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Ultralight graphene oxide/polyvinyl 
alcohol aerogel for broadband 
and tuneable acoustic properties
Mario Rapisarda, Gian‑Piero Malfense Fierro & Michele Meo*

An ultralight graphene oxide (GO)/polyvinyl alcohol (PVA) aerogel (GPA) is proposed as a new class 
of acoustic materials with tuneable and broadband sound absorption and sound transmission losses. 
The interaction between GO sheets and PVA molecules is exploited in our environmentally friendly 
manufacturing process to fabricate aerogels with hierarchical and tuneable porosity embedded in 
a honeycomb scaffold. The aerogels possess an enhanced ability to dissipate sound energy, with an 
extremely low density of 2.10 kg m−3, one of the lowest values ever reported for acoustic materials. 
We have first experimentally evaluated and optimised the effects of composition and thickness on 
the acoustic properties, namely sound absorption and sound transmission losses. Subsequently, we 
have employed a semi-analytical approach to evaluate the effect of different processing times on 
acoustic properties and assessed the relationships between the acoustic and non-acoustic properties 
of the materials. Over the 400–2500 Hz range, the reported average sound absorption coefficients 
are as high as 0.79, while the average sound transmission losses can reach 15.8 dB. We envisage that 
our subwavelength thin and light aerogel-based materials will possess other functional properties 
such as fire resistance and EMI shielding, and will prove to be novel acoustic materials for advanced 
engineering applications.

The development of innovative acoustic materials has been of huge interest in the past decades, in particular 
porous absorbers have been extensively studied and adopted for several engineering applications1. Traditional 
porous absorbers such as cellular foams2–4 and fibrous materials4–6 exhibit good sound absorption abilities over 
a medium frequency range (i.e., 800–2000 Hz), but they are typically bulky and heavyweight at lower frequen-
cies, limiting their application. Porous absorbers dissipate sound energy due to two main mechanisms: viscous 
friction on pore walls and thermal losses within pores7,8. The understanding of sound absorption capabilities of 
these materials relies on the prediction of their effective density ( ρe ) and bulk modulus ( Ke ), that can be achieved 
with a semi-phenomenological fluid model developed by Johnson–Champoux–Allard (JCA)9,10. The model 
relates the sound propagation through porous materials to their non-acoustic properties, which are porosity 
( φ ), flow resistivity ( σ ), tortuosity ( α∞ ), viscous ( � ) and thermal ( �′ ) characteristic lengths. Therefore, tailored 
absorption of porous materials requires accurate measurement of these factors, linked to a precise manufacturing 
process. Porous absorbers can be distinguished by chemical composition as organic, hybrid, or inorganic4, with 
a recent growing interest in the use of carbon-based materials11,12. Graphene oxide (GO) is an ideal candidate 
for engineering novel absorbers, thanks to its peculiar chemical structure consisting of a two-dimensional (2D) 
lattice of sp2 hybridised carbon atoms with oxygen functionalities13. The main advantages of GO are its capability 
to form stable suspensions in water14 and to be templated in various assemblies such as aerogels15 with low cost 
and in environmentally friendly processes. GO has been evaluated for applications including water treatment16, 
energy storage17, composite reinforcements18, EMI shielding19, and thermal insulation with fire-retardancy20. 
Acoustic-related properties have recently been described8,12,21. Nine et al.21 developed a hybrid foam with GO 
supported by Melamine where it promoted an increase in air-flow resistivity and tortuosity leading to a sound 
absorption coefficient of 0.6 over 800 Hz with a sample thickness of 26 mm. Similarly, Oh et al.12 fabricated a 
directionally antagonistic Graphene Polyurethane aerogel with a broadband absorption coefficient over 0.6 
above 1000 Hz with a sample thickness of 30 mm. An example of carbon-only foam is found in the work of Lu 
et al.8, where a bubbled GO solution was freeze-cast and thermally reduced. A Bubbled Graphene Monolith was 
obtained, with a normalised absorption coefficient of 0.9 in the 800–6300 Hz range with a sample thickness of 
30 mm and a density of 7.5 kg m−3. While these results achieve broadband absorption with thin structures, the 
pursuit of tuneable, lighter, and higher absorbing materials is still of fundamental and practical importance.
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Herein we present a new class of ultralight and subwavelength thin acoustic aerogels with high, broadband, 
and tuneable sound absorption and sound transmission loss. These are manufactured by ultra-high shear mixing 
blends of GO and polyvinyl alcohol (PVA) which are then embedded in a honeycomb (HC) core, freeze-cast, and 
finally freeze-dried. This process allows the incorporation of air bubbles in a templated structure that leads to 
the ultralight GO/PVA aerogels (GPAs). PVA has many favourable characteristics such as high chemical resist-
ance, good optical and physical properties22, low toxicity23 and high biodegradability24. In addition, its water 
solubility and cross-linking ability renders it an ideal candidate to form homogeneous solutions with GO. While 
alterations of blend composition produce aerogels with different physicochemical characteristics, variations in 
the time of ultra-high shear mixing changes the structural characteristics. Both directly affect the efficiency of 
sound dissipation through the material and, consequently, shape the JCA model as a powerful tool for the under-
standing of the acoustic behaviour of GPAs. Digital Microscopy (DM), Scanning Electron Microscopy (SEM), 
Fourier-Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffractometry (XRD) are used to characterise 
the physical and chemical properties of the aerogels. The Normal Absorption Coefficient ( α ) and the Normal 
Incident Sound Transmission Loss ( STL ) are measured to determine the acoustic properties of the proposed 
material, evaluating and optimising the effects of composition, thickness and processing time. The JCA model 
is used to predict the physical parameters of the aerogels, identify the effects of the shear mixing process and 
ultimately provide information to tune the acoustic properties of the absorbers. To the best of our knowledge, 
no reports have been published discussing the acoustic behaviour of functionalised GO aerogels based on semi-
analytical models, or describing their sound transmission losses. The ultralight aerogels manufactured in this 
work possess high broadband sound absorption, with the optimised GPA potentially being the lightest porous 
absorber on record at this time.

