

Citation for published version:
Laird, J 2021, A Compositional Cost Model for the Lambda-calculus. in Proceedings of Logic in Computer
Science, 2021.

Publication date:
2021

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. Jun. 2021

https://researchportal.bath.ac.uk/en/publications/a-compositional-cost-model-for-the-lambdacalculus(3742c8e0-96d7-4e5f-85dd-c07fe7ca3fe6).html

A Compositional Cost Model for the λ-calculus
James Laird

Department of Computer Science
University of Bath

Abstract—We describe a (time) cost model for the (call-by-value)
λ-calculus based on a natural presentation of its game semantics:
the cost of computing a finite approximant to the denotation of a
term (its evaluation tree) is the size of its smallest derivation in
the semantics. This measure has an optimality property enabling
compositional reasoning about cost bounds: for any term A,
context C[] and approximants a and c to the trees of A and
C[A], the cost of computing c from C[A] is no more than the
cost of computing a from A and c from C[a].

Although the natural semantics on which it is based is
nondeterministic, our cost model is reasonable: we describe
a deterministic algorithm for recognizing evaluation tree
approximants which satisfies it (up to a constant factor overhead)
on a Random Access Machine. This requires an implementation
of the λv-calculus on the RAM which is completely lazy:
compositionality of costs entails that work done to evaluate any
part of a term cannot be duplicated. This is achieved by a
novel implementation of graph reduction for nameless explicit
substitutions, to which we compile the λv-calculus via a series of
linear cost reductions.

I. INTRODUCTION AND RELATED WORK

Although they have evolved into different traditions,
semantics and algorithmics share a core of compositional
reasoning: the meaning of an expression is given by composing
the meanings of its subexpressions; the cost of solving a
problem (sequentially) is the sum of the costs of solving and
combining its sub-problems. The aim of this research is to
show that compositional reasoning, guided by semantics, can
be extended to the cost-analysis of programs in high level
languages: in this instance, the (call-by-value) λ-calculus.

Referential transparency makes compositional reasoning
about functional programs particularly straightforward (this is
often cited as a key benefit [1]). Their denotational semantics
is correspondingly elegant. However, the costs of evaluating
them are not compositional in general — neither in theory (β-
reductions of λ-terms) nor in practice (run-time for evaluation
in a typical functional programming language). Our goal is
to define a model of computation for higher-order functions
(based on computing their evaluation trees, which are syntactic
representations of the innocent strategies of game semantics)
and an implementation-independent measure of its (time) costs
which is compositional, in a sense we now describe.

In general, denotational (i.e. compositionally defined)
semantics of programming languages ignore the cost of
computation, identifying terminating programs with the values
to which they converge. In some cases, usage of resources
such as time is captured as a computational side-effect — e.g.
[2], [3]. We seek something more direct: a cost-measure on

the evaluation of functional programs which allows the use of
compositional reasoning to establish cost-bounds via simple
principles such as the following:
The cost of evaluating C[M] to V is no more than the cost of
evaluating M to V and C[U] to V .
much as compositionality of meaning can be used to reason
about (e.g.) program equivalence. To be more precise, we say
that a transitive binary relation R on the terms of a language
L is (left) compositional if

R(M,U) and R(C[U], V) implies R(C[M], V).

A cost model for R is a function R̃ : L × L → N∞ such
that R(M,N) if and only if R̃(M,N) < ∞. R̃ is (left)
compositional if

R̃(M,U) + R̃(C[U], V) ≥ R̃(C[M], V).

The fundamental requirement of a cost model is to capture
the time cost of computing its underlying relation (in an
implementation-independent way: defining costs for high-
level programs in terms of a low-level machine has all of
the advantages of theft over honest toil). Framing this as a
(semi)decision problem, and referring to the (weak) invariance
thesis — reasonable universal machines can simulate each
other up to a polynomial overhead in time [4] — we may
say that a cost model for R is reasonable if there is a
procedure which recognizes pairs of terms (M,V) ∈ R in time
polynomial in R̃(M,V) on any reasonable machine. By the
invariance thesis it suffices to implement such a procedure on
some reasonable machine: our algorithm for recognizing call-
by-value evaluation trees runs on a Random Access Machine
with a constant factor overhead.

As well as a potentially useful reasoning principle,
compositionality of costs is an optimality property — a triangle
inequality requiring the computation of R to follow the shortest
path to a result:

C[M]
R̃(C[M],V) //

R̃(M,U) ##GGGGGGGG
V

C[U]

R̃(C[U],V)

==||||||||

Unsurprisingly, it may be easier to verify such a path (or find it
non-deterministically) than to give an effective procedure which
computes it. For example, a cost model for the reducibility
relation in a term rewriting system is unitary if R̃(M,N) is
the length of some reduction path from M to N (where one
exists). It is optimal if this is the shortest such path. A simple978-1-6654-4895-6/21/$31.00 ©2021 IEEE

induction establishes that a unitary cost model is optimal if
and only if it is compositional and for all M , R̃(M,M) = 0
and R̃(M,N) = 1 if M → N and M 6= N .

However, in the λ-calculus, there can be no effective method
for finding optimal β-reduction paths (e.g. to normal form [5]).
The relationship between optimality and compositionality of
(unitary) costs is not so straightforward for β-normalization
itself, but standard reduction strategies possess neither property,
and for the same reason: duplication of work. For example,
normal order reduction of

(λx.x x) [λy.y λz.z]

duplicates λy.y λz.z: it would therefore be cheaper to reduce
it first to λz.z, and then normalize (λx.x x) [λz.z] to λz.z.
More promising therefore is to consider reduction of sharing
graphs for λ-terms, which eliminates duplication of work by
allowing multiple β-redexes to be reduced in parallel, and
for which Lamping’s algorithm can be used to find optimal
reduction paths effectively [6]. However, the cost model for
the λ-calculus which counts shared β-reductions (proposed in
[7]1) cannot be reasonable [8], [9]: (in the case of optimal
reduction it does not account for the additional “bookkeeping”
work on the graphs required to correctly implement sharing).
Results such as these confirm that claims about efficiency of
evaluation require a reasonable cost model to support them
by properly accounting for work done, since naı̈ve measures
such as the number of β-reductions performed may not do
so. Even in cases where this is a reasonable cost model (e.g.
normal order reduction), implementation requires considerable
technical sophistication [10], [11], [12], [13].

In fact, functional programs are not generally evaluated
by direct implementation of β-reduction, so we may look
for compositional cost models satisfied by other forms of
evaluation, which must therefore be efficient in this general
sense. Lazy evaluation — evaluating arguments once, on
demand, and sharing the result — is the general remedy
for duplication of work by substitution, and thus a basis for
implementing a compositional cost model. In its simplest form
(call-by-need), λx.M N is evaluated by reducing M until x
is called, then evaluating N (to a weak head normal form V)
and sharing this value with any future calls to x. This avoids
the work of repeatedly evaluating N each time x is called:
the cost of lazily evaluating λx.M N is no more than the
cost of evaluating N to V plus that of evaluating λx.M V .
So call-by-need evaluation should satisfy a compositional cost
model with respect to weak contexts in which the hole is not
in the scope of a λ-abstraction (indeed, call-by-need is optimal
for weak reduction [14]).

This raises the question of how to formulate an
implementation-independent cost model for lazy evaluation,
given that the necessary sharing is not expressible in the λ-
calculus itself. Hackett and Hutton [15] propose “clairvoyant
call-by-value” as a state-free way to specify and reason about

1This cost model includes the size of the term and its normal form but the
resuts of [8], [9] still hold.

the costs of call-by-need as those of a non-deterministic
evaluator which always makes the optimal choice between
evaluating λx.M N by evaluating M [⊥/x], if M does not
call x, and evaluating N to a value V and then M [V/x] if
it does. To define a formal cost model for λv, we take a
similar approach: specifying it in terms of the optimal cost
of a non-deterministic, eager evaluation strategy which can
discard unneeded subterms in favour of ⊥, and implementing
it with a deterministic, lazy evaluator. Compositionality with
respect to all contexts requires that evaluation is strong (under λ-
abstractions): our clairvoyant eager strategy performs innermost
reduction rather than call-by-value, and the lazy evaluator shares
between function bodies rather than weak head-normal forms.
The main technical challenge is to achieve the latter.

Full laziness [16] is a refinement of laziness that does allow
sharing under a λ-abstraction — of those subexpressions which
are syntactically independent of it. In other words, it should
satisfy a compositionality property: the cost of evaluating C[M]
is no more than that of evaluating M to U and then evaluating
C[U], provided no free variable of M is bound by C[].
However, a subexpression may be semantically independent
of its context — and thus capable of being shared — without
being syntactically independent of it: for example, fully lazy
evaluation of

(λw.w w) λx.[(λf.f x) λy.λz.z]

duplicates λf.(f x) λy.λz.z, so its cost is greater than that of
evaluating λf.(f x) λy.λz.z to λz.z and (λw.w w) λx.[λz.z]
to λz.z. Compositionality with respect to all contexts therefore
requires sharing at a deeper, semantic level.

