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Building upon recent developments of force-based estimators with a reduced variance for the computation of densities,
radial distribution functions or local transport properties from molecular simulations, we show that the variance can be
further reduced by considering optimal linear combinations of such estimators. This control variates approach, well
known in Statistics and already used in other branches of computational Physics, has been comparatively much less
exploited in molecular simulations. We illustrate this idea on the radial distribution function and the one-dimensional
density of a bulk and confined Lennard-Jones fluid, where the optimal combination of estimators is determined for each
distance or position, respectively. In addition to reducing the variance everywhere at virtually no additional cost, this
approach cures an artefact of the initial force-based estimators, namely small but non-zero values of the quantities in
regions where they should vanish. Beyond the examples considered here, the present work highlights more generally
the underexplored potential of control variates to estimate observables from molecular simulations.

The purpose of particle-based atomistic or mesoscopic sim-
ulations is to sample phase space in order to compute observ-
ables as ensemble averages, with the ultimate goals of predict-
ing physical properties and understanding their microscopic
origin. In parallel to the development of more accurate mod-
els to describe real systems and of more efficient algorithms
and of more powerful computers to generate more data, com-
putational physicists, chemists and biologists always benefit-
ted from advanced statistical tools to design their simulations
and analyze their data. Beyond basic results of estimation the-
ory to compute averages and uncertainties, more advanced ap-
proaches such as importance sampling have now become stan-
dards. While variance-reduction techniques have been around
since the early days of molecular simulations, their full po-
tential seems to have been under-explored in this field com-
pared to others (e.g. finance) or to other branches of compu-
tational Physics such as Quantum Monte Carlo1–3, or kinetic
theory4–8.

Recent promising examples of such endeavours include
new strategies for the determination of generic observ-
ables9–11 and transport properties12–14, as well as force-based
estimators to sample local properties such as number, charge
and polarization densities, radial distribution functions (RDF)
or local transport properties with a reduced variance10,11,15–21.
The availability of different estimators for the same observ-
able opens the possibility of exploiting another well known
approach to further reduce the variance, namely the control
variates method22–30. Here we show the potential of com-
bining of estimators for the determination of RDF and one-
dimensional density profiles of a bulk and confined fluid, de-
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fined (for a one-component system of N particles in a volume
V ) respectively as the ensemble averages:

g(r) =
V
N2

1
4πr2

〈
∑

i
∑
j 6=i

δ (ri j− r)

〉
(1)

with ri j the distance between two particles i and j, and

ρ(z) =
1
S

〈
∑

i
δ (zi− z)

〉
(2)

with zi the position of particle i along the z-axis and S the area
of the system in the lateral direction. Before turning to the
specific estimators for these observables, let us first introduce
the generic idea of combining two estimators E0(x) and E1(x)
of the same property, which in the present case explicitly de-
pends on some parameter x (distance or position). For each
value of x, one can consider linear combinations of the form:

Eλ (x) = (1−λ )E0(x)+λE1(x) = E0(x)+λ∆(x) (3)

with ∆(x)=E1(x)−E0(x). For any value of λ , the expectation
value 〈Eλ (x)〉 is the same as both E0(x) and E1(x); Eλ (x) is
therefore another valid estimator of the same property. How-
ever, the variance var(Eλ (x)) =

〈
[Eλ (x)−〈Eλ (x)〉]2

〉
is a

quadratic function of λ . Importantly, one can find for each
x the combination that minimizes the variance:

λ
∗(x) =−cov(E0(x),∆(x))

var(∆(x))
= 1− cov(E1(x),∆(x))

var(∆(x))
, (4)

which involves covariances cov(A,B) = 〈(A−〈A〉)(B−〈B〉)〉.
This provides for each x the optimal estimator E∗

λ
(x) in this
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family, which has a reduced variance compared to both E0(x)
and E1(x):

var(E∗
λ
(x)) =

[
1−ρ

2
En,∆(x)

]
var(En(x)) (5)

with ρEn,∆(x) = cov(En,∆)/
√

var(En)var(∆) the correlation
coefficient between En(x) and ∆(x) = E1(x)−E0(x). In prac-
tice, given two estimators and a set of configurations, one sim-
ply computes for each x both expectation values 〈En(x)〉 as
well as the (co-)variances entering in Eq. 4 to obtain the cor-
responding optimal estimator E∗

λ
(x) (see Eq. 3).

We now introduce pairs of estimators for the RDF (Eq. 1)
and the one-dimensional density distribution (Eq. 2). In each
case, both estimators use the force acting on the atoms in ad-
dition to their position and correspond to an “integral of the
gradient”, but they differ in the choice of the origin to per-
form this integration. For the RDF, we first consider the esti-
mator introduced in Ref. 16, which uses the limit value of 1
for r→ ∞, g∞(r) = 〈ĝλ=0(r)〉 with

ĝλ=0(r) = 1+
V
N2

β

4π
∑

i
∑
j 6=i

(f j− fi)

2
·

ri j

r3
i j

H (ri j− r) , (6)

where fi and f j are the forces acting on atoms i and j, ri j is
the displacement between atoms i and j, β = 1/kBT with kB
the Boltzmann constant and T the temperature, and H is the
Heaviside function. Compared to the standard histogram ap-
proach, obtained by discretizing the definition Eq. 1, in this
force-based estimator all pairs separated by a distance larger
than r contribute to the estimate of the RDF at r, which re-
duces the variance considerably. In addition, no bins are nec-
essary and the RDF can be obtained with arbitrary resolution.
However, Eq. 6 leads to a small yet spurious non-vanishing
value (and non-zero variance) for r→ 0. An alternative ex-
pression was proposed in Ref. 11 using this condition inside
the core and we therefore also consider g0(r) = 〈ĝλ=1(r)〉,
with

ĝλ=1(r) =
V
N2

β

4π
∑

i
∑
j 6=i

(f j− fi)

2
·

ri j

r3
i j

H (r− ri j) , (7)

where this time all pairs separated by a distance smaller than
r contribute to the estimate of the RDF at r. Symmetrically to
g∞(r), g0(r) displays by construction a vanishing value with
zero variance inside the core, but a larger variance at large
distance. Note that the subscripts in g∞ and g0 refer to the
distance from which the gradient is integrated, not to a value
of the mixing parameter λ .