Results
Formation of ultralight GO/PVA aerogels.  GO is hydrophilic due to oxygen functionalities such as 
epoxy, hydroxyl and carboxyl groups which are found on its basal planes and edges25. A polar solvent such as 
water can intercalate between GO interlayer spacings13,26, leading to stable suspensions. Likewise, thanks to 
hydroxyl functionalities, PVA is also hydrophilic and water-soluble27. As shown in Fig. 1a, when GO suspensions 
and PVA solutions are mixed in water, homogeneous blends can be obtained due to hydrogen bonds between 
the molecules of the two components28,29. Figure 1b pictures air bubble entrapment (i.e., foaming) after ultra-
high shear mixing of the blends. This is a result of the low interfacial tension of PVA, whereas foam stability is 
improved by changes to surface elasticity and viscosity due to the presence of GO30–32. Increasing the amount of 
GO increases foaming capability, until a critical concentration of solids leads to bulk clustering of particles that 
destabilises the foam33. After a stable hydrogel is obtained, it is possible to maintain the templated structure and 
to embed it in a Nomex HC core. Figure 1c,d shows the subsequent freeze-casting and freeze-drying processes: 
the structure is first frozen unidirectionally from the bottom (i.e., cold surface) to the top (i.e., surface exposed 
to the atmosphere), resulting in ice crystals growing vertically and pushing the bigger and lighter air bubbles 
upward; it is then dried though sublimation as pressure and temperature inside the drying chamber are below 
the triple point. Figure 1d presents the resulting aerogel characterised by a hierarchical porosity. Micro-porosity 
is generated by the exclusion of particles, polymeric molecules, or a mixture of them, from the nucleation and 
growth of small ice crystals due to extremely low temperature exposure (i.e., about − 190 °C thanks to the use of 
Liquid Nitrogen as freezing medium)34. Macro-porosity is instead induced by air bubbles previously entrapped.

In Table 1 GPAs of different composition are compared with pure GO and PVA aerogels. Blends having PVA as 
the more abundant component have been excluded as the resulting aerogels did not possess acceptable structural 
robustness. The variation in the amount of PVA in the starting blend leads to both macroscopic (Fig. 2a–e, DM) 
and microscopic (Fig. 2f–o, SEM) differences in morphology. GPA-1 and GPA-2 possess a similar micro-porous 
structure, with the first showing the largest macroscopic entrapment of air bubbles. GPA-3 exhibits no bubbles 
and a bulkier micro-structure, similar to pure GO. The transition from light to bulky structures is reflected by 
the physical properties of the aerogels, of which GPA-1 is the lightest with a density of 5.11 kg m−3 and a poros-
ity of 99.32% (Table 1). A processing time of 15 min is used for the initial blends, as it represents the optimum 
state of air entrapment, homogenisation and structural robustness in the resulting aerogel. However, the time 
of ultra-high shear mixing controls air entrapment in the foamed blends, and in so doing, tunes the structural 

Figure 1.   Schematic illustration of the ultralight GPAs.
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properties of the aerogels to maximise sound energy dissipation. The 1:1 ratio blend shows the best tuning abil-
ity in the time interval of 5–20 min, with the resulting physical properties summarised in Table 2. Notably, an 
ultralight aerogel characterised by a density of 2.10 kg m−3 and a porosity of 99.72% is obtained with precisely 
5 min of processing. GPAs are among the lightest acoustic materials reported in the literature so far (see Table S1 
of Supplementary Information), guaranteeing a small weight increase with respect to the HC core that is as little 
as the 3.43% for the lightest sample (Tables 1 and 2).

