery 

that JNK and p38 MAPKK MKK4 is consistently inactivated through mutation or 

downregulated in several cancers (including pancreas, breast, colon and ovarian 

cancer) has suggested that activation of JNK and p38 MAPK through MKK4 can 

suppress tumourigenesis (Dhillon et al., 2007). Additionally, p38 MAPK has been 

shown to function as a tumour suppressor through its activation of p53 (Dhillon et al., 

2007).  Conversely, JNKs have been found to be upregulated in several cancer cell 

lines and several studies have demonstrated a critical role for JNK-mediated 

phosphorylation of c-jun in Ras-induced tumourigenesis, which may involve c-jun’s 

ability to repress p53 (Kennedy and Davis, 2003). Studies with several 

chemotherapeutic agents have linked p38 MAPK activity with the induction of 

apoptosis, while others have shown that inhibition of p38 MAPK can lead to enhanced 

apoptosis in response to DNA-damaging agents (Olson and Hallahan, 2004; Dhillon 

et al., 2007). Considered in combination, this research suggests that the relative 

tumour suppressive or promoting effects of the JNK and p38 MAP kinases are highly 

context-dependent and may depend on relative stress thresholds at various stages of 

tumourigenesis.  
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1.2.  RAF/MEK/ERK signalling pathway  

1.2.1.  Sequential activation of ERK 

The RAF/MEK/ERK pathway is activated by an array of extracellular signalling 

molecules such as, serums, growth factors and cytokines and their cognate signalling 

receptors, which include receptor tyrosine kinases (RTKs), G-protein-coupled 

receptors and cytokine receptors (Yoon and Seger, 2006). The highly conserved and 

widespread core cascade is frequently initiated by the small RAS GTPase and is 

comprised of the RAF family of MAPKKKs, the MAPKK enzymes MEK1 and MEK2 

and finally, two canonical ERK proteins, ERK1 and ERK2. 

ERK1 and ERK2 are 43 and 41 kDa proteins that are ubiquitously expressed in all 

tissues (Boulton et al., 1991). These isoforms share high protein sequence homology 

and various reports have suggested that they are functionally redundant (Pearson et 

al., 2001). Mouse knockout studies have demonstrated different phenotypic outcomes 

of ERK1 and ERK2 disruption (ERK2 ablation leads to early embryonic death but mice 

lacking ERK1 protein developing normally) however, further research has suggested 

that these results are likely due to differences in their relative expression levels, with 

the ERK2 isoform being expressed more abundantly (Buscà et al., 2016; Lefloch et 

al., 2008). 

The activation of the ERK pathway through binding of growth factors like EGF and 

FGF to their respective RTKs, the EGF receptor (EGFR) and the FGF receptor (FGFR) 

has been thoroughly characterised and is typically referred to in describing the 

prototypic activation of RAF/MEK/ERK signalling (Figure 1.3). FGF-bound FGFRs 

induce the activation of RAS GTPases at the cytoplasmic face of the plasma 

membrane through the recruitment of adapter proteins (GRB2) and RAS-GEFs (SOS) 

(Figure 1.1). This prototypic activation of RTKs and the subsequent activation of RAS 

has been described in detail previously. GTP-bound RAS can then go on to facilitate 

the formation of RAF hetero- and homodimers which can phosphorylate and activate 

MEK1 and MEK2. MEK1 and MEK2 are dual specificity MAPK kinases that are solely 

responsible for the activation of ERK MAP kinases through the phosphorylation of their 

conserved threonine and tyrosine activation loop residues (Pearson et al. 2001; Yoon 

and Seger, 2006).  
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Figure 1.3. The prototypic RAF/MEK/ERK signalling cascade. A simplified linear 

representation of the RAS-regulated RAF–MEK–ERK signalling cascade. The ERK 

pathway is commonly induced by activated growth factor receptors such as EGFR or 

FGFR. ERK substrates include transcription factors of the ETS family that are 

responsible for mediating diverse cell fates.  
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In this simplistic summary, the RAS/RAF/MEK/ERK signalling procession seems fairly 

straightforward, however, in reality, each step is relatively complex and involves the 

delicately orchestrated function of numerous proteins. This is especially true at the 

level of RAF activation where activation and dimerization of A-, B- and CRAF isoforms 

is not singularly undertaken by RAS, but by the coordinated efforts of heat shock 

protein 90 (HSP90), 14-3-3, kinase suppressor of RAS (KSR) proteins and various 

kinases (Lavoie and Therrien, 2015).  

In its inactive form, the RAF protein exists in a conformation that facilitates 

autoinhibition of its catalytic domain, through the repressive interaction of the N-

terminal region (Lavoie and Therrien, 2015). This inhibitory state is enforced by 

phosphorylation of serine residues by protein kinase A (PKA) and AKT (Cook and 

McCormick, 1993; Zimmermann and Moelling, 1999) and the association of 14-3-3, a 

regulatory protein (Freed et al., 1994). Recruitment of RAF to the plasma membrane 

is a critical step in RAF activation, and is initiated by active RAS which interacts with 

the conserved Cys-rich domain (CRD) and RAS-binding domain of RAF. This 

interaction relieves RAF auto-inhibition, releases 14-3-3 and allows anchoring of RAF 

proteins to the inner cell membrane. Upon recruitment to the membrane RAF 

activation is implemented through SRC family kinase (SFKs) and casein kinase 2 

(CK2) phosphorylation of RAF as well as dimerization of RAF monomers. Hetero- and 

homodimerization of RAF and association with the KSR scaffold protein induces RAF 

catalytic activity and enables the sequestration of RAF substrates MEK1 and MEK2 

(Lavoie and Therrien, 2015). 

RAF proteins are serine/threonine MAPKKKs that phosphorylate MEK1 and MEK2 on 

conserved serine residues in their activation loop. Similar to MAPKs, phosphorylation 

of MEK induces conformational changes in the catalytic domain that results in its 

activation. And like RAF, MEK1 and MEK2 are also able to form heterodimers which 

increase their catalytic activity (Zheng and Guan, 1994). The MEK isoforms are dual-

specificity kinases which phosphorylate their ERK target on the conserved T-E-Y (Thr-

Glu-Tyr) motif. An important regulatory feature of the MEK proteins is their ability to 

bind their ERK targets through their conserved D  domain. The association of ERK 

and MEK is mediated by the ERK CD and MAPK insert or kinase insert domain (KID) 

and is important for ERK activation and localisation (Chuderland and Seger, 2005; 
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Fukuda et al., 1996; Roskoski, 2012). MEK1 and MEK2 are the only MAPKKs able to 

activate ERK1 and ERK2 and thus have been described as the “gatekeepers” of ERK 

activity. Conversely, activation of MEK1 and MEK2 can be performed by numerous 

MAPKKKs outside of the RAF family (Caunt et al., 2015).  

1.2.2.  Regulation of ERK signalling 

Active ERK has a manifold of downstream targets, many of which influence distinct 

cell fate decisions. It follows that in order to maintain fidelity of ERK signalling, tightly 

controlled spatio-temporal regulation is imperative. This includes regulation of the 

intensity, duration and location of ERK activation, factors that are critical determinants 

of the biological outcome of signalling (Ebisuya et al., 2005; Murphy and Blenis, 2006; 

Pouyssegur et al., 2002). 

Multiple studies in rat PC12 cells (Gotoh et al., 1990; Nguyen et al., 1993; Marshall, 

1995) and rodent fibroblasts (Balmanno and Cook, 1999; Dobrowolski et al., 1994; 

Murphy et al., 2002) have demonstrated that these cells can either differentiate, 

remain quiescent or enter the cell cycle in response to sustained or transient ERK 

activation. Work that investigated how the relative magnitude of active ERK can 

influence the growth and survival of murine fibroblasts, discovered that overexpression 

of upstream RAF led to ERK hyperactivation and stimulated the CDK inhibitor p21CIP1. 

This led to the repression of cyclin-CDK activity and cell cycle arrest. In contrast, 

intermediate levels of active ERK facilitated cell cycle progression (Sewing et al., 1997; 

Woods et al., 1997a). Further studies in rodent cells have shown that the localisation 

of active ERK can influence its regulatory influence, and nuclear targeting of catalytic 

ERK is required for neurite outgrowth (Robinson et al., 1998) and cell cycle entry 

(Brunet et al., 1999; Hochholdinger et al., 1999). 

In a normal cell, the ERK pathway is subject to numerous tiers of regulation that control 

ERK signalling duration, magnitude and subcellular compartmentalisation. These 

include scaffold proteins, crosstalk between other major signalling cascades and 

multiple feedback loops (Ebisuya et al., 2005; Mendoza et al., 2011; Morrison and 

Davis, 2003; Murphy and Blenis, 2006; Pouyssegur et al., 2002). 

Scaffolding 
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The RAF/MEK/ERK signalling cascade is frequently summarised as a simplified, linear 

pathway, however multiple additional layers of protein coordination are required for 

the precise and timely activation of downstream ERK. Indeed, the complex activation 

of RAF demonstrates the role of various chaperone and scaffolding proteins which are 

crucial for increasing the efficiency of enzyme catalysis.  

More than 50 scaffolding proteins have been implicated in the ERK cascade, some of 

which include KSR, connector enhancer of KSR (CNK) and IQGAP1, which enhance 

ERK activation by co-ordinating and increasing the efficiency of key interactions 

(Morrison & Davis, 2003). Scaffolding serves to bring signal components into close 

proximity with one another and increase their relative concentrations in a given cellular 

space. Scaffold proteins can also increase the stability of their cognate proteins or 

participate in their allosteric activation (Good et al., 2011). In addition to these 

functions, scaffolding can act to insulate pathway components from the influence of 

effectors of alternate pathways acting in parallel and in close proximity, thereby 

maintaining signal fidelity (Good et al., 2011).  

KSR is perhaps the best-known scaffold protein involved in the upstream activation of 

ERK and in addition to its interaction with RAF, it is able to interact with MEK and ERK. 

In response to stimulation, KSR is translocated to the plasma membrane where it 

assembles RAF, MEK and ERK. This increases the efficiency of their consecutive 

activation, directly participates in the allosteric activation of RAF and controls the sub-

cellular location of the kinase cascade (Nguyen et al., 2002). Interestingly, the positive 

regulation of ERK activation by KSR is concentration dependent, and in conditions 

where KSR is in excess of kinase substrates, serial phosphorylation is disrupted. This 

“combinatorial inhibition” can occur when scaffold proteins bind each substrate 

independently, and protein interaction is impaired (Ramos, 2008).  

CNK is a large adapter protein that has been shown to bind RAF in mammalian cells 

and enhance RAS activation of CRAF (Lanigan 2003, Ziogras 2005, Jaffe 2004). 

Research in Drosophila has demonstrated that CNK may promote the activation of 

RAF by RAS by facilitating interactions of RAS, RAF and KSR (Douziech 2006, 

Laberge 2005, Claperon 2007), however it is not clear whether mammalian CNK can 

perform a similar function (Ramos, 2008). Another potential ERK cascade scaffold 

protein IQGAP1, is able to bind MEK and ERK as well as the BRAF isoform and has 
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been shown to participate in EGF-induced ERK activation (Roy 2005, Roy 2004, Ren 

2007, Roy 2007). Other proteins implicated in scaffolding of ERK pathway components 

are β-Arrestin, MEK partner-1 (MP-1) and MAPK organiser 1 (MORG1), which appear 

to be involved in the activation of ERK at early and late endosomes, respectively. The 

existence and dynamic function of several ERK pathway scaffold proteins underscores 

the importance of efficient and highly-specific protein interactions upstream of ERK 

activation.  

Crosstalk 

While pathway insulation is required at some pivotal tiers of signal relay, the overall 

integration of multiple signalling pathways is critical for normal cell functioning. 

Numerous examples of this signalling crosstalk exist between the ERK signalling 

cascade, the JNK and p38 MAPK pathways (Junttila et al., 2008) and the PI3K/AKT 

pathway (Mendoza et al., 2011; Aksamitiene et al., 2012). Critical nodes of pathway 

integration occur through RAS, which can affect cell fate changes through both 

downstream ERK and AKT, and MEK, which in turn, can be phosphorylated by a 

number of kinases outside of the RAF repertoire (Caunt et al., 2015). Other MAPKKKs 

include MEKK1, MEKK3 and COT, which can activate not only downstream ERK 

through MEK phosphorylation, but p38 and JNK MAPKs through phosphorylation of 

their respective MAPKKs (Caunt et al., 2015).  

The PI3K/AKT pathway is another important signalling conduit in mammalian cells that 

responds to growth factor stimulation and cell stress. Similar to the ERK cascade, 

PI3K/AKT signalling can be initiated by RAS, which is able to bind and activate PI3K 

(phosphatidylinositol 3-kinase) a lipid kinase and mediator of AKT (protein kinase B) 

activation. PI3K signalling can either augment or reduce ERK signalling (and vice 

versa) through several integration nodes (Aksamitiene et al., 2012; Mendoza et al., 

2011). GRB2-associated binder (GAB) is a docking/adapter protein active in the PI3K 

cascade that can recruit PI3K to growth factor receptors at the plasma membrane and 

assemble Ras-GAP, SHP2 (Src homology 2 domain- containing protein-tyrosine 

phosphatase) and PIP3 (phosphatidyl inositol 3.4.5 tri-phosphate) proteins critical for 

AKT activation. GAB is also able to bind the ERK signalling adaptor and Ras-GEF 

complex GRB2-SOS. Once in close proximity to the membrane SHP2 can 

dephosphorylate Ras-GAP binding sites on GAB and its associated RTKs, resulting in 
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a reduction in RAS inactivation. This can serve to promote ERK signalling activated 

by RAS (Mendoza et al., 2011).  

Conversely, EGF-induced ERK activation can lead to phosphorylation of GAB by ERK, 

which disrupts its ability to recruit PI3K to the EGF receptor (Lehr et al., 2004). RAF 

constitutes another convergence point in the ERK and AKT pathways. AKT negatively 

regulates RAF by phosphorylating inhibitory sites in the Raf N-terminus (Zimmermann 

and Moelling, 1999). 14-3-3 dimers recognize this inhibitory mark and sequester RAF 

in the cytoplasm, away from RAS and MEK (Dumaz and Marais, 2003).  

In addition to crosstalk upstream of ERK and AKT activation, ERK and AKT often 

target the same substrates and can act in concert to regulate proliferation and cell 

survival through interactions with cell fate effectors like FOXO, c-myc and BAD 

(Zimmermann and Moelling, 1999). The significance and ERK-mediated regulation of 

these proteins will be discussed in more detail later.  

ERK compartmentalisation 

While the detection of active and inactive ERK in both the nucleus and the cytoplasm 

in numerous reports suggests that ERK is able to shuttle between these subcellular 

locations, the mechanisms through which this is rendered possible is still a matter of 

debate. In quiescent cells, the subcellular location of ERK appears to be predominantly 

cytoplasmic (Caunt et al., 2008b; Murphy and Blenis, 2006). This has been attributed 

to the association of ERK with various cytoplasmic anchoring proteins including MEK 

(Fukuda et al., 1997) and Sef (Torii et al., 2004) and some cytoskeletal elements 

(Perlson et al., 2006; Reszka et al., 1997). In many instances, stimulus-induced 

phosphorylation of ERK by MEK releases ERK from its cytoplasmic anchors and pre-

empts ERKs translocation to the nucleus.  

More than one mechanism appears to facilitate the nuclear entry of phosphorylated 

and unphosphorylated ERK. Several studies have shown that ERK monomers can 

passively diffuse through the nuclear membrane, while ERK dimers have been shown 

to translocate to the nucleus through both carrier and energy-dependent and 

independent mechanisms (Adachi et al., 2000; Matsubayashi et al., 2001; Whitehurst 

et al., 2002). Independent studies by Matsubayashi et al. (2001) and Whitehurst et al. 

(2002) provided evidence of a nuclear pore complex-mediated mechanism whereby 
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ERK dimers interacted directly with nuclear pore proteins (nucleoporins or NUPs) in 

order to diffuse across the nuclear envelope. Further work by Ranganathan et al. 

(2006) showed that in addition to this proportion of ERK, a significant component of 

phosphorylated ERK entered the nucleus through active transport and required both 

the presence of carriers and energy. ERK does not contain a prototypic nuclear export 

signal (NES) or a nuclear localisation signal (NLS) and cannot bind carrier proteins 

such as importins or exportins directly. It has been posited therefore, that active 

translocation of ERK could be mediated by ERK binding partners such as MEK. In 

most cases, once inside the nucleus, ERK is rapidly dephosphorylated. Inactive ERK 

can remain tethered in the nucleus by nuclear anchors (for varying durations) or is 

exported from the nucleus once dephosphorylated. Again, nuclear export of ERK has 

been attributed to several mechanisms, one of which involves reassociation with MEK 

(Adachi et al., 2000; Fukuda et al., 1996) and the exportin CRM1 (Ranganathan et al., 

2006). Additionally, similar to nuclear import of ERK, ERK can exit the nucleus through 

carrier and energy-independent interactions with the nuclear pore complex 

(Ranganathan et al., 2006). 

Feedback loops 

In addition to the activities of various upstream interactions, the ERK pathway is 

subject to critical regulation by homeostatic feedback controls (Figure 1.4). The 

activation of ERK signalling can be described as self-limiting as once ERK is activated 

it goes on to phosphorylate and inhibit many of its upstream inducers, including RAF, 

MEK and SOS (Ramos, 2008).  

The phosphorylation of MEK by ERK can decrease subsequent ERK activation by 

preventing phosphorylation of MEK by PAK1 (p21CIP1-activated kinase), a Ser/Thr 

kinase that enhances MEK activity (Eblen et al., 2004) or by disrupting a MEK1-MEK2 

heterodimer that appears to stabilise MEK and ERK phosphorylation (Catalanotti et 

al., 2009). Similarly, phosphorylation of BRAF by ERK promotes the disassembly of 

BRAF and CRAF heterodimers which have highly increased catalytic activity 

compared to RAF homodimers or monomers (Rushworth et al., 2006). ERK 

phosphorylation of CRAF is able to inhibit its interaction with RAS, providing another 

mechanism through which ERK can downregulate RAF activity (Dougherty et al., 

2005). Finally, phosphorylation of SOS, the RAS guanine exchange factor, inhibits its 
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interaction with GRB2 and prevents its recruitment to the plasma membrane. This 

leads to reduced RAS activation and downstream phosphorylation of ERK.  

 

Figure 1.4. Regulation of ERK by negative feedback controls. Multiple negative 

feedback loops are responsible for fine-tuning ERK pathway output. ERK can 

phosphorylate and inhibit MEK1, RAF, KSR1, SOS and some RTKs to diminish further 

ERK activation. Induction of the negative regulator Sprouty (SPRY) acts to inhibit RAS 

activity while DUSP (MKP).  expression leads to direct dephosphorylation of ERK.   
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Not only can active ERK exert direct control of its upstream activators, but it also 

induces the expression of various downstream regulators of ERK signalling. These 

include the Sprouty (SPRY) family members, whose transcription has been shown to 

be mediated by MEK activity (Lake et al., 2016; McKay and Morrison, 2007). Upon 

activation, Sprouty proteins are able to translocate to the cell membrane and 

sequester the GRB/SOS complex thus preventing RAS activation (Hanafusa et al., 

2002). Sprouty proteins have also been implicated in preventing RAF phosphorylation 

through their interaction with the RAF catalytic domain (Sasaki et al., 2003).  

Dephosphorylation and inactivation 

The feedback mechanisms described above serve to attenuate signalling upstream of 

ERK, thereby reducing further ERK phosphorylation and activation. However, another 

more direct form of negative regulation is exerted quite simply through 

dephosphorylation and deactivation of ERK. As ERK requires phosphorylation of both 

threonine and tyrosine in its conserved T-E-Y motif, dephosphorylation of either 

residues by Ser/Thr phosphatases, protein tyrosine phosphatases or dual-specificity 

protein phosphatases (DUSPs), is sufficient to inactivate the kinase. Two well-known 

Ser/Thr phosphatases that have been shown to inactivate ERK are PP2A and PP2C 

(Alessi et al., 1995), while tyrosine phosphatases STEP and PTP-SL have both been 

shown to bind and dephosphorylate ERK in vitro (Pulido et al., 1998). 

By far the most predominant and well-established enzymes capable of 

dephosphorylating MAP kinases such as ERK, are the extensive family of dual-

specificity MAPK phosphatases (MKPs) that are solely dedicated to the regulation of 

their target MAP kinases. MKPs that are able to target ERK are commonly induced by 

ERK pathway signalling. This forms an auto-regulatory negative feedback loop that 

acts to restrain ERK responses in a manner that is temporally distinct from more 

immediate forms of ERK inactivation (Caunt and Keyse, 2013). Additionally, MKPs 

can act as nuclear or cytoplasmic tethers, thereby controlling the spatial distribution of 

ERK within the cell (Karlsson et al., 2006). Through these and other mechanisms, 

MKPs are able to co-ordinate the magnitude, duration and localisation of active ERK 

and constitute a unique and dynamic form of ERK regulation (Owens and Keyse, 

2007). 
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1.3.  Dual-specificity phosphatases/MAPK phosphatases 
(MKPs) 

1.3.1. Structural and functional classification of MKPs 

The prominent role of MKPs in dephosphorylating mammalian MAPKs has been 

strengthened with the identification and characterisation of ten catalytically active 

MKPs in mammalian cells (Camps et al., 2000; Theodosiou and Ashworth, 2002). 

These MKPs can be divided into three subfamilies based on sequence homology, 

subcellular localization and substrate specificity. DUSP1, DUSP2, DUSP4 and DUSP5 

form the inducible nuclear MKPs, while DUSP6, DUSP7 and DUSP9 are ERK-specific, 

cytoplasmic MKPs. DUSP8, DUSP10 and DUSP16 are JNK/p38-specific 

phosphatases and are located both in the nucleus and cytoplasm (Figure 1.5) (Caunt 

and Keyse, 2013). The nuclear MKPs DUSP1, DUSP2 and DUSP4 and cytoplasmic 

MKP DUSP9 are able to target all three major MAPKs, ERK, p38 MAPK and JNK, 

however DUSP9 preferentially acts on ERK. DUSP7 is able to bind and 

dephosphorylate JNK, however also preferentially targets ERK (Kondoh and Nishida, 

2007). Uniquely, DUSP5 shows exquisite specificity for ERK and has not been shown 

to act on any other MAPKs in vitro (Kucharska et al., 2009). While DUSP6 can 

associate with JNK and p38 MAPK, it shows substantially higher catalytic activity 

towards ERK, and is considered ERK-specific (Arkell et al., 2008; Groom et al., 1996; 

Karlsson et al., 2004).  

MKPs share a common protein structure; an N-terminal regulatory domain and a C-

terminal catalytic domain, which contains the conserved phosphatase active site 

sequence. The N-terminal region contains the MKP “D domain” or kinase interaction 

motif (KIM), which interacts with the common docking (CD) site on the MAPK 

(Theodosiou and Ashworth, 2002). Also present in the N-terminus are subcellular 

localisation signals for those MKPs constrained to either the nucleus or the cytoplasm 

(Figure 1.5) (Owens and Keyse, 2007). 
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Figure 1.5. Classification, localization and domain structure of the MKPs. The 

three major groups of MKPs can be grouped according to their localisation, substrate 

specificity and sequence homology. This figure was adapted from Caunt  and Keyse 

(2013) with permission from FEBS Journal.  

All MKPs share a structurally and functionally similar catalytic domain, which contains 

the consensus cysteine-dependent tyrosine phosphatase active site sequence, 

I/VHCXAGXXR (Camps et al., 2000). The catalytic site is comprised of an active site 

loop which encompasses the catalytic cysteine and arginine residues and a general 

acid loop within which a highly conserved aspartate residue lies (Farooq and Zhou, 

2004). The thiolate anion of the catalytic cysteine residue initiates dephosphorylation 

of either tyrosine or threonine on the substrate MAPK through a nucleophilic attack of 

the phosphorus atom and the formation of a MKP cysteinyl-phosphate intermediate 

(Figure 1.6). This is promoted by the conserved arginine residue which co-ordinates 

the phosphate molecule through electrostatic interactions and the general acid loop 

aspartate residue which donates a proton to the phosphate oxygen atom (Figure 1.6) 

(Farooq and Zhou, 2004). Thus, transient binding of phosphate to the MKP cysteine 

residue allows the release of the dephosphorylated MAPK. After catalysis, the 

conserved aspartate residue accepts a proton from a water molecule and forms a 

hydroxyl anion. This anion subsequently attacks the phosphorus atom in the cysteinyl-

phosphate bond and facilitates the release of inorganic phosphate and the reformation 

of cysteines thiolate anion (Figure 1.6) (Farooq and Zhou, 2004).  
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Figure 1.6. The catalytic dephosphorylation of a MAPK substrate by an MKP. 

Conserved arginine (Arg), cysteine (Cys) and aspartic acid (Asp) residues direct the 

formation of a transient phospho-MKP intermediate and the release of 

dephosphorylated MAPK. This figure was adapted from Farooq and Zhou (2004) with 

permission from Cellular Signalling, Elsevier.  

While the C-terminal catalytic domain is conserved across all MKPs, both distinct and 

subtle variations in the modular N-terminal domains have been shown to direct 

differing MKP subcellular locations and substrate interactions (Owens and Keyse, 

2007). The discovery of a canonical leucine-rich nuclear export signal (NES) in the N-

terminal domain of DUSP6 and related MKPs DUSP7 and DUSP9, and experiments 

that showed that nuclear export mediated by the exportin-1 protein was required for 

the cytoplasmic retention of DUSP6, revealed a likely mechanism that controls the 

spatial distribution of these cytoplasmic MKPs (Caunt and Keyse, 2013; Karlsson et 

al., 2004). In contrast, the nuclear MKPs DUSP1 and DUSP5 both contain 

noncanonical nuclear localisations signals (NLS) in their N-terminal regions, and these 

sequences have been shown to be responsible for their nuclear targeting (Mandl et 

al., 2005; Wu et al., 2005). The N-terminal region is also home to the cdc25/rhodonese 
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homology domains. While these are highly conserved across MKPs, their regulatory 

function is yet to be formally demonstrated, however it is believed they may contribute 

to substrate binding (Theodosiou and Ashworth, 2002).  

Imperative for MAPK binding is the MKP KIM domain. Similar to D domains in other 

MAPK target proteins, the KIM is comprised of a cluster of positively charged arginine 

residues, which have been proposed to interact with cognate negatively charged 

aspartic acid residues within the CD domain of the MAPK (Nichols et al., 2000; Tanoue 

et al., 2000). Further investigation of the MKP KIM domain revealed a second motif of 

positively charged amino acids flanked by hydrophobic residues, which has also been 

shown to interact with MAPK CD residues upon binding (Tanoue et al., 2002, 2001). 

Together these motifs comprise modular binding domains and variations in the 

number, relative position and type of residues within them have been posited to 

underpin the specificity of MAPK targeting (Owens and Keyse, 2007). 

The detailed biochemical characterisation of ERK2 and DUSP6 binding led to the 

discovery that DUSP6 is catalytically activated upon its association with ERK2 (Camps 

et al., 1998). This followed experiments that showed a 40-fold increase in DUSP6 

catalytic activity in the presence of ERK2, which was independent of kinase activity 

(Camps et al., 1998). Structural studies later showed that ERK2-DUSP6 binding 

caused a conformational change in the active site of DUSP6, such that the general 

acid loop containing the catalytic aspartate residue was flipped towards the catalytic 

arginine and cysteine residues, where it had previously faced the other way (Zhou and 

Zhang, 1999). Catalytic activation upon MAPK binding was also found to occur in 

DUSP1, DUSP4 and DUSP2 and has been proposed to enhance substrate selectivity, 

however, it does not occur in all MKPs (Owens and Keyse, 2007). As monomers, 

DUSP5 and DUSP10 have optimally orientated general acid loop arginine residues in 

their catalytic domains, and their catalytic activity is not increased through substrate 

binding (Jeong et al., 2006; Tanoue et al., 1999). These studies demonstrate the 

biological significance of structural and functional variations within the MKP family. 

The existence of this heterogeneity and its impact on distinct spatial and substrate 

targeting suggests non-redundant functions for individual MKPs.  

Indeed, several MKPs have been implicated in diverse physiological processes and 

show wide tissue distribution (Camps et al., 2000). The nuclear MKPs DUSP1, 
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DUSP2, DUSP4 and DUSP5 are typically induced by growth factors or stress 

signalling and have been shown to play key roles in innate and adaptive immunity as 

well as metabolic homeostasis, cardiovascular development and neuronal 

differentiation (Seternes et al., 2019). DUSP6, the most extensively studied 

cytoplasmic MKP, has also been implicated immunity and inflammatory responses 

(Bertin et al., 2015; Hsu et al., 2018) as well as metabolic homeostasis (Feng et al., 

2014; Wu et al., 2010) and embryo development (Eblaghie et al., 2003; Li et al., 2007). 

The physiological functions of the remaining MKPs are not as well established 

however DUSP9 has been shown to play a role in metabolic function (Fukuda et al., 

2012; Ye et al., 2019), while the JNK and p38 MAPK-specific MKPs DUSP8, DUSP10 

and DUSP16 appear to participate in immune function (Muda et al., 1996; Zhang et 

al., 2015, 2004). 

1.3.2. Regulation of DUSP/MKPs 

In general, MKPs are induced by MAPK signalling and outside of this, their basal levels 

remain low (Caunt and Keyse, 2013). While most MKPs appear to be regulated 

transcriptionally, the mechanisms of this control have only been characterised in the 

context of specific signalling responses. Multiple studies have shown the 

transcriptional upregulation of several MKPs to be regulated by ERK signalling and 

well-established downstream transcription factors such as ETS-1 and ETS-2, Elk1, 

c-jun and CREB (Buffet et al., 2015; Huang and Tan, 2012; Nunes-Xavier et al., 2010; 

Zhang et al., 2010). In addition to this, the expression of several MKP genes have 

been shown to be regulated by epigenetic modifications (Tebbutt et al., 2018; Waha 

et al., 2010).  
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Once expressed, the protein levels of MKPs are tightly regulated by post-translational 

modifications, some of which lead to protein stabilisation or subsequent degradation 

(Caunt and Keyse, 2013). In general, this regulation controls an approximate half-life 

of 1 hour in many MKPs (Brondello et al., 1999; Katagiri et al., 2005; Marchetti et al., 

2005). Interestingly, ERK-mediated phosphorylation is a common mechanism in MKP 

regulation and can form part of positive or negative feedback loops between ERK and 

its MKP targets (Caunt and Keyse, 2013). The ERK-mediated phosphorylation of 

DUSP16, DUSP1 and DUSP4 leads to increased protein stability in DUSP1 and 

DUSP4 and an increased half-life in DUSP16 (Brondello et al., 1999; Cagnol and 

Rivard, 2013; Katagiri et al., 2005). In contrast, ERK-mediated phosphorylation can 

also lead to decreased half-life of DUSP1 (Lin et al., 2003) and proteasomal 

degradation in DUSP6 (Marchetti et al., 2005).  

1.3.3. Regulation of MAPKs by DUSP/MKPs 

A number of mechanisms have been proposed as key regulatory functions of MKPs 

in relation to their MAPK substrates. MKPs that are induced by the MAPKs they 

subsequently target participate in direct negative feedback loops with their MAPK 

substrates. This form of autoregulatory feedback exists between DUSP5, DUSP6 and 

their singular target, ERK and is temporally distinct from more immediate forms of 

down-regulation present upstream of ERK-induced transcription. Autoregulatory 

feedback may therefore be most important in the context of sustained ERK signalling 

(Caunt and Keyse, 2013). While less common, the constitutive expression of MKPs 

has been demonstrated in some contexts and could confer an alternate form of 

negative regulation. While the down-regulation of MAPKs by inducible MKPs is not 

likely to constitute an immediate form of negative feedback, MKPs that are present 

prior to MAPK activation could inactivate or sequester their targets during any 

signalling phase (Camps, et al., 1998; Bhalla, Ram and Iyengar, 2002). A similar 

scenario could occur with inducible MKPs that are still present when subsequent 

signals are fired. In this way cells could retain a signalling “memory” of prior 

stimulations that are able to influence successive signals (Caunt and Keyse, 2013).  

Intrinsic to the regulatory potential of MKPs, is their ability to bind both phosphorylated 

and dephosphorylated MAPK forms with high affinity (Karlsson et al., 2004; Mandl et 



28 
 

al., 2005). Together with the propensity  of many MKPs to remain in either the 

cytoplasm or nucleus, this allows for the retention of their MAPK targets in either 

cellular compartment. The subcellular retention of MAPKs may have both positive and 

negative consequences on further MAPK signalling and could act to sequester MAPKs 

away from their upstream activators, or indeed concentrate them in regions where 

subsequent signals could lead to rapid reactivation (Caunt and Keyse, 2013; Karlsson 

et al., 2006).  

In addition to their dynamic roles as feedback regulators and subcellular anchors 

various MKPs appear to be important mediators of crosstalk between different MAPK 

pathways. In particular, DUSP1, which is induced by either ERK or p38 MAPK 

(Brondello et al., 1997; Staples et al., 2010) appears to preferentially target JNK (Slack 

et al., 2001) and has been shown to circumvent JNK-induced apoptosis in fibroblasts 

(Staples et al., 2010) and neuron differentiation (Jeanneteau et al., 2010). In this way, 

activation of DUSP1 by either ERK or p38 MAPK is able to reduce signalling in parallel 

pathways. Through the implementation of these and other regulatory mechanisms, 

MKPs do not simply act as “on/off” switches in their function as MAPK regulators, but 

rather as dynamic feedback mediators that regulate MAPK signal magnitude, duration, 

localisation and crosstalk. 

 

1.3.4. ERK-specific MKPs DUSP6 and DUSP5 

Unlike their subfamily members, DUSP5 and DUSP6 are unique in their sole 

dedication to catalytic dephosphorylation of ERK. In addition to this, both DUSP5 and 

DUSP6 expression is dependent on ERK signalling and as such, they serve as 

classical negative feedback regulators of the ERK pathway. These regulatory 

functions, together with their ability to bind and anchor dephosphorylated ERK in the 

nucleus or cytoplasm are likely to confer prominent roles for DUSP5 and DUSP6 in 

the regulation of ERK activity and localisation.  
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Initially, DUSP6 appeared to target multiple MAPK substrates, however it is now 

apparent that DUSP6 shows little catalytic activity towards p38 MAPK, JNK or ERK5 

(Arkell et al., 2008; Groom et al., 1996). This could in part be due to the disorientation 

of the DUSP6 catalytic site prior to ERK binding (Camps et al., 1998). While DUSP6 

function has been shown to be constitutive in some contexts, its expression has 

predominantly been associated with growth factor-induced ERK. ERK is able to 

promote DUSP6 transcription through its targets ETS-1 and ETS-2, which bind to 

conserved DUSP6 promoter regions (Ekerot et al., 2008; Li et al., 2007; Nunes-Xavier 

et al., 2010; Zhang et al., 2010). As mentioned, the nuclear export of DUSP6 is 

mediated by its NES region and the exportin-1-dependent nuclear export pathway. 

While DUSP6 is capable of shuttling between the nucleus and the cytoplasm, its NES 

directs its cytoplasmic location, where it is able to retain bound ERK (Karlsson et al., 

2004).  

Multiple studies have demonstrated that the expression of DUSP5 leads to the 

inactivation and nuclear accumulation of ERK, a phenomenon that is coincident with 

prolonged exposure to growth factor simulation (Volmat et al., 2001; Mandl, Slack and 

Keyse, 2005; Kucharska et al., 2009; Buffet et al., 2015). The upregulation of DUSP5 

appears to be mediated by ERK-targeted transcription factors such as Elk-1, that bind 

to distinct sequences in the promoter region of the DUSP5 gene (Buffet et al., 2015). 

Once expressed, the accumulation of DUSP5 protein is regulated by rapid 

proteasomal degradation. This degradation may be influenced by stable association 

of DUSP5 with ERK, which was shown to enhance the half-life of DUSP5. 

Interestingly, phosphorylation of DUSP5 by ERK does not affect its stability (unlike 

several other MKPs) and the biological relevance of this post-translation modification 

is unclear (Kucharska et al., 2009). 

In response to serum and growth factors, the nuclear accumulation of 

dephosphorylated ERK has also been associated with nuclear DUSP2 and DUSP4 

proteins in addition to DUSP5 (Caunt et al., 2008a; Caunt et al., 2008b), however the 

limited tissue distribution of DUSP2 may indicate that it is not critical for the nuclear 

regulation of ERK in many biological contexts. It is currently unclear how DUSP4 and 

DUSP5 may co-operate or indeed alternate in their roles as modulators of nuclear 

ERK activity, however recent studies in MEF cells derived from DUSP5 knockout mice 
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indicate that DUSP5 may have a non-redundant function in the control of ERK 

signalling duration and localisation (Kidger et al., 2017). Using vectors containing an 

ERK-responsive EGR1 immediate early gene promoter to drive DUSP5-Myc 

expression, the authors showed that the inactivation and anchoring of ERK in the 

nucleus could cause a paradoxical increase in cytoplasmic ERK activity, which may 

result from reduced negative feedback from active ERK to RAF (Kidger et al., 2017). 

It is unclear how other MKPs like DUSP4 and DUSP6 may influence this response, 

but this and other mechanisms are likely to form part of a complex and context-

dependent system of ERK regulation.  

The discovery and characterisation of multiple tiers of negative ERK regulation has 

led to the understanding that RAF/MEK/ERK signalling output is largely dependent on 

the balance of opposing positive and negative regulatory mechanisms. This implies 

that robust signalling is critical for the faithful delivery of numerous and often conflicting 

cellular signals.  This fine balance of upstream and downstream ERK pathway activity 

is especially critical for navigating biological decisions in cells that are close to cell fate 

boundaries. The next section details multiple examples of ERKs pivotal role in 

determining cell fate.  
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1.4.  ERK in the determination of cell fate   

1.4.1. ERK substrates 

Like its protein kinase relatives, the fundamental structure of the ERK protein is 

optimised for specific and efficient substrate binding and catalysis. In addition to the 

core catalytic domains described previously (Figure 1.1) the ERK protein structure 

consists of multiple regulatory and binding motifs. The docking groove, which binds a 

D domain or kinase interacting motif (KIM) in many MAPK substrates is comprised of 

the common docking (CD) domain and Glu-Asp (ED) pockets (Tanoue et al., 2001, 

2000). Variations in the number of positively charged residues and hydrophobic 

regions in the D domains of MAPK targets contribute to the specificity of substrate 

binding between different MAPKs and the resulting docking interactions increase the 

efficiency of catalytic protein interactions (Jacobs et al., 1999; Tanoue et al., 2000). In 

a number of ERK targets a second docking site has been identified and is referred to 

as the DEF domain. These domains are generally comprised of a Phe-Xaa-Phe-Pro 

sequence near the phosphoacceptor site of the substrate and bind specifically to a 

DEF-binding pocket adjacent to the catalytic site of ERK (Jacobs et al., 1999). 