Complete laziness was proposed by Holst and Gomard [17]
as a level of sharing giving the run-time evaluator the efficiency
of partial evaluation — i.e. the ability to selectively evaluate
subterms. In effect, this is equivalent to defining a completely
lazy evaluator to be one which satisfies a compositional cost
model. Indeed, formalizing complete laziness in this way
should shed light upon a concept which is intriguing but
not yet well understood. The explanations in [17] of how
it is to be achieved are sketchy. Moreover, although both
[17] and [18] (which proposes a more detailed semantics)
present complete laziness as “fuller laziness”, subsuming call-
by-need and full laziness, their proposed semantics omits some
sharing that is achieved by plain call-by-need2: sharing at the
“deeper” level of function bodies does not imply sharing at
the level of weak head normal forms. Thyer [19] describes
an implementation of complete laziness which combines both,
subsuming call-by-need (but not full laziness), at the price
of a substantial increase in the complexity of the graph-
manipulations required (substitutions of graphs into each
other, implemented using memo-tables), making it difficult
to give an implementation-independent characterization of its

2The counterexample (λf.(f λw.w)) λx.((λy.y y) (x λz.z)) is given in
[18] as an example for which completely lazy evaluation is not optimal.
However, call-by-need does achieve optimal sharing in this case.

costs.3 However, this implementation is shown in practice to
collapse a tower of interpreters, which constitutes an empirical
demonstration that its costs are compositional. Consider, for
example, a program λx.M (I N), where I is some higher-
order program transformation such as an interpreter. The
compositionality principle says that the cost overhead of doing
the interpretation at run-time is no more than the cost of
evaluating I N once to produce the finite amount of interpreted
code consumed by M , however many times x is called. Indeed,
a tower of interpreters λx.M (I1 (I2 . . . (In N) . . .)) should
collapse to a constant overhead over running fully interpreted
code, and this is confirmed by the experimental results in [19].

A. Lazy Implementation of Game Semantics

Our cost model is derived from a compositionally defined
denotational model, and its implementation from an effective
procedure for lazily computing denotations. Game semantics is
a natural setting in which to apply this methodology: it captures
low-level implementation details in an abstract, compositional
setting, demonstrated by correspondences with more explicit
models of computation such as the Krivine abstract machine
[20]. The length of interactions between strategies can be used
to to give a cost analysis of evaluating the programs which
denote them in such an implementation [21]. However, this is
not a compositional cost model4. The fundamental problem
is the inefficiency of computing the composition of innocent
strategies (the denotations of purely functional programs in
Hyland-Ong games [23]) by playing them off against each
other (“parallel composition plus hiding”): such plays will
typically contain moves — and whole subsequences — which
are copies of previous parts of the play because both players are
constrained by innocence to play the same move in response
to positions with the same view. For example, computing the
(call-by-name) denotation of λx.(x + x) suc(n) corresponds
to computing the following sequence of moves :

λx.(x+ x) (suc (n))
?

?
?
n

n+ 1
?

?

]]

�

�
2

n

BB

2
�

�

n+ 1

BB

2
�

�

2n+ 2

(and hiding all but the first and last). The arrows show moves
which are required by innocence to be copies of a previous
move and could therefore be shared. This problem (duplication
of work) is essentially the same as for β-reduction. However,
by representing functional computation as a sequence of atomic

3Completely lazy implementation fits well with call-by-value, as we show:
this may seem paradoxical but illustrates the distinction between a semantics
(such as call-by-name or call-by-value) and an evaluation technique for
computing it, such as call-by-need or complete laziness.

4See recent work characterizing its (in)efficiency [22]

λv-calculus (Section II)
⇓

CPS Interpretation (Section III)
⇓

Explicit Substitutions (Section IV)
⇓

Nameless Representation (Section V)
⇓

Graph Reduction (Section VI)
⇓

RAM Implementation (Section VII)

Fig. 1. Reduction steps for implementation of λv

interactions, game semantics allows the solution (sharing by
graph reduction) to be implemented more simply, without
bookkeeping overhead (as in combinator graph reduction
[24], but preserving λ-calculus structure and respecting an
implementation-independent cost model).

How can the computation of a denotational semantics be
captured operationally? One possibility is normalization by
evaluation [25]: computing the denotation of a term as the
element of a datatype in a high-level language, which can then
be reified back to its normal form. Implementing this lazily
allows infinitary normal forms (Böhm trees) to be computed
[26], [27], and has been used to describe the composition of
innocent strategies [28]. This is potentially a form of complete
laziness, because higher-order functions are represented as
shareable elements of lazy datatypes. The key difference to
our approach is that it is an interpretation of one high-level
language within another, rather than a compilation to run on a
low-level (reasonable) machine. Its efficient implementation,
and the analysis of costs, therefore depends on the “kindness
of strangers” — the compiler for the target language.

We shall take an unmediated approach, computing their
evaluation trees directly from λ-terms. These are a generalized
form of Böhm tree, and the syntactic counterparts to innocent
strategies [23]: defining a compositional interpretation which
assigns to each term M its evaluation tree thus amounts
to a form of game semantics [29]. Doing so effectively —
computing with Böhm trees [30] — gives an operational
semantics for functional programs which subsumes evaluation
to head-normal form by computing as much of the tree as is
required. Evaluation trees are most simply represented as limits
(ideals) of their finite approximants: we give a compositional
natural semantics for the call-by-value λ-calculus in the form
of a system for deriving judgments of the form “a is an
approximant to (the evaluation tree of) A”. The main challenge
lies in giving an effective semi-decision procedure for this
relation with cost linear in the size of derivations. This is
achieved by a sequence of (linear-time) reductions to an
implementation on a Random Access Machine (Figure 1), using
variants of several well-known compilation techniques and in
particular, a graph representation which allows completely lazy
computation of trees/strategies.

II. A COMPOSITIONAL COST MODEL FOR λv

In this section we describe a natural (“big-step”) evaluation
tree semantics for the call-by-value λ-calculus and prove
compositionality of its intrinsic cost model. We will present
this semantics via an approximation relation on λv-terms.

Definition 2.1: An approximation relation on a set S is a
binary relation ∝ on S such that:
• If a ∝ A for some A ∈ S then a ∝ a.
• a, b ∝ A if and only if ∃c ∝ A such that a, b ∝ c.

In other words, ∝ restricts to a preorder on the set {a ∈
S | ∃A.a ∝ A} of approximants for ∝5, and for each A ∈ S
the set {a ∈ S | a ∝ A} of approximants to A is an ideal of
this preorder.
This is general enough to describe evaluation trees for objects
such as graphs (see Section 6), but typically we will define an
evaluation tree semantics for a programming language (with a
distinguished constant ⊥) by giving an approximation relation
on its set of terms: the approximants correspond to the finite
trees, and a ∝ A if the evaluation tree of A may be pruned to
a by replacing some of its subtrees with ⊥. The most direct
way to define such a relation is via a natural presentation — i.e.
an inference system (in the sense of Aczel [31]) for deriving
judgements of the form a ∝ A, consisting of a set of rules for
which these judgments are the premisses and conclusions and
the approximation relation is the least fixed point.

To simplify the presentation of the semantics of the call-by-
value λ-calculus we adopt a slightly elaborated syntax making
the flow of control more explicit. (A type of administrative
normal form [32].

Definition 2.2: The terms of (partial) λv are given by the
grammar: M ::= ⊥ | V | V V | let x = M inM
where values V are given by the grammar: V ::= x | λx.M .
So we may express M N as either let x = M in let y =
N in (x y) or let y = N in let x = M in (x y) — terms which
may have distinct evaluation trees.

The approximation relation ∝v on λv-terms is the least
fixed point of the rules in Table I. Here, and elsewhere, the
substitution a[c/x] of c for free occurrences of x in a is
considered well-defined only if no free variable of c becomes
bound — the rules for the approximation relation allow for
explicit renaming of bound variables to avoid such capture. An
example derivation of λx.λy.⊥ ∝v λx.let z = λu.λv.⊥ x in z
is given in Figure 2.

Implicit in the derivation rules there is a “clairvoyant” (in
the sense of [15]) algorithm for computing the approximants
to a term compositionally (from the inside out) and
semideterministically — the rule required to infer a ∝v A is
determined by the outermost constructors of A, except where
a = ⊥.

It is straightforward to show that approximants are given by
the grammar: a ::= ⊥ | λx.a | let x = (y λz.a) in a
and that if a and b are approximants then a ∝v b if and only
a v⊥ b up to renaming of bound variables, where v⊥ is

5We will follow a convention of using lower case for approximants and
upper case for general terms, graphs etc.

the least precongruence on terms such that ⊥ v⊥ M for all
M . Thus ∝v is a preorder on the set of approximants, and
the equivalence relation it induces on approximants (a ∝v b
and b ∝v a) is α-equivalence in the usual sense. Using this
characterization of finite approximants, together with the fact
that substitution is v⊥-monotone — i.e. if a v⊥ a′′ and
v v⊥ v′′ then a[v/x] v⊥ a′′[v′′/x] — we may prove the
following lemma by induction on derivation size:

Lemma 2.3: If a ∝v A and a′ ∝v A′, where A,A′ v⊥ A′′
then there exists a′′ ∝v A′′ such that a, a′ ∝v a′′.
Hence ∝v is a well-defined approximation relation.

This notion of evaluation tree for λv identifies strictly
more terms than the “call-by-value Böhm trees” defined
in [33]: specifically, any variable f 6= x with λx.f x (ηv-
equivalence), and f V with let y = (f V) in y. So, for example,
the evaluation tree of f is the infinite tree η(f) =:

λx

let y = (f •)
uuu

in •
77

η(x) η(y)

Both of these equations are sound with respect to the
denotational semantics of λv (in a closed Freyd category with
a reflexive object D ∼= D ⇒ D). Indeed, the (α-equivalence
classes of) closed approximants are order-isomorphic (via
a proof of definability) to the finite innocent strategies on
such an object in a category of games, defined in [34] as
an “intensionally fully abstract” model of the call-by-value λ-
calculus, and thus their ideals — evaluation trees — correspond
to innocent strategies: (the node at the end of each branch of the
tree is the response by the strategy to the “view” corresponding
to the branch, either with a question (let x = y λz. in) with
a pointer (y) back to its binder or an answer (λz.). Our
natural semantics may be understood as an alternative (but still
compositionally defined) presentation of this model, similar to
the presentation of the HO games model of PCF in [35].