Physicochemical characterisation.  Figure  3a shows the FT-IR spectra for all the samples. The main 
features observable in the GO spectrum are the O–H stretching and deformation of hydroxyl groups at 3351 and 
1373 cm−1, coupled with the C–OH stretching at 1217 and 1160 cm−1, the C=O stretching of carbonyl groups at 
1718 cm−1, and the C–O–C stretching of epoxy groups at 1033 cm−135–38. The peaks at 3194 and 1615 cm−1 are 
respectively due to the stretching and deformation of adsorbed water molecules38. On the other hand, the main 
features of the PVA spectrum are the O–H stretching and deformation at 3307 and 1377 cm−1, the asymmet-
ric and symmetric stretching of C–H at 2941 and 2911 cm−1 respectively, the C–H2 bending at 1418 cm−1, the 
C–O–C stretching at 1089 cm−1, and the C–C stretching at 845 cm−139–41. As GO/PVA blends exhibit the features 

Table 1.   Physical properties of all samples.

Sample GO:PVA ratio Density (kg m−3) � (%) Weight increase on HC core (%)

PVA 0:1 43.80 96.5 71.55

GPA-1 1:1 5.11 99.32 8.34

GPA-2 2:1 7.80 98.68 12.74

GPA-3 3:1 7.59 98.71 12.41

GO 1:0 5.80 97.77 11.83

Figure 2.   (a–e) DM and (f–o) SEM images of GO/PVA aerogels. PVA (a,f,k), GPA-1 (b,g,l), GPA-2 (c,h,m), 
GPA-3 (d,i,n), GO (e,j,o). Magnifications: (a–e) × 20, (f–j) × 500, and (k–o) × 3000. Same scale bars apply to 
images with equal magnification.

Table 2.   Physical properties of GPA-1 samples for various processing times.

Processing time (min) Density (kg m−3) � (%) Weight increase on HC core (%)

5 2.10 99.72 3.43

10 4.38 99.42 7.16

15 5.11 99.32 8.34

20 7.41 99.23 12.11
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of both the components, with intensities proportional to their relative mass ratios, the homogeneous mixing and 
stability of the samples can be assumed. Additionally, a shift of O–H related features around 3351, 1373, 1217, 
and 1160 cm−1 confirms the formation of hydrogen bonds between the oxygen groups on GO sheets and the 
hydroxyl groups of PVA molecules42–44.

From XRD patterns presented in Fig. 3b, GO shows its characteristic peak associated with the (001) carbon 
crystalline phase at 10.80° and the (100) reflection related to the longitudinal dimension of the structural ele-
ments at 42.45°45,46. The introduction of increasing PVA amounts in the blends affects the (001) peak causing its 
reduction in intensity and sharpness. This indicates a lower degree of crystallinity and a possible decrease in the 
size of crystallites. A shift toward lower 2θ values can also be observed, indicating that the interactions between 
PVA molecules and GO sheets lead to a more expanded structure. According to Bragg’s law47, the interplanar 
distance ( d ) between GO layers increases from 8.19 Å for pristine GO to the maximum of 16.20 Å for GPA-1. 
The PVA main reflection (101) peak appearing at 19.36° is not visible in the patterns for GPAs, which is the sign 
of a completely amorphous phase48.

Optimisation of the acoustic properties.  Figure 4a,b presents the variation of α and STL for different 
compositions of GPAs as a function of frequency. As PVA inclusion increases, the absorption curves are flat-
tened and shift toward lower frequencies than pure GO. This leads to higher absorption in the low frequency 
range (i.e., below 1200 Hz), with α > 0.4 from 500 Hz for GPA-1 and GPA-2. GPA-3 and pure GO outperform 
in the high frequency range (i.e., above 1200 Hz), and have similar performances to other GO foams reported 
in the literature8. This behaviour is related to changes in the physical structure of the aerogel. In particular, the 
macrostructure of GPA-1 and GPA-2 exhibits large pores (Fig. 2b,c) that result to an increased porosity and a 
reduced flow resistivity. The average sound absorption coefficients ( α ) for all the GPA samples fall in the 0.74 
and 0.77 range. A PVA inclusion higher than 75 wt% (GPA-1 and GPA-2) results in improved transmission loss 
performances (Fig. 4b), with GPA-1 having the highest average loss ( STL ) of 13.2 dB. The STL generally reflects 
the damping properties attributed to the cross-sectional distribution of large and small pores within the aerogel 
(Fig. 2g), and therefore sound attenuation through the material49. The relation between α and the Reflection 
Coefficient ( R ), α = 1− |R|2 , further justifies this behaviour as higher transmission losses are expected from a 
structure showing lower absorption and, consequently, higher reflections.