A proteomics screen performed by von Kriegsheim et al. (2009) revealed at least 270 

ERK-interacting proteins. Far fewer ERK-substrate interactions have been well 

characterised, however they still comprise a diverse and extensive list (Table 1.1). In 

general ERK has been shown to phosphorylate and or associate with multiple 

transcription factors, protein kinases, signalling receptors, cytoskeletal proteins, 

phosphatases and numerous other proteins in both the nucleus and cytoplasm (Yoon 

and Seger, 2006).  It is through the activation or repression of these varied targets that 

ERK is able to exert its regulatory influence on multiple cell fate decisions. Of these, 

ERK is best known for its central role in cell cycle progression. 
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Table 1.1. Substrates of ERK. This table was adapted from Lu and Xu, 2006, with 

permission from Life. 

 

 



33 
 

1.4.2. ERK in the promotion of cell cycle progression 

The cell cycle is a tightly controlled process that is primarily regulated by a family of 

cyclin-dependent kinases (CDKs) and their cognate cyclins. A key regulatory step in 

the cell cycle occurs at the transition from Gap 1 (G1-) phase to the DNA synthesis 

(S-phase), where cells commit to cell cycle entry and subsequent DNA replication and 

division. In response to mitogenic signals this transition is driven by an accumulation 

of D-type cyclins, which bind and activate their catalytic partners Cdk4 and Cdk6 

(Bertoli et al., 2015). Active Cdk4 and 6 are able to phosphorylate and inactivate 

retinoblastoma protein (RB), a critical cell cycle repressor. Prior to S-phase, RB is 

bound to E2F, a transcriptional activator of a number of cyclins, CDKs and check point 

regulators. Once inactivated, RB releases E2F which is now free to mediate the 

transcription of numerous genes necessary for entry into S-phase (Harbour & Dean, 

2000). Specifically, these genes include Cdc6, cyclin E and CDK2 as well as DNA 

polymerase α, proliferating cell nuclear antigen (PCNA), ribonucleotide reductase and 

others (Leone et al., 1998).   

ERK has been described as the ‘master regulator’ of the G1- to S-phase transition 

(Meloche and Pouysségur, 2007).  This is due to the discovery that sustained ERK 

activation throughout G1-phase is required for successful S-phase entry (Meloche et 

al., 1992; 1995; Yamamoto et al., 2006) and the numerous mechanisms through which 

ERK impinges on the cell cycle. ERK expression has been shown to promote the 

transcription and accumulation of Cyclin D1 during G1-phase through activation of the 

transcription factors ETS and AP-1 and inactivation of a transcriptional repressor of 

Cyclin D1, Transducer of ERBB2 (TOB) (Meloche and Pouysségur, 2007). Some 

studies have demonstrated that in addition to these mechanisms, ERK can influence 

the expression of Cyclin D1 at the post-transcriptional level by promoting the nuclear 

export and stabilisation of Cyclin D mRNA (Rousseau et al., 1996). Another cell cycle-

related ERK target is c-myc, a transcription factor that plays a critical role in cell cycle 

progression through its ability to promote or repress important cell cycle regulators 

(Sears et al., 2000). Targets of c-myc include Cyclin D2 (Bouchard et al., 1999), Cdk4 

(Hermeking et al., 2000) and p21CIP1 (Claassen and Hann, 2000). ERK has been 

shown to directly phosphorylate c-myc, which enhances protein stability.  
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In addition to the promotion of positive cell cycle regulators, continuous ERK 

expression has been shown to downregulate anti-proliferative genes throughout G1-

phase, such as Tob1, which encodes a transcriptional repressor of Cyclin D1, and the 

pro-apoptotic transcription factor gene Ddit3 (Yamamoto et al., 2006). ERK expression 

has also been linked indirectly to multiple other cellular processes required for cell 

proliferation, including the synthesis of pyrimidine nucleotides (Graves et al., 2000), 

chromatin remodelling (Soloaga et al., 2003), transcription of ribosomal RNA genes 

(Stefanovsky et al., 2006) and protein translation (Waskiewicz et al., 1999).  

1.4.3. ERK in cell survival and apoptosis 

Another major cell fate decision influenced by ERK regulation is whether to continue 

surviving or alternatively, commit to programmed cell death or apoptosis. Apoptosis 

can occur through either the extrinsic or intrinsic cell death pathway, the latter of which 

is induced by internal stress signals and is largely governed by the BCL2 protein family 

(Sale and Cook, 2013). The BCL2 proteins control the integrity of the outer 

mitochondrial membrane (OMM), a central determinant of cell survival (Jin and El-

Deiry, 2005). During the initiation of apoptotic program, pro-apoptotic cellular signals 

promote permeabilization of the OMM (referred to as MOMP) which releases various 

intermembrane proteins into the cytosol. Cytochrome c release from the 

intermembrane space is a critical step in apoptosis initiation as this small hemeprotein 

is able to bind and promote the oligomerisation of APAF1, a key component of the 

apoptosome. The apoptosome is then able to activate caspase-9 a cysteine protease, 

which goes on to activate other caspase family members caspase-3 and caspase-7. 

These executioner caspases are responsible for the cleavage of various cellular 

substrates which ultimately leads to cell death (Pop and Salvesen, 2009).  

The BCL2 family members can be divided into two classes; those that promote 

apoptosis such as BAX and BAK and the BH3-only proteins BIM, BID, NOXA, BMF 

and PUMA, and those that promote cell survival, such as BCL2, BCL-XL and MCL1 

(Chipuk et al., 2010). The balance between this pro-apoptotic and anti-apoptotic or 

pro-survival BCL2 family members determines the fate of the cell. In healthy cells, 

there is an excess of pro-survival proteins which associate with the OMM and inhibit 

pro-apoptotic effector proteins such as BAX and BAK (Chipuk et al., 2010). When 
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apoptosis is induced, BH3-only proteins are able to target pro-survival proteins and 

displace effector proteins BAX and BAK, resulting in the activation of MOMP. 

Additionally, some pro-apoptotic BH3-only proteins can directly activate BAX and BAK 

(Chipuk et al., 2010).  

ERK has been shown to directly or indirectly influence the expression or function of at 

least six BCL2 family members. In general, ERK promotes cell survival by repressing 

pro-apoptotic BH3-only proteins and positively regulating pro-survival BCL2 proteins. 

A repressive effect of ERK on BMF and PUMA BH3-only proteins has been 

demonstrated in ERK inhibition studies, where these pro-apoptotic proteins are 

significantly upregulated (Sale and Cook, 2012). The mechanism through which ERK 

disrupts BMF expression is unclear but may involve direct BMF phosphorylation (Shao 

and Aplin, 2012) and/or cellular translocation (VanBrocklin et al., 2009). It has been 

suggested that active ERK may downregulate PUMA expression through its target 

FOXO3, a transcriptional activator of PUMA (Sale and Cook, 2013). Indeed, ERK-

mediated phosphorylation and subsequent degradation of FOXO3 (Yang et al., 2008) 

may contribute to ERKs’ regulatory control of the most abundant isoform of BIM, 

BIMEL. Like with PUMA, FOXO3 is a transcriptional activator of BIMEL and therefore its 

degradation is likely to repress BIMEL expression (Dijkers et al., 2000). In addition to 

transcriptional regulation of BIMEL, ERK is able to directly phosphorylate the BIMEL 

protein, which ultimately leads to its degradation (Ley et al., 2003). BAD, a third pro-

apoptotic BH3-only protein, is also regulated by ERK-dependent phosphorylation 

(Scheid et al., 1999) which is catalysed by two well-known ERK substrates, RSK and 

MSK1 (She et al., 2002).  

In contrast to its negative regulation of pro-apoptotic BCL2 family members, ERK 

signalling promotes the transcription of pro-survival proteins BCL2, BCL-XL and MCL1 

(Sale and Cook, 2013). This is mediated by RSK and MSK kinases, both targets of 

ERK, which activate the cAMP responsive element binding protein (CREB), a 

transcriptional activator that promotes BCL2, BCL-XL and MCL1 expression (Bonni et 

al., 1999; Boucher et al., 2000). ERK can also upregulate MCL1 expression through 

the Elk1 transcription factor (Domina et al., 2004), as well as stabilise its protein 

structure through phosphorylation (Townsend et al., 1999). Interestingly, in addition to 

these pro-survival BCL2 proteins, ERK signalling has been shown to induce the 
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upregulation of a pro-apoptotic BH3-only protein, NOXA. This too is likely to be through 

ERK-directed activation of CREB, which may bind a CREB-binding site in the 5’-UTR 

region of NOXA (Elgendy et al., 2011; Liu et al., 2014; Sheridan et al., 2010). The 

biological function of this seemingly opposing regulation of NOXA in normal cells is 

unclear, but does appear to be particularly relevant in oncogenic contexts where ERK 

hyperactivation can have anti-proliferative effects (Cook et al., 2017; Elgendy et al., 

2011).  

More commonly, ERK positively regulates oncogenesis and is implicated in many, if 

not all of the major processes involved in cancer development. This is most likely due 

to ERKs’ pivotal role in determining cell fate (Dhillon et al., 2007; Deschênes-Simard 

et al., 2014).  
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1.5.  ERK signalling in cancer 

1.5.1.  RAS and RAF oncogenes 

Cancer is a disease that is characterized by a set of defining features that lead to 

uncontrolled cell division and the formation of tumours. Most prominent of these 

features are their ability to sustain proliferative signalling, evade growth suppression 

and resist apoptosis (Hanahan and Weinberg, 2011). The ERK signalling pathway 

regulates many of these events and as such, has long been implicated in 

tumorigenesis (Dhillon et al., 2007; Deschênes-Simard et al., 2014; Torii et al., 2006).  

Abnormalities in ERK signalling pathways have been detected in a variety of human 

cancers with oncogenic mutations in RAS and RAF being especially frequent (Davies 

et al., 2002; Deschênes-Simard et al., 2014; Dhillon et al., 2007). RAS has an overall 

mutation incidence of up to 30% in all human tumours making it among the most 

common human oncogenes (Deschênes-Simard et al., 2014). Oncogenic mutations 

in RAF, although somewhat less frequent overall (8% of all human tumours) are found 

in a staggering 66% of malignant melanomas (Davies et al., 2002). In general, these 

mutations lead to constitutive activation of the respective proteins, resulting in 

increased signalling output through downstream ERK kinases (Dhillon et al., 2007).  

Mutant forms of the KRAS, NRAS and HRAS family members in various cancers have 

been frequently discovered over the last 30 years. Of the RAS isoforms, KRAS is the 

most commonly mutated (more than 20% of all human cancers), followed by NRAS 

(8.0%) and HRAS (3.3%) (Samatar and Poulikakos, 2014). Single base mutations that 

lead to oncogenic RAS isoforms are invariably found at codons 12, 13 or 61 and affect 

GTP hydrolysis, such that RAS remains in a GTP-bound, constitutively active state 

(Karnoub and Weinberg, 2008; Samatar and Poulikakos, 2014). The high frequency 

of RAF mutations in cancers such as melanoma was more recently discovered (Davies 

et al., 2002) and typically involves the BRAF isoform. In more than 90% of BRAF-

mutant tumours, a single nucleotide substitution of valine to glutamic acid (V600E ) in 

the BRAF activation loop accounts for its oncogenic properties i.e. persistent activation 

of BRAF catalytic activity (Wan et al., 2004). While CRAF and ARAF mutations have 

been identified in human cancers, it is with low incidence, which may be due to the 

lower basal activity of these RAF isoforms relative to BRAF, as well as the increased 
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complexity of their activation (Samatar and Poulikakos, 2014). Oncogenic forms of 

other signalling components of the ERK pathway such as MEK1 and MEK2 have been 

detected in various cancers, albeit at a much lower frequency (Caunt et al., 2015). The 

high incidence of oncogenic RAS and RAF mutants in numerous cancers suggests 

that the RAS-RAF axis can determine the overall activation profile of ERK, a concept 

that has been confirmed by mathematical modelling (Orton et al., 2005).  

The precise mechanisms through which amplified ERK signalling contributes to the 

development of tumourigenesis are complex, varied and highly context-dependent, 

however generally rely on ERKs central role in cell cycle entry, cell survival and 

evasion of apoptosis (Balmanno and Cook, 2009; Torii et al., 2006). Several common 

mechanisms of oncogenic ERK signalling have been identified in various colorectal 

cancers (CRCs) and melanomas, where tumourigenesis is often driven by either 

mutant KRAS or BRAF.  

1.5.2.  ERK signalling in colorectal cancer and melanoma  

Colorectal cancer 

Cancer of the colon and/or rectum is the third most common type of cancer worldwide 

and is the fourth leading cause of cancer-related deaths (Arnold et al., 2017). 

Colorectal carcinogenesis occurs through multiple steps and involves the prevailing 

survival and proliferation of abnormal intestinal epithelial cells (Fang and Richardson, 

2005). In healthy cells, the ERK signalling pathway is important in the promotion of 

growth and differentiation of intestinal epithelium, however has been found to be 

frequently perturbed in colorectal cancer where tumourigenic intestinal cells are able 

to invade surrounding tissues (Fang and Richardson, 2005).  

Increased signalling through the RAF/MEK/ERK pathway has been linked to colorectal 

cancer for some time and evidence of its tumourigenic relevance lies in the high 

incidence of RAS and RAF mutants in colorectal cancer patient samples (36% for RAS 

and 9-11% for RAF) (Andreyev et al., 1998; Davies et al., 2002). Importantly, mutation 

of RAS or RAF appears to be associated with early stages of carcinogenesis, and is 

coincident with increased ERK activation, implicating these oncogenes in ERK-

mediated tumour initiation (Bos, 1989; Davies et al., 2002; Fang and Richardson, 
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2005). Studies with ERK pathway inhibitors have illustrated a strong dependency of 

various CRC lines on high ERK activity for sustained proliferation and survival 

(Balmanno et al., 2009) and have revealed mechanisms through which ERK could 

promote colorectal tumourigenesis through the regulation of proliferation (Tetsu and 

McCormick, 2003) and apoptosis (Wickenden et al., 2008). 

Work by Tetsu and McCormick (2003) demonstrated that various colon cancer cell 

lines enter G1-arrest following treatment with selective MEK inhibitors. This cell cycle 

arrest was coincident with striking reductions in cyclin D1 and D3, CDK4 and p21CIP1 

after 12 hours of MEK inhibition and reductions in cyclin A and E and CDK1 after 48 

hours of MEK inhibition. The reduction in CDK4 protein was paralleled by inhibition of 

CDK4 kinase activity, and subsequent inhibition of CDK4 phosphorylation sites on RB. 

The authors concluded that growth arrest in colon cancer cells exposed to ERK 

pathway inhibition was mediated by downregulation of critical effectors of cell cycle 

progression such as CDK4 (Tetsu and McCormick, 2003). Other work in CRC cell lines 

investigated the mechanism through which BRAFV600E-driven cells were able to evade 

cell death associated with growth factor withdrawal (Wickenden et al., 2008). In this 

study, treatment of CRC cell lines with MEK inhibitors led to increased levels of 

dephosphorylated pro-apoptotic BCL2 protein BIM and subsequent cell death, an 

event that was reversed by disruption of BIM expression. This provided evidence that 

the repressive phosphorylation of BIM by active ERK in BRAFV600E-driven CRC cells 

was sufficient to ensure growth factor-independent survival (Wickenden et al., 2008).  

Melanoma 

The discovery of BRAF mutants in up to 66% of malignant melanomas exposed RAF 

as a crucial regulator of oncogenic ERK signalling and emphasised the predominant 

role the ERK pathway plays in this aggressive, potentially lethal form of skin cancer 

(Davies et al., 2002). The tumourigenic potential of the most common BRAF mutant, 

BRAFV600E, has been validated in a number of in vitro and in vivo melanoma models 

(Cartlidge et al., 2008; Dankort et al., 2009; Dhomen et al., 2009). One such model 

provided insights into a potential mechanism through which BRAFV600E-driven ERK 

signalling could underpin resistance to apoptosis in melanoma cells.  
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In work performed by Cartlidge et al. (2008), the expression of BIM was shown to be 

important in conditions of trophic factor deprivation in mouse and human melanocytes 

and serum deprivation in human melanoma cells. Serum deprivation in human 

melanoma lead to apoptosis, a phenotype that was partially prevented by BIM 

knockdown. This work went on to show that oncogenic BRAFV600E inhibited BIM 

expression in these cell models and this inhibition was dependent on MEK and the 

proteasome. These results suggest that protein degradation of BIM following 

phosphorylation of ERK may protect melanoma cells from apoptosis in conditions of 

serum deprivation and thereby constitute a mechanism of resistance to cell death.  

1.5.3.  ERK pathway inhibitors in cancer treatment   

In response to the discovery of the ERK pathway as a prominent cell cycle regulator 

and the frequent detection of mutant RAS, RAF and other ERK cascade-related 

oncogenes, the past decade has seen the development of multiple inhibitors of ERK 

signalling for use in chemotherapeutics (Caunt et al., 2015). Inhibitors of BRAF 

(BRAFis), vemurafenib and dabrafenib, and inhibitors of MEK (MEKis) trametinib and 

cobimetinib (GDC-0973) have seen success in clinical use and are approved for the 

treatment of BRAFV600E/K melanoma (Holderfield et al., 2014; Caunt et al., 2015). The 

effectiveness of these inhibitors relies in part, on the phenomenon of “oncogene 

addiction”, where cancer cells become reliant upon specific oncogene-driven 

pathways for continued survival (Caunt et al., 2015). When these pathways are 

successfully inhibited, cancer cells can no longer drive proliferation and cell survival 

signalling. However, the success of these strategies is often marred by the ability of 

cancer cells to reactivate the pathway upon which they have become reliant. This 

signalling reprogramming can occur through a number of mechanisms and commonly 

underlies the development of drug resistance (Sale and Cook, 2014).  

Vemurafenib and dabrafenib are highly potent and selective ATP-competitive small 

molecule BRAF inhibitors and function by circumventing substrate binding. Both 

compounds preferentially bind active BRAF, which in the absence of stimulation is 

predominantly comprised of mutant BRAFV600E alone, thereby conferring a high 

therapeutic index (Holderfield et al., 2014). This specificity has led to success in 

treating tumours driven by BRAFV600E, which are characteristically reliant on 
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RAF-MEK-ERK signalling (Davies et al., 2002; Holderfield et al., 2014; Joseph et al., 

2010). However, in BRAFWT cells as well as cancer cells driven by RAS mutations, 

BRAF inhibition has been limited by a phenomenon whereby BRAFi causes the 

paradoxical reactivation of the ERK pathway, which can lead to increased proliferation 

and tumourigenesis (Heidorn et al., 2010; Poulikakos et al., 2010; Hatzivassiliou et al., 

2010; Holderfield et al., 2013). Several different mechanisms have been proposed to 

account for this phenomenon but generally implicate wildtype BRAF and CRAF dimers 

in the reactivation of ERK. This homo- and hetero-dimerisation may be promoted by 

BRAFi-induced relief of the BRAF auto-inhibitory mechanism (Holderfield et al., 2013) 

and/or mediated by a RAS-dependent mechanism (Hatzivassiliou et al., 2010; Heidorn 

et al., 2010).  

Feedback mechanisms have also been implicated in the inferior effectiveness of ERK 

pathway inhibitors vemurafenib and dabrafenib in colorectal cancers (CRC) 

harbouring BRAFV600E/K mutations (Corcoran et al., 2012). While these drugs have 

been associated with improved progression-free and overall survival compared with 

conventional chemotherapy in BRAFV600E/K melanoma, CRC patients with the same 

mutation appear to be markedly less sensitive to BRAF inhibition in early clinical trials 

(Chapman et al., 2011; Corcoran et al., 2015; Flaherty et al., 2010; Hauschild et al., 

2012). A study by Corcoran and colleagues (2012) demonstrated that reactivation of 

ERK appeared to be mediated by EGFR, which was able to activate RAS and induce 

downstream ERK signalling, despite marked BRAF inhibition. Additionally, BRAF-

mutant CRC cell lines appeared to maintain greater levels of EGFR than BRAF-mutant 

melanoma cell lines, possibly explaining why colorectal cancers are better able to 

resist ERK pathway inhibition (Corcoran et al., 2012).  

Unlike prototypic BRAFis, most MEKis are allosteric inhibitors and bind to a unique 

pocket near the MEK ATP binding site. As MEK kinases are the sole activators of  

ERK, they constitute a theoretically ideal target for effecting downstream ERK 

suppression in both RAS- and BRAF-driven tumours. Unfortunately, like BRAF-

inhibitors vemurafenib and dabrafenib, aside from clinical success in BRAF-mutant 

cancers, the scope of MEKi clinical efficacy has been limited by small therapeutic 

windows in RAS-mutant cells (where preliminary studies showed the ability of MEKis 

to successfully inhibit ERK) and the emergence of ERK pathway reactivation in BRAF 
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wildtype cancer cells and BRAF-mutant colorectal cancers, where the disruption of 

negative ERK feedback or the action of other feedback regulators such as EGFR 

drives upstream ERK signalling (Kidger et al., 2018).  

Interestingly, combination therapies with MEK inhibitors, BRAF inhibitors and/or EGFR 

inhibitors have proved very successful and have become the standard of care in 

patients with BRAFV600E-mutated advanced melanoma (Holderfield et al., 2014; Kidger 

et al., 2018). This is due in part, to their synergistic function in promoting robust 

inhibition of ERK activation and the ability of MEKis to curtail BRAFi-induced MEK 

activity (Kidger et al., 2018). Despite the clinical success of these regimes, the 

development of resistance to both combination and monotherapies appears at present 

to be unavoidable and invariably leads to disease relapse. The revelation that targeted 

ERK pathway inhibition frequently leads to the emergence of drug resistance has led 

to detailed investigations of the mechanisms that underpin this phenomenon. These 

can include both intrinsic and extrinsic processes and appear to be largely dependent 

on the specific context of oncogenic signalling.  

1.5.4. Drug resistance 

Intrinsic and extrinsic mechanisms of drug resistance 

Studies have revealed that negative feedback regulators of ERK constitute an 

important class of signalling proteins that can mediate intrinsic resistance to ERK 

inhibition (Holderfield et al., 2014; Sale and Cook, 2014; Caunt et al., 2015). In general, 

the principle of inhibitor-induced ERK pathway reactivation is simple and relies on 

ERKs powerful and extensive control of signalling attenuation. As discussed 

previously, the RAF/MEK/ERK pathway is subject to multiple tiers of negative 

regulation which co-ordinate to restrain ERK activation within biologically relevant 

thresholds. Many of these negative feedback loops are initiated by active ERK itself, 

and include downregulation of upstream SOS and RAF, as well as upregulation of 

Sprouty family members and multiple MKPs. When ERK is successfully inhibited, the 

activity of various ERK substrates is restored and can inevitably lead to pathway 

reactivation. This mechanism of ERK reactivation has been observed with the use of 

a number of MEKis, including AZD6244 (selumetinib) and cobimetinib (Friday et al., 

2008; Hatzivassiliou et al., 2013). Interestingly, some MEKis are able to reduce this 
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reactivation and as such have been termed “feedback busters” (Caunt et al., 2015; 

Sale and Cook, 2014). This is due to their ability to reduce the phosphorylation of MEK 

by RAF by displacing the MEK activation loop (Hatzivassiliou et al., 2013; Lito et al., 

2014).  

Another mechanism of intrinsic resistance to MEK inhibition has been demonstrated 

in colorectal cancer (CRC) cell lines exposed to AZD6244. Of a panel of 19 CRC cell 

lines, those that showed resistance to AZD6244 exhibited low ERK activation or 

coincident activation of ERK and AKT, a downstream target of the PI3K signalling 

pathway. These results suggest that the tumour suppressive effects of ERK pathway 

inhibition can be offset by increased signalling through parallel pro-survival cascades 

such as the P13K pathway, which like ERK signalling, is activated by RAS (Balmanno 

et al., 2009). 

In addition to mechanisms of innate drug resistance, RAF and RAS-driven cancer cells 

can become resistant to BRAFis and MEKis through the acquisition of de novo 

signalling pathway modifications. Such mechanisms can include the emergence of 

mutations in the drug targets (BRAF or MEK) and the amplification of the driving 

oncogene through various genetic abnormalities (Sale and Cook, 2014). The latter 

phenomenon has been thoroughly characterised in colorectal cancer cell lines 

harbouring mutations in BRAF or KRAS, where acquired resistance to the MEKi 

AZD6244 was modelled (Little et al., 2011). In this study, drug-resistant BRAF-driven 

COLO205 and HT29 cell lines and KRAS-driven HCT116 and LoVo cell lines were 

found to be refractory to AZD6344-induced cell cycle arrest and death. Resistance to 

targeted inhibition of ERK activation was mediated by intrachromosomal amplification 

of the respective driving oncogenes, BRAF or KRAS. The resulting oncogenic 

upregulation lead to a larger pool of activated MEK, essentially “diluting” the effect of 

inhibited MEK in the presence of AZD6244. The activity of this MEK was sufficient to 

induce ERK phosphorylation and subsequent proliferation (Figure 1.7, A and B).  
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Figure 1.7. The emergence of drug resistance through amplification of the 

driving oncogene. A) When BRAF-mutant cancer cells are exposed to drug, ERK 

activation is inhibited and proliferation is reduced. B) Cancer cells reactivate ERK by 

amplifying the upstream driving oncogene, BRAF, leading to increased proliferation. 

C) Removing drug from resistant BRAF-driven cells leads to ERK hyperactivation and 

reduced proliferation. 

Combination therapies and drug holidays 

A similar mechanism of drug resistance to the RAFi vemurafenib was characterised in 

primary human melanoma xenograft models (Das Thakur et al., 2013). In this model 

resistant tumours were shown to rely on constitutive ERK signalling driven by elevated 

BRAFV600E expression. Importantly, this study showed that when the administration of 

vemurafenib was suspended, drug-resistant tumours began to regress. Coincident 

with tumour regression was an elevation in phosphorylated- (p-)ERK levels and a 

decrease in proliferation (Figure 1.7 C). These results concur with multiple studies that 

have shown a correlation between high ERK activity and anti-proliferative effects 
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(Cagnol and Chambard 2010; Wang et al. 2000; Bacus et al. 2001; Sewing et al. 1997; 

Woods et al. 1997). For instance, apoptosis induced by chemotherapeutic drugs, 

including cisplatin (Wang et al. 2000) and taxol (Bacus et al. 2001), is mediated by the 

induction of high intensity ERK activation and may be prevented using specific 

inhibitors of ERK signalling. 

The discovery of “oncogene-induced senescence” and other anti-proliferative effects 

of high ERK activity has led to the concept of an ERK “sweet spot” - a narrow range 

of ERK activation that promotes cell survival and proliferation (Figure 1.7) (Das Thakur 

et al. 2013; Woods et al. 1997; Moriceau et al. 2015; Shojaee et al. 2015). When 

cellular levels of phosphorylated ERK are too low, they are not sufficient to induce cell 

cycle entry and proliferation, conversely, when cellular levels of phosphorylated ERK 

are too high this can lead to senescence and even cell death. This concept is of central 

importance in the design of specific inhibitors of the ERK pathway, as it suggests that 

inhibiting ERK may lead to different cellular outcomes depending on the context.  

These findings, together with the discovery of multiple intrinsic drug resistance 

mechanisms highlight the importance of understanding how endogenous signalling 

pathways may adapt to circumvent changes in cell fate in response to targeted 

inhibition. They also emphasise the importance of negative regulators of ERK, such 

as the MKPs, that function to maintain active ERK levels at biologically relevant 

thresholds. 
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1.6.  ERK-specific MKPs in cancer and drug resistance  

 

Not surprisingly, due to their prominent role in MAPK regulation, MKPs have been 

shown to play an influential role in cancer progression where MAPK signalling has 

become deregulated (Seternes et al., 2019). While it may at first seem that MKPs 

would act as natural tumour suppressors in cancers driven by amplified ERK 

signalling, insights from various drug-resistance models as well as explicit 

investigations suggest that the effects of MKP expression in tumourigenesis and drug-

resistance are highly context-dependent (Seternes et al., 2019). As such, observations 

of MKP deregulation in malignant disease has associated both reductions as well as 

increases in MKP expression with tumour progression (Kidger and Keyse, 2016; 

Seternes et al., 2019). While much of this work has relied on MKP-overexpression 

models and historical correlation studies more recent investigations using 

pharmacological and genetic manipulation of MKP expression in ERK-driven human 

cancers has provided clear demonstrations of MKP-specific roles in these contexts. 

For the purpose of this study, we will focus on work that has investigated ERK-specific 

MKPs.  

Studies in pancreatic cancer cell lines (Furukawa et al., 2005, 2003) and lung tumours 

(Okudela et al., 2009) have demonstrated a tumour suppressor role for DUSP6, where 

DUSP6 expression levels were reduced in more invasive tumours. However in human 

glioblastoma cell lines, upregulation of DUSP6 conferred an increased propensity of 

cells to form colonies in agar and increased growth rate, suggesting that DUSP6 may 

be oncogenic in this context (Messina et al., 2011). An oncogenic role for DUSP6 has 

been demonstrated in other cell cancer models, such as papillary thyroid carcinoma 

(Degl’Innocenti et al., 2013) where DUSP6 overexpression was associated with 

increased cell migration and invasion and acute lymphoblastoid leukaemia (Shojaee 

et al., 2015). In the latter malignancy, survival and cell growth of human pre-B cells 

were shown to be dependent on the increased expression of DUSP6 and other 

negative ERK regulators, which acted to restrain ERK signalling hyperactivation and 

cell death. 
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Like DUSP6, DUSP5 has been found to be downregulated in a number of MAPK-

driven tumours and cancer cell lines, suggesting that it may confer tumour suppressive 

effects (Cai et al., 2015; Haigis et al., 2008; Packer et al., 2009; Shin et al., 2013; 

Vartanian et al., 2013). A bona fide tumour suppressor function for DUSP5 was 

recently demonstrated in a DUSP5 mouse knockout model, where the HRASQ61L 

mutation drove skin carcinogenesis (Rushworth et al., 2014). In this study, loss of 

DUSP5 lead to increased sensitivity to HRAS-driven papilloma formation, which was 

shown to be mediated by an ERK-dependent increase in SerpinB2 expression. In 

contrast to its anti-tumourigenic role in this model, the retention or overexpression of 

DUSP5 has been detected in BRAFV600E-driven colorectal cancer, melanoma and 

thyroid cancer suggesting that DUSP5 can have both oncogenic and tumour-

suppressive properties (Montero-Conde et al., 2013; Pratilas et al., 2009; Yun et al., 

2009). 

In addition to its various roles in tumourigenesis, DUSP6 has been shown to influence 

the sensitivity of different cancers to chemotherapeutic drugs. Downregulation of the 

ERK-specific DUSP6 has been associated with drug resistant mechanisms in non-

small cell lung cancer (NSCLC). Mutations in the epidermal growth factor receptor 

(EGFR) or expression of a fusion protein, ELM4-ALK, drive tumour development 

through downstream ERK activation in a large proportion of cases (Lampaki et al., 

2015; Soda et al., 2007; Russo et al., 2015). The success of specific inhibitors 

designed to target EGFR and ALK has been limited by the development of drug 

resistance, where cells are able to reactivate ERK signalling in the presence of drug. 

Biochemical analysis of these cells revealed that in both cases, loss of DUSP6 played 

a major role in this process (Phuchareon et al., 2015; Hrustanovic et al., 2015). 

Similarly, loss of DUSP6 has been linked to cisplatin resistance in ovarian cancer 

(Chan et al., 2008) and is observed in gastric cancer cell lines in response to prolonged 

use of an RTK inhibitor (Lai et al., 2014). 

Results from multiple studies summarised above demonstrate that the tumour 

suppressive or oncogenic nature of DUSP5 and DUSP6 is highly dependent on the 

context of upstream oncogenic signalling. These effects could also depend on tissue-

specific thresholds of ERK activity that correlate to either proliferative or anti-

proliferative cell fate decisions. Despite this, experimental evidence has demonstrated 
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a key role of the ERK-specific phosphatase DUSP6 in influencing the efficacy of 

chemotherapeutic strategies targeting oncogenic ERK signalling pathways. To date, 

the potential influence of the nuclear ERK-specific MKP DUSP5 on ERK pathway 

inhibition in cancer has not been reported. However, the direct and highly specific 

nature of the negative feedback loop that exists between DUSP5 and ERK, together 

with the discovery of abnormal DUSP5 regulation in several oncogenic settings 

suggests that changes in DUSP5 expression may contribute to the signalling 

reprogramming events that occur in the development of ERK pathway-inhibitor 

resistance.  

Further investigation into MKP function in ERK-related oncogenesis and drug 

resistance may contribute to improved chemotherapeutic strategies and may even 

generate novel drug targets. In this study we will address this task by assessing the 

influence of MKPs DUSP5, DUSP6 and others on the efficacy and potency of the MEKi 

AZD6244, in parental and drug-resistant colorectal cancer cell lines, COLO205, HT29 

and HCT116.   
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1.7. Aim and objectives  

Using parental CRC cell lines (COLO205, HT29 and HCT116) and their AZD6244-

resistant derivatives as a model, the primary aim of this thesis was to establish whether 

MKP function influenced the regulation of oncogenic KRAS and BRAF cell signalling 

and acquired drug resistance to ERK pathway inhibition. We first sought to 

characterise the spatiotemporal responses of ERK to AZD6244 administration and 

establish whether correlative patterns in active and inactive ERK subcellular 

compartmentalisation existed using high content imaging and analysis. Then, by 

quantifying the mRNA and protein levels of prominent MKPs we aimed to evaluate 

MKP expression patterns in parental and drug resistant CRC cell lines in varying 

AZD6244 conditions. We hoped that these experiments would elucidate which, if any 

MKPs were potentially important in each cell line and condition. Our focus began with 

the ERK-specific MKPs DUSP5 and DUSP6. Not only have these MKPs been 

implicated in mechanisms of tumour development and chemotherapeutic resistance, 

but their exquisite specificity for ERK suggests an important role for these MKPs in 

specifically regulating oncogenic ERK signalling.  

Following preliminary assessments that indicated that DUSP5 may be upregulated in 

AZD6244-resistant CRC cells, we hoped to further characterise the influence of 

DUSP5 in CRC models by assessing the effects of DUSP5 loss in parental HCT116 

and HT29 cells and their AZD6244-resistant derivatives. Our approach involved the 

development of a flexible viral-based siRNA delivery system that could be used across 

both cell lines. Once an effective DUSP5 knockdown strategy was established, we 

aimed to assess signalling and cell fate events that occurred in response to AZD6244 

administration or cessation with DUSP5 loss through conventional biochemical 

approaches such as RT-PCR and western blotting as well as high-throughput 

immunofluorescent-based microscopy. Finally, we hoped to determine whether 

DUSP5-targeting could be harnessed to maximise the anti-proliferative effects of 

withdrawal of MEK inhibition in AZD6244-resistant CRC cells.   
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Chapter 2. Materials & Methods 

2.1. Materials 

2.1.1.  Solutions  

 

TBE 

1.08 % (w/v) Tris, 0.55 % boric acid, 2 mM Na2EDTA (pH 8.0) 

 

Tris-buffered saline (TBS)  

10mM Tris.Cl, pH7.4, 154mM NaCl 

 

TBS-Tween (TBST) 

10mM Tris.Cl, pH7.4, 154mM NaCl, 0.1% Tween-20 

 

Phosphate-buffered saline (PBS)  

154mM NaCl, 12.5mM Na2HPO4.12H2O, pH7.2 

 

PBS–Tween (PBST) 

0.2% Tween–20 in 1X PBS 

 

Lysogeny broth (LB) 

1% (w/v) Bacto–tryptone, 0.5% (w/v) Yeast extract, 1% (w/v) NaCl 

 

LB agar 

1% (w/v) Bacto–tryptone, 0.5% (w/v) Yeast extract, 1% (w/v) NaCl, 1.5% (w/v) Agar, 
50 µg/ml kanamycin 

 

2X Hank’s buffered salt solution (HBSS)  

280mM NaCl, 10mM KCl, 1.5mM Na2HPO4.12H2O, 12mM D+glucose, 50mM 4(2-
hydroxyethyl)-1-piperazineethanesulphonic acid  (HEPES) 

 

TG lysis buffer 

20 mM Tris-HCl (pH 7.4), 137mM NaCl, 1 mM EGTA, 1% (v/v) Triton X-100, 10% (v/v) 
glycerol, 1.5 mM MgCl2, 50 mM NaF, 1 mM Na3VO4, 5 μg.mL-1 aprotinin, 10 μg.mL-1 
leupeptin, 1 mM phenylmethylsulfonyl fluoride (PMSF) 
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1 × Laemmli sample buffer  

50 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 10% (v/v) glycerol, 1% (v/v) β-
mercaptoethanol, 0.01% (w/v) bromophenol blue 

 

Resolving gel buffer  

1.5 M Tris.Cl, pH 8.8 

 

Stacking gel buffer  

0.5 M Tris.Cl, pH 6.8 

 

SDS–PAGE running buffer  

0.2 M glycine, 25mM Tris, 0.1% (w/v) SDS  

 

Transfer buffer  

0.2 M glycine, 25 mM Tris, 20% (v/v) methanol 
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2.2. Methods 

2.2.1.  Molecular Biology 

Generation of pGSH1–GFP shRNA expression vectors 

In order to generate pGSH1–GFP shRNA expression vectors for DUSP5 knockdown, 

shRNA oligonucleotides were subcloned into the pGSH1–GFP (BamHI/NotI) 

Expression Vector (Genlantis, USA). Plasmid maps and analytical digests are 

presented in the Appendix (Figures A1 and A2). Successful subcloning was confirmed 

by sequencing provided by Source Biosciences (Nottingham, UK). 

Small hairpin RNA sequences (shRNA) targeting the DUSP5 coding sequence and 3’ 

untranslated region (UTR), were synthesized by Invitrogen as forward and reverse 

complementary oligonucleotide sequences (Table 2.1). These sequences were pre-

validated for successful DUSP5 knockdown by Sigma using MISSION® shRNA 

constructs.  
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Table 2.1 shRNA oligonucleotide sequences. The luciferase shRNA control 

sequence was obtained from Genlantis. Enzyme restriction sites underlined. Each 5’ 

end contains a restricted BamHI site (GATCC), followed by a target–specific sequence 

spanning 19 base pairs. The hairpin loop contains a HindIII restriction sequence 

(AAGCTT), and is followed by the antisense target and a RNA polymerase III 

termination signal. A restricted NotI sequence (GC) is located at the 3’ end. 

Number Target 

Region 

Sequence 

1 DUSP5 

CDS 

5’–GATCCGCAGCTCCTGCAGTACGAATCTGAAGCTT 

GAGATTCGTACTGCAGGAGCTGTTTTTTGGAAGC–3’ 

2 DUSP5 

3'UTR 

5’–GATCCGCCTGTCCTTCTGTGTGCTTATGAAGCTT 

GATAAGCACACAGAAGGACAGGTTTTTTGGAAGC–3’ 

3 DUSP5 

CDS 

5’–GATCCGAGCATGGTCTCGCCCAACTTTGAAGCTT 

GAAAGTTGGGCGAGACCATGCTTTTTTTGGAAGC–3’ 

4 DUSP5 

CDS 

5’–GATCCGACCCACCTACACTACAAATGGAAGCTT 

GCATTTGTAGTGTAGGTGGGTCTTTTTTGGAAGC–3’ 

5 Luciferase 

(Control) 

5’–GATCCGATTATGTCCGGTTATGTAGGAGCTTGTA 

CATAACCGGACATAATCTTTTTTGGAAGC–3’ 

 

Forward and reverse oligonucleotides were annealed according to manufacturer’s 

instructions (Genlantis, pGSH1–GFP siRNA Expression Vector Kit, P100300). 