A. A Compositional Cost Model

A cost model for an approximation relation ∝ on a set S is
a map ∝̃ : S × S → N∞ such that ∝(a,A) < ∞ iff a ∝ A.
We assign to ∝v its intrinsic cost model:

Definition 2.4: If a ∝v A is derivable, let ∝̃v(a,A) be the
size6 of its minimal derivation. Otherwise, ∝̃v(a,A) =∞.
This is monotone in its first argument — a ∝v b implies
∝̃v(a,A) ≤ ∝̃v(b, A). It is also compositional:

Proposition 2.5: For any terms a, b, B and context C[],
∝̃v(a,C[B]) ≤ ∝̃v(b, B) + ∝̃v(a,C[b]).

PROOF: This is evident if either ∝̃v(a,C[b]) = ∞ or
∝̃v(b, B) = ∞, so assume that a ∝v C[b] and b ∝v B and
proceed by structural induction on C[].
If C[] is the empty context then ∝̃v(a,C[B]) ≤ ∝̃v(b, B) ≤
∝̃v(a,C[b]) + ∝̃v(b, B) by monotonicity of ∝̃v(, B).

6Some rules (e.g. the axiom ⊥αvM) need not be counted — but this is at
most a constant factor of derivation size.

⊥∝vM
a∝vM

λy.a[y/x]∝vλx.M y 6∈ FV(a)
a∝vλy.x y
a∝vx y 6= x

a∝vV b∝vM c∝vb[a/x]
c∝v let x=V inM

a∝v let y=M in let x=M ′ inN
a∝v let x=let y=M inM ′ inN

a∝v let x=U V in x
a∝vU V

a∝vV b∝vM
let y=f a in b[y/x]∝v let x=f V inM y 6∈ FV(b)

a∝vM b∝vV c∝vN d∝v let x=a[b/y] in c
d∝v let x=λy.M V inN

TABLE I
EVALUATION TREE SEMANTICS FOR λv

⊥ ∝v ⊥
λv.⊥ ∝v λv.⊥

⊥ ∝v x w
λw.⊥ ∝v λw.x w
λw.⊥ ∝v x

⊥ ∝v z y
λy.⊥ ∝v λy.z y
λy.⊥ ∝v z

⊥ ∝v ⊥
λv.⊥ ∝v λv.⊥

⊥ ∝v ⊥
λy.⊥ ∝v λy.⊥

⊥ ∝v ⊥
λy.⊥ ∝v λy.⊥

λy.⊥ ∝v let z = λv.⊥ in λy.⊥
λy.⊥ ∝v let z = λu.λv.⊥ x in z

λx.λy.⊥ ∝v λx.let z = λu.λv.⊥ x in z

Fig. 2. Derivation of λx.λy.⊥ ∝v λx.let z = λu.λv.⊥ x in z

For the induction step there is a range of similar cases
depending on the structure of C[], we give a typical one:
suppose C[] ≡ let x = λy.C ′[] inN (and a 6= ⊥, since
∝̃v(⊥, C[M]) = 1 ≤ ∝̃v(b, B) for all b).

Since a ∝v C[b] has a smallest derivation, there exist a′ ∝v
λy.C ′[b] and c ∝v N such that a ∝v c[a′/x] and ∝̃v(a,C[b])
= ∝̃v(a′, λy.C ′[b]) + ∝̃v(c,N) + ∝̃v(a, c[a′/x]) + 1 (∗)

We claim (†) that ∝̃v(a,C[B])
≤ ∝̃v(a′, λy.C ′[B]) + ∝̃v(c,N) + ∝̃v(a, c[a′/x]) + 1. ≤
∝̃v(b, B) + ∝̃v(a′, λy.C ′[b])+ ∝ (c,N) + ∝̃v(a, c[a′/x]) + 1
by induction hypothesis applied to λy.C ′[]
= ∝̃v(b, B) + ∝̃v(a,C[b]) by (∗), as required.

To justify the claim (†): if ∝̃v(a′, λy.C ′[B]) = ∞ then
it is immediate. Otherwise, a′ ∝v λy.C ′[B], and so there
is a derivation of a ∝v C[B] of size ∝̃v(a′, λy.C ′[B]) +
∝̃v(c,N) + ∝̃v(a, c[a′/x]) + 1 and ∝̃v(a,C[B]) is less than
this by definition. �

We now give an example of the application of compositionality
to analyse a sequence of terms A1, A2, . . . for which the cost of
proving termination of An is linear in n in our cost model, but
requires exponentially many (leftmost) outermost reductions.
This example is adapted from a call-by-name setting [7] where
it is also shown that the cost of evaluating each An using either
combinators or supercombinators [36] is exponential in n (nor
does full laziness give any speedup [18]).

Definition 2.6: A0 , λy.⊥ and for each n ∈ ω, An+1 ,
letw = λx.An in let z = w x inw z.
Writing M

k

−� M ′ if there is a normal order reduction
sequence of length k from M to M ′ consisting of βv-reductions
(let x = V inN → N [V/x] and λx.N V → N [V/x]):

Proposition 2.7: An
2n+2−4

−� λy.⊥.

PROOF: This follows from the fact that for any value V ,

λx.An V
2n+2−3

−� λy.⊥, which we prove by induction on n.
At n = 0, λx.λy.⊥ V

1

−� λy.⊥. For the induction step:
λx.An+1 V

1

−� letw = λx.An in let z = w V inw z
1

−� let z = (λx.An V) in (λx.An z)

2n+2−3

−� let z = λy.⊥ in (λx.An z) by induction hypothesis
1

−� λx.An λy.⊥
2n+2−3

−� λy.⊥ by induction hypothesis.

Hence λx.An+1 V
2n+3−3

−� λy.⊥ as required. �

The proof that the size of the derivation of λy.⊥ ∝v An is
linear in n is a simple application of compositionality.

Proposition 2.8: ∝̃v(A0, An) ≤ n.∝̃v(A0, A1) for n > 0.

PROOF: By induction on n: at n = 1 this holds by definition.
For the induction step, ∝̃v(A0, An+1)
, ∝̃v(A0, letw = λx.An in let z = w x inw z)
≤ ∝̃v(A0, An) + ∝̃v(A0, letw = λx.A0 in let z = w x inw z)
by compositionality
≤ n.∝̃v(A0, A1) + ∝̃v(A0, A1) by induction hypothesis
= (n+ 1).∝̃v(A0, A1) as required. �

We leave it as an exercise to find a bound for ∝̃v(A0, A1)
using the compositionality property.

III. COST REDUCTIONS

It remains to establish that ∝̃v is reasonable by implementing
it on a reasonable machine. We will show that there is a constant
K and a Random Access Machine which takes a (linear time
computable) compilation of pairs (a,A) as its initial states and
accepts within K.∝̃v(a,A) steps if a ∝v A and either rejects
or diverges otherwise.

To bridge the gap between the high-level features of
λv and their low-level implementation on the RAM, we
adopt the standard compilation strategy of breaking it down
into a sequence of translations into progressively lower-level
intermediate languages. We give an evaluation tree cost model
for each language, and show that each compilation step is a
cost reduction in the following sense.

Definition 3.1: A (reasonable) cost reduction between cost-
models ∝̃1 : L1 × L1 → N∞ and ∝̃2 : L2 × L2 → N∞ is a
function f : L1 → L2 (computable in time polynomial in input
size) such that for some polynomial φ, ∝̃2(f(a), f(A)) ≤∞
φ(∝̃1(a,A)) for all a,A ∈ L1, where x ≤∞ y if x, y ∈ N and
x ≤ y, or x = y =∞. We may write this as ∝̃2 . f(∝̃1).

Evidently, if ∝̃2 . f(∝̃1) and ∝̃2 is reasonable, then so is ∝̃1.
The sequence of cost reductions from λv to its implementation
is shown in Figure 1. Each is in fact linear — in terms of both
compilation time and run-time overhead — and thus maintains
a constant factor overhead. The key step is determinization of
the algorithm for computing approximants by reduction to a
graph representation in which we can define a deterministic
call-by-need graph reduction strategy with the same cost as
clairvoyant innermost evaluation. The other reductions prepare
for this transformation by breaking down the high-level features
of λv — simplification of control flow by CPS transform,
replacement of meta-level with explicit substitutions, and the
elimination of name binding by conversion into a nameless
representation using de Bruijn levels.

A. Continuation-passing-style Interpretation

The first example of a cost reduction, and the first step
in compiling λv into its RAM implementation, is a familiar
one in the context of compilation — continuation-passing-
style (CPS) translation into a calculus (λCPS) which has a
simpler semantics because its functions never return a value.
We define a (compositional) evaluation tree semantics for λCPS

and a Plotkin-style CPS interpretation of λv which is a linear-
time cost reduction with respect to their intrinsic cost models.
In game semantics terms, this corresponds to embedding into
a category of continuations with the one-move game as answer
object (or dropping the distinction between questions and
answers).

Each term of λCPS is (exclusively) either a non-returning
computation or a value: a function taking an argument
consisting of a pair of values and returning a computation.

Definition 3.2: The sets of computations and values of λCPS

are given by the grammars:
M ::= ⊥ | V 〈V, V 〉 V ::= λx.M | x.t

where x ranges over a set of variables and t over the set {l, r}.
So each variable represents a pair of values, and is invoked
with a tag for left or right projection. We write M [〈Vl, Vr〉/x]
for the substitution which replaces each free occurrence of
x.l in M with Vl and each free occurrence of x.r with Vr,
provided this is non-capturing.

The natural evaluation tree semantics for λCPS is given by an
approximation relation (∝c) on the set of computations and
values — the least fixed point of the big-step derivation rules
for the judgement a ∝c A given in Table II.