The gradient of the 1D-density is given by the force den-
sity

〈 1
S ∑i δ (z− zi)β fz,i

〉
. For a fluid confined between walls,

the density can therefore be obtained by integrating the force
density from either side, starting from 0 inside the walls. This
leads to two complementary estimators defined by:

ρ0(z) = 〈ρ̂λ=0(z)〉=

〈
1
S ∑

i
H(z− zi)β fz,i

〉
, (8)

and

ρL(z) = 〈ρ̂λ=1(z)〉=

〈
1
S ∑

i
H(zi− z)β fz,i

〉
. (9)

Both estimators identically vanish (and so does the corre-
sponding variance) on one side but have a spurious non-zero
value (and corresponding variance) on the other.

We illustrate the advantage of combining estimators for a
simple Lennard-Jones (LJ) fluid at a reduced density ρ∗ =
ρσ3 = 0.8 and reduced temperature T ∗ = kBT/ε = 1.35, with
σ and ε the LJ diameter and energy, respectively. For the RDF
we consider a bulk system with N = 864 particles, while for
the 1D-density we simulate a fluid with N = 1152 particles
confined between two walls, consisting each of 72 LJ parti-
cles identical to the fluid on a centered square lattice (with
lattice spacing

√
2σ ) and separated by a distance 22σ . We

use periodic boundary conditions in 3 and 2 dimensions for
the bulk and confined systems, respectively. In both cases we
use a time step of 10−3 t∗ with t∗ =

√
mσ2/ε the LJ time unit

and m the mass of the particles, and a Nosé-Hoover thermo-
stat with a time constant of 0.1 t∗. In order to estimate the
relevant averages, (co-)variances and resulting optimal com-
bination parameter λ ∗, we use 103 configurations separated by
t∗ in both the bulk and confined cases. Even though the force-
based estimators do not require bins and can be evaluated at
arbitrary positions, the results are shown for evenly spaced
distances and positions with ∆r = 0.005σ and ∆z = 0.005σ

for the RDF and 1D-density, respectively.

Results for the RDF and the 1D-density profile are shown in
Figures 1 and 2, respectively. In both cases all estimators pro-
vide the same results for the observables (panels 1a and 2a),
which are typical of bulk and interfacial fluids. However the
variances (panels 1b and 2b) differ. The variance of the op-
timal combination is lower than that of both initial estima-
tors, as expected. It is also instructive to consider the optimal
weight λ ∗, shown in panels 1c and 2c. In both cases, the op-
timal combination coincides with the zero-variance estimator
in the corresponding regions: inside the core for g0 and at
large distance for g∞, for z→ 0 and z→ L for ρ0 and ρL, re-
spectively. Beyond these limits, the contributions of the two
estimators are equal in the central region for the 1D-density,
but their evolution is more complex for the RDF, with oscil-
lations following that of the RDF itself and even a negative
region for λ ∗ near the first peak of g(r).

Beyond the illustration on the RDF and 1D-density, this
work highlights the potential of the control variates method
to combine estimators of the same quantity in order to ob-
tain new estimators with reduced variance. This approach is
particularly beneficial when the regions in which the initial
estimators perform well in complementary regions, as it mit-
igates their respective limitations. The additional cost is lim-
ited, since it only requires computing (co-)variances of the ini-
tial estimators. The recent development of alternative estima-
tors for molecular simulations, e.g. force-based or within the
mapped-averaging framework, can directly benefit from the
present control variates approach, for other observables such
as angular distributions or two-particle densities. One could
also consider other combinations, such as direct estimates of
response functions (e.g. heat capacity or capacitance) with
their fluctuation counterparts (e.g. energy or charge fluctua-
tions).
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Figure 1. (a) Radial distribution function for a bulk Lennard-Jones fluid with the two estimators g∞ (see Eq. 6, solid blue line) and g0 (see
Eq. 7, dashed-dotted yellow line), corresponding to λ = 0 and λ = 1, respectively, and with the optimal linear combination for each distance
(gλ , see Eqs. 3 and 4, dashed red line). (b) Variance with each estimator. (c) Optimal mixing parameter λ ∗ as a function of distance. In all
panels the distance is normalized by the LJ diameter σ .
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Figure 2. (a) One-dimensional density profile for a confined Lennard-Jones fluid, estimated with the two estimators ρ0 (see Eq. 8, solid blue
line) and ρL (see Eq. 9, dashed-dotted yellow line), corresponding to λ = 0 and λ = 1, respectively, and with the optimal linear combination
for each distance (ρλ , see Eqs. 3 and 4, dashed red line). (b) Variance divided by the density with each estimator. (c) Optimal mixing parameter
λ ∗ as a function of position. In all panels the position is normalized by the LJ diameter σ .
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