Following the annealing reaction, annealed oligonucleotides were ligated into the 

pGSH1–GFP (BamHI/NotI) Expression Vector using T4 DNA Ligase (NEB, M0202S), 

according to the manufacturer’s instructions. A “no insert” reaction was included to 

control for the efficiency of target vector digestion and self–ligation.  

A vector:insert molar ratio of 1:3 was used to optimise ligation efficiency, and was 

calculated using the following equation:  

Insert mass (ng) = 3 x  Insert length (bp)  x Vector mass (ng) 
                                    Vector length (bp) 
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Transformation of competent E.coli  

Ligation reactions were used to transform DH5α competent E.coli cells (NEB, 

C2987H). 2.5µl of ligation reaction mix was aliquoted into Eppendorf tubes on ice. 

DH5α competent E.coli cells were thawed on ice, then dispensed into each tube 

containing plasmid solution at 25 µl per tube. Samples were incubated on ice for 30 

minutes, heat–shocked at 42 °C for 30s and then placed on ice for 2 minutes. 250 µl 

of prewarmed SOC medium (New England Biolabs) was added and samples were 

incubated at 37 °C for 1 hour with vigorous shaking. Bacteria were pelleted by brief 

centrifugation at 10,000 x g and resuspended in 100µl SOC medium. The bacterial 

solution was then spread onto LB agar plates containing 50 µg.ml-1 kanamycin. Spread 

plates were incubated at 37 °C overnight to allow colony formation, after which 3 to 4 

colonies from each transformation were selected for overnight liquid culture. 

Plasmid purification 

Plasmid DNA was isolated from the overnight bacterial culture using the using either 

the Wizard Plus SV Minipreps DNA Purification System (Promega) or the GenElute™ 

HP Maxiprep Kit (Sigma–Aldrich) according to the manufacturers’ instructions. Purified 

plasmid DNA was quantified on a NanoDrop–1000 spectrophotometer.  

Restriction digestions 

Restriction digests were used with analytic DNA gels to screen plasmids for the 

presence of desired inserts. Double digests were performed with XhoI and HindIII fast 

digest enzymes (ThermoFisher, FD0694 and FD0504) according to the 

manufacturer’s instructions.  

DNA agarose gel electrophoresis 

Digested DNA samples were combined with bromophenol blue loading buffer and 

loaded onto 1 % (w/v) agarose TBE gels containing SYBR® Safe DNA Gel Stain 

(Thermo Fisher) alongside 5µl of 1kB DNA Ladder (Promega, Southampton, UK). DNA 

gels were run at 100 V for 45 minutes and were visualised using a non–UV Dark 

Reader Transilluminator (Clare Chemical Research, CO, US). 
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Generation of CRISPR/Cas9 gRNA constructs 

CRISPR/Cas9 gRNA constructs were established through molecular cloning, following 

a standard protocol detailed in Ren et al. (2013). This work was carried out by Megan 

Cassidy at the Babraham institute (UK) and made use of the pSpCas9(BB)-2A-GFP 

genome-editing vector, illustrated in the Appendix (Figure A3). gRNAs (Table 2.2) 

were designed using Zhang lab’s gRNA generator, which calculates “scores” based 

on on-target activity offset by off-target activity. These sequences were synthesised 

as oligonucleotides by Sigma-Aldrich (Dorset, UK). Recombinant CRISPR/Cas9 

gRNA plasmids were sequenced by Genewiz (UK) to confirm successful cloning.  

Table 2.2 DUSP5 gRNA sequences. GS1, GS2 and ZH1 gRNAs target exon 1 and 

the ZH1 gRNA targets exon 2. All gRNAs were synthesised with BbsI restriction site 

overhangs to facilitate cloning.  

gRNA identifier gRNA sequence 

GS1 5’-GAGCGAGCCGCGCACGTTCG-3’ 

GS2 5’-ATGAAGGTCACGTCGCTCGA-3’ 

GS5 5’-TCACGTACCTGGTCATAAGC-3’ 

ZH1 5’-CTACTCGCTTGCCTACCCGC-3’ 

 

Amplification of adenoviral shRNA constructs 

Replication-incompetent recombinant adenoviral constructs containing either a 

DUSP5-targeting shRNA sequence or a non-targeting shRNA sequence were 

purchased from VectorBuilder in the form of purified virus particles at an approximate 

titre of ≥1x1010 PFU.mL-1. The custom-designed vector maps and shRNA sequences 

can be found in the Appendix (Figure A4). The expression of each shRNA sequence 

is driven by a U6 promoter, while expression of the flanking EGFP coding sequence 

is driven by a PGK promoter.  
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Replication-incompetent recombinant adenoviral particles are able to infect 

mammalian cells, allowing for the entry of viral DNA and subsequent expression of 

genes encoded by this genetic material. However, due to the absence of genetic 

elements that encode the E1 and E3 proteins, these adenoviruses are only able to 

replicate and package new viral particles in an E1-expressing packaging cell line such 

as HEK293, allowing for tight regulation of adenovirus propagation.  

Stocks of each adenovirus were established through the large-scale infection of 

HEK293 cells and subsequent viral purification. For each virus, a T75 flask of semi-

confluent (~75%) HEK293 cells  was inoculated with 2 µL purified virus and incubated 

at 37 °C, 5% CO2. After 24 hours, the culture medium was removed from each flask, 

aliquoted into 5 mL bijou tubes and snap frozen in liquid nitrogen. Once this viral 

suspension was generated, 10 T175 flasks of HEK293 cells were each infected with 

400 µL thawed viral suspension, for each adenovirus to be amplified. Cells were 

incubated at 37 °C, 5% CO2 for between 1 and 3 days, until the appearance of viral 

plaques. At this stage, cells were easily dislodged from the flasks and collected in 

several 50 mL falcon tubes. Cell suspensions were centrifuged at 1000g for 10 

minutes after which the supernatant was decanted, and the cell pellet was 

resuspended in 3 mL of 100 mM Tris.Cl, ph7.5 and snap frozen in liquid nitrogen.  

After thawing on ice, cells were lysed through three consecutive freeze thaw cycles. 

The samples were centrifuged (3000 rpm for 10 minutes at 4 °C) to pellet cell debris 

and the viral supernatant was transferred to an ultracentrifuge tube (Beckman 

Coulter). 0.6 volumes of CsCl-saturated 100mM Tris-HCl was added to each tube, 

followed by a solution of 1 volume 100mM Tris : 0.6 volumes CsCl-saturated 100mM 

Tris (until full). Tubes were balanced to within 0.03 g of each other and heat sealed, in 

preparation for ultracentrifugation at 65000 rpm in a Beckman Coulter VTi65 rotor for 

6 hours.  

After ultracentrifugation, adenovirus was visible as a white band, which was carefully 

removed with a syringe and 21G needle. The viral suspension was placed in a new 

ultracentrifuge tube and was topped up with the solution of 1 volume 100mM Tris : 0.6 

volumes CsCl-saturated 100mM Tris, before weighing and sealing. Samples were 

subjected to ultracentrifugation as before, but for 12 hours. After ultracentrifugation, 

the white viral band was removed from each tube and inserted into a 10kDa cut-off 
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Slide-A-Lyzer™ dialysis cassette (Pierce) in preparation for the removal of CsCl from 

each sample. This was accomplished through dialysis in 3% (w/v) sucrose in PBS over 

a 3-hour period at 4 °C. Each cassette was dialysed against 1 L of sucrose solution, 

which was replaced hourly. After dialysis, purified virus was removed from each 

cassette and dispensed into 20 or 50 µL aliquots, before snap freezing and storing at 

-80 °C.  

2.2.2.  Cell culture 

COLO205, HT29, HCT116 and their AZD6244-resistant derivative cell lines C6244–

R, HT6244–R and H6244–R were a kind gift from Simon Cook (Babraham Institute, 

Cambridge). HCT116 and H6244–R cells were maintained at 37 ºC, 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM), COLO205 and C6244–R cells were 

cultured in RPMI 1640 and HT29 and HT6244–R cells were cultured in McCoy’s 5A. 

All medium was supplemented with 10% (v/v) fetal bovine serum (FBS), penicillin (100 

U.mL-1), streptomycin (100 mg.mL-1) and 2 mM glutamine. For routine culture, 

AZD6244–resistant cells were grown in 1 µM (C6244–R and HT6244–R) or 2 µM 

(H6244–R) AZD6244. Cells were passaged twice weekly as follows; plated cells were 

washed in PBS prior to incubation in 1% trypsin–EDTA for 5 minutes at 37 °C, 5% 

CO2. Cells were then resuspended in complete medium, split according to 

experimental demand, diluted in fresh medium and replated. All reagents were 

purchased from Gibco, Thermo Fisher Scientific. 

Cell transfections 

pGSH1–GFP shRNA plasmid transfection 

HCT116 and H6244-R cells were transfected using Lipofectamine® LTX (with Plus™ 

Reagent) according to manufacturer’s instructions.  

  



58 
 

siRNA transfection 

siGENOME siRNA oligonucleotides targeting human DUSP5 mRNA (#D-003566-01-

0002 and #D-003566-03-0002) and ON-TARGETplus non-targeting siRNA #2 (#D-

001810-02-05) were purchased from Dharmacon. For siRNA transfection, HCT116 

cells were transfected using Lipofectamine® RNAiMAX Transfection Reagent. 

Approximately 18-24 hours prior to transfection, HCT116 and H6244-R cells were 

seeded into 6 well plates at a density of 1.25 x105 cells per well, in medium free of 

penicillin and streptomycin. Forward transfection was performed using a final siRNA 

concentration of 10 nM and 2.2 µL of lipofectamine reagent per well. Transfection 

medium was replaced with fresh complete medium 18-24 hours after transfection.  

CRISPR/Cas9 shRNA plasmid transfection and generation of DUSP5 knock-out 

cell lines 

For CRISPR/Cas9 plasmids, HCT116 cells were transfected using Lipofectamine® 

LTX (with Plus™ Reagent) or Lipofectamine® 2000. Approximately 18-24 hours prior 

to transfection, HCT116 and H6244-R cells were seeded into 10cm dishes at a density 

of 1.25x105 cells per dish, in medium free of penicillin and streptomycin. For each 

forward transfection, 15 µg of plasmid DNA and 25-50 µL of lipofectamine reagent was 

used. Transfection medium was replaced with fresh complete medium 18 hours after 

transfection.  

The success of transfection was monitored by GFP expression using an EVOS 

microscope. 24 to 48 hours after transfection cell cultures were trypsinised, 

resuspended in complete media and centrifuged for 3 minutes at 1500 g. Cell pellets 

were resuspended in 250 L of 2% FBS in PBS and filtered through a 40 μm cell 

strainer (CellTrics). GFP-positive cells were single-cell sorted into 96-well plates 

containing 75 L of filter sterilised conditioned complete medium using a 100 μm 

nozzle on a BD FACSARIA III cell sorter (BD Biosciences, Oxford, UK). Each well was 

topped up with 75 L fresh complete medium and incubated at 37 °C, 5% CO2. 96 well 

cell culture plates were incubated for approximately 2 to 4 weeks, with frequent media 

changes and inspections for cell colony growth. Once large enough, colonies were 

expanded into larger tissue culture vessels until enough cells were present to prepare 

frozen cell stocks as well as protein lysates for preliminary western blot screening.  
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Adenoviral transfection 

HT29 and HT6244-R cell lines were plated 18h before viral addition. DUSP5-targeting 

shRNA adenovirus 1 and 3 and non-targeting shRNA adenovirus were diluted in 

complete medium to give a final concentration of 45 pfu/nL. Culture medium was 

discarded from plates and replaced with diluted virus. Viral medium was replaced with 

fresh medium after a 24-hour incubation at 37 °C, 5% CO2.  

Lentiviral transfection and generation of inducible lentiviral shRNA stable cell 

lines  

Stable shRNA-expressing HT6244-R cell lines were established using Dharmacon™ 

SMARTvector™ Inducible Lentiviral shRNA vectors. These lentiviral vectors make use 

of the Tet-On 3G bipartite induction system which is comprised of an inducible RNA 

polymerase promoter (TRE3G) and the Tet-On 3G transactivator protein, both 

encoded within the DNA vector (Loew et al., 2010; Zhou et al., 2006). When bound by 

doxycycline, the Tet-On 3G transactivator protein is able to bind to the TRE3G 

promoter and induce the expression of the downstream reporter gene and shRNA 

sequence. This system enables tightly regulated shRNA expression at low doses of 

doxycycline and can work effectively in many cell lines where transfection of DNA and 

RNA is not possible. 

Purified Lentiviral shRNA vector DNA was kindly given to us by Professor Stephen 

Keyse (University of Dundee, UK).  Details of these constructs as well as the DUSP5-

targeting, GAPDH-targeting and non-targeting shRNA sequences can be found in the 

Appendix (Figure A5 and Table A1). Replication-incompetent lentiviral particles were 

generated with the Dharmacon™ Trans-Lentiviral Packaging System (GE Healthcare, 

#TLP5917), according to manufacturer’s instructions.  

18 hours prior to infection, CRC cells were seeded into 6 well plates at a density of 

approximately 2.5 – 3x105 cells per well in 1 mL complete medium. For each lentiviral 

stable cell line to be established, 1 mL of lentiviral suspension was added to each well, 

as well as 8 µg.mL-1 polybrene solution (#TR-1003, Sigma-Aldrich). Cells were 

incubated at 37 °C, 5% CO2 for 24 hours, after which the culture medium was replaced, 

and cell cultures were expanded into larger tissue culture flasks as necessary. After 

48 hours, transfected cells were selected with the addition of puromycin (#P8833-10, 
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Sigma-Aldrich). Concentrations of puromycin appropriate for selection were pre-

determined for each cell line with dose-tolerance experiments. After approximately 2 

weeks in selection media stocks of each cell line were trypsinised, frozen down and 

stored at -80 °C.  
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Immunofluorescent cell-staining 

After each experimental incubation, the culture medium was discarded from culture 

plates and cells were fixed with 4% paraformaldehyde for 10 minutes at room 

temperature. Cells were then permeabilised with ice cold methanol at –20 ºC for 2 

minutes and washed three times with PBS. For experiments quantifying the proportion 

of cells in S-phase, an EdU fluorescent thymidine analog (5–ethynyl–2'–deoxyuridine, 

EdU) (Click–iT® EdU HCS Assays, Invitrogen) was diluted in complete medium and 

added to cells at a final concentration of 10 µM 1 hour prior to fixation. The EdU label 

was detected with the Click–iT® EdU HCS Assay kit according to manufacturer’s 

instructions.  

For all immunofluorescent staining experiments, non–specific binding sites were 

blocked using 2.5 % (v/v) normal goat serum (NGS) in PBS with 0.01 % sodium azide 

or 2% BSA in PBS for 1 to 2 hours. Primary antibodies were diluted in blocking solution 

and cells were incubated in primary antibody overnight at 4 ºC. Cells were washed 

three times in PBS and incubated in secondary antibody dilutions for 1 to 2 hours at 

room temperature. After three PBS washes, nuclei were stained with a 300 nM solution 

of DAPI (Sigma, D9542) in PBS and stored at 4 ºC until required for imaging. All 

primary and secondary antibodies used in immunofluorescent cell-staining 

experiments are described in Table 2.3 and Table 2.4 below. 

Table 2.3 Primary antibodies used in immunofluorescent microscopy 

experiments. 

Primary Antibody Supplier Catalogue # Dilution Buffer 

ERK (Rabbit mAb) CST 4695 1:250 2% BSA/ 

2.5% NGS 

ERK (Mouse mAb) CST 4696 1:250 2% BSA/ 

2.5% NGS 

p-ERK 

(Thr202/Tyr204) 

(Mouse mAb) 

Sigma Aldrich M9692 1:250 2% BSA/ 

2.5% NGS 

p-ERK 

(Thr202/Tyr204) 

(Rabbit mAb) 

CST 4370 1:250 2% BSA/ 

2.5% NGS 



62 
 

Table 2.4 Secondary antibodies used in immunofluorescent  microscopy 

experiments. 

 

Secondary 

Antibody 

Supplier Catalogue # Dilution Buffer 

Alexa Fluor® 488-

Conjugate, Goat  

anti-mouse IgG 

Invitrogen A-11001 1:300 2% BSA/ 

2.5% NGS 

Alexa Fluor® 568- 

Conjugate, Goat  

anti-rabbit IgG 

Invitrogen A-11011 1:300 2% BSA/ 

2.5% NGS 

Alexa Fluor® 680- 

Conjugate, Goat  

anti-rabbit IgG 

Invitrogen A-21244 1:300 2% BSA/ 

2.5% NGS 
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2.2.3. Microscopy 

High–content microscopy and analysis 

Cells stained with fluorescent antibodies were imaged using an INCell Analyzer 2000 

(GE Healthcare, Buckinghamshire, UK) using a 10x or 20x objective lens, typically 

acquiring 500–2000 individual cells (3 fields) per well in duplicate or triplicate wells per 

condition. Images were analysed using INCell Developer Toolbox software. A custom 

protocol was designed to identify nuclear and cytoplasmic regions and to detect the 

protein immunostaining intensity within these regions on a per cell basis. For p-ERK 

and total ERK expression profiles, the mean intensity of immunostaining for all cells in 

each condition was calculated and used to represent the population trend. For EdU 

staining, a minimum threshold for “positive” staining was established, and all cells with 

EdU signal higher than this threshold were counted as “S-phase positive”.  

EVOS cell imaging 

Cells transfected with pGSH1-GFP shRNA constructs were imaged on an EVOS 

microscope (EVOS fl, AMG). Images were taken in the normal light channel as well as 

the GFP channel. Composite images were generated on ImageJ software (http:// 

rsb.info.nih.gov/ij/; W. Rasband, National Institutes of Health, Bethesda, USA) to 

assay transfection efficiency.  

2.2.4. Western blotting 

Preparing samples for SDS-PAGE 

Cell medium was discarded, and culture plates were placed on ice. Cells were washed 

with ice cold PBS after which 50 - 100 µl of lysis buffer was added directly to each 

well. Cell lysates were transferred to Eppendorf tubes and were snap frozen in liquid 

nitrogen. Lysates were stored at –80 ºC until required.  

Once thawed, lysates were centrifuged at 12000 g for 5 minutes at 4 ºC. Each 

supernatant was transferred to a new tube and diluted with 4× Laemmli sample buffer 

to a final ratio of 1:4 (4× Laemmli sample buffer to sample). Samples were boiled at 

95 °C and stored on ice. Approximately 10 µl of undiluted sample was retained for 

protein concentration determination using the Bradford protein assay. Standard 
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solutions of bovine serum albumin (BSA) between 0 and 2mg.ml-1 were generated by 

diluting BSA in lysis buffer. In a clear 96-well plate, 2 µL of each standard BSA solution 

as well as each undiluted experimental sample were aliquoted into separate wells. A 

1:5 dilution of Biorad protein assay dye reagent was prepared in water, and 198 µl of 

this solution was added to each well. After a 10-minute incubation at room temperature 

absorbance readings were taken at 565nm using a PHERAstar FSX plate reader 

(BMG Labtech). Protein concentrations were determined using the PHERAstar 

analysis software. The concentration of protein in each sample was normalised by 

diluting in appropriate amounts of 1× Laemmli sample buffer.  

SDS–PAGE  

Proteins were separated according to molecular weight by sodium dodecyl sulphate – 

polyacrylamide gel electrophoresis (SDS–PAGE) using the Laemmli discontinuous 

buffer system (Laemmli, 1970) and the Mighty small II gel apparatus (Hoefer). 1mm 

thick mini–gels were prepared with resolving and stacking gels according to the 

recipes provided in Table 2.5 and Table 2.6. 

 

Table 2.5 Recipe for SDS–PAGE 10% resolving gel. Volumes provided are 

sufficient for four mini–gels.  

 

Reagent Volume (mL) 

1.5 M Tris.Cl, pH 8.8 15 

30% acrylamide:bisacrylamide 

(37:5:1) 

19.8 

H2O 24 

10% (w/v) SDS 0.6 

10% (w/v) APS 0.6 

TEMED 0.06 
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Table 2.6 Recipe for SDS–PAGE 6% stacking gel. Volumes provided are sufficient 

for four mini–gels. 

Reagent Volume (mL) 

0.5 M Tris.Cl, pH 6.8 5 

30% acrylamide:bisacrylamide 

(37:5:1) 

4 

H2O 10.6 

10% SDS 0.2 

10% APS 0.2 

TEMED 0.02 

 

 

The Mighty small II gel apparatus was assembled according to manufacturer’s 

instructions. Samples were loaded onto the gel alongside the Chameleon 800 protein 

ladder (Licor). Electrophoresis was carried out at 80 mA for 3 hours.  

Protein transfer  

Gels were blotted onto methanol-activated PVDF membrane (Immobilon-FL 

Membrane, Merck Millipore) using the Criterion blotter System (Bio-Rad) at a current 

of 300 mA for 90 min. 

Immunoblotting 

Immobilon-FL PVDF membranes were blocked in 5% milk/PBST for 30 minutes at 

room temperature. Primary antibodies were diluted in either 5% BSA/PBST or 5% 

milk/PBST and membranes were incubated in primary antibody solution at 4 ºC 

overnight. Following this incubation, membranes were washed in PBST three times 

for 5 minutes each and then incubated in secondary antibody, diluted in 5% milk/PBST 

for 1 hour at room temperature. Finally, immunoblots were washed in PBST as before 

and once in ddH2O to remove residual Tween, followed by imaging on the Licor 

Odyssey® CLx Imaging System. All primary and secondary antibodies used in 

immunoblotting experiments are described in Table 2.7 and Table 2.8 below. 
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Table 2.7 Primary antibodies used in immunoblotting experiments. 
 

Primary Antibody Supplier Catalogue # Dilution Buffer 

β-Tubulin Sigma-Alrich T8328 1:5000 5% BSA 

Bim CST 2933 1:1000 5% BSA 

E-cadherin CST 3195 1;1000 5% BSA 

DUSP4 Abcam ab216576 1:1000 5% BSA 

DUSP5 Abcam ab200708 1:1000 5% BSA 

DUSP6 Abcam ab76310 1:1000 5% BSA 

ERK CST 9107 1:2000 5% BSA 

KRAS Proteintech 12063-1-AP 1:1000 5% Milk 

p-ERK 

(Thr202/Tyr204) 

CST 4370 1:2000 5% BSA 

p21CIP1 CST 2947 1:1000 5% BSA 

PARP CST 9542 1:1000 5% Milk 

 

Table 2.8 Secondary antibodies used in immunoblotting experiments. 

Secondary 

Antibody 

Supplier Catalogue # Dilution Buffer 

DyLight™ 680 

Conjugate, Goat  

anti-rabbit IgG 

CST 5366 1:30000 5% Milk 

DyLight™ 800 

Conjugate, Goat  

anti-rabbit IgG 

CST 5151 1:30000 5% Milk 

DyLight™ 800 

Conjugate, Goat  

anti-mouse IgG 

CST 5257 1:30000 5% Milk 

680 Goat  

anti-mouse IgG 

Licor 92632220 1:10000 5% Milk 
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2.2.5. RT–PCR 

RNA extraction 

After experimental incubation, cell culture medium was discarded from tissue culture 

plates and cells were washed in cold PBS. Cells were lysed directly in the wells and 

RNA was subsequently extracted using the RNEasy mini kit, according to 

manufacturer’s instructions (Qiagen). RNA samples were subjected to an on–column 

DNA digestion with the RNase–Free DNase Set (Qiagen, 79254) according to the 

manufacturer’s instructions.  

Reverse transcription 

RNA was converted into cDNA using the High–Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems), according to manufacturer’s instructions. A total of 1 µg RNA 

was used in each reaction. All samples were accompanied by control reactions that 

did not contain reverse transcriptase to confirm the absence of contaminating genomic 

DNA. cDNA was stored at –20 ºC until required for experimental use.  

Quantitative real-time PCR 

Relative mRNA levels were assessed in experimental samples using quantitative 

PCR. Forward and reverse primers used in these experiments are listed in   
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Table 2.9. The standard reaction used in all the RT–PCR performed was as follows; 

1X Power SYBR Green PCR Master Mix (Applied Biosystems), 100 nM reverse and 

forward primer, 100 ng cDNA and nuclease–free water made up to 20 µl. Reactions 

were loaded into MicroAmp fast 96–well reaction plates (Applied Biosystems, 

10670986) and the plates were sealed with MicroAmp Optical adhesive film (Applied 

Biosystems, 4360954). The cycling conditions used in all RT–PCR reactions are 

detailed in Table 2.10. All RT–PCR experiments were performed on the StepOnePlus 

RealTime PCR System (Applied Biosystems) and threshold cycles (CT) were 

calculated using the instrument software.  
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Table 2.9 Forward and reverse primer sequences used in RT–PCR to determine 

relative mRNA levels of DUSP5 and β–Actin. 

 

Target Forward primer  Reverse primer  

DUSP2 5’-AAAACCAGCCGCTCCG 

AC-3’ 

5’-CCAGGAACAGGTAGGGCAAG-3’ 

DUSP4 5’-CTGGTTCATGGAAGCCAT 

AGAGT-3’ 

5’-CGCCCACGGCAGTCC-3’ 

DUSP5 5’-CCGCGGGTCTACTTCCT 

CA-3’ 

5’-GGGTTTTACATCCACGCAA 

CA-3’ 

DUSP6 5’-CTGCCGGGCGTTCTAC 

CT-3’ 

5’-CCAGCCAAGCAATGTACCA 

AG-3’ 

β–Actin 5’-CCCCTGAACCCCAAG 

GC-3’ 

5’-CAGAGGCGTACAGGGATAG 

CAC-3’ 

 
 

 

Table 2.10 Standard RT–PCR cycling conditions. Initial denaturation was 

performed once, followed by 40 cycles of denaturation and annealing. 

 

Step Temperature (˚C) Duration Number of cycles 

Initial denaturation 95 10 minutes 1 

Denaturation 95 15 seconds 40 

Annealing 60 60 seconds 40 

 

 

For experimental samples, CT values were normalised to those obtained for the 

reference gene, β–Actin. These ΔCT values were used to calculate the relative change 

in mRNA expression as the ratio of mRNA expression in treated cells versus mRNA 

expression in the control condition, using the Livak method (Livak & Schmittgen, 

2001). The final normalised ratio is calculated by the following formula:  

Normalised relative ratio = 2–ΔΔCT 

 

Where ΔCT = CT (target) – CT (reference)  
and ΔΔCT = ΔCT (sample) – ΔCT (calibrator) 
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Chapter 3. Characterisation of ERK pathway 
signalling in MEKi-resistant HCT116, 
COLO205 and HT29 colorectal cancer cell 
lines 

3.1. Introduction 

Mutant forms of RAS and RAF have been detected in various colorectal cancers 

(CRCs) with high incidence and frequently drive colorectal tumourigenesis through 

sustained ERK signalling (Fang and Richardson, 2005). While BRAF and MEK 

inhibitors have shown some success in inhibiting the proliferation and/or survival of 

BRAFV600E-mutant cancers, especially in melanoma where the incidence of 

BRAFV600E-driven oncogenesis is striking, success in treating colorectal cancers 

driven by mutant RAS has been highly limited (Kidger et al., 2018).  

Initially, MEKis appeared to be promising candidates for combating ERK-addicted 

KRAS-driven and BRAF wildtype CRC, due to their specific targeting of the ERK 

“gatekeepers” MEK1 and MEK2. One such MEKi, AZD6244 is a highly-selective 

allosteric inhibitor of MEK1 and MEK2. Since its in vitro biological characterisation in 

2008, AZD6244 has formed the focus of numerous phase I and II trials (Maloney et 

al., 2008; Bennouna et al., 2011; Catalanotti et al., 2013 and others). However, like 

other MEKis, narrow therapeutic windows and ERK pathway reactivation are problems 

that continue to restrict the extent of their clinical efficacy. Despite this, AZD6244 has 

proven to be effective in combination therapies and continues to hold promise in phase 

III trials (Carvajal et al., 2018; Dombi et al., 2016; Jänne et al., 2017). In the wake of 

this, continued research into the inevitable development of drug-resistance to MEK 

and BRAF inhibition is of great clinical importance.  

The astonishing prevalence of drug-resistance in ERK-addicted cancers has led to the 

investigation of various intrinsic and extrinsic adaptive mechanisms that can arise in 

the face of ERK pathway inhibition, many of which were characterised in cancer cell 

line models (Sale and Cook, 2014). A number of these models have been shown to 

faithfully recapitulate clinical outcomes and as such are highly valuable in the 

investigation of chemotherapeutic resistance (Lai et al., 2014b; Song et al., 2007; 

Villanueva et al., 2013). The use of CRC lines to investigate clinically-relevant cell 
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signalling adaptions is supported by findings that an entire spectrum of CRC subtypes 

previously defined in patients was represented in a large CRC line compendium, which 

reiterates the prevailing value in, and relevance of the use of cancer cell line models 

for this purpose (Picco et al., 2015). 

In line with this work, a 2011 study by Little et al. modelled the development of 

resistance to the anti-proliferative effects of AZD6244 in BRAFV600E-driven COLO205 

and HT29 cell lines as well as the KRASG13D-driven HCT116 cell line. Results from 

this investigation revealed intrachromosomal amplification of the driving oncogenes 

BRAFV600E and KRASG13D and subsequent ERK reactivation as the driving forces 

behind this resistance. While amplified mutant BRAF or KRAS is selected for its effects 

in reinstating active ERK levels in these cell models, these levels remain within a tight 

optimal range. Microarray data revealed that concomitant with the development of 

resistance, is a myriad of ERK pathway-related signalling changes, including the 

upregulation of several downstream negative ERK regulators.  

Previous studies have shown that the influence of negative ERK feedback regulation 

in tumourigenesis, drug efficacy and the development of drug-resistance is profound 

(Holohan et al., 2013; Kidger and Keyse, 2016). A prominent tier of this feedback is 

regulated by the MAP kinase phosphatases (MKPs) which are solely dedicated to the 

spatiotemporal regulation of their MAPK targets. Since the discovery of their unique 

regulatory role, MKPs have been investigated in the context of a number of ERK 

pathway-driven cancers, and several MKPs have been implicated in tumour 

suppression and oncogenesis as well as drug resistance, including the ERK-specific 

MKPs DUSP5 and DUSP6 (Kidger and Keyse, 2016).  

Using the parental and AZD6244-resistant CRC cell lines developed by Little et al. 

(2011) we aimed to investigate the potential role of MKPs in the evolution of drug-

resistance in these CRC models. To begin with, we set out to establish whether any 

differences in expression of relevant MKPs were visible between parental and 

AZD6244-resistant CRC cells and whether patterns of MKP expression were 

coincident with AZD6244 administration.  
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3.2. Work preceding this thesis 

3.2.1. Establishment and genetic characterisation of AZD6244-
resistant derivatives of COLO205 (C6244-R), HT29 (HT6244-R) 
and HCT116 (H6244-R) cells 

In their 2011 paper, Little et al. investigated the development of resistance to the anti-

proliferative effects of MEK inhibition in three human colorectal cancer (CRC) cell lines 

and their AZD6244-resistant derivative cell lines (Little et al., 2011). HCT116, 

COLO205 and HT29 are CRC cell lines that drive uncontrolled proliferation through 

abnormal activation of ERK. This is a result of a BRAFV600E mutation in COLO205 and 

HT29 cells, and a KRASG13D mutation in HCT116 cells. All three lines have previously 

been found to be sensitive to AZD6244 treatment in proliferation assays, due to their 

reliance on the ERK signalling pathway for cell cycle entry and cell survival (Balmanno 

et al., 2009; Davies et al., 2007). Across assays, HCT116 cells demonstrated a higher 

tolerance for AZD6244 than the BRAFV600E-driven COLO205 and HT29 lines, which is 

likely due to the ability of oncogenic KRASG13D to activate other proliferative signalling 

cascades, such as the PI3K pathway, which could effectively compensate for reduced 

ERK signalling (Caunt et al., 2015).  

To establish AZD6244-resistant derivatives of COLO205, HT29 and HCT116 drug-

naïve “parental” cells were cultured in increasing concentrations of AZD6244 until they 

were able to grow, without noticeable defects, in 1 µM drug for COLO205 and HT29 

cells and 2 µM drug for HCT116 cells (Little et al., 2011). Stable cell populations were 

established without clonal selection and were designated C6244-R (AZD6244-

resistant COLO205), HT6244-R (AZD6244-resistant HT29) and H6244-R (AZD6244-

resistant HCT116). Following this, AZD6244-resistant cells were routinely cultured in 

1 or 2 µM AZD6244 to maintain selective pressure. These AZD6244 concentrations 

were approaching the maximum achievable and tolerable dose of AZD6244 in vivo (2 

µM) and were approximately 10 times the IC50 for inhibition of proliferation for each 

parental CRC cell line (Banerji et al., 2010; Little et al., 2011).  
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Analysis of whole cell extracts revealed a marked increase in BRAF protein levels as 

well as genomic copy number in C6244-R cells compared to their parental 

counterparts, while a similar amplification in KRAS was seen in H6244-R cells relative 

to parental HCT116 cells. In situ hybridisation of these cells revealed 

intrachromosomal amplifications of the oncogenic BRAFV600E allele in C6244-R cells 

and the oncogenic KRASG13D allele in the H6244-R cell line as the underlying cause 

of increased BRAF/KRAS abundance.  Further analysis of downstream signalling 

targets of BRAF and KRAS demonstrated that the increased levels of oncogenic 

protein in each instance were functionally relevant and successfully increased the 

activation of downstream targets (Little et al., 2011).  

3.2.2. C6244-R and H6244-R cells exhibit increased ERK pathway 
signalling and are refractory to AZD6244-induced cell cycle 
arrest and cell death 

Little et al. (2011) went on to further substantiate and characterise the observed ability 

of C6244-R and H6244-R cell lines to survive and proliferate in AZD6244 conditions 

previously shown to inhibit corresponding parental CRC lines. [3H] thymidine-

incorporation assays revealed the IC50 for inhibition of proliferation in C6244-R and 

H6244-R cells to be at least 20 times higher than that of corresponding parental lines 

(COLO205 and HCT116, respectively) (Figure 3.1, a and b). This was coincident with 

the ability of AZD6244-resistant cells to form colonies in AZD6244 conditions (1 µM 

AZD6244 for C6244-R/COLO205 cells and 10 µM AZD6244 for H6244-R/HCT116 

cells) that inhibited colony formation of parental lines by ~85% (Figure 3.1, d and e). 

In [3H] thymidine-incorporation assays performed with HT29 and HT6244-R cell lines, 

HT6244-R cells thrived in concentrations of AZD6244 up to 1 µM, without any 

reduction in proliferation (Figure 3.1, c). In flow cytometry experiments performed to 

assess cell cycle distribution, C6244-R and H6244-R cells showed little to no cell death 

in AZD6244 concentrations between 1 and 10 µM, the same conditions that were able 

to induce sub-G1 cell populations in parental COLO205 and HCT116 lines (Figure 

3.2). These experiments clearly demonstrate that C6244-R, HT6244-R and H6244-R 

cells are resistant to the anti-proliferative and death-inducing effects of the maximum 

tolerable in vivo dose of AZD6244. 
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Figure 3.1. H6244-R1 and C6244-R1 cells are resistant to the anti-proliferative 

effects of AZD6244. (A) HCT116 and H6244-R1 cells, (B) COLO205 and C6244-R1 

or (C) HT29 and HT6244-R1 cells were treated with increasing concentrations of 

AZD6244 for 24 hours, and DNA synthesis was assayed by [3H]thymidine 

incorporation. Data points represent means ± CV (coefficient of variation) of biological 

triplicates. (D) HCT116 and H6244-R1 cells or (E) COLO205 and C6244-R1 cells were 

treated with AZD6244, as indicated, and their ability to grow in colony-forming assays 

was assessed after 2 weeks in culture. The mean number of colonies formed ±SD 

(right panel) and photographic images (left panel) from a representative experiment of 

three are shown. Adapted from Little et al. 2011. Copyright 2008 by the American 

Association for the Advancement of Science. 
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Figure 3.2. H6244-R1 and C6244-R1 are resistant to AZD6244-mediated cell cycle 

arrest and cell death. After treatment for 48 hours with the indicated concentrations 

of AZD6244, subconfluent cultures of (A) HCT116 and H6244-R1 cells or (B) 

COLO205 and C6244-R1 cells were harvested and stained with propidium iodide, and 

their cell cycle distribution was assessed by flow cytometry. All data are taken from a 

single experiment representative of three giving similar results. Adapted from Little et 

al. (2011). Copyright 2008 by the American Association for the Advancement of 

Science. 
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In order to delineate the signalling events that caused or were coincident with the 

development of resistance to AZD6244, the presence and activation of major ERK 

pathway components and targets were assessed at the protein level (Figure 3.3). As 

expected, levels of phosphorylated- (p)-ERK in parental COLO205 and HCT116 cells 

decreased in response to increasing AZD6244 concentrations. This was evident from 

100 nM AZD6244 (COLO205) and 200 nM AZD6244 (HCT116) and upward and was 

accompanied by decreased abundance of cyclin D1 and phosphorylated (p-)RB, and 

increased levels of cyclin-dependent kinase inhibitor p27KIP1. In contrast, substantial 

inhibition of p-ERK in AZD6244-resistant lines was only evident in 10 µM AZD6244, 

which corresponded to a marked reduction in cyclin D1 and p-RB in C6244-R cells but 

not H6244-R cells (Little et al., 2011).  

Under routine culture conditions for resistant CRCs (1 or 2 µM AZD6244), the p-ERK 

levels detected were similar to those seen in parental cell lines cultured in the absence 

of AZD6244 (Figure 3.3). This, together with the karyotyping experiments discussed 

previously, suggest that increased signalling flux driven by upstream amplification of 

BRAFV600E or KRASG13D protein enables drug-resistant cells to sustain levels of active 

ERK within a suitable range for cell cycle entry and cell survival, despite considerable 

MEK inhibition. This hypothesis is substantiated by experiments showing 

resensitisation of C6244-R and H6244-R cells to the anti-proliferative effects of 

AZD6244 when the abundance of either active BRAF or KRAS were restored to 

“normal” parental levels. This was achieved with combination treatment of AZD6244 

and a pan-RAF inhibitor AZ628 in C6244-R cells and targeted inhibition of KRAS with 

siRNA in the presence of AZD6244 in H6244-R cells (Little et al., 2011). 
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Figure 3.3. H6244-R1 and C6244-R1 exhibit increased basal MEK-ERK activation 

and ERK pathway output. (A and B) CyclinD1 (CycD1), p27KIP1, p(S795)-RB, p-MEK, 

total MEK, p-ERK, total ERK1, FRA-1, FRA-2 and c-jun levels were determined by 

Western blot analysis of whole-cell extracts from HCT116, H6244-R1, COLO205 and 

C6244-R1 cells treated with vehicle control [dimethyl sulfoxide (DMSO)] or AZD6244 

for 24 hours. All data are taken from a single experiment representative of three giving 

similar results. Adapted from Little et al. 2011. Copyright 2008 by the American 

Association for the Advancement of Science. 
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3.2.3. Transient removal of AZD6244 from C6244-R and H6244-R cells 
leads to ERK hyperactivation 

After demonstrating adaptive ERK pathway reprogramming in response to long-term 

MEK inhibition, Little et al. (2011), and subsequently Sale et al. (2019), explored how 

C6244-R and H6244-R cells would respond to the removal of AZD6244. Long-term 

study (up to 20 weeks) of drug withdrawal from C6244-R cells demonstrated that 

resistance to the anti-proliferative effects of AZD6244 was reversible and was 

correlated with decreased BRAF and p-ERK protein levels (Little et al., 2011; Sale et 

al., 2019).  The exact mechanism through which these cells transition back to parental 

levels of oncogenic BRAF is unclear, however it does involve the loss of chromosome 

7 and/or BRAF amplicons, indicating that BRAF amplification in the absence MEK 

inhibition may elicit a fitness disadvantage.  