It is straightforward to show that the sets of (computation
and value) λCPS approximants are generated by the grammars:
a ::= ⊥ | x.t 〈v, v〉 v ::= λx.a

The closed evaluation trees of λCPS are therefore binary trees
in which each edge is labelled with a λ-abstraction and each
node with a left/right tag and a pointer (its head variable) back
to some earlier edge where it was bound. They correspond to
innocent strategies for the HO arena in which players take turns
playing either a right or left tag with a pointer to a previous
move by the other player (the least fixed point D = ¬(D×D),
where ¬D flips the roles of the two players and adds an initial
move). The evaluation tree presentation of this semantics (and

⊥∝cM
a∝cM

λy.a[y/x]∝cλx.M
y 6∈ FV(a)

al∝cy.l ar∝cy.r
λy.x.t 〈al,ar〉∝cx.t

al∝cVl ar∝cVr
x.t 〈al,ar〉∝cx.t 〈Vl,Vr〉

a∝cM bl∝cVl br∝cVr c∝ca[〈bl,br〉/x]
c∝cλx.M 〈Vl,Vr〉

TABLE II
NATURAL EVALUATION TREE SEMANTICS FOR λCPS

thus its cost model) is compositional (the proof follows that of
Proposition 2.5), and we shall show that it is reasonable. Thus
CPS interpretation from any language into λCPS is the basis of
a compositional cost model, providing it is compositional (i.e.
C[M] = C[M]) and v⊥-monotone.

The compilation of λv into λCPS is a variant of Plotkin’s
call-by-value CPS translation [37]. We define mutually
inductive translations sending each value V of λv to a value
V ∗ of λCPS , and each term M of λv to a context M [•] of
λCPS (a computation with one value-shaped hole, or none).
x∗ = x.l ⊥ = ⊥
(λx.M)∗ = λx.M [x.r] V U = V ∗ 〈U∗, •〉
V = • 〈V ∗, λy.⊥〉 let y = M inN = M [λy.N [•]]

E.g. (compare Figure 2) (λx.let z = λu.λv.⊥ x in z)∗ =
λx.λu.u.r 〈λv.⊥, λy.⊥〉 〈x.l, λz.x.r 〈zl, λy.⊥〉〉.

Observe that if v is a λv-approximant value then v∗ is a λCPS

approximant, and if a is a λv-approximant term then a[x.r] is a
λCPS approximant. There is a constant factor increase in the size
of translated terms (e.g. from λx.M to • 〈λx.M [x.r], λy.⊥〉
but while other CPS translations can introduce administrative
reductions with an inflationary effect on evaluation cost, the
natural semantics for λv and λCPS track each other through
CPS interpretation(by design) — we show by induction on
derivation that:

Lemma 3.3: ∝̃c(a[κ.r],M [κ.r]) ≤∞ 4.∝̃v(a,M) for terms
a,M , and ∝̃c(b

∗, V ∗) ≤∞ 4.∝̃v(b, V) for values b, V .
where κ is an unbound value. Thus:

Proposition 3.4: ∝̃c . ∝̃v .

IV. EXPLICIT SUBSTITUTIONS

Our next cost reduction is a compilation of λCPS to a
CPS calculus with explicit substitutions (λσCPS). An explicit
treatment of the substitution operation [38] is a well-established
step towards implementation of λ-calculi. It also enables a
correspondingly more exact reflection of evaluation cost — see
Remark 4.3. We will use explicit substitutions to implement a
form of linear head reduction, which has been used to analyse
the dynamics of game semantics interaction [20].

Definition 4.1: Terms (computations and values,
respectively) of λσCPS are given by the grammar:
M ::= ⊥ | x.t 〈V, V 〉 | M [x := 〈V, V 〉]
V ::= x.t | λx.M
where x ranges over the set of variables and t over {l, r}.
We will define a “small-step” evaluation tree semantics of λσCPS

(bringing us closer to implementation on an abstract machine)

x.t 〈λz.Ml, λz.Mr〉[x := 〈λw.Nl, λw.Nr〉] → Nt[w := 〈λz.Ml[x := 〈λw.Nl, λw.Nr〉], λz.Mr[x := 〈λw.Nl, λw.Nr〉]〉]
y.t 〈λz.Ml, λz.Mr〉[x := 〈Vl, Vr〉] → y.t 〈λz.Ml[x := 〈Vl, Vr〉], λz.Mr[x := 〈Vl, Vr〉]〉 (x 6= y)

x.t → λy.x.t 〈y.l, y.r〉 (y 6= x)

Fig. 3. Reduction rules for Explicit Substitutions

— its approximation relation is derived from the rewriting rules
for explicit substitutions given in Figure 3 (which are well-
defined only where reduction is non-capturing, i.e. z must not
be free in Nl, Nr). Note that terms of λσCPS do not contain β-
redexes. Whereas substitution of a λ-abstraction for a variable
applied to an argument creates a β-redex, the reduction rule
for its explicit substitution implicitly elides the reduction of
this redex, creating another explicit substitution.

The approximation relation ∝λσ on λσCPS is defined by
rewriting terms to their approximants, which are given explicitly
as the sets generated by the grammars:
a ::= ⊥ | x.t 〈v, v〉 v ::= λx.a

So the sets of approximants (and hence evaluation trees)for
∝c and ∝λσ are the same.

To define a compositional semantics, approximation is
computed using innermost reductions: the above rules are
applied only to subterms which do not contain other redexes.
On its own, this is insufficient to reach all approximants (a
subterm which is discarded by outermost reduction may contain
infinitely unfolding innermost reductions). So terms are reduced
up to the preorder vα⊥ (the least precongruence on terms such
that ⊥ v⊥ M for all computation terms M , closed under
α-equivalence) rather than just α-equivalence.

Definition 4.2: We write A⇒ B if there exists C[], A′, B′

such that C[A′] vα⊥ A and B ≡ C[B′] where A′ → B′ is an
innermost reduction — i.e. if A′ ≡ C ′[A′′] such that A′′ → B′′

for some B′′ then C ′[] ≡ [].
a ∝σ A if a is an approximant and there is an innermost
reduction sequence A⇒∗ A′ such that a vα⊥ A′.
Let ∝̂λσ be the unitary cost model for ∝λσ — i.e. ∝̂λσ(a,A)
is the length of the shortest innermost reduction sequence
from A to A′ such that a vα⊥ A′. We take as our intrinsic
cost model for ∝λσ this “internal cost” of reducing A, plus
the size (number of constructors) of the approximant a —
∝̃λσ(a,A) = ∝̂λσ(a,A) + |a|

Remark 4.3: The unitary cost model for λσCPS satisfies a
stronger form of the compositionality property: for some
approximant it is an equality.

Proposition 4.4: For any terms a,B and context C[] there
exists b such that ∝̂λσ(a,C[b]) + ∝̂λσ(b, B) ≤ ∝̂λσ(a,C[B]).
PROOF: By induction on ∝̂λσ(a,C[B]). At the base case B
is an approximant so let b , B. Otherwise C[B]⇒ A, where
∝̂λσ(a,A) = ∝̂λσ(a,C[B])−1, so there exists C ′[] v⊥ C[]
and B′ v⊥ B such that C ′[B′]→ A. Since this is an innermost
reduction, either A ≡ C ′[B′′], where B′ → B′′ — and by
induction hypothesis there exists b such that ∝̂λσ(a,C ′[b]) +
∝̂λσ(b, B′′) ≤ ∝̂λσ(a,C ′[B′′]) — or A ≡ C ′′[B′], where
C ′[] → C ′′[] — so by inductive hypothesis there exists
b such that ∝̂λσ(a,C ′′[b]) + ∝̂λσ(b, B′) ≤ ∝̂λσ(a,C ′′[B′]).

In either case, ∝̂λσ(a,C[b]) + ∝̂λσ(b, B) ≤ ∝̂λσ(a,C[B]) as
required. �
The further reductions to the intrinsic RAM cost model will
preserve this this property, which is is a counterpart for (and
implies) continuity of the evaluation tree semantics (originally
observed for Böhm trees by Wadsworth [39] and Hyland [40])
— i.e. if a ∝λσ C[B] there exists a finite approximant b ∝λσ B
such that a ∝λσ C[b].
The cost reduction () from λCPS to λσCPS simply contracts all
β-redexes to explicit substitutions: we define by induction:

⊥ , ⊥ x.t , x.t λx.M , λx.M
λx.M 〈Vl, Vr〉 ,M [x := 〈Vl, Vr〉] x.t〈Vl, Vr〉 , x.t〈Vl, Vr〉

E.g. (our running example): (λx.let z = λu.λv.⊥ x in z)∗
= λx.λu.u.r 〈λv.⊥, λy.⊥〉 〈x.l, λz.x.r 〈zl, λk.⊥〉〉
= λx.u.r 〈λv.⊥, λy.⊥〉[u := 〈x.l, λz.x.r 〈z.l, λy.⊥〉].

To prove that () is a linear cost reduction, we note that a =
a for all approximants, and show (by induction on derivation):

Lemma 4.5: For any approximants a, b, cl, cr, ∝̂λσ(a, b[x :=
〈cl, cr〉]) ≤∞ ∝̂c(a, b[〈cl, cr〉/x]).
It is then straightforward to show that for all λCPS terms
a,A, ∝̂λσ(a,A) ≤∞ ∝̃c(a,A). Since |a| ≤ ∝̃c(a,A) for all
approximants a (by a straightforward induction) we have:

Proposition 4.6: ∝̃λσ . ∝̃c.

V. NAMELESS REPRESENTATION

The next cost reduction step simplifies the binding structure
of λσCPS by converting terms to a “nameless” representation,
using natural number indices in place of variable names.These
are instances of de Bruijn levels and reverse de Bruijn indices
[41]: informally, the de Bruijn level of a subterm is the number
of distinct free variables it may contain and the reverse de
Bruijn index of a variable is the level of (the minimal subterm
containing) its binder.

Our nameless representation makes all global binding
information locally available by decorating subterms with
their de Bruijn levels. We can then delete the λ-abstractions
themselves, and represent variable occurrences as their reverse
de Bruijn indices — so all variable occurrences with the same
binder have the same index. Moreover, the re-indexing of
variables in substituted terms (required when their binder
has changed levels) can be implemented as part of the
explicit substitution itself, rather than requiring a separate
shift operation. (Note that the sum of the de Bruijn index
(number of λs between the occurrence and its binder) and
reverse de Bruijn index of a variable occurrence is equal to
its de Bruijn level, so decorating subterms with their levels
allows either indices or reverse indices to be used. The latter
is more comprehensible.)

j.t 〈Al, Ar〉m[i := 〈Bl, Br〉]n →

Bt[i+ n+ 1−m := 〈Al[i := 〈Bl, Br〉]n+1, Ar[i := 〈Bl, Br〉]n+1〉]n if j = i

j.t 〈Al[i := 〈Bl, Br〉]n+1, Ar[i := 〈Bl, Br〉]n+1〉n if j < i

(j + n−m).t 〈Al[i := 〈Bl, Br〉]n+1, Ar[i := 〈Bl, Br〉]n+1〉n if j > i

i.tn → i.t 〈n.ln+1, n.rn+1〉n+1

Fig. 4. Reduction rules for nameless explicit substitutions

1.r 〈⊥,⊥〉2[1 := 〈0.l2, 0.r 〈1.l2,⊥〉2〉]1 v⊥ 1.r 〈⊥,⊥〉2[1 := 〈⊥, 0.r 〈⊥,⊥〉2〉]1
↓

0.r〈⊥,⊥〉2[1 := 〈⊥[1 := 〈⊥, 0.r〈⊥,⊥〉2〉]1,⊥[1 := 〈⊥, 0.r〈⊥,⊥〉2〉]1〉]1 v⊥ 0.r 〈⊥,⊥〉2[1 := 〈⊥,⊥〉]1
↓

0.r 〈⊥[1 := 〈⊥,⊥〉]2,⊥[1 := 〈⊥,⊥〉]2〉1 v⊥ 0.r 〈⊥,⊥〉1.

Fig. 5. Derivation of d(λx.λy.⊥)∗e ∝σ d(λx.let z = (λu.λv.⊥) x in z)∗e by innermost reduction sequence.

y.t〈λz.Ml, λz.Mr〉Γ,x,Σ[x := 〈λw.Nl, λw.Nr〉Γ,∆]→{
NΓ,∆,w
t [w := 〈λz.MΓ,x,Σ,z

l [x := 〈λw.Nl, λw.Nr〉Γ,∆], λz.MΓ,x,Σ,z
r [x := 〈λw.Nl, λw.Nr〉Γ,∆]〉Γ,∆,Σ] if x = y

y.t 〈λz.MΓ,x,Σ,z
l [x := 〈λw.Nl, λw.Nr〉Γ,∆], λz.MΓ,x,Σ,z

r [x := 〈λw.Nl, λw.Nr〉Γ,∆]〉 otherwise

Fig. 6. Reduction Rules for Context-Decorated Explicit Substitutions

Definition 5.1: Terms of σCPS — the nameless CPS-calculus
with explicit substitutions — are given by the grammar:
A ::= ⊥ | i.tn | i.t 〈A,A〉n | A[i := 〈A,A〉]n.
where the n ∈ N (superscripts) are de Bruijn levels, the i ∈ N
are reverse de Bruijn indices and t ∈ {l, r} are left/right tags.
The reduction rules for σCPS terms are given in Figure 4.
Note that the rules for reducing an explicit substitution
j.t 〈Al, Ar〉m[i := 〈Bl, Br〉]n with j 6= i are different
depending on whether j < i or j > i — i.e. whether j is bound
below or above the level where the explicit substitution for i
was created: in the latter case, j is shifted by the difference in
levels (m − n) to “make room” for variables free in Bl, Br
but not Al, Ar. As for λσCPS , the evaluation tree semantics is
defined by innermost reduction up to the preorder v⊥.

Definition 5.2: Approximants are given by the grammar:
a ::= ⊥ | i.t 〈a, a〉n.
a ∝σA if a is an approximant and A⇒∗ A′ such that av⊥A′.
The intrinsic cost ∝̃σ(a,A) is the sum of the size of a with
the length of the shortest such innermost reduction sequence.

A λσCPS term-in-context is compiled to its nameless
representation by decorating subterms with their levels,
replacing variables with reverse de Bruijn indices and erasing
λ-abstractions.

Definition 5.3: Writing |Γ| for the length of the Γ, the
nameless representation of a λσCPS term-in-context Γ ` A is
the term dAeΓ, where:
d⊥eΓ = ⊥ dλx.MeΓ = dMeΓ,x dx.teΓ,x,Γ′ = |Γ|.t|Γ,xΓ′|

dλw.x.t 〈Vl, Vr〉eΓ,x,Γ′ = |Γ|.t 〈dVleΓ,x,Γ′ , dVreΓ,x,Γ′〉|Γ,x,Γ
′|

dM [y := 〈Vl, Vr〉]eΓ = dMeΓ,y[|Γ, y| := 〈dVleΓ, dVreΓ〉]|Γ|
Figure 5 implements the example of Figure 2, showing that
d(λx.λy.⊥)∗e ∝σ d(λx.let z = (λu.λv.⊥) x in z)∗e.
d e is not a homomorphism between the two reduction

Γ`⊥ Γ,x,Γ′`x.t
Γ,x,Γ′`Vl Γ,x,Γ′`Vr

Γ,x,Γ′`x.t 〈Vl,Vr〉

Γ,x`M
Γ`λx.M

Γ,x,Γ′`M Γ,∆`Vl Γ,∆`Vr
Γ,∆,Γ′`MΓ,x,Γ′ [x:=〈Vl,Vr〉Γ,∆]

TABLE III
CONTEXT-DECORATED λσCPS

systems: M → M ′ does not imply dMeΓ → dM ′eΓ when
M ≡ xj .t 〈Ul, Ur〉[xi := 〈Vl, Vr〉] and i > j. The problem
is that λσCPS does not keep track of the contexts of subterms,
as σCPS does via the level decorations. To prove that d e is
nevertheless a sound cost reduction, we define in Table III a
version of λσCPS in which explicit substitutions are decorated
with their contexts. The rule for reducing decorated λσCPS terms
(Figure 6) preserves well-formedness of terms in context (i.e.
subject reduction: if Γ ` A and A→ A′ then Γ ` A′).
Extending nameless representation to decorated terms:
dMΓ,x,Γ′ [x := 〈Vl, Vr〉Γ,∆,Γ

′
]eΓ,∆,Γ′

= dMeΓ,x,Γ′ [|Γ| := 〈dVleΓ,∆, dVreΓ,∆〉]|Γ,∆,Γ
′|.

Let ‖ ‖ be the operation erasing all decorating contexts. By
decorating each explicit substitution with the largest available
context (as in d e), we show:

Lemma 5.4: For any λσCPS term-in-context Γ ` A there is
a decorated term-in-context Γ ` bAcΓ such that ‖bAcΓ‖ = A
and dbAcΓeΓ = dAeΓ.
Moreover, the reduction rules may be decorated as follows:

Lemma 5.5: For any well-formed decorated term Γ ` A:

1) ‖A‖ → B if and only if there exists a decorated term
Γ ` A′ such that A→ A′ and ‖A′‖ = B.

2) ‖A‖ wα⊥ B if and only if there exists a decorated term
Γ ` A′ such that A wα⊥ A′ and ‖A′‖ = B.

3) dAeΓ → B if and only if there exists a decorated term

Fig. 7. Reduction Rules for Heap Graphs

A′ such that A→ A′ and dA′eΓ = B.
4) If A wα⊥ A′ then dAeΓ w⊥ dA′eΓ. If dAeΓ w⊥ B then

A⇒∗ A′ wα⊥ A′′ for some decorated A′, A′′ such that
dA′′eΓ = B.

(4) is not a logical equivalence because e.g. i.tn w⊥ ⊥ but
x.t→ λy.x.t〈yl, yr〉 w⊥ λy.⊥.

Proposition 5.6: For any λσCPS terms-in-context Γ ` a,A
∝̂σ(daeΓ, dAeΓ) = ∝̂λσ(a,A).

PROOF: By Lemmas 5.4 and 5.5, if A n⇒ A′ w⊥ a then
there is a decorated inner reduction sequence bAcΓ

n⇒ A′′ for
some A′′ such that ‖A′′‖ = A′ and hence a vα⊥ A′′. Then
dAeΓ = dbAcΓeΓ

n⇒ dA′′eΓ w⊥ daeΓ.
Conversely, if dAeΓ = dbAcΓeΓ⇒∗A′ w⊥ daeΓ then
bAcΓ ⇒∗ B for some B such that B w∝⊥ a, so A =
‖bAcΓ‖ ⇒∗ ‖B‖ wα⊥ a as required. �

Since compilation to nameless form maintains the size of
approximants it is therefore a cost-reduction from ∝̃λσ to ∝̃σ .

Proposition 5.7: ∝̃σ . d∝̃λσe.

VI. GRAPH REDUCTION OF NAMELESS TERMS

The next cost reduction step transforms nameless terms to a
graph representation and implements explicit substitutions by
graph rewriting. This allows for deterministic, lazy evaluation
by sharing, which is equivalent in cost to clairvoyant eager
reduction because innermost reduction sequences can be
reordered to call-by-need without duplicating work. We
will first describe term graphs and their rewriting rules
diagrammatically, and then give a formal characterization for
them as equivalence classes of states in a nominal transition
system of abstract memory heaps.

Definition 6.1: A heap graph is a σCPS term graph [42] — a
directed, acyclic graph with a specified root node, in which

each node is labelled with one of the σCPS term constructors:
⊥ | i.tn | i.t 〈•, •〉n | • [i 7→ 〈•, •〉]n
(We call these ⊥, variable, substitution and value nodes,
respectively.) Each node may have any number of incoming
edges, and has one outgoing edge from each • (i.e. the node
has a sequence of outgoing edges of the same length as the
arity of the label, which is the number of •s occurring in it.)
The term rewriting rules for σCPS determine graph rewriting
rules, which are given in Figure 7. Every reduction replaces
exactly one node (the uppermost) with a graph, corresponding
to an update of the original node to the root of the replacement
graph and the creation of the rest of its nodes. The original
node to be updated and the new nodes created must be variable
or substitution nodes (collectively called computation nodes) —
i.e. value or ⊥-nodes are never rewritten or created). So graph
reduction of a term corresponds to a process of rewriting
computation nodes to values, in the process creating new
computation nodes and thus unfolding a graph containing the
evaluation tree.