Experiments that assessed the transient withdrawal of AZD6244 from C6244-R and 

H6244-R cells (up to 24 hrs) revealed that in the absence of drug, p-ERK levels in 

AZD6244-resistant CRCs were markedly increased compared to their parental 

counterparts and to those seen under routine culture conditions (1 or 2 µM AZD6244) 

(Figure 3.3). This suggests that when AZD6244 is removed from AZD6244-resistant 

cells the combination of amplified upstream signalling and the release of MEK leads 

to hyperactivation of ERK. This increase in abundance of active ERK appears to be 

functionally relevant, inducing increased protein levels of downstream ERK targets 

FRA-1, FRA-2, and c-jun (Figure 3.3).  

In parental and AZD6244-resistant CRC lines cultured in maintenance conditions 

(AZD6244-free media and 1 or 2 µM AZD6244, respectively), the expression of 

another set of ERK target genes previously defined as a “signature” for MEK output 

(Dry et al., 2010) was assessed using genome-wide mRNA expression analysis. 

Results showed an overall increase in expression of ERK target genes in C6244-R 

and H6244-R cells compared to their parental lines, again indicating increased 

signalling flux through ERK. These ERK targets included negative feedback regulators 

of the ERK pathway, SPRY2 and the MAPK phosphatases DUSP4 and DUSP6.  

  



79 
 

Later work performed by Andrew Kidger (Cook laboratory, Babraham Institute, 

Cambridge, UK) assessed levels of DUSP5 and DUSP6 protein in several drug-naïve 

KRAS- and BRAF-driven cell lines including COLO205, HT29 and HCT116 as well as 

HEK293 and HeLa cell lines (Figure 3.4). These western blots revealed that DUSP6 

was relatively highly expressed in COLO205, HT29 and HCT116 cells grown in routine 

culture conditions. Additionally, the expression of another MKP, DUSP5, was quite 

prominent in HCT116 cells, but not others. This work illustrated substantial variation 

in different MKP levels, which correlated to some extent, with the amount of p-ERK 

present.  

 

 

Figure 3.4 Relative expression levels of DUSP5 and DUSP6 in HEK293, Hela and 

mutant KRAS- and BRAF-driven cancer cell lines. Cells were maintained in routine 

culture conditions prior to lysis and western blotting. Protein concentration was 

normalised across samples. Western blot analysis was carried out by Andrew Kidger 

(Cook laboratory, Babraham Institute, Cambridge, UK). 
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Based on these findings, and previous work demonstrating the influence of MKPs in 

tumourigenesis and drug-resistance, we aimed to investigate whether MKP 

expression levels differed between parental and AZD6244-resistant CRC cell lines in 

different AZD6244 conditions. As MKPs function as important ERK-induced negative 

feedback regulators in the ERK signalling pathway we reasoned that this may be likely, 

and that trends in MKP expression in response to AZD6244 could reflect the nature of 

their regulatory influence in these cell models.   
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3.3. Results 

3.3.1. MEKi–resistant CRC cells maintain proliferation through 
sustained ERK activation 

Previous work by the Cook laboratory assessed average cell population changes in 

levels of phosphorylated ERK and other key pathway components in parental and 

AZD6244-resistant cells through western blot analysis of whole-cell extracts. 

Additionally, cell fate responses were evaluated primarily through flow cytometry and 

[3H]thymidine incorporation assays (Little et al., 2011). Western blot analysis remains 

an invaluable tool in the investigation of protein expression, however most 

chemiluminescent-based techniques are unable to provide quantitative results. 

Similarly, while [3H]thymidine incorporation assays are able to reliably demonstrate 

changes in the proportion of cells in a population undergoing DNA replication and 

proliferation, the definitive and comparative quantification of cell proliferation is 

restricted by an inability to account for cell number between different population 

samples. 

Using high content microscopy, a sensitive confocal imaging platform that is able to 

provide high resolution images as well as detailed signal quantification data, we were 

able to visualise and quantify changes in levels of total and phosphorylated ERK on a 

per-cell basis. We aimed to corroborate findings from Little et al. (2011) while also 

allowing for new investigations into signalling and cell fate responses on the single cell 

level.  For these experiments, parental COLO205, HT29 and HCT116 cells and their 

AZD6244-resistant derivatives were used as cell models. The driving mutations and 

respective maintenance culture conditions for each of these cell lines are detailed in 

Table 3.1. 
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Table 3.1. Driving mutations and maintenance culture conditions of CRC cell 
model 
 

Cell line Driving mutation  Maintenance culture 

conditions 

COLO205 BRAFV600E 

Complete medium 

C6244-R 

AZD6244-resistant 

COLO205 derivative 

BRAFV600E Complete medium with 1 

µM AZD6244 

HT29 BRAFV600E 
Complete medium 

HT6244-R 

AZD6244-resistant HT29 

derivative 

BRAFV600E Complete medium with 1 

µM AZD6244 

HCT116 KRASG13D 

Complete medium 

H6244-R 

AZD6244-resistant 

HCT116 derivative 

KRASG13D Complete medium with 2 

µM AZD6244 

 

 

In our experiments, parental and drug-resistant cells incubated with increasing 

concentrations of AZD6244 were subjected to pulse EdU labelling for S-phase 

detection, prior to cell fixation. This was followed by immunofluorescent protein 

staining and image acquisition on a high content microscope. Signal intensity data was 

collected on a per-cell per-compartment basis which allowed for single cell data as 

well as population data analysis. 

Results from these experiments showed that in all parental cell lines, the mean whole-

cell intensity of immunofluorescent staining for p-ERK decreased in an AZD6244 dose-

responsive manner. This paralleled a dose-responsive decrease in proliferation, 

interpreted as the percentage of cells entering S-phase in a 1h pulse label window 

(Figure 3.5). These results corroborated findings from previous work characterising 

cellular responses to AZD6244 in these cell lines (Balmanno et al., 2009; Davies et 

al., 2007; Yeh et al., 2007). In comparison, drug-resistant CRC lines demonstrated the 
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ability to maintain relatively high levels of p-ERK in the presence of AZD6244 (Figure 

3.5). This sustained ERK phosphorylation correlated with the ability of AZD6244-

resistant lines to continue proliferating in conditions of up to 1 µM (C6244-R and 

HT6244-R) or 2 µM (H6244-R) AZD6244 (Figure 3.5), supporting previous results 

found by western blot analysis and [3H]thymidine incorporation assays (Little et al., 

2011). 
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Figure 3.5. Drug-resistant CRCs maintain proliferation through sustained ERK 

activation. Quantitative HCM summary data of p-ERK levels (shown as a percentage 

of the maximum) and percentage of S-phase cells in the total cell population counted 

in (A) COLO205 and C6244-R (B) HT29 and HT6244-R and (C) HCT116 and H6244-

R samples. Cells were maintained in indicated concentrations of AZD6244 for 48 

hours prior to fixation and immunostaining. n=3-6 biological replicates, ± SEM. 

Statistically significant differences between parental and AZD6244-resistant cell lines 

in the same AZD6244 concentration were determined using the Holm-Sidak method, 

where (*) denotes a p-value less than 0.05, (**) denotes a p-value less than 0.01 and 

(***) denotes a p-value less than 0.001. All assays; 3 fields/well, 2-4 wells (~2000 

individual cells) per condition per experiment. 
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Figure 3.5 continued.  
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Figure 3.5 continued. Representative images of (A) COLO205 and C6244-R (B) 

HT29 and HT6244-R and (C) HCT116 and H6244-R cells in the absence or presence 

of 1 or 2 µM AZD6244.  
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When comparing the proliferation responses seen in Figure 3.5 to the results of similar 

experiments from Little et al. (2011) shown in Figure 3.1, some discrepancies could 

be seen in the response of C6244-R to the withdrawal of AZD6244 (i.e. in conditions 

where the AZD6244 concentration is lower than 1 µM used in routine culture 

conditions). Figure 3.5a illustrates that the proportion of C6244-R cells undergoing 

proliferation in all AZD6244 concentrations below routine culture conditions (1 µM 

AZD6244) was lower than that in routine AZD6244 conditions and indeed less than 

the subset of proliferating cells in parental cells in routine culture conditions (no 

AZD6244). This was most apparent in C6244-R cultured in the absence of AZD6244, 

suggesting that withdrawal of drug from these cells may evoke an anti-proliferative 

effect.  

While it is not possible to directly compare proliferation values between COLO205 and 

C6244-R cells in Figure 3.1b from Little et al. (2011), C6244-R cells demonstrated a 

dose-responsive decrease in proliferation in the presence of AZD6244, with peak 

proliferation conditions at 0 µM AZD6244, similar to parental COLO205 cells. This was 

consistent with cell cycle distribution data obtained by Little et al (2011), shown in 

Figure 3.2b, where the proportion of cells in G2/M and S-phase in C6244-R cells 

incubated in the absence of AZD6244 for 24 hrs was similar to or possibly higher than 

the proportion of these cells in C6244-R populations incubated with AZD6244 

concentrations up to 1 µM. In more recent data published by Sale et al. (2019) and 

illustrated in Appendix Figure A6a and d, the proliferation profile and cell cycle 

distribution of C6244-R cells is more comparable to data shown in Figure 3.5a, 

displaying a similar anti-proliferative effect of AZD6244 withdrawal. Much like our 

assays, proliferation assays performed by Sale et al. (2019) made use of EdU-labelling 

and high content microscopy. 

Cell cycle distribution data for HT6244-R cells exposed to increasing concentrations 

of AZD6244 published in Little et al. (2011) are shown in Figure 3.1c. These cells 

appeared to proliferate optimally in routine culture conditions of 1 µM AZD6244 and 

decreased in proliferative capacity upon drug removal. This trend was not replicated 

in our data (Figure 3.5b), instead the proportion of proliferating HT6244-R cells 

appeared to remain relatively constant across AZD6244 concentrations between 0 and 

1 µM AZD6244, compared to a dose-responsive decrease in proliferation seen in 
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parental HT29 cells in the same conditions. Again, our data is consistent with cell cycle 

distribution data and S-phase data presented in Sale et al. (2019), shown in Figure 

5.1a (Chapter 5) and in Appendix Figure A6b, respectively, where there was no 

marked difference in the proportion of cells in G2/M and S-phase between HT6244-R 

cells incubated with or without 1 µM AZD6244 for 24 hrs.  

Finally, a dissimilarity observed when comparing our data set (Figure 3.5c) and results 

obtained both by Little et al. (2011) illustrated in Figure 3.1a, and Sale et al. (2019)  

illustrated in Appendix Figure A6c, was seen in the response of HCT116 and H6244-

R cells to increasing AZD6244 concentration. Similar to previous dose response 

experiments with HCT116 cells and AZD6244 (Balmanno et al., 2009), Figure 3.1a 

and Appendix Figure A6c show a steady decrease in HCT116 proliferation from 100 

nM AZD6244 onwards, reflecting an IC50 of approximately 200nM for inhibition of 

proliferation in these cells. In contrast, proliferation of H6244-R cells only began to 

decrease at AZD6244 concentrations higher than 2 M, reflecting an IC50 of inhibition 

of proliferation that was approximately 10 times higher than that of parental cells. In 

our results, HCT116 cells had a proliferation profile that was not markedly different to 

H6244-R cells and was not indicative of a profound difference in sensitivity to 

AZD6244. 

While the proliferation profiles of drug-resistant CRC cells in response to increasing 

AZD6244 concentrations showed some differences when compared to similar 

experiments in Little et al. (2011), we were able to quantitatively confirm the 

observation that drug-resistant CRC lines cultured under routine conditions (1 µM 

AZD6244 for C6244-R and HT6244-R cells and 2 µM AZD6244 for H6244-R cells) 

had similar p-ERK levels to parental CRC lines under “normal” conditions (no 

AZD6244), and these tended to be the conditions where proliferation was maximised. 

This finding supports key evidence found by Little et al. (2011), which suggested that 

AZD6244-resistant cells are able to adapt to MEK inhibition through ERK pathway 

reprogramming. It also supports the proposed existence of an optimal range of ERK 

activation that confers cell cycle entry, one which appears to be maintained with some 

extent of precision within a given cell line.  
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3.3.2. A narrow range of ERK activation is coincident with S–phase 
entry 

Several methods have been used previously to measure the relative magnitude of 

active ERK and how this relates to cellular proliferation in response to drug treatment, 

including western blot analysis of total ERK and p-ERK levels, kinase activity assays 

and population-based proliferation assays. While data derived through these 

techniques is very useful in describing drug dosage-response trends in the cell 

population, they are not able to quantify p-ERK levels within a single cell and relate 

this value to the same cell’s proliferation status. The ability to do this is important in 

validating responses to drug administration on a single cell level and ensuring that 

these trends are a true representation of the population majority and are not the sum 

of differing sub-populations. Additionally, by analysing cells that have p-ERK levels 

“maintained” by MEK inhibition we can assume with more confidence that the p-ERK 

levels detected at the time of cell fixation are those that were present when cells 

entered S-phase during the 1-hour pulse.  

By using single cell data obtained from immunoflouresence staining experiments 

detailed above, we have demonstrated the relative frequency distribution of all S-

phase positive cells in one AZD6244-dose response experiment across increasing 

levels of p-ERK intensity (Figure 3.6). This includes all cells, in all AZD6244 conditions 

(0 to 10 µM AZD6244). This frequency distribution data was generated by grouping 

whole cell p-ERK intensity values into bins of 20 grey-scales each. The number of 

cells that fell within each category that was also S-phase positive was summated and 

calculated as a percentage of all cells counted in each bin. This percentage value was 

plotted against the average p-ERK intensity value in each bin.  

 



90 
 

Figure 3.6. A narrow range of ERK activation is coincident with S–phase entry. 

Single cell HCM data showing p-ERK frequency distributions of the total S-phase 

positive parental (left) and AZD6244-resistant (right) cells counted in (A) COLO205 

and C6244-R (B) HT29 and HT6244-R and (C) HCT116 and H6244-R samples. Cells 

were maintained in increasing concentrations of AZD6244 for 48 hours prior to fixation 

and immunostaining. Data obtained from 3 fields/well, 2-4 wells (~2000 individual 

cells) per condition. 
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The single-cell data illustrated in Figure 3.6 was obtained from CRC cell lines seeded 

into one 96 well plate, with comparable densities. While there may be cell line-specific 

variations in staining quality and image analysis due to different cell morphologies, by 

exposing all cells to the same increasing AZD6244 dosage, fixing, immunostaining, 

image acquisition and analysis at the same time, we hoped to enable some 

comparison between cell samples.  

These curves generally show a modal distribution, where the majority of proliferating 

cells across all drug conditions had p-ERK levels that fall within a narrow range. This 

data suggests that both parental and AZD6244-resistant CRC cells show a similar 

range of p-ERK intensity that correlates with the highest proportion of S-phase positive 

cells, reinforcing the theory that there is a pre-existing and prevailing “sweet spot” for 

ERK activity. Parental HT29 and HCT116 curves appeared to be positively skewed, 

with the HT29 curve showing a potential “shoulder” right of the major peak (Figure 

3.6b and c). In HT29, this may indicate a smaller sub-population of cells able to 

proliferate at higher p-ERK levels. The existence of such populations would seem 

more likely in AZD6244-resistant populations that have been continuously exposed to 

AZD6244, creating a potential selection pressure. However, while HT6244-R and 

H6244-R curves were positively skewed, similar to the relative frequency distribution 

of their parental counterparts, there were no obvious signs of secondary peaks.  

In general, proliferating COLO205 and C6244-R cells appeared to tolerate higher 

levels of p-ERK over a larger range, relative to HT29, HCT116 and their derivative cell 

lines (Figure 3.6a). It is important to note however, that it is unclear whether these 

differences were biologically relevant or a result of variation in immunostaining 

capacity due to different cell-line characteristics and morphologies.  

3.3.3. MEKi removal from MEKi-resistant CRC cells causes ERK 
hyperactivation and the nuclear accumulation of ERK 

The concept of the ERK “sweet spot” becomes particularly relevant in the context of 

AZD6244-resistant cells, where removal of AZD6244 leads to ERK hyperactivation. 

This phenomenon was first demonstrated in Little et al. (2011) and was replicated in 

our data (Figure 3.5). Relative quantification of p-ERK protein abundance revealed 

that p-ERK levels were almost doubled in the absence of AZD6244 compared to their 

routine culture conditions containing 1 or 2 µM AZD6244 (Figure 3.5). Sustained 
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increases in endogenous p-ERK levels such as this are not commonly reported, 

presumably due to the robust and self-limiting nature of the ERK signalling pathway. 

These conditions could therefore serve as a unique and valuable model to investigate 

the mechanisms through which endogenous ERK hyperactivation can occur, and the 

cellular consequences that may follow.  

In order to assess the population variation of cells exposed to the addition or removal 

of AZD6244 and to replicate the trends described in Figure 3.5 on a single cell level, 

we plotted the percentage of single cells in each concentration of AZD6244 (as a 

proportion of all cells in each condition) that fell within a 10 grey-scale p-ERK intensity 

bin against the minimum value of each bin. These frequency distributions were 

generated using GraphPad Prism. Figure 3.7 illustrates that in general, each cell 

population was normally distributed within a single peak, indicating that the majority of 

p-ERK values measured in each condition fell within a small distance of the mean 

value. The absence of multiple peaks suggests that the mean p-ERK value for each 

condition did in fact reflect the average response of all cells and not an average of two 

or more sub-populations.  
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Figure 3.7. Drug-resistant CRCs shift to higher p-ERK levels following drug-

removal. Single cell data showing p-ERK frequency distributions of cells in (A) 

COLO205 and C6244-R (B) HT29 and HT6244-R and (C) HCT116 and H6244-R 

samples at each drug concentration in parental (left) and AZD6244-resistant cells 

(right). Cells were maintained in indicated concentrations of AZD6244 for 48 hours 

prior to fixation and immunostaining. Data obtained from 3 fields/well, 2-4 wells (~2000 

individual cells) per condition. 
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If the figures for parental cell lines COLO205, HT29 and HCT116 (Figure 3.7a, b and 

c) are viewed from right to left, the distributions of cells at each drug concentration 

showed a strong shift to lower p-ERK levels following AZD6244 addition. The trends 

seen in the AZD6244-resistant cell lines are markedly different, where the distribution 

of cells only shifted in AZD6244 conditions of 0.1 µM AZD6244 and higher. This clearly 

demonstrates the ability of AZD6244-resistant CRC cells to maintain higher levels of 

p-ERK in the presence of AZD6244, compared to their parental counterparts.  

If the figures for AZD6244-resistant cell lines C6244-R, HT6244-R and H6244-R are 

viewed from left to right, each cell distribution showed a strong shift to higher p-ERK 

levels following AZD6244 removal (Figure 3.7a, b and c). The maximum p-ERK levels 

reached were substantially higher than those measured for each parental counterpart 

and represented conditions of ERK hyperactivation. The distribution of AZD6244-

resistant cells under routine culture conditions (1 µM AZD6244) were comparable to 

each parental counterpart under normal culture conditions (no AZD6244). This 

paralleled results observed in the average population data (Figure 3.5) and those in 

Little et al. (2011). In both parental and AZD6244-resistant cells, the width of the 

peaks, and therefore spread of the data, tended to increase with decreasing AZD6244 

concentration and increasing p-ERK values, indicating that variability in response 

increased in these conditions. This was most pronounced in drug-resistant CRCs in 

conditions of AZD6244 below routine culture concentrations, where p-ERK levels were 

greatly enhanced.  

The analysis of the high content microscopy data obtained from AZD6244 dose-

response experiments was performed in such a way that the relative 

immunofluorescent staining intensity for p-ERK and ERK in the cytoplasm and nucleus 

were quantified as separate measures. This made it possible to assess p-ERK and 

ERK compartmentalisation in response to AZD6244 in our parental and AZD6244-

resistant cell models. Localisation of ERK is a key aspect of ERK pathway regulation 

that is not yet fully understood, specifically in the context of ERK pathway addiction 

and inhibition. Many studies have demonstrated that mitogenic activation of the ERK 

signalling pathway and subsequent nuclear accumulation of p-ERK is a prerequisite 

for cell-cycle entry in various cell lines. However, these studies tend to focus on short-
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term activation of the ERK pathway and not on tumourigenic cell lines that rely on 

consistent ERK activation.   

Using data derived from HCM imaging and analysis experiments we compared the 

ratio of nuclear to cytoplasmic ERK across increasing AZD6244 conditions in all 6 

CRC cell lines. Figure 3.8 demonstrates that removing drug from drug-resistant CRC 

cells caused an increase in the ratio of nuclear to cytoplasmic ERK, while this ratio 

remained relatively constant in parental cell lines. In this data set a ratio of 1 would 

indicate an equal amount of ERK signal in the nucleus and cytoplasm. A number 

greater than 1 indicates a higher proportion of ERK in the nucleus, while a number 

less than 1 indicates a higher proportion of ERK in the cytoplasm. In AZD6244-free 

conditions, the nuclear to cytoplasmic ratio of all 3 parental lines approached 1, 

indicating that ERK levels were relatively consistent across the cell. A similar trend 

was seen in AZD6244-resistant cells in routine culture conditions (1-2 µM AZD6244). 

However, when AZD6244 concentration was decreased in AZD6244-resistant cells, 

total ERK appeared to shift predominantly to the nucleus in a dose-responsive 

manner.  

In HT6244-R cells, the N:C ratio was significantly higher in cells cultured without 

AZD6244 than in cells cultured with 1 µM AZD6244. While the apparent increase in 

nuclear ERK in AZD6244-withdrawal conditions in C6244-R and H6244-R cells was 

not statistically significant, a trend is visible and an apparent increase in nuclear ERK 

in C6244-R, HT6244-R and H6244-R cells cultured in the absence of AZD6244 can 

be seen in representative cell images in Figure 3.5 (d-f). Interestingly, these images 

appeared to indicate that the proportion of ERK that moved into the nucleus was in 

the unphosphorylated state, as high intensity p-ERK signal appeared predominantly 

in the cytoplasm (Figure 3.5 d-f). 
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Figure 3.8. AZD6244 withdrawal from resistant lines causes nuclear 

accumulation of ERK. Quantitative HCM summary data. (A) COLO205 and C6244-

R (B) HT29 and HT6244-R and (C) HCT116 and H6244-R cells were maintained in 

indicated concentrations of AZD6244 for 48 hours prior to fixation and immunostaining. 

n=3-4 biological replicates, ± SEM. A statistically significant difference in N:C ratio 

between HT6244-R cells cultured without AZD6244 and those cultured with 1 µM 

AZD6244 was determined using an unpaired t test, where (*) denotes a p value less 

than 0.05. All assays; 3 fields/well, 2-4 wells (~2000 individual cells) per condition per 

experiment.  
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The nuclear to cytoplasmic ratios shown for p-ERK in Figure 3.8 should be interpreted 

with caution, as the signal intensity for p-ERK drops towards background levels in 

concentrations above 1 µM in parental and AZD6244-resistant CRC cells as shown in 

Figure 3.5. In addition, non-specific or low-level background signal tends to stain 

brighter in the nucleus. Under such conditions, the nuclear to cytoplasmic ratio may 

appear higher, however these values are not biologically meaningful.   

With the limitations of this data noted, it is still possible to assess the nuclear to 

cytoplasmic ratios in conditions where p-ERK signal is reliably detectable (between 0 

and 1 µM AZD6244). Interestingly, in general, all three parental cell lines appeared to 

retain more p-ERK in the nucleus than their AZD6244-resistant derivatives in routine 

1 or 2 µM AZD6244 conditions as well as in drug withdrawal conditions (Figure 3.8). 

The most consistent trend seen in AZD6244-resistant CRC cells was that relative to 

the distribution of p-ERK in maintenance conditions (either more or less equally 

present in the nucleus or cytoplasm or slightly more present in the nucleus than 

cytoplasm) p-ERK appeared to reside more predominantly in the cytoplasm than the 

nucleus when AZD6244 is removed from these cells (Figure 3.8) As mentioned, this 

was apparent in representative images illustrated in Figure 3.5 (d-f).  

The results obtained thus far together with work performed by other groups have 

shown marked changes in the phosphorylation and location of ERK in response to the 

administration or withdrawal of AZD6244 in parental and drug-resistant CRC cells 

(Smith et al., 2007; Yeh et al., 2007; Balmanno and Cook, 2009; Little et al., 2011). 

Most importantly, these experiments suggested that AZD6244 withdrawal and ERK 

hyperactivation in resistant CRC cells was consistent with the nuclear accumulation of 

ERK, which appeared to be largely unphosphorylated.  As MKP proteins are key 

regulators of ERK activation and localisation, we went on to assess the relative 

abundance of these phosphatases in parental and drug-resistant CRC cell lines 

exposed to similar AZD6244 regimes.  
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3.3.4. DUSP4, DUSP5 and DUSP6 expression increases in a dose-
responsive manner following MEKi removal from MEKi-resistant 
CRC lines 

Dual-specificity MAPK phosphatases (MKPs) are a family of inducible signalling 

proteins that are solely dedicated to the regulation of their target MAP kinases. While 

ten catalytically active DUSPs have been identified in mammalian cells, we chose to 

focus on 3 nuclear  MKP proteins, DUSP2, DUSP4 and DUSP5 as well as DUSP6, 

which is located in the cytoplasm. A predominant role of the nuclear MKP proteins, 

specifically DUSP5 which solely targets ERK, is to dephosphorylate and anchor ERK 

in the nucleus. We therefore reasoned that nuclear MKPs may play a role in the 

accumulation of dephosphorylated ERK that was coincident with AZD6244 removal in 

CRC cells (Figure 3.8). We also assessed DUSP6, which like DUSP5, specifically 

targets ERK. By comparing the expression of DUSP5 and DUSP6 we hoped to provide 

some insight into differing roles of nuclear and cytoplasmic MKPs in these cell models.   

To begin investigating the role of transcriptionally-induced MKPs in the signalling 

responses of parental and drug-resistant CRC lines, relative DUSP2, DUSP4, DUSP5 

and DUSP6 mRNA levels were assessed using quantitative RT-PCR in the absence 

or presence of AZD6244. The most prominent result visible in this data was a relative 

increase in DUSP5 mRNA in all three drug-resistant cell lines cultured in the absence 

of AZD6244, compared to the DUSP5 levels detected in samples from drug-resistant 

and parental cell lines cultured in maintenance conditions (Figure 3.9, a, b and c). A 

similar trend was seen for DUSP4 in AZD6244-resistant HT6244-R and H6244-R, 

where levels of DUSP4 mRNA increased upon AZD6244 removal (Figure 3.9b and c). 

While this difference in DUSP4 mRNA levels was not statistically significant in HCT116 

and H6244-R cells (Figure 3.9c), a similar trend was apparent. 
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Figure 3.9. Removal of AZD6244 from AZD6244–resistant CRC cells leads to 

increased DUSP4, 5 and 6 mRNA expression. Relative DUSP mRNA expression 

levels in (A) COLO205 and C6244-R (B) HT29 and HT6244-R and (C) HCT116 and 

H6244-R cells in the presence of 0, 1 (C6244-R AND HT6244-R) or 2 µM (H6244-R) 

AZD6244. Cells were maintained with or without AZD6244 for 48 hours prior to RNA 

extraction. n=3-4 biological replicates ± SEM. Statistical analysis performed using a 

One-way ANOVA and a post-hoc Tukey analysis, where (*) denotes a p-value less 

than 0.05, (**) denotes a p-value less than 0.01 and (****) denotes a p-value less than 

0.0001. 

Overall, no statistically significant differences in mRNA expression of DUSP2 or 

DUSP6 were detected across parental and AZD6244-resistant CRC lines in response 

to AZD6244. This is perhaps not surprising for DUSP2, which has primarily been 

shown to be expressed in hematopoietic tissue (Seternes et al., 2019). However, an 

interesting trend was seen in the expression of DUSP6 in HCT116 and H6244-R cells. 

In their respective maintenance conditions, DUSP6 expression was decreased in 

H6244-R cells compared to HCT116 cells, however, when AZD6244 was removed 

from H6244-R cells, DUSP6 levels were increased back to the levels seen in parental 

HCT116 cells.  

In the interpretation of these results, it is important to highlight that the Cq method 

of data normalisation ensures that all Cq values detected are normalised to the those 

for the reference gene as well as to those in a calibrator sample within each 

experiment. Therefore, the resulting ratios calculated did not provide quantification 

data for the abundance of each transcript relative to any other transcript, but only a 

ratio of the transcript abundance in one sample compared to the calibrator sample. 

This means that a relative increase in mRNA levels in a sample does not necessarily 

reflect an abundance of transcript in this sample, as the levels of transcript in the 

calibrator could be very low.  

MKP protein induction is predominantly controlled through de novo mRNA 

transcription, thus increases in mRNA levels are generally indicative of increases in 

protein abundance (Huang and Tan, 2012). However, regulation of MKP protein 

stability can occur at the post-translational level and may result in discrepancies in 

mRNA and protein abundance (Caunt and Keyse, 2013). In order to directly assess 

levels of MKP protein, western blot analysis of whole cell lysates harvested after a 48-
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hour incubation with different AZD6244 concentrations were performed (Figure 3.10). 

These immunoblots revealed similar trends in MKP protein abundance to those seen 

for MKP mRNA levels, with some exceptions. 

In HT6244-R and H6244-R cells, DUSP4 and DUSP5 protein levels increased in a 

dose-responsive manner to the withdrawal of AZD6244 (Figure 3.10b). In C6244-R 

cells, DUSP4 levels also appeared to increase with decreasing AZD6244 

concentration, while DUSP5 protein was barely detectable in either COLO205 or 

C6244-R cells (Figure 3.10a). This may at first appear contrary to the mRNA results 

seen in COLO205 and C6244-R cells, however as mentioned, these results indicated 

that DUSP5 transcript levels were higher in C6244-R cells cultured in the absence of 

AZD6244 than those in C6244-R and COLO205 cells cultured in their respective 

maintenance conditions and not that they were generally abundant in these samples. 

These results were consistent with western blots performed by Andrew Kidger, 

showing an absence of DUSP5 protein expression in parental COLO205 cells (Figure 

3.4). 
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Figure 3.10. Removal of AZD6244 from AZD6244-resistant CRC cells causes an 

increase in DUSP4, 5 and 6 protein expression. (A) COLO205 and C6244-R (B) 

HT29 and HT6244-R and (C) HCT116 and H6244-R cells were maintained with or 

without AZD6244 for 48 hours prior to cell lysis. Cell lysates were subject to SDS-

PAGE and immunoblot. Images are representative of results from 3 independent 

experimental repeats.  

Similar to mRNA results, DUSP4 and DUSP5 proteins were most highly expressed in 

AZD6244-resistent cells in the absence of drug and lower levels of DUSP4 and 

DUSP5 were seen in parental cells in 0 µM AZD6244 and their AZD6244-resistant 

derivatives in either 1 or 2 µM AZD6244 (with the exception of DUSP5 in COLO205 

and C6244-R cells). This was coincident with a similar expression pattern seen for 

p-ERK in these conditions (Figure 3.10), suggesting a positive correlation between the 

expression of p-ERK and DUSP4 and 5 in response to AZD6244.  

mRNA analysis did not reveal significant differences between DUSP6 expression in 

AZD6244-resistant cell lines cultured in AZD6244 compared to those cultured without 

AZD6244, however western blot images in Figure 3.10, b and c indicated that DUSP6 

levels were increased in drug withdrawal conditions in HT6244-R and H6244-R cells 

relative to maintenance conditions. Interestingly, like in mRNA results, DUSP6 levels 

in untreated HCT116 cells appeared to be higher than in any other condition and 

DUSP6 levels in H6244-R cells cultured in maintenance conditions were reduced 

compared to their parental counterparts. Upon AZD6244 removal, these levels 

increased and were more similar to those seen in untreated HCT116 cells (Figure 

3.10c). Similarly, high levels of basal DUSP6 expression were also evident in 

COLO205 cells in maintenance conditions compared to all other COLO205 and 

C6244-R samples. Unlike results seen in HT6244-R and H6244-R samples, it was 

unclear whether DUSP6 levels were increased in response to AZD6244 removal in 

C6244-R cells in these experiments (Figure 3.10a). 
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This data has clearly demonstrated that in AZD6244-resistant CRC cell lines, MKP 

levels become changed in response to AZD6244 removal, such that DUSP4, DUSP5 

and DUSP6 are strongly induced by ERK hyperactivation. These findings are 

significant in establishing a correlation between strong ERK activation and increased 

expression of ERK-induced negative feedback regulators in the context of 

oncogenesis. It also indicates that MKPs may play an important role in restraining 

hyperactive ERK in the development of drug-resistance in these cell lines.  

3.3.5. The induction of different MKPs upon MEKi removal is 
temporally distinct and cell-line dependent  

After assessing whether there was any correlation between MKP and p-ERK levels 

and AZD6244 administration after a 48-hour incubation period, we went on to 

investigate shorter term signalling changes that may occur in AZD6244-resistant CRC 

cells directly after drug withdrawal. In these western blot experiments, AZD6244-

resistant CRC cells routinely cultured in 1 µM AZD6244 (C6244-R and HT6244-R) or 

2 µM AZD6244 (H6244-R) were incubated in the absence of AZD6244 according to a 

48-hour time course protocol. These results revealed that phosphorylation of ERK was 

strongly induced within 30 minutes of AZD6244 withdrawal, a response that was 

consistent across all three AZD6244-resistant cell lines (Figure 3.11). 
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Figure 3.11. The induction of DUSP4, 5 and 6 protein expression in response to 

AZD6244 removal follows temporal and cell-specific patterns. (A) COLO205 and 

C6244-R (B) HT29 and HT6244-R and (C) HCT116 and H6244-R cells were 

maintained with or without AZD6244 for 48 hours prior to cell lysis. Cell lysates were 

subject to SDS-PAGE and immunoblot. Images are representative of results from 3 

independent experimental repeats.  

Within 30 minutes to an hour of drug withdrawal, DUSP4, DUSP5 and DUSP6 proteins 

appeared to undergo a shift to a higher molecular weight form (Figure 3.11b). In 

C6244-R cells this shift was followed by an increase in DUSP4 and DUSP6 protein 

abundance, which for DUSP4, was then sustained up to 48 hours (Figure 3.11a). 

Before DUSP4 expression peaked between 2 and 16 hours after AZD6244 removal in 

C6244-R cells, DUSP4 protein appeared to return to a lower molecular weight form. 

As mentioned before, DUSP6 protein was present in relatively high abundance in 

parental COLO205 cells as well as C6244-R cells in 1 µM AZD6244 (Figure 3.10 and 

Figure 3.11). These protein levels appeared to decrease within 1 hour of AZD6244 

removal (coincident with a molecular weight shift) and then peaked at 2 hours post-

AZD6244 removal. This was followed by a period within which DUSP6 abundance 

appeared to fluctuate (Figure 3.11a). While there was some indication that DUSP5 

was induced in C6244-R cells, its expression was substantially lower than in HT6244-

R and H6244-R cells, where equal amounts of total protein were loaded (Figure 3.11).  

The molecular weight shifts in DUSP4, DUSP5 and DUSP6 proteins shifts are likely 

to reflect post-translational modifications of the MKP proteins, such as 

phosphorylation. The phosphorylation of DUSP6 by ERK has been shown to promote 

its ubiquitination and degradation (Marchetti et al., 2005). This is consistent with our 

findings that generally showed a decrease in DUSP6 expression at higher molecular 

weight forms. In light of strong ERK activation in these conditions, these molecular 

weight shifts and fluctuations in DUSP6 protein levels may be indicative of ERK-

mediated DUSP6 turnover. In contrast, phosphorylation of DUSP4 by ERK has been 

shown to increase its stability, while phosphorylation of DUSP5 does not appear to 

affect its half-life (Brondello et al., 1999; Cagnol and Rivard, 2013; Kucharska et al., 

2009b). Interestingly, our results showed that like DUSP6, DUSP4 and DUSP5 were 

most highly expressed in their lower molecular weight form. 
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Patterns of DUSP4, DUSP5 and DUSP6 expression in HT6244-R cells in response to 

AZD6244 removal (Figure 3.11b) were similar to those seen in C6244-R cells (Figure 

3.11a), with the exceptions that DUSP5 induction was more prominent and DUSP6 

expression seemed to be steady between 16 and 48 hours after treatment. DUSP4 

and 6 protein expression in H6244-R cells followed similar response profiles to those 

seen in C6244-R and HT6244-R cells (Figure 3.11). Notably, the expression of DUSP5 

in these cells was particularly robust, which suggests that DUSP5 may play an 

important role in the response of H6244-R cells to ERK pathway inhibition and release. 

While p-ERK levels were increased within 30 minutes of drug withdrawal in all 

AZD6244-resistant cell lines, the time of maximal induction of DUSP4, DUSP5 and 

DUSP6 differed between different MKPs and across the different cell lines. Once 

maximally induced, the expression of DUSP4 and DUSP5 was sustained and 

remained high at 48 hours post-AZD6244 withdrawal in all drug-resistant lines. In 

contrast, the levels of DUSP6 appeared to fluctuate over this time period. 

Taken together, mRNA and protein analyses assessing changes in MKP expression 

in parental and AZD6244-resistant CRC lines have shown that the removal of 

AZD6244 from drug-resistant CRC cells induced the expression of DUSP4, DUSP5 

and DUSP6, with the exception of DUSP5 in C6244-R cells. The expression of DUSP4 

and DUSP5 in both parental COLO205, HT29, HCT116 cells and their AZD6244-

resistant derivatives followed a similar expression pattern to p-ERK, suggesting a 

positive correlation between ERK activation and DUSP4 and DUSP5 induction. While 

DUSP6 expression was also increased in drug-resistant CRC cells in the absence of 

AZD6244 compared to its expression in C6244-R, HT6244-R and H6244-R cells 

cultured in maintenance conditions, these relatively higher levels were similar to those 

seen in untreated parental CRC cells, unlike coincident p-ERK levels.  
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3.4. Discussion 

Using a mixture of conventional biochemical approaches and high content microscopy, 

we have compared changes in drug efficacy and signalling/cell fate response in mutant 

BRAF- and KRAS-driven colorectal cancer (CRC) cell lines and derivatives that have 

evolved resistance to the MEK inhibitor (MEKi), AZD6244, by KRAS or BRAF 

oncogene amplification. Our data firstly confirm quantitatively and on a single-cell 

level, the observation that CRC cells become MEKi-resistant by restoring ERK activity 

to levels that drive proliferation. We further show that removal of MEKi from drug-

resistant CRC cells causes ERK hyperactivation, and the nuclear accumulation of 

ERK, leading to cell cycle arrest in BRAF- but not KRAS-driven cells. These changes 

are coincident with a large increase in transcription and expression of DUSP4, DUSP5 

and DUSP6, dual specificity/MAPK phosphatases that dephosphorylate and anchor 

ERK in the nucleus and cytoplasm.  

Immunofluorescent-staining and high content microscopy of colorectal cancer cells 

lines HCT116, HT29 and COLO205 and their drug resistant derivatives revealed that 

proliferation of drug-resistant CRCs in the presence of AZD6244 was maintained 

through sustained activation of ERK (Figure 3.5) and these levels of p-ERK were 

consistent with levels found in parental cells maintained in drug-free medium. This 

data provides quantitative evidence to support the theory proposed by Little et al. 

(2011) that resistant cells compensate for inhibited MEK by restoring signalling output 

through the ERK pathway, such that p-ERK levels remain in a range consistent with 

proliferation. Single cell distribution curves from our AZD6244 dose-response 

experiments further illustrated that the majority of proliferating cells in each population 

expressed levels of p-ERK that fell within a relatively narrow range (Figure 3.6). This 

and other work alludes to a “sweet spot” of ERK activity that is required for cell cycle 

entry (Woods et al., 1997; Sewing et al., 1997; Das Thakur et al., 2013). While single 

cell data was able to show the distribution of all proliferating parental and AZD6244-

resistant cells relative to their respective p-ERK levels, quantification of p-ERK in these 

experiments was purely relative, and did not provide any information on the absolute 

levels of p-ERK. Work following this performed by Sale et al. (2019) was able to 

provide more definitive insight into the optimal range of ERK activation required for 

proliferation. In a series of mass spectometery analyses Sale and colleagues 

assessed the absolute levels of total and phosphorylated ERK present in proliferating 
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parental and AZD6244-resistant CRC cells and revealed that just 1-5% of total ERK 

was active in all cell lines, and was sufficient for continued cell division. These results 

were unexpected; not only did all CRC cell lines evaluated show very similar 

stoichiometry for active ERK, but this analysis revealed a substantial spare capacity 

for ERK activation.  

Interestingly, while amplified KRAS or BRAF was likely established to counteract MEK 

inhibition in AZD6244-resistant C6244-R and H6244-R cells, microarray data from cell 

samples revealed coincident increases in downstream negative regulators of ERK 

signalling such as SPRY2 and DUSP4 and DUSP6 phosphatases relative to parental 

COLO205 and HCT116 cells (Sale et al., 2019). This suggests that despite 

considerable MEK inhibition, signalling downstream of amplified BRAF/KRAS needs 

to be further restrained by negative feedback regulation to elicit ERK levels coincident 

with cell cycle entry. The importance of negative feedback in this context is further 

emphasised by the discovery of the substantial spare capacity of ERK which is likely 

maintained by negative ERK regulators such as the DUSP/MKPs. With this 

understanding, it follows that large increases in active ERK, such as those seen in 

AZD6244-resistant CRC cells incubated without AZD6244 may induce concomitant 

increases in MKP expression.  

Results from mRNA and protein quantification analyses were consistent with this 

hypothesis and demonstrated the expression of DUSP4 and DUSP6 in parental 

COLO205 and HT29 cells and their AZD6244-resistant derivatives and DUSP4, 

DUSP5 and DUSP6 in both HCT116 and H6244-R cells in maintenance conditions. 

When AZD6244 was removed from AZD6244-resistant cells, ERK hyperactivation was 

coincident with markedly increased levels of DUSP4 and DUSP5 in HT6244-R and 

H6244-R cells and DUSP4 in C6244-R cells. While DUSP6 was robustly expressed in 

AZD6244-withdrawal conditions across all resistant cells, these levels were not 

necessarily higher than those in parental conditions, and therefore were not directly 

correlated to the expression patterns of p-ERK in these conditions. In contrast, levels 

of DUSP4 and DUSP5 appeared to mirror those of p-ERK in the same conditions.  
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Concomitant with ERK hyperactivation and DUSP4 and DUSP5 induction in AZD6244-

resistant cells deprived of AZD6244, was what appeared to be the nuclear 

accumulation of unphosphorylated ERK. This was reminiscent of results seen in 

experiments with intestinal epithelial crypt (IEC) cells where the ectopic expression of 

KRASG12V and BRAFV600E led to sustained ERK activation and an accumulation of ERK 

in the nucleus (Cagnol and Rivard, 2013). Interestingly, high levels of p-ERK appeared 

to be localised primarily in the cytoplasm of these cells and this phenotype was 

associated with increased mRNA expression of the nuclear MKPs DUSP4 and 

DUSP5. When transformed IEC cells were treated with vanadate, a potent tyrosine 

phosphatase inhibitor, levels of nuclear p-ERK were increased (Cagnol and Rivard, 

2013). This work went on to demonstrate that heightened DUSP4 expression and 

predominantly cytoplasmic expression patterns of p-ERK were evident in 19 CRC cell 

lines. In each case, nuclear p-ERK levels could be increased with vanadate treatment. 

The exclusion of DUSP5 in further investigations was due to the absence of a reliable 

DUSP5 antibody at this time, rather than its inferior relevance. While these 

experiments did not account for the relative contribution of other ERK phosphatases 

or suggest what the influence of the cytoplasmic ERK-specific MKP might be, it does 

clearly demonstrate a potential role for nuclear MKPs DUSP4 and DUSP5 in sustained 

ERK signalling in colorectal cells (Cagnol and Rivard, 2013).  

The reason for the potentially increased biological relevance of MKP signalling in these 

contexts may be due to changes in MKP function in the presence of prevailing ERK 

activation. In transient ERK activations, signalling is commonly attenuated by 

immediate forms of negative regulation, such as the inhibitory effects of active ERK 

on its upstream activators. In these scenarios, feedback by MKPs is limited to later 

phases of the stimulus. When consistent oscillations of ERK activation continue to 

induce MKP expression, this may simulate a kind of signalling “memory” where MKPs 

that are still present from previous inductions can exert regulatory functions at any 

stage of consecutive activation cycles. In this way, inducible MKPs such as DUSP4 

and DUSP5, may exert more immediate and profound control of ERK in scenarios 

where ERK activation is sustained.  
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In saying this, the potential relevance of different MKPs appears to be highly variable 

across different CRC cell lines. Not only do different cell lines express different DUSPs 

at varying levels, but the temporal induction of MKPs in response to ERK 

hyperactivation appears to be cell line specific too. This is likely to reflect substantial 

differences in the genotypic background of these lines that would have inevitably 

influenced the specific adaptions that occur during oncogenesis and the evolution of 

drug resistance, including the relative contributions of different MKPs.  

In summary, these experiments have illustrated a correlative relationship between 

ERK hyperactivation and MKP expression in three AZD6244-resistant CRC cells. This 

provides strong preliminary evidence of a role of MKPs in the development of 

resistance to ERK pathway inhibition, where they likely function to restrain rampant 

ERK activation induced by upstream amplification of mutant BRAF or KRAS.  

3.5. Limitations and future work 

As previously discussed, our investigations into the correlation between p-ERK 

expression and proliferative status in single cell data were limited by the relative nature 

of immunofluorescent protein quantification as well as the innate inability to accurately 

measure cellular p-ERK levels at the time of cell cycle entry. Later work by Sale et al. 

(2019) used mass spectrometry to gather absolute quantification data that revealed 

the proportion of active ERK in the total ERK pool of proliferating cells, which provided 

valuable insight into the dynamics of the ERK “sweet spot”. It will be interesting to see 

if this work is replicated in other cell lines, and if the biological function of ERKs 

substantial “spare capacity” can be revealed.  

Additionally, initial HCM experiments designed to investigate the dynamics of ERK 

phosphorylation and localisation in response to AZD6244 administration also aimed 

to assess proliferation, and so AZD6244 regimes typically lasted for 24 to 48 hours. 

While this provided valuable data illustrating sustained effects on the magnitude of 

p-ERK in relation to proliferation, it did not reveal any information on the more 

immediate spatiotemporal regulation of ERK. Time course experiments completed for 

western blot analysis revealed that p-ERK was induced within 30 minutes of AZD6244 

withdrawal. HCM experiments assessing the intensity and location of p-ERK and ERK 
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signal within this initial response period could provide interesting insights into the 

precise subcellular mechanisms of ERK hyperactivation. 

Finally, mRNA and protein expression analyses were able to show the robust induction 

of DUSP4, DUSP5 and DUSP6 in response to ERK hyperactivation, which provided 

important preliminary insights into the influence these proteins may have on oncogenic 

ERK signalling. However, through these analyses, we were not able to compare the 

levels of different MKPs to one another, or ascertain the relative abundance of these 

transcripts or proteins in each sample. In future, a more global and informative 

assessment of feedback at play in these cell models could be attained through the 

assessment of mRNA copy number variations in a high throughput RNA screen. Not 

only could this validate our current data, but it could provide further insights into kinome 

and phosphatome reprogramming that occurs in drug-resistant CRC cells cultured with 

and without MEK inhibition.  
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Chapter 4.  DUSP5 loss in MEKi-resistant 
HCT116 cells enhances ERK hyperactivation 
and the reduction of E-cadherin expression 
upon AZD6244 withdrawal   

4.1. Introduction  

The analysis of MKP expression in parental CRC cell lines and their AZD6244-

resistant derivatives has revealed cell-line specific nuances in DUSP4, DUSP5 and 

DUSP6 mRNA and protein levels. This is reminiscent of conflicting accounts of the 

potential tumour suppressive or oncogenic roles of various MKPs in different cancer 

models and likely reflects a dependence of MKP influence on the specific context it 

arises in. Even within a single cancer model, the impact of negative MKP-directed ERK 

regulation could differ before and after tumour development and again before and after 

the development of drug-resistance. This will depend on the signalling changes that 

are necessary to maintain the narrow “proliferative window” of ERK activation in each 

context. Most strikingly, our work demonstrated that when AZD6244 is withdrawn from 

resistant CRC cells and ERK is hyperactivated, a robust and sustained induction of 

DUSP4, DUSP5 and DUSP6 is evident. This observation implies that these ERK-

targeting MKPs may act to restrain active ERK levels in these conditions. This 

hypothesis is supported by the observation that the relative expression profiles of the 

nuclear MKPs DUSP4 and DUSP5 correlated to ERK hyperactivation and the 

accumulation of dephosphorylated ERK in the nucleus, findings that were consistent 

with a previous study in colorectal cells (Cagnol and Rivard, 2013). While it would be 

interesting to explore the relevant impact of both nuclear MKPs in this model, the 

promiscuity of DUSP4 in its ability to inactivate ERK, JNK and p38 MAPKs would add 

untold complexity to the interpretation of any subsequent results. Particularly in the 

context of the anti-proliferative effects seen in AZD6244-deprived C6244-R and 

HT6244-R cells, where changes in ERK, JNK and p38 MAPK levels could have 

opposing effects.  
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In C6244-R cells, removal of AZD6244 leads to hyperactivation of ERK and 

senescence (Sale et al., 2019). A similar phenotype was demonstrated in a breast 

cancer cell line model, where exposure to the phorbol 12-myristate 13-acetate (PMA) 

led to increased active ERK levels and growth arrest (Nunes-Xavier et al., 2010). This 

work went on to show that coincident with this phenotype, was a substantial 

upregulation of DUSP5 and DUSP6 expression and silencing of either MKP led to the 

acceleration of growth arrest. Interestingly, when DUSP5 or DUSP6 was ectopically 

expressed in PMA-treated breast cancer lines, ERK levels were reduced and the 

proliferative capacity of these cells appeared to be reinstated (Nunes-Xavier et al., 

2010). Additionally, these cells appeared to adopt a migratory phenotype. While the 

ectopic expression of MKPs has demonstrated similar results in other oncogenic 

models, it is important to note that the endogenous link between active ERK and MKP 

expression is seldom recapitulated in these studies which reduces the biological 

relevance of their use. Despite this caveat, these results suggested that similar to 

DUSP4 in oncogene-transformed IEC cells, DUSP5 and DUSP6 may be vital negative 

regulators of sustained ERK activity in breast cancer models.  

Like breast cancer cell lines in the Nunes-Xavier et al. (2010) PMA model, changes in 

p-ERK levels in AZD6244-resistant H6244-R cells leads to increased cell mobility 

(Sale et al., 2019). While this was induced by a reduction of p-ERK in breast cancer 

lines, it was coincident with increased ERK activation in H6244-R cells in AZD6244-

withdrawal conditions and correlated with an epithelial-to-mesenchymal transition 

(EMT). As mentioned before, ERK hyperactivation in these conditions was coincident 

with an accumulation of dephosphorylated ERK in the nucleus and marked increases 

in DUSP4, DUSP5 and DUSP6 expression. Interestingly, basal levels of DUSP5 were 

relatively high in HCT116 as well as H6244-R cells compared to CRC cell lines.  

Following these results and findings from previous studies, we aimed to evaluate the 

effects of DUSP5 loss in HCT116 and H6244-R cells and whether DUSP5 ablation 

was able to influence the signalling and phenotypic outcomes of AZD6244 

administration.  
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4.2. Work preceding this thesis 

4.2.1. AZD6244 withdrawal from resistant cells with KRASG13D 
amplification induces long-term hyperactivation of ERK  

Following work published by the Cook laboratory in 2011 detailing the resistance 

mechanisms of four colorectal cancer cell lines to the MEK inhibitor AZD6244, Sale et 

al. (2019) went on to further explore the effects seen in AZD6244-resistant cells when 

AZD6244 was removed. This work revealed that hyperactivation of ERK induced by 

drug withdrawal demonstrated in Little et al. (2011) as well as this thesis (Figure 3.5), 

is maintained for 30 weeks in H6244-R cell lines and single cell clones, with 30 weeks 

being the maximum length of study performed (Figure 4.1a). This is coincident with 

sustained KRAS amplification as well as hyperactivation of PKB, the downstream 

effector of the PI3K signalling pathway. When exposed to AZD6244 after 30 weeks, 

H6244-R cells were not resensitised to the anti-proliferative effects of AZD6244 and 

showed similar proliferation profiles to that of H6244-R cells maintained in AZD6244 

in dose response experiments (Figure 4.1b). This is contrary to the effects of 

prolonged drug withdrawal seen in BRAFV600E-driven C6244-R andHT6244-R cells, 

where resistance to AZD6244 is reversed and a reduction in amplified BRAF leads to 

reduced levels of p-ERK (Sale et al., 2019).  

In C6244-R and HT6244-R cells, AZD6244 withdrawal leads to cell-cycle arrest or cell 

death, demonstrating the anti-proliferative effects of ERK hyperactivation in these cells 

(Sale et al., 2019). In contrast, the hyperactivation of ERK and PKB upon AZD6244 

withdrawal in H6244-R cells does not appear to have an effect on proliferation or cell 

survival (Figure 4.1c) when compared to parental HCT116 cells or H6244-R cells in 

the presence of drug. H6244-R cultured in the absence of AZD6244 for 9 to 12 days 

show similar cell numbers (Figure 4.1c) and cell cycle profiles (Figure 4.1d) to those 

cultured in AZD6244. Interestingly, similar results were observed in the KRASG13D-

driven cell line LOVO. While the genetic mechanisms of amplified ERK signalling in 

AZD6244-resistant LOVO cells differs to that of H6244-R cells, similar increases in 

p-ERK are seen upon drug withdrawal, along with no quantifiable deficit in 

proliferation. While some AZD6244-resistant LOVO clones had partial reversion to 

AZD6244 sensitivity after prolonged withdrawal, others remained refractory to the anti-

proliferative effects of AZD6244 (Sale et al., 2019).  
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Figure 4.1. Acquired MEKi resistance driven by KRASG13D amplification is not 

reversible. A) Following 30 weeks culture in the presence (+) or absence (HCT116, 

(−)) of 2 μM AZD6244, cells were  incubated in selumetinib-free medium for 24 hours 

and lysates were western blotted with the indicated antibodies. H6244-R C1 and C2 

are single-cell clone derivative cell lines of H6244-R. This figure was adapted from 

Sale et al. (2019) with permission from Nature communications. 

A 
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Figure 4.1 continued. B) Following 30 weeks culture in the presence (+) or absence 

(HCT116, (−)) of 2 μM AZD6244, cells were treated as indicated with AZD6244 for 24 

hours, and DNA synthesis assayed by [3H]thymidine incorporation. C) HCT116 and 

H6244-R cells were treated with either 2 μM selumetinib (H6244-R+ Sel) or DMSO 

only (HCT116, H6244-R − Sel) and cell numbers counted over 9 days. Results are 

mean ± SD of cell culture triplicates, representative of three independent experiments. 

D) HCT116 and H6244-R cells were treated with either 2 μM selumetinib (H6244-R+ 

Sel) or DMSO only (HCT116, H6244-R − Sel) for the indicated times. Cell cycle 

distribution was determined by flow cytometry. This figure was adapted from Sale et 

al. (2019) with permission from Nature communications. 
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4.2.2. AZD6244 withdrawal from H6244-R cells promotes an ERK-
dependent epithelial-to-mesenchymal transition 

Proliferation assays investigating the phenotypic effects of AZD6244 removal from 

H6244-R cells did not reveal any anti-proliferative effects, however, upon visual 

inspection of H6244-R cells in AZD6244-free conditions, striking changes to the 

morphology of these cells were observed (Sale et al., 2019). HCT116 cells and H6244-

R cells cultured in routine conditions grow in discrete patches with well-defined cell to 

cell contacts (Figure 4.2a). Confocal microscopy and immunofluorescent protein 

staining show distinct patterns of E-cadherin expression along the periphery of these 

cells, an epithelial-associated cell-cell adhesion molecule (Figure 4.2b). In contrast, 

H6244-R cells grown in the absence of AZD6244 showed a spindle-shaped 

morphology and reduced cell-cell contacts (Figure 4.2a). These cells also showed 

limited E-cadherin staining and the appearance of Vimentin protein inclusions (Figure 

4.2b), both indications of an epithelial-to-mesenchymal (EMT) transition.    
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Figure 4.2. MEKi withdrawal from cells with KRASG13D amplification/upregulation 

induces a ZEB1-dependent EMT. A) HCT116 and H6244-R cells were treated with 

2 μM selumetinib (H6244-R+ Sel) or DMSO only (HCT116, H6244-R − Sel) and 

imaged by brightfield phase contrast microscopy after 9 days. Scale bars indicate 100 

µm. B) HCT116 and H6244-R cells were treated with 2 μM selumetinib (H6244-R+ 

Sel) or DMSO only (HCT116, H6244-R − Sel) for 9 days and stained for CDH1 (red) 

or VIM (green) and nuclei (blue). Scale bars indicate 50 µm (upper panels) and 10 µm 

(lower panels). C) HCT116 and H6244-R cells were treated with 2 μM selumetinib ( + 

Sel) or DMSO only (HCT116, − Sel) for the indicated times. This figure was adapted 

from Sale et al. (2019) with permission from Nature communications. 
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RT-PCR and western blotting revealed the upregulation of other mesenchymal 

markers in AZD6244-deprived H6244-R cells, including SNAI2 and ZEB1 (Figure 

4.2c). siRNA- knockdown of ZEB1 in these cells reversed E-cadherin loss, indicating 

that the EMT observed upon drug withdrawal may be ZEB1-dependent. ERK has been 

shown to induce transcription of ZEB1 mRNA through its upregulation and stabilisation 

of FRA1 (Shin et al., 2010). It has also been shown to repress E-cadherin expression 

by promoting the interaction of ZEB1 and the CtBP co-repressor complex (Ichikawa et 

al., 2015). Together these provide a possible mechanism through which hyperactive 

ERK may promote EMT in H6244-R cells. Indeed, further experiments by Sale et al. 

(2019) demonstrated that administration of the ERK inhibitor SCH772984 and 

successful p-ERK reduction was able to reverse the upregulation of ZEB1 and SNAI2 

and the loss of E-cadherin expression. Like KRAS-driven H6244-R cells, E-cadherin 

loss, upregulation of mesenchymal markers and a ZEB1-dependent EMT were found 

in AZD6244-resistant LOVO cells undergoing drug withdrawal. Similarly, ERK 

inhibition by SCH772984 was able to reverse this phenotype. 

These results give an indication of the consequences of drug-cessation in BRAF- and 

KRAS-driven colorectal cells and illustrate the heterogenic response of genetically 

distinct cancer lines to changes and adaptations in ERK signalling. This work also 

emphasises the potential influence regulators of ERK may have on signalling 

adaptions that occur in response to chemotherapeutic inhibitors. Indeed, this study as 

well as others preceding it demonstrate that the tumour suppressive or oncogenic 

potential of negative regulators of ERK, such as the MKP proteins, may depend largely 

on the genetic landscape within which tumourigenesis has developed. (Rushworth et 

al., 2014; Kidger et al., 2017; Sale et al., 2019). The AZD6244-resistant CRC models 

provide a unique opportunity to investigate the role of the MKPs in these differing 

oncogenic contexts, where the inhibition or indeed hyperactivation of ERK leads to 

distinct cell fates.  
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4.3. Results 

4.3.1. Optimising DUSP5 knockdown in HCT116 and H6244-R cells 

Analysis of DUSP mRNA and protein levels in AZD6244-resistant CRC lines identified 

DUSP4, DUSP5 and DUSP6 as being prominently expressed in response to AZD6244 

withdrawal in HT6244 and H6244-R cell lines, indicating that these MAPK 

phosphatases may contribute to the signalling reprogramming that occurs during drug 

administration and cessation. Work performed by Sale et al. (2019) illustrated severe 

and irreversible effects of ERK hyperactivation induced by AZD6244 withdrawal in 

these cells, which emphasises the potential importance of negative regulators of ERK, 

such as the DUSPs, in this context. To further explore the role of DUSP proteins in 

MEKi-resistant CRC cells we sought to develop a versatile and efficient strategy for 

DUSP knockdown that could be used in all three cell lines - COLO205, HT29 and 

HCT116. As COLO205 and HT29 cells were not amenable to lipid-based transfection, 

it would be necessary to explore other options.  

Recombinant adenovirus vectors are able to target a wide range of host cells (both 

replicative and non-replicative) and provide a method of highly efficient and 

reproducible gene delivery. Once established, adenovirus vectors can be amplified 

and reused at low cost, without the need for expensive consumable reagents. They 

also offer a flexible gene expression system where similar constructs could be used 

for both gene silencing and re-expression. For these reasons we aimed to develop 

shRNA adenovirus vectors that could be used to knockdown DUSP proteins in all three 

target cell lines. We began by targeting DUSP5, the MAPK phosphatase that showed 

the most pronounced protein induction upon AZD6244 withdrawal in HT6244-R and 

H6244-R cells. For optimisation of DUSP5 knockdown, we began work in HCT116 

cells. These cells showed high basal levels of DUSP5 which would aid the 

interpretation of initial DUSP5 knockdown assessment. Additionally, they are 

amenable to lipid-transfection, which would allow for transfection and assessment of 

DUSP5-targeting shRNA constructs prior to the establishment of adenoviral vectors. 

Most importantly, AZD6244-resistant H6244-R cells showed robust DUSP5 induction 

in response to AZD6244 withdrawal (Figure 3.9, Figure 3.10 and Figure 3.11, Chapter 

3), suggesting that this nuclear, ERK-specific MKP may play a unique and important 

role in this cell model. 



123 
 

In order to synthesise DUSP5-targeting shRNA adenoviral vectors, we planned to 

make use of the RAPAd® Adenoviral Expression System. This system consists of a 

pacAd5 9.2–100 adenoviral backbone plasmid vector as well as a pacAd5 CMV K-N 

pA shuttle vector containing the gene of interest. When co-transfected into the 

packaging cell line HEK293, a double recombination event between the two vectors 

occurs, creating a recombinant adenovirus that is able to produce mature, replication-

competent virus particles. These particles are able to deliver the expression vector 

into target cells with high efficiency through viral infection. Before we could employ the  

RAPAd® Adenoviral system it was necessary to generate functional shRNA 

expression constructs that could be cloned into the pacAd5 CMV K-N pA shuttle 

vector. We chose to make use of the pGSH1-GFP vector from Genlantis which 

contains the H1 RNA polymerase III promoter as well as a GFP coding sequence 

(Figure A1). The vector is designed for easy insertion of shRNA sequences through 

BamHI and NotI restriction sites.  

Previously validated DUSP5-targeting shRNA oligonucleotides were designed and 

synthesized with BamHI-NotI “sticky ends” to ensure successful ligation into the 

pGSH1–GFP Expression Vector (Figure A1). These sequences contained a hairpin 

loop structure, which facilitates the expression of fold-back stem-loop structures that 

are processed into functional siRNAs within the cell. Within the hairpin loop is a HindIII 

restriction site which allows for screening of recombinant plasmids (Figure A1). 

Recombinant plasmid DNA was prepared by plasmid midi preps and a sample of each 

stock was analyzed through HindIII-XhoI restriction digestions. The XhoI restriction 

site is just upstream of the GFP coding sequence, therefore a HindIII-XhoI enzyme 

digestion should produce two DNA bands - linear plasmid DNA (5318 bp) and the 

GFP-H1-shRNA construct (approx. 1250 bp). These results are illustrated in (Figure 

A2b) and indicate the presence of the shRNA coding sequence in each recombinant 

vector. The expected DNA sequence for each construct was confirmed by DNA 

sequencing.   
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Prior to the next sub-cloning step, the pGSH1–GFP-shRNA plasmid vectors were 

transfected into HCT116 cells to assess whether the expression cassette was able to 

induce DUSP5 knockdown. HCT116 cells transfected with each of the four constructs 

as well as the control luciferase targeting construct were imaged on an EVOS 

microscope prior to RNA extraction. Transfection efficiency was determined by the 

number of cells expressing the GFP protein, as determined by detection of GFP 

fluorescent signal (Figure A2a). In general, all constructs appeared to have been 

transfected efficiently. Using RNA extracted from each sample, RT-PCR was 

performed to assess relative DUSP5 mRNA levels. Subsequent analysis revealed no 

observable DUSP5 mRNA knockdown in samples transfected with shRNA constructs 

1 to 4 when compared to samples transfected with the luciferase-targeting shRNA 

construct and an untreated control. These results indicated that the shRNA expression 

cassettes were not able to induce DUSP5 knockdown (Figure 4.3a). Successful 

transfection of each vector and subsequent expression of GFP suggests that the 

absence of effective DUSP5 knockdown is likely a result of non-functional or inefficient 

shRNA structures, or alternatively, a problem with the position or frame of these inserts 

relative to the H1 promoter. It is also possible that the H1 promoter is not highly 

functional in HCT116 cells. 
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Figure 4.3. DUSP5-targeting pGSH1-GFP-shRNA constructs versus siRNA in 

HCT116 cells. A) Relative DUSP5 mRNA expression levels in HCT116 cells 

transfected with DUSP5- or luciferase-targeting pGSH1-GFP-shRNA vectors show no 

observable knockdown in DUSP5. n=3 biological replicates ± SEM. B) Samples 

transfected with siGENOME DUSP5-targeting siRNA (Dharmacon) show a relative 

knockdown of DUSP5 mRNA expression compared to non-targeting control siRNA 

and an untreated sample. n=3 biological replicates ± SEM. 
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Initially, previously validated DUSP5 siRNA sequences (Caunt et al., 2008a) were 

used as a side by side comparison for successful DUSP5 knockdown (Figure 4.3). 

However, as they presented a successful and efficient method of DUSP5 knockdown 

in HCT116 cells, as illustrated in Figure 4.4. we chose to use them in subsequent 

experiments while a new multi-purpose DUSP5 knockdown strategy was devised. 

While lipofectamine transfection had previously conferred successful siRNA delivery 

in HCT116 and H6244-R cells, it was necessary to optimize transfection conditions to 

reduce cellular stress (as was evidenced by cell death in conditions where the 

concentration of siRNA/lipofectamine complexes was too high) and ensure robust 

DUSP5 knockdown for the duration of each experiment. While HCT116 and H6244-R 

cells cultured in routine conditions (AZD6244-free media and 2 M AZD6244, 

respectively) showed similar tolerance levels to lipofectamine, optimization 

experiments were performed on H6244-R cells as they were the primary focus for 

future investigations.  

Figure 4.4 demonstrates that both siRNA sequences 1 and 3 caused a reduction in 

DUSP5 protein expression, with siRNA 3 being slightly more effective. Robust DUSP5 

knockdown was evident at 48 hours and was maintained until at least 72 hours post-

transfection. These results also revealed that knockdown of DUSP5 protein appeared 

to coincide with increased p-ERK levels. While Figure 4.4 shows the results of one 

experiment, results obtained from similar experiments reproduced these findings and 

are illustrated in Figure 4.8.  
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Figure 4.4. siRNA DUSP5 knockdown in HCT116 cells. Samples transfected with 

siGENOME DUSP5-targeting siRNA (Dharmacon) show a relative knockdown of 

DUSP5 protein expression compared to non-targeting control siRNA and an untreated 

sample. A) western blot image. B) Relative protein quantification. n=1 biological 

replicate.  
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4.3.2. DUSP5 reduction in the absence of MEKi enhances ERK 
hyperactivation and restricts nuclear accumulation of ERK  

Similar to experiments completed previously (Figure 3.5) we aimed to assess 

the effects of AZD6244 administration and withdrawal in HCT116 and H6244-R 

cells but in conditions where DUSP5 expression was compromised. This 

strategy was implemented in HCT116 and H6244-R cell lines treated with 

increasing concentrations of AZD6244. HCM data revealed that knocking down 

DUSP5 appeared to enhance ERK hyperactivation seen in H6244-R cells 

cultured in the absence of drug ( 
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Figure 4.5). Not only this, but in normal H6244-R culture conditions (2 µM 

AZD6244), DUSP5 knockdown appeared to induce sustained ERK 

hyperactivation levels to a similar magnitude seen when drug is removed from 

these cells. This result  is not commonly seen in “normal” cell types where p-

ERK signalling is highly robust and resistant to sustained changes. The 

enhancement of ERK hyperactivation coincident with DUSP5 repression was 

correlated with a reduction in the proportion of S-phase positive cells as well 

as an overall decrease in cell numbers ( 
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Figure 4.5). Cell count measures for each condition were normalised by choosing the 

minimum and maximum cell count values from each experimental data set to 

represent 0% and 100% and converting all other values to a proportion within this 

range. This is a crude assessment of potential cell death that would need to be 

validated by further experiments.  
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Figure 4.5. DUSP5 knockdown enhances ERK hyperactivation and decreases 

proliferation and cell count in H6244-R1 cells. A) Quantitative HCM summary data 

of p-ERK levels (normalised to a percentage of the maximum value in untreated 

HCT116 cells), percentage of S-phase cells and cell count (converted to percentage 

within minimum and maximum value range) in HCT116 and H6244-R samples. For 

siRNA treated samples, cells were  transfected with DUSP-targeting siRNA 1, 3 or 

non-targeting siRNA 24 hours prior to AZD6244 treatment. Cells were maintained in 

indicated concentrations of AZD6244 for 24 hours prior to fixation and immunostaining. 

n=3-4 biological replicates, ± SEM. Symbols A to L highlight AZD6244 conditions  

where a statistically significant difference between siRNA-treated or untreated 

samples was determined using the Holm-Sidak method. Refer to Table A2 for 

statistical analysis. All assays; 3 fields/well, 2-4 wells (~2000 individual cells) per 

condition per experiment. 
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Figure 4.5. continued. B) Representative images of HCT116 and H6244-R cells with or without 2 µM AZD6244. DAPI 

staining indicates all nuclei present while EdU-label is apparent in cells in S-phase only.  

B 
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Interestingly, in the presence of 1 µM AZD6244, DUSP5 knockdown appeared to 

increase the anti-proliferative effects of MEK inhibition compared to untreated cells or 

cells treated with a non-targeting siRNA, despite any major difference in p-ERK levels 

under these conditions (Figure 4.5). This might indicate that other measures of ERK 

regulation exerted by DUSP5 including directing ERK localisation, may account for the 

effects seen on proliferation. Thus, in conditions of DUSP5 knockdown, even when 

p-ERK levels were much reduced by increasing AZD6244 concentration, normal 

proliferation rates were not restored. Alternatively, effects on proliferation could be a 

result of an off-target event, which may explain why the reduction of ERK 

hyperactivation by AZD6244 seen in DUSP5 knockdown conditions did not reverse 

the effects seen on proliferation.  

While the consistency between the results for two different siRNAs versus a non-

targeting siRNA control makes this possibility appear unlikely in HCT116 cells, the 

effect on proliferation and cell numbers DUSP5 knockdown seems to confer in 

H6244-R cells was evident in only one of two siRNAs. While this may be a result of 

the superior knockdown efficiency of siRNA 3, it is not wise to exclude the possibility 

that an off-target effect on cell survival and proliferation exists in these conditions.  

Major cell fate decisions such as proliferation or cell death are affected by various 

complex factors and are regulated by multiple signalling pathways, making it difficult 

to exclude the possibility that unexpected off-target effects contribute to or are 

responsible for the changes in the measures illustrated in  
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Figure 4.5. However, the effects seen on p-ERK and ERK were consistent between 

two different DUSP5-targeting siRNA sequences when compared to a non-targeting 

siRNA sequence and an untreated control. In addition to ERK phosphorylation status, 

other factors important to the regulation of ERK activity are the timing and duration of 

its induction time and its cellular location. As MKP expression is likely to influence 

these factors, we went on to assess the impact of DUSP5 loss on the spatiotemporal 

activation of p-ERK in H6244-R cells cultured without AZD6244 for varying time 

periods.  

Results in 
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Figure 4.6 show that the increases in whole-cell p-ERK levels in response to AZD6244 

withdrawal were induced as early as 10 minutes post-withdrawal both in DUSP5 

knockdown and control samples. p-ERK induction appeared to peak between 10 and 

120 minutes after AZD6244 removal, then decreased slightly and remained at 

relatively high levels thereafter. Like previous HCM data illustrated in  
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Figure 4.5, these results demonstrated that DUSP5 knockdown increased levels of p-

ERK in HCT116 and H6244-R cells relative to control samples. Upon AZD6244 

withdrawal in H6244-R cells, a further increase in the magnitude of ERK 

hyperactivation was seen in DUSP5 knockdown conditions compared to control 

samples (

 

Figure 4.6). These results were consistent for both siRNAs, with the effects on p-ERK 

being more pronounced and statistically significant in cells treated with DUSP5 siRNA 

3 (refer to table A3 in the Appendix for statistical analyses). Interestingly, in H6244-R 

cells, DUSP5 knockdown in cells cultured in maintenance conditions (2 µM AZD6244) 
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was able to induce levels of p-ERK similar to or higher than those seen in DUSP5-

expressing H6244-R cells in AZD6244-free conditions.  
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Figure 4.6. ERK hyperactivation in response to AZD6244 withdrawal and 

enhanced ERK hyperactivation coincident with DUSP5 knockdown is induced 

within 10 minutes of AZD6244 removal. Quantitative HCM summary data of p-ERK 

and ERK whole cell (nuclear and cytoplasmic) levels in HCT116 and H6244-R 

samples. For siRNA treated samples, cells were  transfected with DUSP-targeting 

siRNA 1, 3 or non-targeting siRNA 24 hours prior to AZD6244 treatment. Cells were 

maintained in indicated concentrations of AZD6244 for varying time periods prior to 

fixation and immunostaining. n=3-4 biological replicates, ± SEM. Refer to A3 in 

appendix for statistical analyses.  
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The effects on whole cell p-ERK levels seen in HCT116 cells and H6244-R cells 

cultured in routine conditions (AZD6244-free or 2 M AZD6244, respectively) were 

somewhat unexpected, as knockdown of DUSP5 under “normal” conditions, where 

p-ERK has not been induced has not been seen in experiments performed in HeLa 

cells (Caunt et al., 2008) or MEFs (Kidger et al., 2017). In saying that, basal levels of 

DUSP5 measured in HCT116 cells were found to be markedly higher than a number 

of other cell lines assessed (Figure 3.4) which may indicate a unique importance of 

DUSP5 in these cells.  

Interestingly, DUSP5-targeting siRNA 1 and 3 also appear to increase levels of ERK 

relative to a non-targeting siRNA and untreated H6244-R cells (
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Figure 4.6 and Appendix Table A3). These results were also unexpected, as whole-

cell ERK levels tend to remain relatively constant within the cell, with changes in ERK 

activity being regulated primarily through phosphorylation and dephosphorylation and 

movement between the cytoplasm and nucleus (Joe W Ramos, 2008). An increase in 

total ERK such as this would suggest a de novo increase in ERK protein transcription 

and translation or alternatively, a decrease in ERK protein degradation, both 

mechanisms that have not been thoroughly investigated due to the consensus that 

ERK levels remain stable. Another possible explanation for this observation is that the 

association of DUSP5 with ERK decreases antibody binding and in the absence of 

DUSP5, this inhibitory effect is relieved and ERK detection is increased.  
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Using the same HCM images for which 

 

Figure 4.6 summary data was calculated, the p-ERK and ERK nuclear and cytoplasmic 

signal intensity data was quantified and used to calculate the nuclear to cytoplasmic 

ratio for each protein. These results confirm findings from previous experiments that 

looked at N:C ratios of ERK (Figure 3.8) where the distribution of ERK is relatively 

constant across the cell (indicated by a N:C ratio of 1) in HCT116 and H6244-R cells 

cultured in their respective maintenance conditions (Figure 4.7). Removing drug from 

DUSP5-expressing control H6244-R cells caused an increase in the ratio of nuclear 

to cytoplasmic ERK, suggesting an accumulation of ERK in the nucleus. Interestingly, 

in DUSP5 knockdown conditions, the accumulation of ERK in the nucleus is less 
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pronounced, particularly in siRNA 3 knockdown conditions, where this relative 

decrease is statistically significant (Figure 4.7 and Appendix Table A4). This might 

suggest that DUSP5 knockdown limits ERK’s ability to accumulate in the nucleus. As 

DUSP5 primarily functions to dephosphorylate and anchor ERK in the nucleus after it 

itself is induced by ERK activation, it seems plausible that a loss of DUSP5 function 

may lead to a decrease in the nuclear retention of ERK.  
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Figure 4.7. DUSP5 knockdown increases the nuclear accumulation of p-ERK in 

HCT116 cells and decreases the nuclear accumulation of total ERK in H6244-R 

cells in AZD6244-free conditions. Quantitative HCM summary data of nuclear to 

cytoplasmic (N:C) ratios of p-ERK and total ERK signal levels in HCT116 and H6244-

R samples. For siRNA treated samples, cells were  transfected with DUSP-targeting 

siRNA 1, 3 or non-targeting siRNA 24 hours prior to AZD6244 treatment. Cells were 

maintained in indicated concentrations of AZD6244 for varying time periods prior to 

fixation and immunostaining. n=3-4 biological replicates, ± SEM. Refer to A4 in 

appendix for statistical analyses.  
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In HCT116 and H6244-R DUSP5-expressing cells cultured in maintenance conditions, 

the N:C ratio of p-ERK is close to 1, reflecting an even distribution of p-ERK across 

the nucleus and cytoplasm in these conditions (Figure 4.7). The removal of AZD6244 

from H6244-R cells causes a subtle increase in the N:C ratio of p-ERK from ~1 to ~1.3 

within 60 minutes. This trend is consistent between DUSP5 knockdown and control 

H6244-R cells. Surprisingly, in HCT116 samples DUSP5 knockdown is coincident with 

significantly increased nuclear accumulation of p-ERK compared to control samples 

(Figure 4.7 and Appendix Table A4). While this is consistent with the hypothesis that 

removing a nuclear, ERK-specific phosphatase may lead to increased levels of p-ERK 

in the nucleus, it is unclear why this trend would not be replicated in H6244-R cells 

and enhanced upon AZD6244 removal.  