The key property of this graph reduction system, allowing
a cost-invariant determinization of the computation of the
approximation relation, is strong confluence (the following
proof may be formalized in the nominal setting below).

Proposition 6.2: If G → G1 and G → G2 then either G1 = G2

or there exists G′ such that G1 → G′ and G2 → G′.

PROOF: In any graph there is at most one possible reduction
for each computation node, and this can depend only on a
value node. Hence any two available reductions are to different
computation nodes and may be applied in any order. �

We formalise the heap graph reduction system by representing
graphs syntactically as equivalence classes of states in a
nominal (labelled) transition system of memory-states (heaps).

If H(X) = j.t〈Al, Ar〉m and Zl, Zr 6∈ dom(H) then H{Y = X[i := 〈Bl, Br〉]n}
Y→

H{Y = Bt[i+m+ 2− n := 〈Zl, Zr〉]n;Zl = Al[i := 〈Bl, Br〉]n+1;Zr = Ar[i := 〈Bl, Br〉]n+1} if i = j,

H{Y = j.t〈Zl, Zr〉n;Zl = Al[i := 〈Bl, Br〉]n+1;Zr = Ar[i := 〈Bl, Br〉]n+1} if i < j,

H{Y = (j +m− n).t〈Zl, Zr〉n;Zl = Al[i := 〈Bl, Br〉]n+1;Zr = Ar[i := 〈Bl, Br〉]n+1} if i > j.

H{Y = i.tn} Y→ H{Y = i.t 〈Zl, Zr〉n+1;Zl = n.ln+1;Zr = n.rn+1}

Fig. 8. Transition Rules for Heap Reduction

This leads naturally to an implementation of graph rewriting by
updating the heap. To represent creation of nodes (allocation
of fresh locations) rigorously while avoiding the specifics of
memory management, we work with labelled transitions over
nominal sets [43], [44].That is, we assume a fixed, countably
infinite set A of atoms (X,Y, Z, . . .) — these can be understood
as the names of graph nodes, or locations in the store, as
appropriate. Let G be the group of permutations on A: a
nominal set S is an action of G on a set |S| such that the
support of each s ∈ |S|, sup(s) =

⋂
{A′ ⊆ A | (∀a ∈

A′.π(a) = a) =⇒ π(s) = s} is finite. We write s ∼ s′ for
permutation equivalence (i.e. s ∼ s if there exists π such that
s′ = π(s)

Definition 6.3: Let C be the nominal set of location contents
or node labels — that is:
{⊥} ∪ {i.tn | i, n ∈ N, t ∈ {l, r}}
∪ {i.t 〈Yl, Yr〉n | i, n ∈ N, t ∈ {l, r}, Yl, Yr ∈ A}
∪{Y [i := 〈Zl, Zr〉]n | i, n ∈ N, Y, Zl, Zr ∈ A}
— with the pointwise action of G. A heap is an element of
the nominal set of finite partial functions H : A ⇀ C (with
G-action π(H)(X) = π(H(π−1(X)))) which satisfies:

• No dangling pointers: sup(H) = dom(H).
• Acyclicity: The transitive closure of the relation�H such

that X �H Y iff Y ∈ sup(H(X)) is irreflexive.

The nominal set of rooted heaps consists of pairs (H,X) of a
heap and a location X ∈ dom(H) (which may have incoming
edges) with the pointwise G-action. We may thus define a
heap-graph to be a permutation-equivalence class [H,X] of
rooted heaps. The σCPS graph rewriting rules are implemented
as a transition relation between heaps in which each reduction
is labelled with the name of the node updated.

Definition 6.4: The states and actions of the nominal LTS
of heaps are the nominal sets of heaps and location names, and
the transition relation is given by the rules in Figure 8. This is
an equivariant relation — H

Y→ H ′ implies π(H)
π(Y)→ π(H ′).

We ignore the labels where they are not relevant, and so define
heap-graph reduction by [H,X]→ [H ′, X] if H → H ′.

The approximation relation ∝H on heap graphs is defined
via the equivariant operation [[]] which converts a rooted heap
(and thus the corresponding graph) to a term — i.e. [[H,X]] =
i.t 〈[[H,Yl]], [[H,Yr]]〉n if H(X) = i.t 〈Yl, Yr〉n
[[H,Y]][i :=〈[[H,Zl]], [[H,Zr]]〉]n ifH(X)=Y [i := 〈Zl, Zr〉]n
H(X) otherwise.

Definition 6.5 (Heap Approximation): [h,X] ∝H [H,Y]
if H −� H ′ such that [[h,X]] v⊥ [[H ′, Y]].

The intrinsic cost model ∝̃H([h,X], [H,Y]) is the length of
the shortest such reduction sequence, plus the size of [[h,X]].

A. Cost Reduction from nameless terms to heaps

A term of σCPS is compiled to a rooted heap by labelling
each node of its syntax tree with a (distinct) location name.
The set of all such labellings defines an interpretation of terms
as heap-graphs which sends each term to its own syntax tree.

Definition 6.6: For each nameless term A let ([A]) be the
equivalence class of rooted heaps defined as follows:
• ([⊥]) , [{X = ⊥}, X] and ([i.tn]) , [{X = i.tn}, X]
• ([i.t 〈Al, Ar〉n]) , [{X = i.t 〈Yl, Yr〉n;Hl;Hr}, X]

where (Hl, Yl) ∈ ([Al]), (Hr, Yr) ∈ ([Ar, Yr]),
• ([A[i := 〈Bl, Br〉]n]) ,

[{X = Y [i := 〈Zl, Zr〉]n;HY ;Hl;Hr}, X] where
(HY , Y) ∈ ([A]), (Hl, Zl) ∈ ([Bl]), (Hr, Zr) ∈ ([Br])r.

It is straightforward to show that [[([A])]] = A. Given a scheme
for assigning distinct locations to each node, of which we
omit details, there is a (linear time) compilation sending each
term A to some rooted heap (H,X) ∈ ([A]). To show that this
is a cost reduction, we use the following property of inner
reduction up to v⊥ in σCPS .

If A⇒ A′ then A→ A′′ such that A′ v⊥ A′′ (‡)

together with the fact that if [[H,X]] → A by innermost
reduction then H → H ′ such that [[H ′, X]] = A.

Lemma 6.7: If ∝̃σ(a, [[H,X]]) = n then
∝̃H(([a]), [H,X]) ≤ n.

PROOF: By induction on n. If ∝̃σ(a, [[H,X]]) = 0 then
[[([a])]] = a v⊥ [[H,X]] as required. For the induction case,
if ∝̃σ(a, [[H,X]]) = n + 1 then there exists A such that
[[H,X]] ⇒ A and ∝̃σ(a,A) = n. By (‡), [[H,X]] → A′ for
some A′ such that A v⊥ A′ and thus ∝̃σ(a,A′) ≤ n and
H → H ′ such that [[H ′, X]] = A′.
By induction hypothesis, ∝̃H(([a]), [H ′, X]) ≤ n, and so
∝̃H(([a]), [H,X]) ≤ n+ 1 as required. �

To prove that ([a]) ∝H ([A]) implies a ∝σ A we need to show
that any heap reduction sequence on a term graph corresponds
to an innermost reduction sequence on the term. Observe that if
X 6�∗H Y then reduction of Y cannot depend on evaluation of
X and so can be performed first — i.e. if H1

X→ H2
Y→ H3 then

H1
Y→ H ′2

X→ H ′3, where H ′3 ∼ H ′3. Using this principle we
can reorder any reduction sequence to a “bottom up” sequence
in which no node is reduced before any of its descendants in
the graph.

Lemma 6.8: If H
n
� H ′ then there is a sequence H =

H1
X1→ . . .

Xn→ Hn ∼ H ′ such that Xi �∗Hi
Xj implies i ≤ j.

Lemma 6.9: If ([a]) ∝H ([A]) then a ∝σ A.

PROOF: Supposing that ([a]) ∝H ([A]), there exists (H1, X) ∈
([A]) and a reduction sequence H1 → . . . → Hn such that
([a]) v⊥ [[Hn, X]] — by Lemma 6.8 we may assume that this
is a bottom up sequence. For each 1 ≤ i < n, we define a
term Ai such that A1 = A, either Ai = Ai+1 or Ai ⇒ Ai+1

and a v⊥ An, so that a ∝σ A as required.
For each heap Hi define H ′i by H ′i(X) = ⊥ if Hi(X) is a

computation node and Hn(X) is not a value, and H ′i(X) =
Hi(X) otherwise. Then either [[H ′i, X]] = [[H ′i+1, X]] = Ai+1

(if the node reduced in Hi is not below X) or [[H ′i, X]]→ Ai+1

for some Ai such that [[Hi+1, X]] v⊥ Ai+1 and this is an
innermost reduction: if it updates node Y then any computation
node Z �Hi Y cannot be updated in any later reduction, so
Hn(Z) = Hi(Z) and hence H ′i(Z) = ⊥. �

Thus we have shown:
Proposition 6.10: ∝̃H . ([∝̃σ]).

VII. RECOGNIZING HEAP APPROXIMATION

In this section we define an abstract machine which
implements the cost model ∝̃H up to a constant factor
overhead. Specifically, given rooted heaps (h,X),(H,Y) the
machine accepts in no more than 3.∝̃H([h,X], [H,Y]) steps
if [h,X] ∝H [H,Y] and rejects or fails to terminate otherwise.

First, we describe the call-by-need reduction strategy on
heaps that the machine will use to evaluate a given node, and
show that this strategy always finds a minimal length reduction
sequence which achieves this.

Definition 7.1: For a heap H , let ≺H be the relation on
dom(H): X ≺H Y if H(X) = Y [i := 〈Zl, Zr〉]m for some
i, Zl, Zr,m. By acyclicity, its transitive closure ≺+

H is a strict
order. A heap reduction H Y→ H ′ is needed by a computation
node X ∈ dom(H) if X = Y or X ≺+

H Y .
For a given computation node X ∈ dom(H) there is at most
one heap reduction for H which is needed by X . This yields
an unambiguous reduction strategy for evaluating X: perform
the heap reductions needed by X until either X is a value
node (success), X is a substitution node but has no needed
reduction (failure), or there is an infinite sequence of needed
reductions (non-termination).

Definition 7.2: An evaluation sequence for S ⊆ dom(H) is
a reduction sequence H −� H ′ such that every X ∈ S is a
value node in H ′. It is a call-by-need sequence for S if every
transition in the sequence is needed by some X ∈ S.
Clearly, a call-by-need sequence for a single node X is unique
(up to ∼), if it exists. Using the following lemma (which allows
any available reduction in a sequence to be brought forward),
any sequence evaluating X can be reordered to start with a
call-by-need sequence for X .

Lemma 7.3: Suppose H1 → H2 → . . . → Hn and
H1

X→ H ′2 where H1(X) 6= Hn(X). Then there is a reduction
sequence H ′2 → H ′3 → . . .→ H ′n such that H ′n ∼ Hn.

PROOF: By induction on n. We either have H1
X→ H2 — in

which case we take H ′i = Hi for each i ≤ n — or else H1
X→

H2 for some Y 6= X . Then by strong confluence, H2
X→ H ′3

and H ′2
Y→ H ′′3 such that H ′3 ∼ H ′′3 . By induction hypothesis

there is a reduction sequence H ′3 → H ′4 → . . .→ H ′n such that
Hn ∼ H ′n, and thus a reduction sequence H ′′3 → H ′′4 → . . .→
H ′′n such that H ′′n ∼ Hn, satisfying the induction hypothesis.

�

Proposition 7.4: For any evaluation sequence H
n
−� H ′

for X there is a call-by-need sequence H
k
−� H ′′ for X , for

some H ′′, k such that H ′′
n−k
−� H ′′′ where H ′ ∼ H ′′′.

Next, we define an abstract machine implementing the
key subroutine of our semi-decision procedure for heap
approximation — given a rooted heap (H,X), this executes
the call-by-need sequence of H for X if it exists, by storing the
locations upon which it depends on a stack, which is initialized
with X . The instruction cycle of the machine checks the stack
— if it is empty, the machine halts (accepts), otherwise it reads
the contents of the location at the top of the stack:
• If this node has a reduction in the heap, it is performed.
• If it is a value, the location is popped from the stack.
• If it is a substitution node Y [i := 〈Zl, Zr〉]m where Y is,

a computation node then Y is pushed onto the stack.
If one of these applies the cycle is repeated, otherwise the
machine rejects.

Definition 7.5: The root evaluation machine is the nominal
automaton in which states are pairs (H;S) of a heap and a
stack (finite, non-repeating sequence) of locations in dom(H)
(with the pointwise G-action). The final states are those of the
form (H; ε), and its transition relation is:

(H;S,X)→

(H;S) if H(X) is a value

(H ′;S,X) if H X→ H ′

(H;S,X, Y) if X ≺H Y and H 6X→ H ′

This relation is nominally deterministic: (H;S) → (H ′;S′)
and (H;S)→ (H ′′;S′′) implies (H ′;S′) ∼ (H ′′;S′′).

Lemma 7.6: Let S be a stack of computation nodes in H:

1) If there is a call-by-need sequence H
k

−� H ′ for S then
(H;S)

≤3k−|S|
−� (H ′; ε).

2) If (H;S) −� (H ′; ε) then there is a call-by-need
sequence H −� H ′ for S.

PROOF: We show e.g. (1) by induction on 3k − |S| (which
must be non-negative). If this is zero then S = ε, so we are
done. For the induction case, S 6= ε so let S = S′, X .

Suppose H
X→ H ′′, so that (H;S) → (H ′′;S). Either

H ′′(X) is a computation node, in which case there is a call-
by-need sequence for S from H ′′ to H ′ of length k − 1,
and so by induction hypothesis (H ′′;S)

≤3k−|S|−3

−� (H ′; ε)

and (H;S)
≤3k−|S|
−� (H ′;S) as required, or else H ′′(X)

is a value node, in which case (H ′′;S) → (H ′′;S′) and
by induction hypothesis (H ′′;S′)

≤3k−|S|−2

−� (H ′; ε) and so
(H ′′;S)

≤3k−|S|
−� (H ′;S) as required.

(h;H; ε;S, (X,X ′)) →

(h;H; ε;S) if h(X) = ⊥
(h;H; ε;S, (Yr, Y

′
r), (Yl, Y

′
l)) if h(X) = j.t〈Yl, Yr〉n and H(X) = j.t〈Y ′l , Y ′r 〉n

(h;H;X ′;S, (X,X ′)) if h(X) = j.t〈Yl, Yr〉n and H(X) is a computation node
(h;H;S1, X;S2) → (h;H ′;S′1;S2) if (H;S1, X)→ (H ′;S′1)

Fig. 9. Transitions of the Heap Approximation Machine

Otherwise, H(X) = Y [i := 〈Zl, Zr〉]n for some Y , and
the call-by-need sequence for S,X is also a call-by-need
sequence for S,X, Y . Then (H;S,X) → (H;S,X, Y), and
by induction hypothesis (H;S,X, Y)

≤3k−|S|−1

−� (H ′; ε) and so
(H;S,X)

≤3k−|S|
−� (H; ε) as required. �

A. The Heap Approximation Machine
We now define an abstract machine which recognizes the

relation ∝H between rooted heaps in fewer than 3.∝̃H steps by
traversing h (in pre-order), evaluating the corresponding node
of H with the root evaluation machine and comparing them.
The states of the machine are tuples (h;H;S1;S2) consisting
of heaps h,H , a stack S1 for the root-evaluation machine,
and a stack S2 of locations X1, X

′
1, . . . , Xn, X

′
n for which the

machine must check that [h,Xi] ∝H [H,X ′i] for each i ≤ n.
Its transition relation is given in Figure 9.

To determine whether [h,X] ∝H [H,X ′], the machine
is initialized with the state (h;H; ε;X,X ′). It executes the
following instruction cycle:

1) Halt (accept) if both stacks are empty — i.e. the final
states are those of the form (h;H; ε; ε).

2) Otherwise, pop two addresses X,X ′ from S2.
3) If h(X) = ⊥ then return to 1.
4) If h(X) is a value node j.t〈Yl, Yr〉n then evaluate H(X ′)

using the root evaluation machine (if necessary). Then
if H(X ′) = j.t〈Y ′l , Y ′r 〉n, push Yr, Y

′
r , Yl, Y

′
l onto the

stack and return to 1. Otherwise, reject.

Lemma 7.7: Suppose H
k
−� H ′ such that [[h,Xi]] v⊥

[[H ′, X ′i]] for 1 ≤ i ≤ n. Then (h;H; ε;X1, X
′
1, . . . , Xn, X

′
n)

is accepted within
∑
i≤n
|[[h,Xi]]|+ 3k steps.

PROOF: By induction on
∑
i≤n
|[[h,Xi]]|. At the base case, the

stack is empty and the machine accepts. For the induction
step, let S = X1, X

′
1, . . . , Xn−1, X

′
n−1. If h(Xn) = ⊥ then

(h;H; ε, S,Xn, X
′
n)→ (h;H; ε, S). By induction hypothesis

(h;H; ε;S) is accepted within
∑
i≤n
|[[h,Xi]]|+ 3k − 1 steps.

Otherwise, h(Xn) = j.t〈Yl, Yr〉n for some Yl, Yr such
that [[h,Xn]] = j.t〈[[h, Yl]], [[h, Yr]]〉 v⊥ [[H ′, X ′n]] and so
H ′(X ′n) = j.t〈Y ′l , Y ′r 〉n for some Y ′l , Y

′
r such that [[h, Yl]] v⊥

[[H ′, Y ′l]] and [[h, Yr]] v⊥ [[H ′, Y ′r]]. By Proposition 7.4

there is a call-by-need sequence H
l
−� H ′′ for X ′n

such that H ′′
k−l
−� H ′′′ with H ′′′ ∼ H ′. By Lemma

7.6, (h;H; ε;S,Xn, X
′
n)

3l
−� (h;H ′′; ε;S,Xn, X

′
n) →

(h;H ′′; ε;S, Yr, Y
′
r , Yl, Y

′
l). By induction hypothesis this is

accepted within
∑

i≤n−1

|[[h,Xi]]| + |[[h, Yl)]]| + |[[h, Yr)]]| +

3(k − l) steps. Hence (h;H; ε;S,Xn, X
′
n) is accepted within∑

i≤n
|[[h,Xi]]|+ 3k steps as required. �

Lemma 7.8: If (h;H; ε;X1, X
′
1, . . . , Xn, X

′
n) is accepted

then H −� H ′ such that [[h,Xi]] v⊥ [[H ′, X ′i]] for 1 ≤ i ≤ n.
(The proof is similar to Lemma 7.7.) So we have shown that:

Proposition 7.9: The heap approximation machine
implements the cost model 3.∝̃H.