4.3.3. Enhanced ERK hyperactivation is coincident with a further 
reduction in E-cadherin expression over time 

Preliminary results investigating DUSP5 knockdown in HCT116 and H6244-R cells 

have revealed that loss of DUSP5 in these cells leads to increased ERK 

phosphorylation. In H6244-R cells where AZD6244 is removed, ERK hyperactivation 

is further enhanced by DUSP5 knockdown and leads to a reduction in proliferation and 

cell numbers in one of two DUSP5-targeting siRNA sequences. As this phenotype is 

not consistent between both DUSP5-targeting siRNA sequences, despite similar 

levels of p-ERK levels in both conditions, it is difficult to establish whether this is an 

“on-target” effect.  

Sale et al. (2019) have clearly demonstrated an ERK-dependent phenotype induced 

by AZD6244 removal and subsequent ERK hyperactivation in H6244-R cells. To 

further investigate likely on-target effects of DUSP5 knockdown we chose to expand 

on work by Sale et al. (2019) which characterised the epithelial-to-mesenchymal 

transition that took place in H6244-R cells exposed to prolonged AZD6244 withdrawal. 

As DUSP5 is highly specific for ERK and the increase in p-ERK levels coincident with 

DUSP5 knockdown appear to be on-target, we aimed to investigate whether the EMT 

observed in H6244-R cells cultured without AZD6244 would be affected by DUSP5 

knockdown.  
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Figure 4.8A illustrates the relative levels of p-ERK, ERK, DUSP5 and E-cadherin in 

protein lysates harvested from HCT116 cells and H6244-R cells that had been cultured 

in AZD6244-R media for varying time periods. Western blot images (Figure 4.8a) and 

relative protein signal quantification data (Figure 4.8) firstly confirms robust and 

reproducible knockdown of DUSP5 by siRNA 1 and 3. It also illustrates the greater 

efficacy of siRNA 3 in repressing DUSP5 expression in response to ERK activation. 

While siRNA 1 is successful in reducing DUSP5 protein levels relative to those seen 

in “untreated” or non-targeting siRNA H6244-R samples, at what appears to be the 

peak of DUSP5 expression at 4 hours, some DUSP5 protein induction is still evident. 

In siRNA 3 samples, DUSP5 protein induction is almost entirely ablated, even at 4 

hours post-AZD6244 withdrawal.  
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Figure 4.8. Enhanced ERK hyperactivation is coincident with a further reduction 

in E-cadherin expression over time. For siRNA treated samples, cells were  

transfected with DUSP-targeting siRNA 1, 3 or non-targeting siRNA 24 hours prior to 

AZD6244 treatment. H6244-R cells were maintained in indicated concentrations of 

AZD6244 for 24 hours prior to cell lysis, HCT116 cells were cultured without AZD6244 

for 24 hours prior to cell lysis. A) Western blot images. B) relative quantification of 

protein levels calculated with Licor imaging software. n=3 biological replicates, ± SEM.  
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As expected, these experiments show an increase in p-ERK levels in response to 

AZD6244 withdrawal in “untreated” H6244-R cells as well as a decrease in protein 

levels of E-cadherin from 16 hours onwards (Figure 4.8). This correlated with 

data found by Sale et al. (2019) in similar experiments illustrated in Figure 4.2. 

Unexpectedly, these results do not illustrate a clear enhancement of p-ERK levels in 

DUSP5 knockdown H6244-R samples relative to untreated and non-targeting siRNA 

H6244-R samples seen in previous HCM experiments (

 

Figure 4.6). However, despite the absence of an obvious increase in ERK activation 

in these immunoblots, a clear reduction in E-cadherin can be seen in DUSP5 

knockdown H6244-R samples (Figure 4.8). This relative decrease is present in H6244-



150 
 

R cells cultured in AZD6244, is further reduced in H6244-R cells cultured in AZD6244-

free media and becomes progressively more reduced with prolonged AZD6244 

withdrawal. The substantial and consistent effect of DUSP5 disruption on E-cadherin 

expression suggests that through its regulatory influence on p-ERK, DUSP5 is able to 

modulate the cellular consequences of AZD6244 withdrawal in drug-resistant H6244-

R cells. This is a significant finding that clearly demonstrates an important role for 

DUSP5 in the regulation of oncogenic ERK signalling in a MEK-inhibitor resistant cell 

model.  
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4.3.4. Establishing DUSP5 knockout HCT116 and H6244-R single cell 
clones 

While investigating and optimising different knockdown strategies it became clear that 

variability in the extent of DUSP5 knockdown achieved may present challenges in 

reproducing our preliminary data. Additionally, variability in the results observed for 

two different DUSP5-targeting siRNA sequences ( 
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Figure 4.5) led us to question whether off-target effects were taking place. Using a 

CRISPR/Cas9 genome editing technique we could eliminate any ambiguity about 

residual DUSP5 function by selecting complete DUSP5 knockout clones for 

downstream functional studies. Naturally, plasmid transfection and single cell 

outgrowth can induce off-target cellular stress, but we hoped to avoid this by analysing 

stable DUSP5 knockout (KO) and control cell lines that had been given several 

passages to recover.  

We made use of a customised Type II CRISPR/Cas9 system, described in detail by 

Ran et al. (2013). The pSpCas9(BB)-2A-GFP vector developed by the Zhang group 

contains a chimeric guide RNA (gRNA), an EGFP coding sequence and a human 

codon-optimized Cas9 coding sequence. The plasmid is designed such that a 20-

nucleotide target-specific guide sequence can be easily ligated into a BbsI cloning site, 

just upstream of the sgRNA scaffold. Four guide sequences designed for targeting 

DUSP5 were cloned into the pSpCas9(BB)-2A-GFP vector and subsequently 

transfected into HCT116 and H6244-R cells, alongside a control transfection with 

empty vector (EV) Cas9 DNA as detailed in Chapter 2.  

After single cell-sorting and the expansion of multiple colonies transfected with each 

gRNA and EV Cas9 DNA in both HCT116 cells and H6244-R cells, clones were 

incubated for 2 to 6 weeks. The frequency of colony outgrowth was unexpectedly low, 

specifically in H6244-R cells (for cells transfected with EV as well as gRNA plasmid) 

suggesting that one or more parts of the protocol had led to cell stress and subsequent 

death or senescence. The rate of colony outgrowth was variable among clones, with 

some forming large colonies within 2 weeks, and others forming colonies within 6 or 

more weeks. Another noteworthy observation was pronounced variability in cell 

morphology and size among different clonal populations. The cell morphology of most 

of the clonal populations were comparable to the parental populations (HCT116 and 

H6244-R), growing in tightly packed, epithelial-like colonies. However, some 

populations contained cells that appeared enlarged with pronounced nuclei (results 

not shown). These cells did not grow in compact colonies but tended to be more 

sparsely distributed across the tissue culture vessel. Variability in growth rate and cell 

morphology was seen across cells expressing DUSP5-targeting guides as well as EV 

clones and so were not likely to be a phenotype associated with DUSP5 knockout.  
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A preliminary western blotting screen for DUSP5 knockout was performed on a 

selection of EV clones and all clones established for each gRNA for both HCT116 and 

H6244-R (Figure 4.9). This screen showed that all four gRNA targets gave rise to 

knockout clones. These clones were named according to the gRNA they expressed 

and the order in which each colony originally arose. In HCT116 clonal populations 

(Figure 4.9a), clones EV1, EV2 and ZH1-4 showed pronounced levels of DUSP5 while 

GS1-1, GS1-3, GS1-4, GS5-1, GS5-4, ZH1-2 and ZH1-3 appeared to be DUSP5 

knockouts. GS1-2, GS5-2, GS5-3 and ZH1-1 clones appeared to be “partial” DUSP5 

knockouts showing low levels of DUSP5 protein expression.  

In H6244-R clonal populations (Figure 4.9b), GS1-1, GS1-2, GS2-1, ZH1-2, ZH1-3, 

ZH1-4, ZH1-5 and GS5-1 appeared to be DUSP5 knockouts. Interestingly, the levels 

of DUSP5 in all other clones including EV clones EV-1, EV-2 and EV-4 appeared to 

have variable levels of DUSP5 protein expression. This suggested that reduced levels 

of DUSP5 shown in these blots may not necessarily reflect “partial” DUSP5 knockouts, 

but rather variability in DUSP5 protein levels resulting from other factors. In fact, as 

single clone assays for DUSP5 expression in untreated HCT116 and H6244-R cells 

have not been carried out, it is possible that this variability is biologically normal.  While 

variation in levels of phosphorylated ERK is evident in these preliminary western blot 

results, there is no obvious correlation between DUSP5 knockout and enhanced levels 

of p-ERK. This is contrary to results seen with siRNA knockdown of DUSP5 in HCT116 
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and H6244-R cells (

 

Figure 4.6). 
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Figure 4.9. Preliminary western blot screening for DUSP5 knockout clones. 

HCT116 or H6244-R clonal populations were grown in routine culture conditions for a 

period of 2 to 6 weeks. Protein lysates were generated from semi-confluent 10 cm TC 

dishes and were normalised for protein content. Lysates were fractioned by 

SDS-PAGE and Western blotted with DUSP5 antibody to confirm the absence or 

presence of expressed DUSP5 protein. (EV) denotes “empty vector” transfected 

clones. GS1, GS2, GS5 and ZH1 are assigned names of clones transfected with one 

of four DUSP5-targeting CRISPR/Cas9 plasmids containing each gRNA.  A) HCT116 

clones. B) H6244-R clones. 
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One DUSP5 KO clone and one DUSP5-expressing clone generated with each of 

gRNAs GS1, GS5 and ZH1 was chosen for further characterisation. DUSP5-

expressing or “uncut” clones together with EV clones were used as controls to account 

for off-target effects associated with each gRNA plasmid and/or the transfection, single 

cell-sorting and expansion protocol. Table 4.1 and Table 4.2 list these clones and 

describe their nomenclature going forward.  

 

Table 4.1 HCT116 clones chosen for further study. 

Name of clone  DUSP5 genotype New nomenclature 

EV-1 DUSP5-expressing EV 

GS1-1 DUSP5 KO GS1 KO 

GS1-2 DUSP5-expressing GS1 WT 

GS5-4 DUSP5 KO GS5 KO 

GS5-3 DUSP5-expressing GS5 WT 

ZH1-2 DUSP5 KO ZH1 KO 

ZH1-4 DUSP5-expressing ZH1 WT 

 

Table 4.2 H6244-R clones chosen for further study. 

Name of clone  DUSP5 genotype New nomenclature 

EV-1 DUSP5-expressing EV 

GS1-2 DUSP5 KO GS1 KO 

GS1-3 DUSP5-expressing GS1 WT 

GS5-1 DUSP5 KO GS5 KO 

GS5-5 DUSP5-expressing GS5 WT 

ZH1-1 DUSP5 KO ZH1 KO 

ZH1-2 DUSP5-expressing ZH1 WT 
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4.3.5. DUSP5 knock-out AZD6244-resistant H6244-R cell lines exhibit 
similar active ERK levels, but reduced E-cadherin expression 
compared to DUSP5 wildtype cells 

Preliminary results from HCT116 and H6244-R clones cultured in routine conditions 

did not reveal any correlation between DUSP5 KO and enhanced p-ERK levels. We 

speculated that the prolonged period between pSpCas9(sgRNA)-2A-GFP transfection 

and the first screening experiments may have allowed sufficient time for the 

development of compensatory mechanisms that could restrain the effects of DUSP5 

knockout in these conditions. If this were the case, we reasoned that exposing 

H6244-R DUSP5 KO and WT clones to conditions of AZD6244 withdrawal, potential 

differences in their signalling responses may be revealed.  

To this end, we probed protein lysates obtained from experiments were HCT116 and 

H6244-R clones were incubated in 2 M AZD6244 or AZD6244-free media for 4 or 48 

hours. Previous experiments revealed that peak DUSP5 expression is apparent 

approximately two hours post AZD6244 withdrawal in H6244-R cells (Figure 3.11). We 

chose to probe samples at 4 hours post-AZD6244 withdrawal to assess any in 

signalling changes coincident with DUSP5 KO within 2 hours of a timepoint where 

DUSP5 expression would have normally peaked. We also assessed samples 48 hours 

post-withdrawal to investigate any potential changes in E-cadherin expression over 

time.  

Figure 4.10a illustrates that all DUSP5 KO clones chosen for further characterisation 

appear to have a lack of detectable DUSP5 protein. The H6244-R ZH1 WT clone 

appears to have similar basal levels of ERK to the H6244-R EV clone as well as an 

HCT116 EV clone. Levels of DUSP5 induced upon AZD6244 withdrawal also appear 

to be similar between the H6244-R ZH1 WT clone and the H6244-R EV clone, 

suggesting that these clones serve as reliable DUSP5 WT controls. In contrast, 

H6244-R GS1 and GS5 “WT” clones appear to have reduced DUSP5 protein levels 

compared to HCT116 EV, H6244-R EV or H6244-R ZH1 WT clones in all conditions. 

Similar variation in DUSP5 levels is apparent in HCT116 “WT” clones. As mentioned, 

this may be indicative of partial DUSP5 knockout in these clones or natural variation 

in DUSP5 expression levels.  For the sake of ease, these intermediate DUSP5 clones 

were labelled “DUSP5 WT” in Figure 4.10 but are better described as DUSP5-
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expressing clones. Figure 4.10d illustrates that across all HCT116 and H6244-R 

“DUSP5 WT” clones (re. clones that had been transfected with DUSP5-targeting 

CRISPR/Cas9 constructs but still showed some DUSP5 expression) an overall 

reduction in DUSP5 protein levels relative to EV clones. In light of this, these clones 

may better represent partial DUSP5 loss conditions than “wildtype” DUSP5 conditions. 

Interestingly, despite marked variation in DUSP5 expression across the clones studied 

in this experiment (from robust to intermediate to un-detectable levels of DUSP5 

protein) detected levels of p-ERK appeared relatively consistent across all clones in 

each condition (Figure 4.10d). This is similar to results in siRNA studies where 

correlations between DUSP5 disruption and relative changes in p-ERK levels were not 

seen in western blot analyses. Despite the absence of visible changes in p-ERK, in 

conditions where cells were cultured in the absence of AZD6244 for 48 hours, a 

marked difference in E-cadherin was observed between DUSP5 KO clones and clones 

that expressed DUSP5 protein (Figure 4.10b, c and d). This suggests that similar to 

H6244-R cells treated with DUSP5-targeting siRNA (Figure 4.8), the prevention of 

DUSP5 protein expression is coincident with reduced levels of E-cadherin compared 

to control samples. Like results seen DUSP5 siRNA knockdown experiments, the 

reduction in E-cadherin levels is most pronounced after 48 hours of AZD6244-

withdrawal, but is also evident prior to AZD6244 withdrawal (Figure 4.10b). The 

reduction of E-cadherin seen in experiments with AZD6244-deprived H6244-R cells 

performed by Sale et al. (2019) was shown to be ERK-dependant. This, together with 

the knowledge that DUSP5’s only known target is ERK implies that any targeted 

effects of DUSP5 knockout are likely to be ERK-dependant. 
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Figure 4.10. DUSP5 knock-out H6244-R cell lines exhibit similar active ERK 

levels, but reduced E-cadherin expression compared to DUSP5 wildtype cells. 

HCT116 or H6244-R clonal populations were grown with or without AZD6244 for 4 or 

48 hours. (EV) denotes “empty vector” transfected clones. GS1, GS5 and ZH1 are 

assigned names of clones transfected with one of four DUSP5-targeting 

CRISPR/Cas9 plasmids containing each gRNA. (WT) denotes DUSP5-expressing 

clones. (KO) denotes DUSP5 knock out clones. A-C) Lysates were fractioned by 

SDS-PAGE and Western blotted with the indicated antibodies. Western blot images 

are representative of three separate experiments.  

B 
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Figure 4.10 continued. 
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Figure 4.10 continued. D) Licor quantification of western blot results. Average mean 

values were calculated from data from 3 experimental repeats and 3 clonal populations 

for each clonal category; empty vector-treated HCT116 or H6244-R cells, DUSP5-

expressing HCT116 or H6244-R cells and DUSP5 knock out HCT116 or H6244-R 

cells, ± SEM. Statistical analysis was performed using a One-way ANOVA and a post-

hoc Tukey analysis, where (*) denotes a p-value less than 0.05.  

As DUSP5 knockout clonal populations had been through several passages we were 

eager to investigate whether any basic compensatory signalling mechanisms had 

occurred within this time period. We assessed protein levels of the upstream oncogene 

KRAS as well as DUSP4 and DUSP6, MAPK phosphatases that have previously been 

shown to be induced in H6244-R cells when AZD6244 was removed (Figure 3.9, 

Figure 3.10 and Figure 3.11, Chapter 3).  Experiments in Sale et al. (2019) showed 

highly consistent levels of amplified KRAS across 12 separate H6244-R clones after 

24 hours of AZD6244 withdrawal. In longer term experiments, both a heterogenous 

population of H6244-R cells as well as two separate H6244-R clones showed the 

same consistent levels of amplified KRAS after 30 weeks of AZD6244 removal.  

In our H6244-R clones cultured in AZD6244, both the DUSP5-expressing clones and 

the DUSP5 KO clones appear to have reduced levels of KRAS relative to those seen 

in the EV clone (Figure 4.10d). A similar trend is seen in conditions where H6244-R 

clones have been cultured in AZD6244-free media for 4 hours. Interestingly, after 48 

hours of drug withdrawal, KRAS levels in DUSP5 KO clones are significantly reduced 

compared to the levels seen in the EV clone (Figure 4.10d). This observation appeared 

unlikely to reflect an actual decrease in KRAS expression as this is would likely require 

a profound and highly efficient mechanism of KRAS silencing, which at present, is not 

conceivable.  

Analysis of changing DUSP4 levels in response to AZD6244 withdrawal in H6244-R 

cells did not reveal any differences between trends in EV clones, DUSP5-expressing 

clones and DUSP5 KO clones (Figure 4.10d). In contrast, DUSP6 levels appeared 

slightly increased in both HCT116 and H6244-R DUSP5-expressing and DUSP5 KO 

clones compared to levels in HCT116 and H6244-R EV clones across all AZD6244 

conditions. These results suggest that DUSP6 protein may be upregulated in response 

to DUSP5 loss in these cells and could reflect a potential compensatory mechanism.   
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4.4. Discussion 

Using siRNA knockdown of DUSP5, we have demonstrated that DUSP5 ablation leads 

to enhanced ERK activation in HCT116 and H6244-R cells. This was coincident with 

a higher proportion of p-ERK in the nucleus compared to the cytoplasm in HCT116 but 

not H6244-R cells. In conditions where AZD6244 was removed from H6244-R cells, 

DUSP5 knockdown was coincident with reduced accumulation of total ERK in the 

nucleus. In addition to this, disruption of DUSP5 by siRNA or CRISPR/Cas9-mediated 

gene knockout in H6244-R cells led to accelerated and enhanced reduction of E-

cadherin in H6244-R cells cultured without AZD6244. Together these results implicate 

DUSP5 in modulating the cellular effects of AZD6244 withdrawal in an AZD6244-

resistant CRC cell line and highlight the potentially influential role of MKPs in 

restraining oncogenic ERK signalling.  

Previous experiments revealed a robust induction of DUSP5 in response to AZD6244 

withdrawal and ERK hyperactivation in H6244-R cells. To further explore the role of 

DUSP5 in this cell model, we used targeted DUSP5 siRNA and high content 

microscopy to explore the consequences of disrupting DUSP5 protein expression in 

similar experimental conditions. Results from these experiments demonstrate that 

DUSP5 ablation leads to a further enhancement of ERK activation in H6244-R cells 

cultured in the absence of AZD6244. This enhancement was most apparent after 2 

hours of drug withdrawal, the point at which DUSP5 induction is evident in control 

samples. Together these results suggest an important role for DUSP5 in restraining 

amplified ERK signalling in this cell model. Interestingly, DUSP5 knockdown was also 

coincident with increased p-ERK levels in HCT116 and H6244-R cells cultured in 

maintenance conditions, where p-ERK expression remains within a “normal” 

oncogenic range. This implies that negative regulation of active ERK is also required 

under these conditions, despite the absence of upstream KRASG13D amplification in 

HCT116 cells and the presence of MEK inhibition in H6244-R cells cultured in 2 µM 

AZD6244.  
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The requirement of DUSP5s’ negative influence on ERK activation in conditions 

outside of AZD6244 withdrawal and ERK hyperactivation may at first seem 

contradictory, as H6244-R cells amplify upstream KRASG13D to combat MEK inhibition 

and decreased ERK activation. However, microarray data from H6244-R samples 

cultured in maintenance conditions showed an upregulation in other negative ERK 

regulators of the Sprouty family as well as DUSP4 and DUSP6, indicating that negative 

feedback is still critical to maintain suitable levels of ERK in these cells (Little et al., 

2011). Interestingly, upregulated DUSP5 levels were not detected in this assay.  

Surprisingly, in western blot analyses that illustrated the relative levels of p-ERK in 

HCT116 cells and H6244-R cells in varying AZD6244 conditions, DUSP5 ablation with 

either siRNA or gene knockout did not appear to coincide with marked increases in p-

ERK. These results were perturbing and seemed to conflict with those derived from 

HCM experiments. While it is not clear why similar effects of DUSP5 disruption on 

p-ERK levels were not visible in western blot analyses, because these effects were 

significant and consistent in high content studies we reasoned that despite using semi-

quantitative Licor imaging and analysis, the linear range of detection in western blot 

experiments may not have been sensitive enough to capture these more subtle 

quantitative differences. 

In addition to quantitative intensity data for p-ERK expression, high content imaging 

experiments in H6244-R cells were also able to provide information on the 

spatiotemporal aspects of ERK activation in response to AZD6244 withdrawal, which 

had not yet been explored. We hoped that by characterising these trends we could 

assess whether disruption of DUSP5 in these conditions could lead not only to 

changes in p-ERK magnitude, but potentially in the subcellular location and relative 

duration of ERK activation.  

Time course experiments that assessed the relative magnitude and location of active 

ERK at after varying periods of AZD6244 withdrawal revealed that hyperactivation of 

ERK in response to the removal of AZD6244 was evident within 10 minutes and 

maximal levels of ERK activation were sustained for approximately 1 hour. 

Interestingly, this p-ERK response profile is similar to those seen for prototypic growth-

factor induced p-ERK, with the exception that levels of p-ERK remain high after 

maximal induction (Caunt et al., 2008b; Kidger et al., 2017). This initial reduction in p-
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ERK levels precedes the induction of DUSP4, DUSP5 and DUSP6 in H6244-R cells 

(~2 hours after drug withdrawal) and is still evident in DUSP5 knockdown conditions, 

so may be a result of more immediate upstream negative feedback mechanisms. 

Hyperactivation of ERK within 10 minutes of drug removal was coincident with the 

nuclear accumulation of p-ERK. Again, this is consistent with conventional growth 

factor-induced ERK activation that shows increased ERK phosphorylation and nuclear 

entry in response to stimulation (Caunt et al., 2008b; Kidger et al., 2017). The ratio of 

nuclear to cytoplasmic p-ERK appears to once again approach 1 after ~60 minutes, 

indicating that sustained p-ERK is present in similar levels in both the nucleus and 

cytoplasm for the remainder of the response duration assessed. These results differ 

to those seen in AZD6244 dose-response experiments in Chapter 3, that showed 

higher p-ERK N:C ratios in parental HCT116 cells compared with H6244-R cells in 

maintenance conditions and decreased p-ERK N:C ratios in H6244-R cells cultured 

without AZD6244 for 48 hours, compared to H6244-R cells in maintenance conditions. 

The reasons for these discrepancies are unclear, however could indicate that 

comparing ratios of N:C p-ERK between conditions where p-ERK levels differ 

substantially (and reach the minimum threshold of detection) may not be as robust a 

measure as comparing the same ratios of a relatively consistent signal like ERK.  

In H6244-R cells, DUSP5 disruption did not appear to affect the subcellular distribution 

of p-ERK and active ERK accumulated in the nucleus to a similar extent and duration 

that it did in control samples. Unexpectedly, knockdown of DUSP5 did appear to affect 

p-ERK nuclear accumulation in HCT116 cells. It is unclear why DUSP5 disruption 

would have different effects on the subcellular location of p-ERK in parental and 

AZD6244-resistant HCT116 cells, but it may be a result of ERK pathway 

reprogramming events that occur in the evolution of drug-resistance. For example, 

DUSP6, a cytoplasmic anchor of ERK, appears to be downregulated in H6244-R cells 

relative to HCT116 cells. These results imply that the interplay between DUSP5, 

DUSP6 and other ERK regulators that control ERK localisation may become altered 

in drug-resistant H6244-R cells. 
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In response to AZD6244 withdrawal in H6244-R cells, the nuclear accumulation of 

p-ERK appears to be transient, and p-ERK is more or less once again evenly 

distributed in the cell after ~ 60 minutes. In contrast, total ERK shifts predominantly to 

the nucleus within 10 minutes of AZD6244 withdrawal (where its intensity is twice as 

strong as that for total ERK) and this subcellular distribution appears to be maintained 

for the duration of the response evaluated (48 hours). The biological relevance of this 

prolonged nuclear ERK retention is not entirely clear, however, DUSP5 knockdown 

appeared to disrupt the accumulation of total ERK in the nucleus. Again, these effects 

were most apparent after 2 hours of ERK hyperactivation, where robust DUSP5 

expression is induced in control conditions. These findings are  in line with experiments 

performed by Kidger et al. (2017), that showed decreased nuclear accumulation of 

ERK in response to FBS stimulation in DUSP5 knockout MEFs compared to DUSP5 

wildtype MEFs and supports an important role for DUSP5 in anchoring ERK in the 

nucleus.  

Surprisingly, decreased nuclear retention of ERK in DUSP5 knockdown conditions 

coincided with increased whole-cell ERK levels in both HCT116 and H6244-R cells in 

maintenance conditions and H6244-R cells in drug withdrawal conditions. While it is 

not impossible that DUSP5 could affect ERK protein turnover, this is not something 

that has been reported (Ramos, 2008). It is possible that these results are an artefact 

of the immunofluorescent staining protocol, wherein binding of DUSP5 to ERK may 

reduce ERK-specific antibody binding. The detection of total ERK levels in denaturing 

conditions, such as in western blot analyses, would not be affected by DUSP5 binding 

and could therefore explain discrepancies in HCM and western blot results for total 

ERK levels. If this were the case, it is still a striking result and could illustrate the extent 

of DUSP5 and ERK association in these cells. It is important to note that DUSP5 

binding is unlikely to affect the detection of p-ERK as DUSP5 dephosphorylates p-ERK 

upon binding and remains associated with its dephosphorylated form.  
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Proliferation assays performed in conjunction with the assessment of DUSP5 

knockdown on p-ERK and ERK responses to AZD6244 indicated that DUSP5 

disruption in HCT116 and H6244-R may have anti-proliferative effects. ERK 

hyperactivation was shown to  induce senescence and cell death in C6244-R and 

HT6244-R as well as other cell lines (Sale 2019, others) so these results were initially 

deemed plausible. However, in HCT116 cells, reduced proliferation was not rescued 

by increasing AZD6244 concentration and reduced p-ERK levels and in H6244-R 

cells, decreased proliferation and cell numbers was seen in only one of two DUSP5-

targeting siRNAs. These observations led us to speculate whether these effects were 

truly ERK-mediated and induced by DUSP5 ablation and not by other factors at play. 

Going forward, we chose to explore the effects of DUSP5 disruption on the 

undoubtedly ERK-mediated EMT phenotype described by Sale et al. (2019) in H6244-

R cells deprived of AZD6244. This EMT was characterised by distinct changes in cell 

morphology and colony growth and decreased expression of the cell-cell adhesion 

molecule E-cadherin. Based on the observation that DUSP5 knockdown led to 

enhanced ERK hyperactivation in H6244-R cells cultured without AZD6244, we 

reasoned that this effect could enhance or accelerate the EMT phenotype see in these 

conditions.  

Consistent with findings in Sale et al. (2019) we demonstrated that E-cadherin 

expression is reduced in H6244-R cells after approximately 48 hours of AZD6244 

withdrawal. In both H6244-R DUSP5 siRNA knockdown conditions and DUSP5 

knockout clones, reduced E-cadherin was not only enhanced, but it was apparent prior 

to AZD6244 withdrawal. These findings are significant and clearly demonstrate a role 

for DUSP5 in influencing the cellular effects of oncogenic ERK signalling. Additionally, 

the appearance of reduced E-cadherin levels in conditions where DUSP5 expression 

is disrupted but MEK inhibition is still present, suggests that DUSP5 is critical in 

restraining ERK activation in both the context of “normal” oncogenic ERK signalling 

and hyperactive ERK signalling.  
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While the observation that western blot analyses did not show comparative increases 

in p-ERK to those seen in HCM data in siRNA work could be due to a lack of sensitivity 

in this technique, in DUSP5 KO clones a similar absence of obvious differences in p-

ERK levels, despite a marked effect on E-cadherin, could be influenced by other 

factors too. Specifically, over multiple clonal passages that occurred post-DUSP5 

knockout, compensatory mechanisms may have evolved to restrain potential 

increases in p-ERK levels caused by DUSP5 ablation. Therefore, initial p-ERK 

induction may have occurred as an early event which induced an EMT and despite 

later compensation for hyperactive ERK this EMT was sustained.  

Despite some queries over the precise detection and quantification of changing p-ERK 

levels and potential compensatory differences elicited by DUSP5 knockdown versus 

knockout, the correlation between DUSP5 ablation and enhanced E-cadherin 

reduction in H6244-R cells was clear and consistent. Based on work by Sale et al. 

(2019) this enhanced downregulation of E-cadherin is likely to coincide with the 

general enhancement or acceleration of EMT in these cells.  

In C6244-R and H6244-R cells, AZD6244 withdrawal and ERK hyperactivation led to 

decreased proliferation and cell survival, both events that could confer clinical 

advantages in the treatment of colorectal tumourigenesis (Sale et al., 2019). This work 

highlighted the potential effectiveness of “drug holiday” regimes in ERK-driven cancers 

that have acquired similar oncogene amplifications. In these cancers, the 

anti-proliferative effects of ERK hyperactivation induced by removing ERK pathway 

inhibitors could be harnessed, leading to better clinical outcomes. In contrast, ERK 

hyperactivation in H6244-R cells does not have anti-proliferative consequences and 

instead promotes an epithelial-to-mesenchymal transition. In cancer development and 

progression, EMT is often associated with metastasis and increased invasiveness 

(Thiery et al., 2009) and has also been correlated with cross-resistance to 

chemotherapeutic agents (Zheng et al., 2015). 
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Experiments performed by Sale et al. (2019) demonstrated that while H6244-R cells 

cultured in the absence of AZD6244 showed enhanced cell motility and faster wound 

closure, subcutaneous xenograft models did not show increased invasiveness of these 

cells compared to controls. However, AZD6244 withdrawal and subsequent EMT did 

reduce the sensitivity of H6244-R cells to oxaliplatin and 5-FU, chemotherapeutic 

agents widely used in colorectal cancer. Together, work by Sale and colleagues 

emphasises how the genetic idiosyncrasies of a specific cancer can lead to diverse 

outcomes in response to drug administration. Our results have shown that these 

genetic idiosyncrasies include variations in the expression and function of negative 

ERK regulators such as DUSP5, which in H6244-R cells, is able to modulate the 

cellular effects of AZD6244 withdrawal. Our work therefore suggests an important role 

for DUSP5 and other MKPs in the regulation of oncogenic ERK signalling and ERK 

pathway inhibitor-resistance. 

4.5. Limitations and future work 

While we attempted to employ DUSP5 knockdown/ knockout strategies that achieved 

robust/ complete DUSP5 loss without exerting unknown off-target effects, both siRNA 

and CRISPR/Cas9-mediated strategies had limitations in this respect.  

The development of DUSP5 knockout clones was a lengthy process that had various 

caveats. Firstly, plasmid transfection followed by single cell sorting and outgrowth are 

processes that can induce cellular stress. This stress could promote natural variations 

and adaptions in different clones that were not be accounted for. Indeed, variations in 

cell morphology and growth rate were apparent in different clones and appeared to be 

independent of initial transfection with empty vector or DUSP5-targeting constructs. 

Secondly, marked natural variation could exist in each clone prior to single cell 

outgrowth. As mentioned, variation in DUSP5 expression was observed amongst 

clones and it is unclear whether this variation was “natural” or a result of partial gene 

knockout. The latter concern could be addressed relatively easily through DNA 

sequencing of selected H6244-R clones.  
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In siRNA knockdown of DUSP5 the appearance of an anti-proliferative phenotype with 

one of two DUSP5 siRNAs led us to question whether off target effects were at play. 

Additionally, discrepancies in the effects of DUSP5 knockdown on the relative 

expression of p-ERK were seen using two different quantitative techniques. While the 

coincident reduction of E-cadherin and DUSP5 ablation was consistent and appeared 

targeted, future DUSP5 rescue experiments could be performed in order to exclude 

any doubts on the specificity of the effects demonstrated in our experiments. In work 

completed by Kidger et al. (2017), adenoviral constructs containing the DUSP5 coding 

sequence downstream of an Egr1 promoter were used to recapitulate ERK-mediated 

DUSP5 expression in DUSP5 knockout MEFs. A similar strategy could be useful in 

assessing whether enhanced ERK hyperactivation and E-cadherin reduction are 

reversed in the presence of homeostatic levels of DUSP5 expression.  

This work could be coupled with experiments that further characterised the potential 

influence of DUSP5 on the EMT in H6244-R cells. Experiments in Sale et al. (2019) 

revealed that decreases in E-cadherin in response to AZD6244 withdrawal in H6244-R 

cells were coincident with increased expression of the mesenchymal markers SNAI2 

and ZEB1. It is possible that ERK mediates these changes by promoting the 

expression of ZEB1 through its regulation of FRA1 (Shin et al., 2010) and the 

downregulation of E-cadherin through the subsequent repressive effects of ZEB1 on 

E-cadherin expression (Ichikawa et al., 2015). mRNA and protein quantification 

experiments that assessed whether DUSP5 loss lead to an increase in ZEB1 and 

SNAI2 expression could further establish DUSP5 effects on the EMT in these 

conditions.  

In addition to these experiments, it would be interesting to further explore potential 

compensatory mechanisms that may occur when DUSP5 expression is disrupted, both 

transiently (through siRNA knockdown) and permanently (through CRISPR/Cas9-

mediated knockout), in HCT116 and H6244-R cells. Preliminary experiments in 

DUSP5 KO clones revealed possible compensatory upregulation of DUSP6 and 

downregulation of KRAS in response to AZD6244 withdrawal in H6244-R cells. These 

results could be further investigated through the assessment of KRAS and MKP 

expression in DUSP5 knockdown conditions or in more individual DUSP5 KO clones, 

and could include DUSP5 rescue experiments to ensure the specificity of these 
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effects. It is worth noting that the above objectives could be addressed in part, through 

targeted high throughput RNA screens performed on samples derived from H6244-R 

cells with or without DUSP5 loss, in various relevant experimental conditions. This 

would offer a more global overview of the signalling changes that occur in response to 

DUSP5 loss and could provide further insight into the mechanism of the ERK-mediated 

EMT seen in H6244-R cells.  
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Chapter 5. Sustained DUSP5 loss in MEKi-
resistant HT29 cells leads subtle changes in 
cellular responses to AZD6244 withdrawal  

5.1. Introduction 

Experiments that investigated the impact of DUSP5 loss on HCT116 and H6244-R 

cells demonstrated that DUSP5 is able to modulate the effects of sustained ERK 

signalling. In H6244-R cells where ERK hyperactivation is induced upon AZD6244 

removal, disruption of DUSP5 led to an enhancement of hyperactive ERK and of 

reduced E-cadherin levels, both associated with EMT in this cell model. 

Characterisation of the EMT in H6244-R cells showed that these phenotypic changes 

were correlated with increased resistance to both 5-fluorouracil and oxaliplatin, 

standard of care chemotherapies used to treat colorectal cancer (Sale et al., 2019). In 

this instance, the potential enhancement and acceleration of EMT through DUSP5 

targeting could have a detrimental impact on clinical outcome. In light of this, we hoped 

to explore an avenue where the regulatory effects of MKP could be harnessed, such 

as in HT6244-R cells, where AZD6244 deprivation and ERK hyperactivation lead to 

cell death. 

Cell survival and cell death are two opposing cell fate trajectories, the outcome of 

which is determined by the balance of pro-apoptotic and pro-survival regulatory 

mechanisms. These mechanisms are largely comprised of the BCL2 family members 

which control the intrinsic apoptotic pathway. The regulation of various BLC2 family 

members by ERK is ubiquitous and while active ERK commonly acts to promote cell 

survival, it can induce anti-proliferative and apoptotic cell fates (Cagnol and 

Chambard, 2010; Cook et al., 2017). The ability of ERK to mediate these effects has 

frequently been linked to its downstream targets p21CIP1 and p53 and less commonly, 

NOXA and is largely associated with ERK hyperactivation (Cagnol and Chambard, 

2010; Elgendy et al., 2011; Sewing et al., 1997; Woods et al., 1997b). It follows that 

negative regulators of ERK activity such as the MKPs, are likely to have enhanced 

influence in these contexts and may be employed in adaptive strategies to restrain 

hyperactive ERK. Indeed, in a recent study using ERK-regulated DUSP5 expression 

constructs in DUSP5 knock out MEFs, amplified DUSP5 was shown to facilitate 
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BRAFV600E-driven proliferation and transformation in MEF cells, while the absence of 

DUSP5 caused ERK hyperactivation and cellular senescence (Kidger et al., 2017).  

Like results seen in H6244-R cells, robust DUSP5 induction was associated with ERK-

hyperactivation in AZD6244-deprived HT6244-R cells. Using similar experimental 

approaches to those implemented in our previous work, we aimed to assess whether 

DUSP5 loss in HT6244-R cells affected the cell death phenotype observed in 

conditions of AZD6244 withdrawal.   
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5.2. Work preceding this thesis 

5.2.1. AZD6244 withdrawal from HT6244-R cells promotes ERK-
dependent activation of pro-apoptotic BH3-only proteins NOXA 
and BID, leading to cell death 

Work by the Cook laboratory (Little et al., 2011; Sale et al., 2019), has demonstrated 

that unlike KRAS-driven H6244-R cells, AZD6244-resistant C6244-R and HT6244-R 

cells exhibit a proliferation defect when cultured in the absence of AZD6244. This was 

first established in work with C6244-R cells, where ERK hyperactivation induced by 

AZD6244 withdrawal promoted cell cycle arrest within 24 hours of AZD6244 removal 

(A. S. Little et al., 2011b) and was confirmed in similar experiments in this thesis 

(Figure 3.5, Chapter 3). Later work revealed that this response is mediated by 

upregulation of the CDK inhibitor p57KIP2 and results in resensitisation of C6244-R 

cultures to the anti-proliferative effects of AZD6244 after prolonged drug withdrawal 

(Sale et al., 2019).  

In early AZD6244-withdrawal experiments where HT6244-R cells were cultured in 

AZD6244-free media for 24 to 48 hours, cell cycle data and proliferation assays did 

not reveal any effects of ERK hyperactivation on proliferation Figure 3.4, Chapter 3). 

However recent work by the Cook group has revealed that AZD6244 withdrawal leads 

to a transient G1 arrest in HT6244-R cells (16 hours post-withdrawal) followed by cell 

death after 6 or more days of AZD6244 deprivation (Sale et al., 2019).  

Figure 5.1 illustrates cell cycle distribution profiles for HT6244-R cells cultured both in 

the presence and absence of AZD6244 (a and b) as well as western blot images of 

multiple ERK-associated signalling proteins from similar experiments (c). The data 

shows a temporary G1 arrest in HT6244-R cells deprived of AZD6244 for 16 hours, 

which was coincident with the expression of Cyclin D1 and p21CIP1 (Figure 5.1, a and 

c). However, by 48 hours, expression of these proteins appeared to decrease and the 

proportion of cells in G2/S phase in HT6244-R cells deprived of AZD6244 were similar 

to those in HT6244-R cells cultured in 1 M AZD6244 (Figure 5.1a).  
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Figure 5.1 MEKi withdrawal from BRAFV600E-amplified MEKi-resistant HT29 

cells causes a transient G1 arrest followed by cell death. A.B,C,F) HT29 and 

HT6244-R cells were treated with either 1 μM AZD6244 or DMSO only for the indicated 

times. A,B) Cell cycle distribution was determined by flow cytometry. C,F) Lysates 

western blotted with the indicated antibodies. Results are representative of at least 

two experiments giving equivalent results. D, E) HT29 or HT6244-R cells were treated 

with 1 μM AZD6244 or DMSO only, with or without D) 0.1 μM SCH772984 (SCH) for 

9 or 12 days E) 10 μM Q-VD-OPh (Q-VD) for up to 12 days. sub-G1 fraction was 

determined by flow cytometry. A, B, D, E) Results are mean ± SD of three independent 

experiments. This figure was adapted from Sale et al. (2019) with permission from 

Nature communications. 
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The most striking results in these experiments occurred between 6 and 12 days of 

AZD6244 withdrawal where cells began to detach from the culture plate, indicating 

that cell death was taking place. Flow cytometry data showed that under these 

conditions, the proportion of cells exhibiting sub-G1 DNA became markedly increased 

in AZD6244-deprived HT6244-R cells, also an indication of cell death (Figure 5.1b). 

This increase was approximately 20 to 35 % higher in AZD6244-deprived HT6244-R 

cells than HT6244-R and HT29 cells cultured in their maintenance conditions (Figure 

5.1d). Further experiments determined that this cell death was both caspase- and 

ERK-dependent as it was decreased by the ERK inhibitor SCH772984 (Figure 5.1d) 

and the pan-caspase inhibitor Q-VD-OPH (Figure 5.1e).  

As previously discussed, ERK is able to promote cell survival as well as cell death 

through its regulation of the BCL2 family members (Cook et al., 2017). In healthy cells, 

ERK has been shown to activate pro-survival proteins such as BCL2 and BCL-xL and 

repress pro-apoptotic proteins such as BIM and PUMA, thus promoting cell survival 

(Balmanno and Cook, 2009). However, in some contexts, ERK activation can lead to 

the autophagy and/or apoptosis through the upregulation of NOXA, a pro-death BH3-

only protein (Elgendy et al., 2011; Sheridan et al., 2010). Naturally, following the 

discovery that ERK activation upon AZD6244 withdrawal in HT6244-R cells lead to 

cell death, Sale et al. (2019) went on to investigate the expression of several BCL2 

family members in cells exposed to these conditions.  

Figure 5.1f illustrates the effects of AZD6244 removal and ERK hyperactivation on 

relevant cell death-associated markers in HT6244-R cells. As expected, ERK 

hyperactivation was coincident with a reduction in the pro-apoptotic BIM protein. This 

is likely to occur through ERKs ability to phosphorylate and inhibit a transcriptional 

activator of BIM, FOXO3A (Yang et al., 2008) and/or phosphorylate BIM itself, leading 

to increased proteasomal degradation of this protein (Ley et al., 2003). Reduction in 

BIM protein levels was evident from 3 days of drug withdrawal onwards. Between 6 

and 12 days of AZD6244 deprivation an increase in both BID and PARP cleavage was 

evident (Figure 5.1f). The cleavage of BID, a pro-apoptotic BCL2 family member, and 

of PARP a DNA-binding polymerase involved in DNA repair, is commonly associated 

with caspase-mediated apoptosis. These changes were coincident with increased 

levels of NOXA as well as increased LC3-II (Figure 5.1f). The amount of LC3-II present 
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in a sample is correlated with the number of autophagosomes, thus indicative of the 

occurrence of autophagy. As mentioned, upregulation of NOXA has been shown to 

play a role in autophagy, through its ability to bind the pro-survival BCL2 protein MCL1, 

thereby freeing a major autophagic effector Beclin-1 from repressive MCL1/Beclin-1 

complexes (Cook et al., 2017).  

While the mechanisms through which hyperactive ERK induces apoptosis and 

features of autophagy in this model have not yet been fully delineated, this work 

contributes to a growing body of evidence that implicates ERK signalling in oncogene-

induced cell death and senescence (Cagnol and Chambard, 2010). As demonstrated 

in work by Sale et al. (2019) where ERK hyperactivation induced by inhibitor-

withdrawal lead to the death of previously drug-resistant H6244-R cancer cells, a 

thorough understanding of the regulatory power of ERK signalling in combination with 

therapeutic manipulation of this pathway can lead to clinically advantageous 

outcomes. By investigating the effects of MKP expression in this context, we hoped to 

add further insight into the regulatory mechanisms that could be of potential clinical 

relevance in similar “drug holiday” regimes.  
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5.3. Results  

5.3.1. Transient DUSP5 loss in MEKi-resistant HT29 cells has subtle 
effects on the spatiotemporal regulation of ERK 

HT29 cells are not readily transfected through lipid-based methods and our early 

attempts at developing in-house DUSP5-targeting shRNA adenoviral constructs were 

unsuccessful, so we aimed to induce DUSP5 loss in HT29 and HT6244-R cells 

through DUSP5-targeting shRNA adenoviral constructs purchased from VectorBuilder 

(detailed in Chapter 2). Similar adenoviral constructs used routinely in our laboratory 

were able to infect MEF cells and induce robust DNA expression at viral titres between 

0.3 and 3 pfu.nL-1 (Kidger et al., 2017). Following these guidelines, experiments were 

performed to reveal the lowest titre of DUSP5-targeting shRNA adenovirus that could 

achieve robust DUSP5 knockdown. These experiments were initially performed in 

H6244-R cells in AZD6244-free conditions, where DUSP5 was highly expressed and 

easily detected by western blotting. Figure 5.2 illustrates one of these experiments, 

where a marked reduction of DUSP5 protein was seen in cells incubated with 5 

pfu.nL-1 of either DUSP5-targeting shRNA adenovirus 3 or 5.  
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Figure 5.2 Optimising DUSP5 protein knockdown with VectorBulider DUSP5-

targeting shRNA adenovirus in H6244-R cells. H6244-R cells were incubated with 

the indicated concentrations (in pfu.nL-1) of VectorBuilder DUSP5-targeting shRNA 

adenovirus 3, 5 (#3 and #5) or non-targeting shRNA adenovirus (#NT) overnight. Viral 

media was washed from the culture plates and replaced with AZD6244-free complete 

media. Cells were incubated for a further 48 hours prior to cell lysis and SDS-PAGE. 

Samples were Western blotted with DUSP5 antibody to confirm the absence or 

presence of expressed DUSP5 protein. Image is representative of results from 3 

separate experiments. 

While using the same viral concentration (calculated as pfu.nL-1) in repeated 

experiments is a reliable method of ensuring consistent amounts of virus being present 

in each condition, it does not take into account changing cell numbers across different 

cell culture formats. An increase or decrease in the ratio of viral particles to number of 

cells could affect the efficiency of viral infection and so should be kept as consistent 

as possible in order to reduce variability between experiments. In an attempt to keep 

both these measures consistent, we calculated the MOI of virus in conditions where 

DUSP5 knockdown was achieved and used a consistent pfu.nL-1 and MOI of virus in 

all future experiments. Based on the pfu.nL-1 and MOI used in successful DUSP5 

knockdown experiments with H6244-R cells, similar conditions were employed in 

experiments assessing DUSP5 knockdown efficiency in HT6244-R cells. Similar to 

results in H6244-R cells, DUSP5 protein appears to be markedly reduced after 

transfection with either DUSP5-targeting shRNA adenovirus 3 or 5 compared to 

controls, at a MOI of 150 and higher (Figure 5.3).  
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Figure 5.3 Optimising DUSP5 protein knockdown with VectorBulider DUSP5-

targeting shRNA adenovirus in HT6244-R cells. HT6244-R cells were incubated 

with the indicated MOI of VectorBuilder DUSP5-targeting shRNA adenovirus 3, 5 (#3 

and #5), non-targeting shRNA adenovirus (#NT) or remained untreated (UT) 

overnight. Viral media was washed from the culture plates and replaced with 

AZD6244-free complete media. Cells were incubated for a further 48 hours prior to 

cell lysis and SDS-PAGE. Samples were Western blotted with DUSP5 antibody to 

confirm the absence or presence of expressed DUSP5 protein. Image is 

representative of results from 3 separate experiments. 

Once the conditions for DUSP5 knockdown were established in HT6244-R cells we 

went on to investigate whether DUSP5 repression had any effect on the 

spatiotemporal regulation of ERK and/or other ERK signalling-related targets 

associated with cellular stress and cell death. Similar to experiments completed in 

H6244-R cells in Chapter 4, AZD6244-withdrawal time course experiments were 

performed and assessed through quantitative immunoblotting and high content 

microscopy. Previous experiments in HT6244-R cells revealed peak DUSP5 

expression 2 hours post AZD6244 withdrawal (Figure 3.11, Chapter 3). Therefore, we 

chose to investigate the relative expression of our proteins of interest at this time point, 

as well as 48 hours post-withdrawal to assess any longer-term changes (Figure 5.4).  
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In addition to evaluating DUSP5, p-ERK and ERK protein levels, levels of p21CIP1 and 

BIM proteins were assessed as “early” (detectable within 48 hours) markers of 

biologically relevant increases in active ERK. p21CIP1 induction has previously been 

correlated with sustained increases in p-ERK (Balmanno and Cook, 1999; Sewing et 

al., 1997; Woods et al., 1997a), and was found to be increased in response to 

AZD6244 removal in HT6244-R cells (Sale et al., 2019). Conversely, BIM is repressed 

by active ERK (Cook et al., 2017; Ley et al., 2003; Sale and Cook, 2012) and was 

found to decreased in AZD6244 withdrawal conditions (Sale et al., 2019).  

As expected, HT6244-R cells in control conditions (untreated or transfected with non-

targeting shRNA adenovirus) showed an increase in p-ERK levels following AZD6244 

withdrawal, coincident with DUSP5 and p21CIP1 induction and a reduction in protein 

levels of BIM (Figure 5.4). In DUSP5 knockdown conditions where DUSP5 protein 

levels were reduced by approximately 80% relative to controls (in conditions of peak 

DUSP5 expression) no observable or quantifiable effects on levels of p-ERK, BIM or 

p21CIP1 were seen, however a subtle decrease in ERK levels was evident in HT6244-

R shRNA 5 lines compared to all other lines (Figure 5.4). 
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Figure 5.4 Transient adenoviral knockdown of DUSP5 in HT6244-R cells does 

not affect relative levels of p-ERK, p21CIP1 or BIM protein. HT29 and HT6244-R 

control cells were incubated alongside HT6244-R cells treated with VectorBuilder 

DUSP5-targeting shRNA adenovirus 3, 5 (#3 and #5) or non-targeting shRNA 

adenovirus (#NT) overnight. Viral media was washed from the culture plates and 

replaced with AZD6244-free complete media for the period of time indicated. Cells 

were lysed and fractioned by SDS-PAGE. Samples were Western blotted with the 

indicated antibodies to assess relative protein levels. A) Western blot images. Images 

are representative of results from 3 separate experiments. 

A 
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Figure 5.4 continued. B) Protein quantification. Relative intensities of protein bands 

were quantified using Liquor’s Image Studio Lite software. DUSP5: Percentage 

DUSP5 knockdown relative to the untreated control shown. n=3 biological replicates, 

± SEM.  

  

B 
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Previous experiments in HCT116 and H6244-R cells that blotted for p-ERK protein in 

an effort to assess potential changes in these levels (Figure 4.8, Chapter 4) showed 

relatively uniform levels of p-ERK across DUSP5 knockdown and control conditions. 

These results were not consistent with quantative data derived from high content 

microscopy experiments ( 
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Figure 4.5 and 

 

Figure 4.6), which showed significantly increased p-ERK levels in DUSP5 KD 

conditions compared to controls. In light of this, we performed parallel HCM 

experiments assessing similar experimental conditions as those illustrated in Figure 

5.4, as well as shorter time course experiments to examine the relative magnitude and 

location of p-ERK and ERK directly following AZD6244 withdrawal.  
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Figure 5.5 illustrates whole-cell GFP, p-ERK and ERK signal intensity data in 

experiments where H6244-R cells were cultured in the absence of AZD6244 for 

varying time periods. Relative to p-ERK levels in HT29 cells and HT6244-R cells 

cultured in maintenance conditions, enhanced ERK activation was apparent within 10 

minutes of AZD6244 removal, peaked at 30 minutes after AZD6244 removal and then 
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decreased slightly thereafter (
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Figure 5.5, top left). At 2 hours and 48 hours post-AZD6244 removal, p-ERK remained 

higher in AZD6244-free conditions relative to control conditions (

 

Figure 5.5, top right). This was consistent with western blot results dillustrated 

in Figure 3.11 (Chapter 3)  for HT29 and H6244-R cells as well as p-ERK profiles 
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seen in H6244-R cells (

 

Figure 4.6, Chapter 4). In thes eexperiments, GFP levels were assessed in order to 

confirm that similar levels of adenovirus were present in transfected cells. While it may 

appear that non-targeting shRNA adenovirus-treated samples exhibited less GFP 

expression, there were no statisitically siginificant differences between any of these 
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samples (

 

Figure 5.5, bottom image panel).  
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Figure 5.5 Transient adenoviral knockdown of DUSP5 in HT6244-R cells leads to 

reduced whole-cell levels of ERK.  HT29 and HT6244-R control cells were incubated 

alongside HT6244-R cells treated with VectorBuilder DUSP5-targeting shRNA 

adenovirus (AV) 3, 5 or non-targeting shRNA adenovirus hours 18 prior to AZD6244 

treatment. Cells were maintained in indicated concentrations of AZD6244 for varying 

time periods prior to fixation and immunostaining. n=3 biological replicates, ± SEM. 

Statistical analysis performed using a One-way ANOVA and a post-hoc Tukey 

analysis, where (*) denotes a p-value less than 0.05. 
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A comparison of relative p-ERK protein levels in DUSP5 knockdown conditions versus 

control conditions in HT29 and HT6244-R cells revealed no significant differences in 

these measures (

 

Figure 5.5 top image panel). These results contrasted the marked increase in p-ERK 

seen in HCT116 and H6244-R cells with reduced DUSP5 expression compared to 
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controls (
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Figure 4.6, Chapter 4). Results summarised in 

 

Figure 4.6 also demonstrated an increase in ERK protein levels coincident with 

DUSP5 knockdown, however this may have been an artefact of the 

immunofluorescenct-staining protocol. Contrary to this, ERK levels in HT29 and 
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HT6244-R cells appeared to be slightly reduced in DUSP5 knockdown conditions (

 

Figure 5.5, middle image panel). This reduction was most noticeable 48 hours after 

the removal of AZD6244, where ERK levels detected in samples transfected with 

DUSP5-targeting shRNA 5 adenovirus were significantly different to those transfected 
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with non-targeting shRNA adenovirus or untreated H6244-R cells (

 

Figure 5.5, middle left). This was consistent with subtle decreases in total ERK visible 

in western blot images in samples exposed to the same conditions (DUSP5-targeting 

shRNA 5 adenovirus and 48 hour AZD6244 withdrawal). These results also showed a 

statistically significant increase in ERK levels between HT29 cells treated with DUSP5-

targeting shRNA adenovirus 3 and 5 and HT29 cells treated with non-targeting shRNA 
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adenovirus, but not untreated HT29 cells (

 

Figure 5.5, middle left). It is unclear why ERK levels seen in HT29 cells treated with 

non-targeting shRNA were not consistent with those in untreated HT29 samples. This 

discrepancy was not present in any other conditions, where these control samples 

generally showed similar results. 
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Analysis of the nuclear to cytoplasmic (N:C) ratio of p-ERK (

 

Figure 5.6, top image panel) demonstrated a slight increase in the amount of p-

ERK in the nucleus relative to the cytoplasm in H6244-R cells cultured in 

AZD6244-free conditions compared to H6244-R cells cultured in 1 M AZD6244, 

between 10 and 60 minutes post-AZD6244 withdrawal. In all other conditions the 

N:C ratio of p-ERK appeared relatively consistent, falling between 0.8 and 1.  

This was similar to findings in H6244-R cells (Figure 4.7, Chapter 4). No noticable 

differences in this ratio between control HT29 and H6244-R cells and those 
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treated with DUSP5-targeting shRNA adenovirus could be seen (

 

Figure 5.6, top image panel).  
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Figure 5.6 Transient adenoviral knockdown of DUSP5 in HT6244-R cells leads to 

reduced nuclear accumulation of ERK.  HT29 and HT6244-R control cells were 

incubated alongside HT6244-R cells treated with VectorBuilder DUSP5-targeting 

shRNA adenovirus (AV) 3, 5 or non-targeting shRNA adenovirus hours 18 prior to 

AZD6244 treatment. Cells were maintained in indicated concentrations of AZD6244 

for varying time periods prior to fixation and immunostaining. n=3 biological replicates, 

± SEM. Statistical analysis performed using a One-way ANOVA and a post-hoc Tukey 

analysis, where (*) denotes a p-value less than 0.05, (**) denotes a p-value less than 

0.01, (***) denotes a p-value less than 0.001 and (****) denotes a p-value less than 

0.0001. 
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Figure 5.6 (middle image panel) illustrates that the removal of AZD6244 from 

control HT6244-R cells was coincident with the nuclear accumulation of ERK. 

This was similar to findings for H6244-R cells (Figure 4.7, Chapter 4). 

Interestingly, the N:C ratio of ERK in HT6244-R cells treated with DUSP5-

targeting shRNA 5 adenovirus was significantly lower than the N:C ratios of ERK 

in control HT6244-R cells, and HT6244-R cells treated with DUSP5-targeting 
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shRNA 3 adenovirus after 48 hours of AZD6244 withdrawal (

 

Figure 5.6, middle left). This was indicative of reduced nuclear accumulation of ERK 

in these cells, similar to results seen in DUSP5 knockdown conditions in H6244-R cells 

(Figure 4.7, Chapter 4). However, in both H6244-R and HT6244-R cells, reduced 

nuclear acccumulation of ERK was seen in one but not both DUSP5 knockdown 

conditions.  

While subtle changes in the spatiotemporal regulation of ERK were coincident with 

DUSP5 knockdown 48 hours after AZD6244 had been removed, no major changes in 

ERK activation or downstream ERK targets appeared to be linked to the reduction of 

DUSP5 protein in HT29 and HT6244-R cells. Inconsistencies seen in the effects on 
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the magnitude and cellular location of ERK between two DUSP5-targeting shRNA 

adenoviruses raised the question of whether these effects were in fact “on-target”.  

In order to explore whether subtle differences in ERK levels and N:C ratios were 

consistently associated with DUSP5 knockdown compared to controls, and whether 

these effects may influence downstream cell fate in HT6244-R cells, we chose to 

establish a different method of DUSP5 knockdown. Ideally, we wanted a system that 

would allow for long-term DUSP5 repression in order to assess whether this would 

affect the fate of HT6244-R cells that had been cultured in the absence of AZD6244 

for prolonged periods (up to 12 days). Work by Sale et al. (2019) demonstrated that 

major effects of AZD6244 deprivation in HT6244-R cells were only evident after 3 to 6 

days of drug withdrawal, when these cells began to die. We reasoned that it was 

possible that the effects of DUSP5 knockdown may also only be evident after 

prolonged drug withdrawal. As HT29/HT6244-R cells are not easily transfected 

through lipid-based means, using CRISPR/Cas9 constructs to knockout DUSP5 in 

these cells would be challenging. Instead, we chose to establish stable lentiviral 

HT6244-R cell lines that were able to express DUSP5 shRNA upon induction.  

 

5.3.2. Optimising DUSP5 knockdown in inducible shRNA lentiviral 
HT6244-R cell lines 

HT6244-R cell lines that were able to express non-targeting shRNA or one of two 

DUSP5-targeting shRNAs were established as described in Chapter 2. During 

puromycin selection of these cell lines, an untransfected HT6244-R control culture was 

seeded alongside the lentiviral HT6244-R cell lines and selection was completed once 

all cells in this culture had died. After selection, experiments were set up to assess the 

response of the shRNA-expressing HT6244-R cell lines to doxycycline. Through these 

experiments we hoped to detect any off-target effects of doxycycline on cell growth 

and general cell health (as assessed by visual inspection) as well as on p-ERK 

activation and DUSP5 expression. 

Stable HT6244-R non-targeting shRNA, DUSP5-targeting shRNA 1 and DUSP5-

targeting shRNA 3 cell lines were exposed to increasing levels of doxycycline for 24 

hours. Whole-cell lysates were then harvested and subjected to western blot analysis 
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to assess DUSP5 knockdown efficiency as well as any effects on p-ERK. Visual 

observation of cells exposed to up to 1 ug.mL-1 doxycycline did not reveal any obvious 

signs of cellular stress. Immunoblot results from these experiments revealed that even 

at 1 ug.mL-1 doxycycline, only a partial reduction in DUSP5 expression could be seen. 

Additionally, increasing concentrations of doxycycline did not appear to affect protein 

levels of p-ERK (Figure 5.7). Although cells present in each HT6244-R shRNA cell 

population were presumed to have incorporated lentiviral DNA due to their apparent 

puromycin resistance, it is possible that multiple copies of DUSP5-targeting shRNA 

may have been necessary to confer robust DUSP5 knockdown. In order to increase 

this likelihood, we made use of the GFP marker present in the inducible lentiviral 

construct and used flow cytometry to sort out a sub-population of cells in each cell line 

that had relatively high levels of GFP fluorescence. Each HT6244-R shRNA cell 

population was incubated with 1 ug.mL-1 doxycycline for 24 hours prior to cell sorting. 

Cells within a relative range of mid to high levels of GFP were selected and cultured 

for further experimentation.  
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Figure 5.7 Assessing the effect of doxycycline dose escalation on p-ERK and 

DUSP5 protein levels. HT6244-R non-targeting shRNA, DUSP5-targeting shRNA 1 

and DUSP5-targeting shRNA 3 cell lines were exposed to increasing levels of 

doxycycline for 24 hours. In “AZD6244-free” conditions, culture media was replaced 

with AZD6244-free media 2 hours prior to cell lysis. Cell lysates were fractioned by 

SDS-PAGE and western blotted with the indicated antibodies to assess relative protein 

levels. n = 1 biological repeat.  

5.3.3. Stable integration and induction of doxycycline-inducible 
shRNA constructs in MEKi-resistant HT29 cells  

Using mid to high GFP-expressing subpopulations of the original HT6244-R shRNA 

cell lines we investigated whether robust DUSP5 knockdown could be achieved using 

tolerable doses of doxycycline. We also investigated whether DUSP5 knockdown was 

coincident with any changes in p-ERK, ERK and downstream markers of ERK 

activation, p21CIP1 and BIM. Figure 5.8 western blot images and quantification figures 

show improved DUSP5 knockdown, with 59% and 91% knockdown in HT6244-R 

shRNA 1 and 3 cell lines, respectively, 2 hours after AZD6244 removal. DUSP5 

knockdown was increased 48 hours after drug withdrawal with 73% and 92% 

knockdown in HT6244-R shRNA 1 and 3 cell lines, respectively (Figure 5.8b). 

However, despite improved DUSP5 knockdown, no obvious changes in p-ERK, ERK, 

BIM and p21CIP1 could be seen relative to controls within 48 hours of AZD6244 

withdrawal (Figure 5.8 and Appendix Figure A7).  
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Figure 5.8 HT6244-R DUSP5-targeting shRNA 1 and 3 cell lines show markedly 

reduced DUSP5 levels upon doxycycline induction. HT6244-R shRNA cell lines 

were incubated with 1 µg.mL-1 doxycycline for 48 hours. Culture media was replaced 

with AZD6244-free media (containing doxycycline) 2 or 48 hours prior to cell lysis in 

appropriate conditions. Cells lysates were fractioned by SDS-PAGE and western 

blotted with the indicated antibodies to assess relative protein levels. A) Western blot 

images. Images are representative of results from 3 separate experiments. B) 

Quantification results. Relative intensities of protein bands were quantified using 

Liquor’s Image Studio Lite software. Percentage DUSP5 knockdown relative to the 

non-targeting shRNA control shown. n=3 biological replicates, ± SEM. 

B 
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Alongside western blot experiments, we performed experiments with similar conditions 

for high content microscopy analysis to investigate whether subtle changes in ERK 

protein levels and cellular location seen in adenoviral experiments were replicated in 

this model. Like results seen in previous H6244-R HCM experiments (
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Figure 5.5 and 

 

Figure 5.6), control HT6244-R cells showed a similar spatiotemporal response to 

AZD6244 removal as H6244-R cells, albeit with higher levels of variability. Also similar 

to results in adenoviral DUSP5 knockdown experiments, DUSP5 knockdown induced 

by doxycycline addition did not appear to have any marked effect on p-ERK in a 48-

hour time course experiment (Figure 5.9, top left). Additionally, while reduced ERK 

levels were coincident with one of two DUSP5-targeting shRNAs (shRNA 3) relative 

to controls (Figure 5.9, middle left), this trend was seen both in the presence and 

absence of doxycycline and was therefore unlikely a result of DUSP5 knockdown.  

In shorter time course experiments, both p-ERK and ERK protein levels appeared 

slightly decreased relative to untreated and non-targeting shRNA control HT6244-R 
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cell lines  in the absence of doxycycline (i.e. with normal DUSP5 expression) (Figure 

5.9, top and middle right). However, in doxycycline-induced DUSP5 knockdown 

conditions p-ERK and ERK levels were increased relative to unstimulated conditions, 

but not to untreated and non-targeting shRNA HT6244-R control lines. This could 

indicate that in “normal” conditions, manipulation of these cells had somehow led to 

off-target effects on ERK and p-ERK levels resulting in slightly reduced basal levels of 

these proteins. These levels then became increased relative to basal levels upon 

DUSP5 knockdown. In saying that, the trends described here were not statistically 

significant and variability in this data effectively excluded the possibility of any clear or 

reliable data interpretations.  
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Figure 5.9 Transient knockdown of DUSP5 leads to increased levels of p-ERK 

and ERK in DUSP5-targeting shRNA cell lines. HT6244-R shRNA cell lines were 

incubated with 1 µg.mL-1 doxycycline for 48 hours. Cells were maintained in indicated 

concentrations of AZD6244 for varying time periods prior to fixation and 

immunostaining. n=3 biological replicates, ± SEM.  
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Finally, these data revealed marked differences in GFP expression between 

HT6244-R shRNA cell lines, with HT6244-R shRNA 1 showing approximately 100 

times greater GFP expression than the non-targeting shRNA and shRNA 3 HT6244-R 

cell lines (Figure 5.9, bottom image panel). While this did not appear to result in any 

obvious off-target differences between these cell lines, it was indicative of large 

variability in the range of GFP expressed in cells chosen by cell sorting and should 

have been controlled for.  

The N:C ratios of p-ERK and ERK in HT6244-R shRNA cell line experiments were 

similar to those seen in previous experiments with HT6244-R and H6244-R cells. The 

N:C ratio of p-ERK in HT6244-R cells increaseed slightly within 10 minutes of 

AZD6244 removal, but was relatively consistent across all other conditions (Figure 

5.10, top image panel). The ratio of nuclear to cytoplasmic ERK markedly increaseed 

with AZD6244 removal, suggesting a shift of ERK from the cytoplasm to the nucleus 

(Figure 5.10, middle image panel). These trends were consistent across all HT6244-

R shRNA lines and doxycycline-induced DUSP5 repression was not coincident with 

any noticeable changes in N:C ratios of either p-ERK or ERK relative to the controls.  
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Figure 5.10 Transient knockdown of DUSP5 in HT6244-R cell lines does not 

affect N:C ratios of p-ERK and ERK in response to AZD6244. HT6244-R shRNA 

cell lines were incubated with 1 µg.mL-1 doxycycline for 48 hours. Cells were 

maintained in indicated concentrations of AZD6244 for varying time periods prior to 

fixation and immunostaining. n=3 biological replicates, ± SEM.  
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5.3.4. Sustained DUSP5 loss in MEKi-resistant HT29 cells is 
coincident with subtle changes in cellular responses to AZD6244 
withdrawal 

In parallel with experiments performed to assess the effects of DUSP5 knockdown on 

p-ERK and ERK in HT6244-R cells exposed to short-term AZD6244 withdrawal, we 

investigated whether DUSP5 repression would influence the consequences of 

long-term AZD6244 removal from these cells. Work by Sale et al. (2019) demonstrated 

that after approximately 6 days of drug withdrawal HT6244-R cells began to die (Figure 

5.1). Cell death was associated with upregulation of the pro-apoptotic protein NOXA, 

activation of another pro-apoptotic protein BID, PARP cleavage and post-translational 

processing of LC3, indicating that these cells enter apoptosis and/or autophagy in 

response to AZD6244 withdrawal.  

Figure 5.11 illustrates the results of a 12-day AZD6244 withdrawal experiment in 

HT6244-R shRNA cell lines, while Appendix figure A8 contains quantification of three 

biological repeats performed using Licor imaging and analysis. Cells were seeded at 

varying densities in order to achieve similar cell densities at the time of cell lysis for 

different incubation periods (3, 6, 9 or 12 days). HT29 cells and HT6244-R cells 

incubated with AZD6244 were included to control for off-target signalling effects that 

could result from this format of long-term experimental cell culture without passage. In 

addition to previous targets described, we chose to assess PARP cleavage as a 

predictive indicator of cell death, as well as NOXA, the pro-apoptotic BLC2 protein 

implicated in mediating cell death in AZD6244-deprived HT6244-R cells. 

Unfortunately, attempts to detect NOXA in any conditions were unsuccessful and so 

these immunoblots were not included.  

As expected, in control conditions (without DUSP5 knockdown) 3 days of AZD6244 

withdrawal led to  heightened p-ERK and DUSP5 levels relative to parental HT29 and 

HT6244-R cells cultured in routine conditions (AZD6244-free and 1 µM AZD6244, 

respectively). Increased p-ERK seen in drug-withdrawal conditions was also 

coincident with increased p21CIP1 expression and decreased BIM expression (Figure 

5.11 and Appendix Figure A8). In DUSP5 knockdown conditions, there were no clear 

differences in p-ERK and p21CIP1 levels compared to controls at after 3 days of drug 

withdrawal.  
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Figure 5.11 Sustained DUSP5 knockdown in HT6244-R cell lines exposed to 

long-term AZD6244 withdrawal is coincident with subtle changes in p-ERK, 

p21CIP1, BIM and PARP cleavage. HT29 and HT6244-R shRNA cell lines were 

incubated with or without 1 µg.mL-1 doxycycline for 48 hours before culture media was 

replaced with AZD6244-free media or media containing 1 µm AZD6244 (with or 

without doxycycline). Cells were incubated for a further 3, 6, 9 or 12 days before cell 

lysis. Samples were fractioned by SDS-PAGE and western blotted with the indicated 

antibodies to assess relative protein levels. Images are representative of results from 

3 separate experiments.  

Unexpectedly, after 6 days of incubation, DUSP5 expression and slightly higher levels 

of p-ERK were apparent in control HT6244-R cells cultured in 1 µM AZD6244 (Figure 

5.11 and Appendix Figure A8). While culture media was refreshed in all experimental 

conditions after 3 days of incubation, it was not changed after this time point. This was 

in an effort to retain any dead cells that may have accumulated in the culture 

suspension between 6 and 12 days of incubation. It is possible that during this time 

AZD6244 may have degraded, resulting in these cells showing signs of AZD6244 

withdrawal. Interestingly in these conditions, where p-ERK levels are raised but not to 

the same extent as in intended AZD6244-free conditions in HT6244-R cells, a subtle 

difference in BIM levels was be seen between samples from the non-targeting shRNA 

HT6244-R line and those from DUSP5 knockdown lines shRNA 1 and 3. In the 

presence of doxycycline, levels of BIM protein appeared to be lower in DUSP5 

knockdown lines compared to the non-targeting shRNA control line (Figure 5.11 and 

Appendix Figure A8). This trend was also apparent in HT6244-R cells incubated for 9 

and 12 days with AZD6244 and doxycycline, as seen  in Figure 5.11 and Appendix 

Figure A8. In the same conditions (1 µM AZD6244, 1 µg.mL-1 doxycycline) after 12 

days of incubation, a subtle increase in p-ERK levels in DUSP5 knockdown samples 

relative to non-targeting shRNA samples was seen. This was coincident with slightly 

increased p21CIP1 levels and decreased PARP cleavage in DUSP5 knockdown 

conditions relative to the non-targeting shRNA control.  
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In conditions of 6 and 9 days of AZD6244 withdrawal, a relative increase in p-ERK in 

DUSP5 knockdown samples shRNA 1 and 3 compared to non-targeting shRNA 

samples was seen (Figure 5.11 and Appendix Figure A8). However, while p-ERK 

levels in the DUSP5 knockdown conditions were higher than the non-targeting shRNA 

control, they were not markedly different to no-doxycycline controls. Also coincident 

with AZD6244 withdrawal, was an increase in p21CIP1 expression after 6 days of 

incubation (Appendix Figure A8). This was also seen in 9- and 12-day samples and 

was most apparent in the HT6244-R shRNA 1 cell line incubated with doxycycline. 

Similar to results from experiments performed by Sale et al. (2019), evidence of PARP 

cleavage was seen across all AZD6244-withdrawal conditions from 6 days onwards. 

In Appendix Figure A8, signal quantification was performed on the 89 kDa cleaved 

product of PARP, therefore an increase in this measure should reflect increased PARP 

cleavage (Figure 5.11 and Appendix Figure A8). Unexpectedly, when PARP cleavage 

was increasingly evident in HT6244-R cells after 9 and 12 days of incubation (both in 

AZD6244 and AZD6244-free conditions), a striking correlation was seen between 

doxycycline administration and decreased PARP cleavage. This correlation indicated 

that doxycycline administration was somehow protecting cells from PARP cleavage 

(Figure 5.11 and Appendix Figure A8). After 12 days of drug withdrawal, a correlation 

could also be seen between doxycycline administration and increased BIM 

expression. An explanation for these off-target effects is unclear and confounds 

comparisons between doxycycline conditions and no-doxycycline controls. It also 

raises concerns as to other off-target effects of doxycycline in these findings. In light 

of this, interpretation of the effects of DUSP5 knockdown in these experiments may 

be restricted to comparisons between HT29, non-targeting shRNA and DUSP5-

targeting shRNA 1 and 3 cell lines cultured in the presence of doxycycline, bearing in 

mind the as yet unknown effects of doxycycline alone.  

In addition to these concerns, a comparison of these findings to those from similar 

experiments conducted by Sale et al. (2019) showed higher levels of PARP cleavage 

in control conditions (H6244-R cells cultured with AZD6244) in our results than was 

present in their results after 9 and 12 days of culture. While it is possible that AZD6244 

had become degraded in our control conditions, this observation indicated that it was 

also possible that cellular stress and cell death was occurring both with and without 
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AZD6244 in our experiments. Based on observations made during experimental 

culture, this could have been caused by factors such as cell crowding and nutrient 

depletion. While we attempted to control for both of these potential issues, the innate 

tendency of HT29 and H6244-R cells to grow in large, tightly packed colonies 

(especially following low-density seeding) and restricted media refreshment could 

inevitably have contributed to increased cellular stress.  

In conclusion, while some subtle changes in p-ERK, p21CIP1 and BIM expression and 

PARP cleavage were coincident with DUSP5 knockdown in HT6244-R cells cultured 

in different AZD6244 conditions for prolonged periods, these changes were not 

substantial or consistent. Additionally, the confounding effects of doxycycline and 

other experimental variables precluded any reliable assessment of the signalling 

events that were observed in these results.  
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5.4. Discussion 

Similar to studies in HCT116 and H6244-R cell lines, we have used high content 

imaging to assess spatial and temporal components of ERK hyperactivation in 

response to AZD6244 withdrawal in HT6244-R cells. Additionally, with DUSP5-

targeting shRNA delivered through either adenoviral or inducible lentiviral constructs, 

we have evaluated the effects of transient or sustained DUSP5 loss in these 

conditions. In short-term (up to 48-hour) AZD6244-withdrawal and DUSP5 knockdown 

experiments, DUSP5 ablation did not appear to change whole-cell levels of p-ERK. 

While there was some evidence that DUSP5 loss was coincident with decreased 

accumulation of total ERK in the nucleus, these observations were not consistent 

between different DUSP5-targeting siRNAs. In longer term western blotting 

experiments, DUSP5 knockdown was coincident with subtle increases in p-ERK and 

p21CIP1, reduced BIM expression and PARP cleavage in some conditions, however 

these observations were also inconsistent. In addition to this, issues with the 

experimental design and the presence of implicit off target effects and variables 

precluded the reliable interpretation of these results. While these findings don’t 

exclude a potential role for DUSP5 in regulating oncogenic ERK signalling in this 

model, they could indicate that this role is limited, or perhaps redundant.  

High content imaging and analysis revealed that the spatiotemporal aspects of ERK 

hyperactivation in HT6244-R cells in response to AZD6244 removal are much the 

same as in H6244-R cells. Enhancement of p-ERK is seen within 10 minutes of drug 

withdrawal, decreases slightly within 2 hours and then is maintained for the duration 

of the response measured (48 hours in short-term assays). Western blotting analyses 

confirm that similar to results in Sale et al. (2019), ERK hyperactivation is sustained 

long thereafter, for at least 12 days. Interestingly, the accumulation of both p-ERK and 

total ERK in the nucleus, events that were coincident with ERK activation, is not as 

pronounced as in H6244-R cells. While this could hold some biological relevance, it 

may just reflect how morphological differences in these cells can impact image-based 

quantification. Similar to observations in H6244-R cells, after 2 hours of ERK 

hyperactivation p-ERK becomes more evenly distributed within the cell once again, 

while total ERK remains more predominantly in the nucleus. These results are 

interesting and provide new insight into the spatiotemporal behaviour of hyperactive 

ERK in the context of upstream signalling amplification.  
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In short-term AZD6244-withdrawal experiments with H6244-R cells, no relative 

increases in whole-cell p-ERK levels were detected in DUSP5 knockdown conditions 

with either western blot analysis or high content microscopy. Additionally, high content 

imaging analysis did not reveal any effects of DUSP5 loss on the nuclear to 

cytoplasmic distribution of p-ERK. The latter observation was consistent with results 

from similar H6244-R experiments, however, most notably, DUSP5 knockdown did 

appear to substantially enhance whole-cell p-ERK levels in H6244-R cells. 