It remains to observe that heap approximation may be
implemented on a Random Access Machine with a constant
factor overhead. In other words, there is a RAM program, a
constant K and a (linear time) function r from the states of
the heap approximation machine to RAM states (finite partial
functions from N to N) such that if (h;H;S1, S2) is accepted
within n steps, then r(h;H;S1, S2) is accepted within K.n
steps by the RAM, and if (h;H;S1, S2) is not accepted, then
r(h;H;S1, S2) is not accepted. Without being specific about
the instruction-set of the RAM, we note that it is sufficient to
partition the address space of the RAM into:
• Two disjoint heaps, in which each address stores the

contents of a location as a 5-tuple of integer values (e.g.
X[i := 〈Yl, Yr〉]m as (X, i, Yl, Yr,m)) tagged according
to which kind of node they represent — with an operation
allocating a new address (using a register storing a heap
pointer) requiring a constant number of RAM operations.

• Two stacks, storing integer addresses.
• a finite number of fixed registers with operations to read

from, and write results to, any field of any register in the
heaps, or the top of the stacks (pop and push) within a
bounded number of RAM steps.

and give constant time encodings of copy, increment, addition
and subtraction and conditional jump operations, reading from
and writing to the registers. (The full expressiveness of an
arithmetic RAM [4] is not required as the operands are linearly
bounded in the initial state and reduction length.) Each step of
heap-reduction, root evaluation, and heap approximation thus
requires a bounded number of RAM steps, and so:

Theorem 7.10: ∝̃v may be implemented on a Random
Access Machine, up to constant factor overhead.

VIII. CONCLUSIONS

Using semantic insights, we have defined and implemented
a cost model for computing call-by-value evaluation trees. This
comes with a compositionality principle for establishing upper
cost bounds: an approach to reasoning about lower bounds is
suggested by Remark 4.3 but requires a broader framework of
results. For example, we may establish that our cost model is
invariant by giving a Turing machine implementation in λv

which respects it (see e.g. [11]). This makes significant use of
the polynomial overhead allowed by the invariance thesis.

The potential benefits of our cost model are of two kinds:
it allows compositional reasoning about costs, based on the
simple principle of assuming a clairvoyant, eager evaluator,
and those costs satisfy a theoretical efficiency property. To
reap these benefits with a practical implementation will require
consideration of other factors.
• Space efficiency will require garbage collection. Sharing

is itself a time/memory tradeoff with a risk of space leaks?
• Optimization — despite its theoretical efficiency,

our algorithm is capable of optimizations such as
implementing let using pointers, recursion using cyclic
heaps, or control structures using linear substitutions.

• Parallelization — multiple processors may compute
separate nodes of one or more trees while sharing access
to the same heap.

• Types — adding typing information allows evaluation
trees to take more varied forms, with a corresponding
increase in complexity of the graph reduction rules.

• Architecture — the assumption that accessing all parts
of the store has constant-bounded cost is architecture-
dependent. How far the Von Neumann bottleneck affects
complete laziness remains to be seen.

These considerations in turn suggest further theoretical
problems such as formulating and establishing compositional
cost models for for space resources or parallel computation.

REFERENCES

[1] J. Hughes, “Why functional programming matters,” The Computer
Journal, vol. 32, pp. 98–107, 1989.

[2] D. Ghica, “Slot games: A quantitative model of computation,” in
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2005, pp. 85 – 97.

[3] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani, “Weighted
relational models of typed lambda-calculi,” in Proceedings of LICS

’13, 2013.
[4] P. van Emde Boas, “Machine models and simulations,” in Handbook of

Theoretical Computer Science (vol. A). MIT Press, 1991, pp. 1–69.
[5] H. P. Barendregt, The Lambda Calculus, its Syntax and Semantics, revised

edition. North-Holland, 1984.
[6] J. Lamping, “An algorithm for optimal lambda calculus reduction,” in

Proceedings of POPL ’90, 1990, pp. 16–30.
[7] G. Frandsen and C. Sturtivant, “What is an efficient implementation of

the λ-calculus,” in Proceedings of FPCA ’91, 1991, pp. 289–312.
[8] J. Lawall and H. Mairson, “Optimality and inefficiency: what isn’t a cost

model of the lambda-calculus,” ACM Sigplan Notices, vol. 31, 1996.
[9] A. Asperti and H. Mairson, “Parallel beta reduction is not elementary

recursive,” p. 49–80, 2001.
[10] U. D. Lago and S. Martini, “The weak lambda calculus as a reasonable

machine,” Theor. Comput. Sci., vol. 398(1-3), pp. 32 – 50, 2008.
[11] ——, “An invariant cost model for the lambda calculus,” in Proceedings

of CiE 2006, ser. LNCS, no. 3988. Springer, 2006, pp. 105–114.
[12] B. Accattoli and U. D. Lago, “On the invariance of the unitary cost

model for head reduction,” in Proceedings of RTA ’12. Springer, 2012,
pp. 22–37.

[13] ——, “Beta reduction is invariant, indeed,” in Proceedings of CSL-LICS
’14, 2014.

[14] T. Balabonski, “Weak optimality, and the meaning of sharing,” in
Proceedings of ICFP ’13, 2013.

[15] J. Hackett and G. Hutton, “Call-by-need is clairvoyant call-by-value,” in
Proceedings of ICFP ’19, 2019.

[16] C. Wadsworth, “Semantics and pragmatics of the lambda-calculus,” Ph.D.
dissertation, Oxford University, 1971.

[17] C. Holst and D. Gomard, “Partial evaluation is fuller laziness,” in
Proceedings of PEPM’ ’91, 1991, pp. 223 – 233.

[18] F.-R. Sinot, “Complete laziness: A natural semantics,” in Proceedings of
WRS ’07, ser. ENTCS, no. 204, 2008.

[19] M. J. Thyer, “Lazy specialization,” Ph.D. dissertation, University of York,
1999.

[20] V. Danos, H. Herbelin and L. Regnier, “Games semantics and abstract
machines,” in Proceedings of the Eleventh International Symposium on
Logic In Computer Science, LICS ’96, 1996.

[21] P. Clairambault, “Estimation of the length of interactions in arena game
semantics,” in Proceedings of FoSSaCS, ser. LNCS, no. 6604. Springer,
2011, pp. 335–349.

[22] B. Accattoli, U. D. Lago, and G. Vanoni, “The (in)efficiency of
interaction,” in Proceedings of POPL ’21, 2021.

[23] J. M. E. Hyland and C.-H. L. Ong, “On full abstraction for PCF: I, II
and III,” Information and Computation, vol. 163, pp. 285–408, 2000.

[24] D. Turner, “A new implementation technique for functional languages,”
Software practice and experience, vol. 9, pp. 31–49, 1979.

[25] U. Berger and H. Schwichtenberg, “An inverse of the evaluation functional
for typed λ-calculus,” in Proceedings of LICS ’91, 1991.

[26] K. Aehlig and F. Joachimski, “Operational aspects of untyped
normalisation by evaluation,” Mathematical Sructures in Computer
Science, vol. 14, pp. 57–611, 2004.

[27] A. Filinski and H. Rohde, “Denotational aspects of untyped normalisation
by evaluation,” RAIRO - Theoretical Informatics and Applications, vol. 29,
pp. 423–453, 2005.

[28] P. Clairambault and P. Dybjer, “Game semantics and normalization by
evaluation,” in Proceedings of FoSSaCS ’15, ser. LNS, no. 9034, 2015,
pp. 56–70.

[29] P.-L. Curien, “Abstract Böhm trees,” Mathematical Structures in
Computer Science, vol. 8, pp. 559–591, 1998.

[30] R. David, “Computing with Böhm trees,” Fundamenta Informaticae,
vol. 45, no. 1, 2001.

[31] P.Aczel, “An introduction to inductive definitions,” in Handbook of
Mathematical Logic, J. Barwise, Ed. Amsterdam: North-Holland, 1977,
p. 739–782.

[32] C. Flanagan, A. Sabry, B. Duba, and M. Felleisen, “The essence of
compiling with continuations,” ACM SiGPLAN Notices, vol. 28, 1993.

[33] E. Kerinec, G. Manzonetto, and M. Pagani, “Revisiting call-by-value
Böhm trees ¨ in light of their Taylor expansion,” Logical Methods in
Computer Science, vol. 16, pp. 1–26, 2020.

[34] G. McCusker, “Games and full abstraction for a functional metalanguage
with recursive types,” Ph.D. dissertation, Imperial College London, 1996,
cambridge University Press.

[35] R. Amadio and P.-L. Curien, Domains and Lambda-Calculi. Cambridge
University Press, 1998.

[36] R. S. Bird, “A formal development of an efficient supercombinator
compiler,” Science of Computer Programming, vol. 8, pp. 113–137,
1987.

[37] G. Plotkin, “Call-by-name, call-by-value and the λ-calculus,” Theoretical
Computer Science, vol. 1, pp. 125 – 159, 1975.

[38] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lèvy, “Explicit substitutions,”
in Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, California. ACM,
1990, pp. 31–46.

[39] C. Wadsworth, “The relationship between computational and denotational
proporties for Scott’s D∞-models of the λ-calculus,” SIAM Journal on
Computing, vol. 5, no. 3, pp. 488–521, 1976.

[40] M. Hyland, “A syntactic characterization of the equality in some models
for the untyped lambda-calculus,” Journal of the LMS, vol. 12, pp. 361–
370, 1976.

[41] N. de Bruijn, “Lambda-calculus notation with nameless dummies,”
Indagationes Mathematicae, vol. 34, pp. 381–392, 1972.

[42] H. Barendregt, M. van Eekelen, J. Glauert, R. Kennaway, R. Plasmeijer,
and R. Sleep, “Term graph rewriting,” in Proc. Parallel Architectures
and Languages Europe, ser. LNCS, no. 259. Springer-Verlag, 1987, p.
141–158.

[43] A. M. Pitts, Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, 2013.

[44] J. Parrow, J. Borgström, L.-H. Eriksson, R. Gutkovas, and T. Weber,
“Modal Logics for Nominal Transition Systems,” in 26th International
Conference on Concurrency Theory (CONCUR 2015), vol. 42, 2015, pp.
198–211.