Additionally, when DUSP5 expression was disrupted in AZD6244-deprived H6244-R 

cells, a decrease in the accumulation of total ERK in the nucleus was seen. In 

HT6244-R cells cultured without AZD6244 and exposed to adenoviral DUSP5-

targeting shRNA constructs there was some evidence of this phenotype in HCM and 

western blot results. This was accompanied by what appeared to be a decrease in 

total ERK levels in the presence of DUSP5-targeting shRNA. However, these 

observations were not consistent between two different DUSP5-targeting shRNA 

sequences used. Similar analyses performed with HT6244-R lentiviral shRNA cell 

lines produced results that were for the most part, consistent with those seen with 

adenoviral shRNA constructs, albeit with higher levels of deviation in repeated 

measures. 

In conjunction with the assessment of relative p-ERK and ERK levels in HT6244-R 

cells cultured without AZD6244 for up to 48 hours, p21CIP1 and BIM protein levels were 

monitored as they generally served as reliable indicators of increased ERK activity. In 

comparable experiments performed in Sale et al. (2019), ERK hyperactivation was 

concomitant with p21CIP1 induction and BIM repression in these conditions. Like with 

p-ERK, no differences in p21CIP1 and BIM expression were observed when DUSP5 

levels were reduced with either adenoviral or lentiviral shRNA in 48-hour experiments. 

In a final bid to expose a potential role for DUSP5 in regulating ERK hyperactivation 

in H6244-R cells, we used HT6244-R lentiviral shRNA cell lines to combine long-term 

AZD6244 withdrawal with prolonged DUSP5 knockdown. These experiments were 

based on western blot analyses performed by Sale et al. (2019) that characterised the 

cell death phenotype observed in HT6244-R cells cultured in the absence of AZD6244 

for 6 or more days. In addition to DUSP5, p-ERK, ERK, p21CIP1 and BIM levels we 

chose to evaluate levels of PARP cleavage as a general marker of cell death, and 

NOXA, the pro-apoptotic protein implicated in mediating cell death. We included 
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p21CIP1 and BIM in longer term experiments despite their seemingly indirect roles in 

the cell death phenotype previously characterised in similar experiments (Sale et al., 

2019). We reasoned that potential changes in p-ERK levels may not only result in the 

enhancement or acceleration of cell death but could alter cell fate entirely. For 

example, the upregulation of ERKs’ pro-survival BCL2 family targets and repression 

of pro-apoptotic targets such as BIM, combined with upregulation of the CDK inhibitor 

p21CIP1 could tip the balance of proliferative, anti-proliferative, pro-survival and pro-

apoptotic effectors and drive cells into to early senescence rather than death.  

Apart from inconsistencies in HT6244-R control conditions that served to monitor long 

term culture of HT6244-R cells in AZD6244 alongside AZD6244-free conditions, 

results seen in HCT116 and HT6244-R cells without DUSP5 ablation were generally 

similar to those seen in comparable experiments in Sale et al. (2019). However, 

subsequent analysis of doxycycline-induced DUSP5 knockdown conditions revealed 

a number of issues with the experimental set up, including off target effects of 

doxycycline administration in control conditions. Interestingly, PARP cleavage 

appeared reduced in all doxycycline conditions, indicating that these off-target effects 

were “protecting” cells from the cell death phenotype. Doxycycline has been shown to 

induce apoptosis caspase-mediated apoptosis in hela cells (Wu et al., 2006) and 

melanoma cells, where it was linked to JNK signalling (Shieh et al., 2010), however 

this generally occurred at concentrations above 10 µg.mL-1. Interestingly, when 

administered at lower concentrations (1 µg.mL-1) doxycycline enhanced cell survival 

in human pluripotent stem cells through the activation of the PI3K/AKT signalling 

pathway (Chang et al., 2014). It is therefore theoretically possible that in our cell model, 

doxycycline administration was able to offset pro-apoptotic signalling and reduce cell 

death.   

While the caveats of our experimental format prevented us from making any 

conclusive interpretations based on this data, some interesting observations were 

noted when we restricted our analysis to results from doxycycline-treated samples 

only. While these observations were not all together consistent, some evidence of 

subtle differences in DUSP5 shRNA lines compared to NT shRNA line were seen. 

These included subtle increases in p-ERK and p21CIP1 expression, enhanced BIM 

repression and reduced PARP cleavage. In theory, if these observations were indeed 

consequences of DUSP5 loss they might suggest that the effects increased p-ERK 
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has on more immediate signalling effectors like p21CIP1 and BIM could drive cells into 

senescence and circumvent the initiation of cell death. While this mechanism is 

theoretically possible, evidence of its likelihood cannot be drawn from this 

experimental data.  

5.5. Limitations and future work 

The limitations of the work completed to assess the influence of DUSP5 in the 

regulation of ERK in HT29 and HT6244-R cells have been discussed in some detail. 

While it is possible that these limitations precluded us from deriving any conclusive 

data from our experiments, it is also entirely possible that our difficulty in establishing 

substantial or consistent effects of DUSP5 loss in this cell model is due to its limited 

or redundant role in the signalling events we have investigated. Indeed, previous 

experiments that assessed the impact of MKP loss in HeLa cells revealed more 

substantial effects on ERK responses when DUSP/MKP proteins were knocked down 

in combinations (Caunt et al., 2008). It is possible that in HT6244-R cells, the 

expression of other MKPs and or other negative feedback regulators of ERK could 

compensate for DUSP5 loss in response to AZD6244 withdrawal.  

Early experiments revealed that both DUSP4 and DUSP6, in addition to DUSP5 were 

induced in HT6244-R cells cultured in the absence of AZD6244. It would be interesting 

to see how loss of one or both of these proteins alone, or in combination with DUSP5 

would influence the spatiotemporal dynamics of ERK activation as well as downstream 

effects in HT6244-R cells. Additionally, high throughput RNA screening could be 

employed to provide information on the global response of ERK pathway related 

proteins to AZD6244 withdrawal in HT6244-R cells. This could confirm or contradict 

the importance of MKPs in this model or reveal other potential feedback regulators 

that act to restrain hyperactive ERK. In the context of HT6244-R cells, where ERK 

hyperactivation induced by drug-withdrawal leads to the death of previously drug-

resistant cells, knowledge of signalling regulators that act to counteract this could be 

of clinical significance.  
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Chapter 6. Concluding Remarks 

As dynamic negative regulators of ERK activity, MKPs may play important roles in 

ERK-driven cancers. This may be especially true in the context of drug-resistance, 

where cessation of drug administration or “drug holidays” can lead to sustained ERK 

hyperactivation in some cancer models. In these scenarios MKP expression may be 

enhanced and could function to restrain the anti-proliferative or pro-apoptotic effects 

of ERK hyperactivation.   

This work has shown that in ERK-addicted, mutant BRAF- and KRAS-driven CRC 

lines and derivative cell lines that have evolved resistance to MEK inhibition, the 

expression profiles of prominent MKPs DUSP4, DUSP5 and DUSP6 are cell-line 

specific and temporally distinct. Despite this, removal of MEKi and the subsequent 

hyperactivation of ERK leads to robust induction of DUSP4, DUSP5 and DUSP6 in 

MEKi-resistant HCT116 (H6244-R) and HT29 (HT6244-R) cells and DUSP4 and 

DUSP6 in MEKi-resistant COLO205 (C6244-R) cells. Furthermore, experiments 

demonstrating the impact of DUSP5 loss in H6244-R cells suggest that DUSP5 

expression is able to modulate the effects of ERK hyperactivation and thus, could 

influence cell fate in this KRASG13D model. These effects appear to be mediated by 

enhanced ERK hyperactivation induced by DUSP5 ablation, however the specificity 

and extent of this modulation could more definitively validated through more detailed 

characterisation experiments coupled with DUSP5 rescue experiments.  

In the BRAFV600E-driven HT6244-R cell model where removal of MEK inhibition and 

ERK hyperactivation lead to cell death, the effects of DUSP5 loss were unclear. This 

may have been a result of confounding experimental influences, but it could also 

reflect a limited or redundant role of DUSP5 in these cells. It is possible that other 

MKPs such as DUSP4 can compensate for DUSP5 loss or may even constitute more 

relevant biological regulators in this context. The relative influence of DUSP4 and 

DUSP6 on AZD6244 administration and withdrawal in all three MEKi-resistant CRC 

models would be an interesting avenue to explore in future.  
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Appendix  

 
 

 

Figure A1 pGSH1-GFP shRNA expression vector (Genlantis). shRNA 

oligonucleotides digested with NotI and BamHI are ligated into the pGSH1-GFP vector 

downstream of an H1 promoter.   
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Figure A2. A) pGSH1-GFP shRNA constructs were transfected into HCT116 cells 

with high efficiency. HCT116 cells were transfected with shRNA constructs using 

Lipofectamine LTX Plus and imaged by an EVOS microscope 48 hours after 

transfection. Each image is a composite of a single view taken in two different light 

channels, visible light and GFP.  

A 
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Figure A2 continued. B) Analytical digests for the generation of pGSH1-GFP shRNA 

constructs. Samples were incubated with XhoI and HindIII enzymes for 3 hours at 37 

°C. Sample digests were analysed through gel electrophoresis.  

B 
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Figure A3 pSpCas9(BB)-2A-GFP CRISPR/Cas9 genome-editing vector. Guide 

oligonucleotide DNA is cloned into the pSpCas9(BB)-2A-GFP vector through a BbsI 

digestion and a T7 ligase reaction. sgRNA expression is driven by the upstream U6 

promoter, while the Cas9 nuclease is controlled by a CMV enhancer element.  
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Figure A4 pAV-EGFP-U6-shRNA vectors. VectorBuilder adenoviral shRNA 

vectors. All shRNA sequences are controlled by a U6 promoter while the EGFP 

reporter gene is downstream of a PGK promoter sequence. A) Non-targeting 

scrambled shRNA adenovirus vector. B) DUSP5-targeting shRNA 3 adenovirus 

vector. C) DUSP5-targeting shRNA 5 adenovirus vector. 

C 
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Figure A5 DharmaconTM SMARTvectorTM Inducible Lentiviral shRNA vector 

components. This inducible lentivirus vector controls shRNA expression through the 

Tet-On 3G bipartite induction system. The system is comprised of the TRE3G 

inducible RNA polymerase II promoter and the Tet-On 3G transactivator protein. 

Table A1 Set of 3 SMARTvector Inducible Human DUSP5 mCMV-TurboGFP  

shRNA glycerol set (Dharmacon). 

 

Reference code shRNA sequence Target region 

V3SH11252-227015515 5’-TTCAACTGGGCCACCCTGG-3’ ORF 

V3SH11252-228300931 5’-ACGGTGATCAGCTTATGCC-3’ UTR 

V3SH11252-229023400 5’-AGCGAGGTGAGGACGACAC-3’ ORF 
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Figure A6 Assessment of cell proliferation in response to AZD6244 dosing with 

EdU-labelling and flow cytometry in parental and AZD6244-resistant colorectal 

cancer cell lines COLO205, HT29 and HCT116. Cells were treated as indicated with 

AZD6244 (Sel) for 72 hours. A,C,D) Percent EdU-positive (EdU+) cells was 

determined by high-content image analysis. Results are normalized to parental 

controls. B)  Cell cycle distribution data was determined through DNA staining and 

flow cytometry. This figure was adapted from Sale et al. (2019) with permission from 

Nature communications. 

 

A 

C 

B 

D 
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Table A2 HCM data statistics for Figure 4.5 

  

  

Cell line 

 

Measure 

 

AZD6244 

(µM) 

Samples with statistically 

different mean values 

 

p-value 

 

A 

H6244-R p-ERK levels 0 Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.00452817 

 
0.00611164 

 

 

B 

H6244-R p-ERK levels 0.001  Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.000908593 
 
0.00151157 

 

C 

H6244-R p-ERK levels 0.01 Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.0194521 
 
0.0046851 

 

D 

H6244-R p-ERK levels 0.1 Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.00682528 
 
0.00138319 

 

E 

H6244-R p-ERK levels 1 Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.0253414 
 
0.0166136 

 

F 

H6244-R p-ERK levels 10 Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.01124 
 
0.000361403 

G HCT116 % S-phase  0.001 Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.0246425 
 

H HCT116 % S-phase  0.01 Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.0146271 
 

I HCT116 % S-phase  0.1 Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.0114953 
 

J HCT116 % S-phase  1 Untreated vs. DUSP5 

siRNA-03 

Non-targeting siRNA vs. 

DUSP5 siRNA-01 

Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.00352202 
 

0.00612226 
 
0.00177258 

K HCT116 % S-phase  10 Non-targeting siRNA vs. 

DUSP5 siRNA-03 

0.00653337 
 

L H6244-R % S-phase  0 Untreated vs. DUSP5 

siRNA-03 

 

0.00819301 
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Table A3 HCM data statistics for Figure 4.6 

p-ERK N+C intensity 2-hour time course  

 

Table Analyzed pERK 2 hrs N+C Int

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 6.475 0.0268 * Yes

Row Factor 55.5 < 0.0001 **** Yes

Column Factor 27.86 < 0.0001 **** Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 65.86 18 3.659 F (18, 56) = 1.981 P = 0.0268

Row Factor 564.5 6 94.08 F (6, 56) = 50.95 P < 0.0001

Column Factor 283.4 3 94.47 F (3, 56) = 51.16 P < 0.0001

Residual 103.4 56 1.847

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 7

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA -0.3454 -3.283 to 2.593 No ns

Untreated vs. DUSP5 siRNA 1 0.02086 -2.917 to 2.959 No ns

Untreated vs. DUSP5 siRNA 3 -0.476 -3.414 to 2.462 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 0.3662 -2.572 to 3.304 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.1306 -3.069 to 2.807 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.4969 -3.435 to 2.441 No ns

HCR 0

Untreated vs. Non-targeting siRNA -0.611 -3.549 to 2.327 No ns

Untreated vs. DUSP5 siRNA 1 -1.712 -4.650 to 1.225 No ns

Untreated vs. DUSP5 siRNA 3 -5.902 -8.840 to -2.964 Yes ****

Non-targeting siRNA vs. DUSP5 siRNA 1 -1.102 -4.039 to 1.836 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -5.291 -8.229 to -2.353 Yes ****

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -4.19 -7.128 to -1.252 Yes **

HCR 10

Untreated vs. Non-targeting siRNA 0.2891 -2.649 to 3.227 No ns

Untreated vs. DUSP5 siRNA 1 -1.603 -4.541 to 1.335 No ns

Untreated vs. DUSP5 siRNA 3 -4.141 -7.079 to -1.203 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 -1.892 -4.830 to 1.046 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -4.43 -7.368 to -1.492 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -2.538 -5.476 to 0.4003 No ns
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HCR 20

Untreated vs. Non-targeting siRNA 0.8445 -2.093 to 3.782 No ns

Untreated vs. DUSP5 siRNA 1 -0.7253 -3.663 to 2.213 No ns

Untreated vs. DUSP5 siRNA 3 -4.861 -7.799 to -1.924 Yes ***

Non-targeting siRNA vs. DUSP5 siRNA 1 -1.57 -4.508 to 1.368 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -5.706 -8.644 to -2.768 Yes ****

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -4.136 -7.074 to -1.198 Yes **

HCR 30

Untreated vs. Non-targeting siRNA 0.5821 -2.356 to 3.520 No ns

Untreated vs. DUSP5 siRNA 1 -3.308 -6.246 to -0.3703 Yes *

Untreated vs. DUSP5 siRNA 3 -5.726 -8.664 to -2.789 Yes ****

Non-targeting siRNA vs. DUSP5 siRNA 1 -3.89 -6.828 to -0.9525 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 3 -6.309 -9.247 to -3.371 Yes ****

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -2.418 -5.356 to 0.5197 No ns

HCR 60

Untreated vs. Non-targeting siRNA 0.7172 -2.221 to 3.655 No ns

Untreated vs. DUSP5 siRNA 1 -2.194 -5.132 to 0.7442 No ns

Untreated vs. DUSP5 siRNA 3 -4.043 -6.981 to -1.106 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 -2.911 -5.849 to 0.02703 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -4.761 -7.699 to -1.823 Yes ***

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -1.85 -4.788 to 1.088 No ns

HCR 120

Untreated vs. Non-targeting siRNA -0.1702 -3.108 to 2.768 No ns

Untreated vs. DUSP5 siRNA 1 -4.288 -7.226 to -1.350 Yes **

Untreated vs. DUSP5 siRNA 3 -5.373 -8.311 to -2.435 Yes ****

Non-targeting siRNA vs. DUSP5 siRNA 1 -4.118 -7.056 to -1.180 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 3 -5.202 -8.140 to -2.264 Yes ***

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -1.084 -4.022 to 1.854 No ns
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ERK N+C intensity 2-hour time course 

 

Table Analyzed ERK 2 hrs N+C Int

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 3.319 0.9995 ns No

Row Factor 16.47 0.0069 ** Yes

Column Factor 34.31 < 0.0001 **** Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 0.2985 18 0.01658 F (18, 56) = 0.2250 P = 0.9995

Row Factor 1.481 6 0.2468 F (6, 56) = 3.349 P = 0.0069

Column Factor 3.085 3 1.028 F (3, 56) = 13.95 P < 0.0001

Residual 4.127 56 0.0737

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 7

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA -0.2209 -0.8078 to 0.3661 No ns

Untreated vs. DUSP5 siRNA 1 -0.4993 -1.086 to 0.08769 No ns

Untreated vs. DUSP5 siRNA 3 -0.406 -0.9929 to 0.1810 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.2784 -0.8653 to 0.3086 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.1851 -0.7720 to 0.4019 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.0933 -0.4936 to 0.6803 No ns

HCR 0

Untreated vs. Non-targeting siRNA -0.03744 -0.6244 to 0.5495 No ns

Untreated vs. DUSP5 siRNA 1 -0.3858 -0.9727 to 0.2012 No ns

Untreated vs. DUSP5 siRNA 3 -0.4666 -1.054 to 0.1204 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.3483 -0.9353 to 0.2386 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.4291 -1.016 to 0.1578 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.08079 -0.6677 to 0.5062 No ns

HCR 10

Untreated vs. Non-targeting siRNA -0.01177 -0.5987 to 0.5752 No ns

Untreated vs. DUSP5 siRNA 1 -0.3463 -0.9332 to 0.2407 No ns

Untreated vs. DUSP5 siRNA 3 -0.4398 -1.027 to 0.1472 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.3345 -0.9215 to 0.2524 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.428 -1.015 to 0.1590 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.09349 -0.6804 to 0.4935 No ns
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HCR 20

Untreated vs. Non-targeting siRNA 0.02547 -0.5615 to 0.6124 No ns

Untreated vs. DUSP5 siRNA 1 -0.2499 -0.8368 to 0.3371 No ns

Untreated vs. DUSP5 siRNA 3 -0.5396 -1.127 to 0.04740 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.2753 -0.8623 to 0.3116 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.565 -1.152 to 0.02193 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.2897 -0.8766 to 0.2973 No ns

HCR 30

Untreated vs. Non-targeting siRNA 0.06418 -0.5228 to 0.6511 No ns

Untreated vs. DUSP5 siRNA 1 -0.3759 -0.9628 to 0.2111 No ns

Untreated vs. DUSP5 siRNA 3 -0.5415 -1.128 to 0.04547 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.4401 -1.027 to 0.1469 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.6057 -1.193 to -0.01871 Yes *

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.1656 -0.7526 to 0.4213 No ns

HCR 60

Untreated vs. Non-targeting siRNA 0.04254 -0.5444 to 0.6295 No ns

Untreated vs. DUSP5 siRNA 1 -0.2233 -0.8102 to 0.3637 No ns

Untreated vs. DUSP5 siRNA 3 -0.3823 -0.9693 to 0.2046 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.2658 -0.8528 to 0.3211 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.4248 -1.012 to 0.1621 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.159 -0.7460 to 0.4279 No ns

HCR 120

Untreated vs. Non-targeting siRNA 0.02142 -0.5655 to 0.6084 No ns

Untreated vs. DUSP5 siRNA 1 -0.2213 -0.8083 to 0.3656 No ns

Untreated vs. DUSP5 siRNA 3 -0.2922 -0.8791 to 0.2948 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.2428 -0.8297 to 0.3442 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.3136 -0.9005 to 0.2734 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.07083 -0.6578 to 0.5161 No ns
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p-ERK N+C intensity 48-hour time course 

  

Table Analyzed pERK 48 hrs N+C Int

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 6.565 0.408 ns No

Row Factor 42.03 < 0.0001 **** Yes

Column Factor 29.66 < 0.0001 **** Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 29.36 9 3.262 F (9, 32) = 1.074 P = 0.4080

Row Factor 187.9 3 62.65 F (3, 32) = 20.62 P < 0.0001

Column Factor 132.6 3 44.2 F (3, 32) = 14.55 P < 0.0001

Residual 97.22 32 3.038

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 4

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA -0.1522 -4.008 to 3.704 No ns

Untreated vs. DUSP5 siRNA 1 -0.1924 -4.048 to 3.663 No ns

Untreated vs. DUSP5 siRNA 3 -1.259 -5.115 to 2.597 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.04026 -3.896 to 3.816 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -1.107 -4.963 to 2.749 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -1.067 -4.922 to 2.789 No ns

HCR 0

Untreated vs. Non-targeting siRNA -0.4184 -4.274 to 3.437 No ns

Untreated vs. DUSP5 siRNA 1 -1.402 -5.258 to 2.453 No ns

Untreated vs. DUSP5 siRNA 3 -4.253 -8.109 to -0.3972 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.984 -4.840 to 2.872 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -3.835 -7.690 to 0.02129 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -2.851 -6.706 to 1.005 No ns

HCR 4

Untreated vs. Non-targeting siRNA -0.3978 -4.254 to 3.458 No ns

Untreated vs. DUSP5 siRNA 1 -3.571 -7.427 to 0.2849 No ns

Untreated vs. DUSP5 siRNA 3 -5.78 -9.635 to -1.924 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 -3.173 -7.029 to 0.6827 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -5.382 -9.238 to -1.526 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -2.209 -6.064 to 1.647 No ns

HCR 48

Untreated vs. Non-targeting siRNA -0.6592 -4.515 to 3.197 No ns

Untreated vs. DUSP5 siRNA 1 -2.258 -6.114 to 1.598 No ns

Untreated vs. DUSP5 siRNA 3 -5.695 -9.550 to -1.839 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 -1.599 -5.455 to 2.257 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -5.035 -8.891 to -1.180 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -3.436 -7.292 to 0.4194 No ns
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ERK N+C intensity 48-hour time course  

 

 

Table Analyzed ERK 48 hrs N+C Int

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 3.78 0.715 ns No

Row Factor 25.65 < 0.0001 **** Yes

Column Factor 51.01 < 0.0001 **** Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 0.1295 9 0.01439 F (9, 32) = 0.6871 P = 0.7150

Row Factor 0.8791 3 0.293 F (3, 32) = 13.99 P < 0.0001

Column Factor 1.748 3 0.5827 F (3, 32) = 27.82 P < 0.0001

Residual 0.6704 32 0.02095

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 4

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA 0.02466 -0.2955 to 0.3448 No ns

Untreated vs. DUSP5 siRNA 1 -0.3293 -0.6495 to -0.009159 Yes *

Untreated vs. DUSP5 siRNA 3 -0.5407 -0.8608 to -0.2205 Yes ***

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.354 -0.6742 to -0.03382 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.5653 -0.8855 to -0.2451 Yes ***

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.2113 -0.5315 to 0.1089 No ns

HCR 0

Untreated vs. Non-targeting siRNA 0.03691 -0.2833 to 0.3571 No ns

Untreated vs. DUSP5 siRNA 1 -0.3579 -0.6781 to -0.03771 Yes *

Untreated vs. DUSP5 siRNA 3 -0.4902 -0.8104 to -0.1700 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.3948 -0.7150 to -0.07462 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.5271 -0.8473 to -0.2070 Yes ***

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.1323 -0.4525 to 0.1878 No ns

HCR 4

Untreated vs. Non-targeting siRNA -0.04612 -0.3663 to 0.2741 No ns

Untreated vs. DUSP5 siRNA 1 -0.3593 -0.6795 to -0.03910 Yes *

Untreated vs. DUSP5 siRNA 3 -0.3527 -0.6729 to -0.03249 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.3132 -0.6333 to 0.007021 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.3066 -0.6267 to 0.01363 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.006612 -0.3136 to 0.3268 No ns

HCR 48

Untreated vs. Non-targeting siRNA 0.07042 -0.2498 to 0.3906 No ns

Untreated vs. DUSP5 siRNA 1 -0.2708 -0.5909 to 0.04943 No ns

Untreated vs. DUSP5 siRNA 3 -0.2345 -0.5547 to 0.08565 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.3412 -0.6614 to -0.02100 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.305 -0.6251 to 0.01523 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.03623 -0.2840 to 0.3564 No ns
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Table A4 HCM data statistics for Figure 4.7 

p-ERK N:C intensity 2-hour time course  

 

 

 

Table Analyzed pERK 2 hrs N:C Int BGC

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 32.67 0.0246 * Yes

Row Factor 13.86 0.0295 * Yes

Column Factor 2.813 0.3836 ns No

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 1.739 18 0.09659 F (18, 56) = 2.007 P = 0.0246

Row Factor 0.7374 6 0.1229 F (6, 56) = 2.553 P = 0.0295

Column Factor 0.1497 3 0.04989 F (3, 56) = 1.036 P = 0.3836

Residual 2.695 56 0.04813

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 7

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA 0.07261 -0.4017 to 0.5469 No ns

Untreated vs. DUSP5 siRNA 1 -0.6374 -1.112 to -0.1631 Yes **

Untreated vs. DUSP5 siRNA 3 -0.6229 -1.097 to -0.1486 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.71 -1.184 to -0.2357 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.6955 -1.170 to -0.2212 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.01449 -0.4598 to 0.4888 No ns

HCR 0

Untreated vs. Non-targeting siRNA 0.03489 -0.4394 to 0.5092 No ns

Untreated vs. DUSP5 siRNA 1 -0.05551 -0.5298 to 0.4188 No ns

Untreated vs. DUSP5 siRNA 3 -0.03669 -0.5110 to 0.4376 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.0904 -0.5647 to 0.3839 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.07158 -0.5459 to 0.4027 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.01882 -0.4555 to 0.4931 No ns

HCR 10

Untreated vs. Non-targeting siRNA 0.0421 -0.4322 to 0.5164 No ns

Untreated vs. DUSP5 siRNA 1 0.07489 -0.3994 to 0.5492 No ns

Untreated vs. DUSP5 siRNA 3 0.191 -0.2833 to 0.6653 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 0.03279 -0.4415 to 0.5071 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.1489 -0.3254 to 0.6232 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.1161 -0.3582 to 0.5904 No ns
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HCR 20

Untreated vs. Non-targeting siRNA 0.08433 -0.3900 to 0.5586 No ns

Untreated vs. DUSP5 siRNA 1 0.1109 -0.3634 to 0.5852 No ns

Untreated vs. DUSP5 siRNA 3 0.3464 -0.1279 to 0.8208 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 0.02658 -0.4477 to 0.5009 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.2621 -0.2122 to 0.7364 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.2355 -0.2388 to 0.7098 No ns

HCR 30

Untreated vs. Non-targeting siRNA 0.09839 -0.3759 to 0.5727 No ns

Untreated vs. DUSP5 siRNA 1 0.1249 -0.3494 to 0.5992 No ns

Untreated vs. DUSP5 siRNA 3 0.3018 -0.1725 to 0.7761 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 0.02654 -0.4478 to 0.5009 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.2034 -0.2709 to 0.6777 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.1769 -0.2975 to 0.6512 No ns

HCR 60

Untreated vs. Non-targeting siRNA -0.005541 -0.4799 to 0.4688 No ns

Untreated vs. DUSP5 siRNA 1 0.0384 -0.4359 to 0.5127 No ns

Untreated vs. DUSP5 siRNA 3 0.2367 -0.2377 to 0.7110 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 0.04395 -0.4304 to 0.5183 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.2422 -0.2321 to 0.7165 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.1983 -0.2761 to 0.6726 No ns

HCR 120

Untreated vs. Non-targeting siRNA -0.03393 -0.5082 to 0.4404 No ns

Untreated vs. DUSP5 siRNA 1 -0.06655 -0.5409 to 0.4078 No ns

Untreated vs. DUSP5 siRNA 3 -0.09087 -0.5652 to 0.3835 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.03262 -0.5069 to 0.4417 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.05694 -0.5313 to 0.4174 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.02432 -0.4986 to 0.4500 No ns
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ERK N:C intensity 2-hour time course 

 

Table Analyzed ERK 2 hrs N:C Int BGC

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 12.07 0.0051 ** Yes

Row Factor 54.5 < 0.0001 **** Yes

Column Factor 18.26 < 0.0001 **** Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 1.124 18 0.06244 F (18, 56) = 2.476 P = 0.0051

Row Factor 5.074 6 0.8456 F (6, 56) = 33.53 P < 0.0001

Column Factor 1.7 3 0.5667 F (3, 56) = 22.47 P < 0.0001

Residual 1.412 56 0.02522

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 7

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA 0.07158 -0.2718 to 0.4149 No ns

Untreated vs. DUSP5 siRNA 1 -0.005478 -0.3488 to 0.3379 No ns

Untreated vs. DUSP5 siRNA 3 -0.04692 -0.3903 to 0.2964 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.07706 -0.4204 to 0.2663 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.1185 -0.4618 to 0.2248 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.04144 -0.3848 to 0.3019 No ns

HCR 0

Untreated vs. Non-targeting siRNA 0.02394 -0.3194 to 0.3673 No ns

Untreated vs. DUSP5 siRNA 1 -0.01347 -0.3568 to 0.3299 No ns

Untreated vs. DUSP5 siRNA 3 0.02498 -0.3184 to 0.3683 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.03741 -0.3807 to 0.3059 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.00104 -0.3423 to 0.3444 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.03845 -0.3049 to 0.3818 No ns

HCR 10

Untreated vs. Non-targeting siRNA 0.06009 -0.2832 to 0.4034 No ns

Untreated vs. DUSP5 siRNA 1 0.1137 -0.2296 to 0.4571 No ns

Untreated vs. DUSP5 siRNA 3 0.4934 0.1500 to 0.8367 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 0.05363 -0.2897 to 0.3970 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.4333 0.08995 to 0.7766 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.3797 0.03632 to 0.7230 Yes *



267 
 

 

  

HCR 20

Untreated vs. Non-targeting siRNA 0.01761 -0.3257 to 0.3609 No ns

Untreated vs. DUSP5 siRNA 1 0.09831 -0.2450 to 0.4416 No ns

Untreated vs. DUSP5 siRNA 3 0.4141 0.07081 to 0.7575 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 1 0.0807 -0.2626 to 0.4240 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.3965 0.05320 to 0.7399 Yes *

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.3158 -0.02750 to 0.6592 No ns

HCR 30

Untreated vs. Non-targeting siRNA -0.05112 -0.3945 to 0.2922 No ns

Untreated vs. DUSP5 siRNA 1 0.113 -0.2304 to 0.4563 No ns

Untreated vs. DUSP5 siRNA 3 0.3983 0.05496 to 0.7416 Yes *

Non-targeting siRNA vs. DUSP5 siRNA 1 0.1641 -0.1792 to 0.5074 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.4494 0.1061 to 0.7928 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.2853 -0.05802 to 0.6287 No ns

HCR 60

Untreated vs. Non-targeting siRNA -0.05088 -0.3942 to 0.2925 No ns

Untreated vs. DUSP5 siRNA 1 0.1288 -0.2146 to 0.4721 No ns

Untreated vs. DUSP5 siRNA 3 0.4556 0.1123 to 0.7989 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 1 0.1797 -0.1637 to 0.5230 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.5065 0.1631 to 0.8498 Yes **

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.3268 -0.01652 to 0.6701 No ns

HCR 120

Untreated vs. Non-targeting siRNA 0.05202 -0.2913 to 0.3954 No ns

Untreated vs. DUSP5 siRNA 1 0.4934 0.1501 to 0.8368 Yes **

Untreated vs. DUSP5 siRNA 3 0.7584 0.4151 to 1.102 Yes ****

Non-targeting siRNA vs. DUSP5 siRNA 1 0.4414 0.09808 to 0.7847 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 3 0.7064 0.3631 to 1.050 Yes ****

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.265 -0.07833 to 0.6083 No ns
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p-ERK N:C intensity 48-hour time course  

 

 

Table Analyzed pERK 48 hrs N:C Int BGC

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 32.98 0.0212 * Yes

Row Factor 5.572 0.2812 ns No

Column Factor 16.82 0.0155 * Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 0.4591 9 0.05101 F (9, 32) = 2.628 P = 0.0212

Row Factor 0.07756 3 0.02585 F (3, 32) = 1.332 P = 0.2812

Column Factor 0.2341 3 0.07804 F (3, 32) = 4.021 P = 0.0155

Residual 0.6211 32 0.01941

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 4

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA 0.01054 -0.2977 to 0.3187 No ns

Untreated vs. DUSP5 siRNA 1 -0.4022 -0.7104 to -0.09397 Yes **

Untreated vs. DUSP5 siRNA 3 -0.4929 -0.8011 to -0.1847 Yes ***

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.4127 -0.7209 to -0.1045 Yes **

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.5035 -0.8117 to -0.1953 Yes ***

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.09076 -0.3990 to 0.2174 No ns

HCR 0

Untreated vs. Non-targeting siRNA 0.09868 -0.2095 to 0.4069 No ns

Untreated vs. DUSP5 siRNA 1 0.0005614 -0.3076 to 0.3088 No ns

Untreated vs. DUSP5 siRNA 3 0.04511 -0.2631 to 0.3533 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.09812 -0.4063 to 0.2101 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.05357 -0.3618 to 0.2546 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.04455 -0.2636 to 0.3527 No ns

HCR 4

Untreated vs. Non-targeting siRNA 0.04393 -0.2643 to 0.3521 No ns

Untreated vs. DUSP5 siRNA 1 -0.05285 -0.3610 to 0.2553 No ns

Untreated vs. DUSP5 siRNA 3 -0.07495 -0.3831 to 0.2332 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.09678 -0.4050 to 0.2114 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.1189 -0.4271 to 0.1893 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.0221 -0.3303 to 0.2861 No ns

HCR 48

Untreated vs. Non-targeting siRNA 0.09721 -0.2110 to 0.4054 No ns

Untreated vs. DUSP5 siRNA 1 0.06545 -0.2428 to 0.3736 No ns

Untreated vs. DUSP5 siRNA 3 0.1032 -0.2050 to 0.4114 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.03176 -0.3400 to 0.2764 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.005962 -0.3022 to 0.3142 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.03773 -0.2705 to 0.3459 No ns
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ERK N:C intensity 48-hour time course  

 

  

Table Analyzed ERK 48 hrs N:C Int BGC

Two-way ANOVA Ordinary

Alpha 0.05

Source of Variation % of total variation P value P value summary Significant?

Interaction 13.7 0.0008 *** Yes

Row Factor 64.86 < 0.0001 **** Yes

Column Factor 10.44 < 0.0001 **** Yes

ANOVA table SS DF MS F (DFn, DFd) P value

Interaction 1.179 9 0.131 F (9, 32) = 4.430 P = 0.0008

Row Factor 5.581 3 1.86 F (3, 32) = 62.91 P < 0.0001

Column Factor 0.8981 3 0.2994 F (3, 32) = 10.12 P < 0.0001

Residual 0.9463 32 0.02957

Number of missing values 0

Within each row, compare columns (simple effects within rows)

Number of families 4

Number of comparisons per family 6

Alpha 0.05

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary

HCT116

Untreated vs. Non-targeting siRNA -0.02312 -0.4035 to 0.3573 No ns

Untreated vs. DUSP5 siRNA 1 -0.05064 -0.4311 to 0.3298 No ns

Untreated vs. DUSP5 siRNA 3 -0.09948 -0.4799 to 0.2809 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.02752 -0.4079 to 0.3529 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 -0.07636 -0.4568 to 0.3041 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 -0.04884 -0.4293 to 0.3316 No ns

HCR 0

Untreated vs. Non-targeting siRNA -0.01222 -0.3926 to 0.3682 No ns

Untreated vs. DUSP5 siRNA 1 -0.05584 -0.4363 to 0.3246 No ns

Untreated vs. DUSP5 siRNA 3 0.013 -0.3674 to 0.3934 No ns

Non-targeting siRNA vs. DUSP5 siRNA 1 -0.04362 -0.4240 to 0.3368 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.02522 -0.3552 to 0.4056 No ns

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.06884 -0.3116 to 0.4493 No ns

HCR 4

Untreated vs. Non-targeting siRNA 0.1257 -0.2547 to 0.5061 No ns

Untreated vs. DUSP5 siRNA 1 0.3843 0.003905 to 0.7648 Yes *

Untreated vs. DUSP5 siRNA 3 0.798 0.4176 to 1.178 Yes ****

Non-targeting siRNA vs. DUSP5 siRNA 1 0.2586 -0.1218 to 0.6391 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.6723 0.2919 to 1.053 Yes ***

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.4137 0.03325 to 0.7941 Yes *

HCR 48

Untreated vs. Non-targeting siRNA -0.1341 -0.5145 to 0.2464 No ns

Untreated vs. DUSP5 siRNA 1 0.2043 -0.1761 to 0.5847 No ns

Untreated vs. DUSP5 siRNA 3 0.6049 0.2245 to 0.9853 Yes ***

Non-targeting siRNA vs. DUSP5 siRNA 1 0.3383 -0.04208 to 0.7188 No ns

Non-targeting siRNA vs. DUSP5 siRNA 3 0.739 0.3585 to 1.119 Yes ****

DUSP5 siRNA 1 vs. DUSP5 siRNA 3 0.4006 0.02019 to 0.7810 Yes *
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Figure A7 western blot quantification data for figure 5.7. HT6244-R shRNA cell 

lines were incubated with 1 µg.mL-1 doxycycline for 48 hours. Culture media was 

replaced with AZD6244-free media (containing doxycycline) 2 or 48 hours prior to cell 

lysis in appropriate conditions. Cells lysates were fractioned by SDS-PAGE and 

western blotted with the indicated antibodies to assess relative protein levels. Relative 

intensities of protein bands were quantified using Liquor’s Image Studio Lite software. 

n=3 biological replicates, ± SEM. 
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Figure A7 western blot quantification data for figure 5.7 continued. 
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Figure A8 western blot quantification data for figure 5.10. 
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Figure A8 western blot quantification data for figure 5.10 continued 
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Figure A8 western blot quantification data for figure 5.10 continued 
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Figure A8 western blot quantification data for figure 5.10. Sustained DUSP5 

knockdown in HT6244-R cell lines exposed to long-term AZD6244 withdrawal is 

coincident with subtle changes in p-ERK, p21CIP1, BIM and PARP cleavage. HT29 and 

HT6244-R shRNA cell lines were incubated with or without 1 µg.mL-1 doxycycline for 

48 hours before culture media was replaced with AZD6244-free media or media 

containing 1 µm AZD6244 (with or without doxycycline). Cells were incubated for a 

further 3, 6, 9 or 12 days before cell lysis. Samples were fractioned by SDS-PAGE 

and western blotted with the indicated antibodies to assess relative protein levels. 

Relative intensities of protein bands were quantified using Liquor’s Image Studio Lite 

software. n=3 biological replicates, ± SEM. 