GPA-1 was chosen as the optimum composition as it possesses high sound absorption and sound transmis-
sion losses while being the lightest aerogel. Figure 4c,d shows the effect of adjusting the thickness from 12.5 to 
37.5 mm on both α and STL.The increase in aerogel thickness improves sound absorption at lower frequencies 
as expected, with the 37.5 mm thick sample achieving α > 0.6 from 500 Hz upwards with a peak of α = 0.96 at 
948 Hz. STL follows the same behaviour and reaches 15.7 dB for 37.5 mm thickness.

The next optimisation step is the evaluation of processing time and, consequently, porosity on acoustic proper-
ties of GPA-1. Figure 5a shows that an increasing porosity leads to higher sound absorption of the proposed struc-
ture over the frequency range investigated. In particular, the lightest aerogel obtained with 5 min of processing 
time results in a density of 2.10 kg m−3 and a porosity of 99.72% achieving α = 0.79. As sound waves travel from 
large to smaller pores (Fig. 2g), air velocity increases and sound energy is dissipated due to friction50,51. Figure 5b 
depicts an increase of the transmission loss as aerogels become bulkier. The heaviest aerogel (7.41 kg m−3) has 
the best result with STL = 15.8 dB. Furthermore, Fig. 5c compares α and density values of GPA-1 aerogels with 
other porous absorbers previously reported, demonstrating their superior acoustic properties while guarantee-
ing extremely low densities.

Semi‑phenomenological analysis.  The effects of processing time on the physical structure of GPA-1 and 
the resulting acoustic behaviour are further investigated using the JCA semi-phenomenological approach. The 
equivalent fluid model is fitted to measured results considering three experimentally derived parameters ( φ , σ 

Figure 3.   Physicochemical characterisation of GO/PVA aerogels: (a) FT-IR spectra and (b) XRD patterns. 
Wavenumbers attributable to GO are denoted in black while those for PVA are in red.
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and α∞ ) and two unknown parameters ( � and �′ ). The predicted sound absorption coefficient curves have an 
average error < 1% when compared to the experimental results (Fig. 6a), suggesting a good fit to the non-acoustic 
properties of the aerogels. For different processing times, the density and the non-acoustic properties change, 
and the complex interactions between these parameters lead to the observed shift in GPA-1 sound absorption. 
Porosity is directly proportional to the volume of air available to sound waves52 and positively contributes to 
sound energy dissipation. However, it is crucial to highlight that the non-acoustic properties are not independ-

Figure 4.   Effects of (a,b) GPA composition and (c,d) GPA-1 thickness on acoustic properties: (a,c) sound 
absorption and (b,d) sound transmission loss. Sample thickness is 25 mm when not studied as a variation (a,b). 
Key and average α and STL values are summarised in Tables S2 and S3.

Figure 5.   Effects of processing time and densities on acoustic properties of GPA-1 samples: (a) sound 
absorption and (b) sound transmission loss. Key and average α and STL values are summarised in Table S4. (c) 
Comparison of the average sound absorption coefficient, calculated in the 400–2500 Hz range, as a function 
of density for GPA-1 samples and other porous absorbers with comparable thickness previously reported in 
literature (Table S1).
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ent (i.e., a change in one parameter will cause a change in the others). An inverse trend of α with respect of σ can 
be observed from Fig. 6b. In particular, the best performing sample (5 min of processing time) shows α = 0.79 for 
σ = 33,981 N s m−4. The flow resistivity is a measure of the porous material’s resistance to an airflow and can thus 
give an idea of the extent of sound energy dissipation due to boundary layer effects within the material52. How-
ever, if the resistivity is too high the sound wave incident to the material would meet a relatively high impedance 
surface leading to high reflection due to the impedance mismatch and thus to low sound absorption53. This is 
in agreement with STL results previously reported (Fig. 5b). The variation in α∞ shown in Fig. 6c is within a 
relatively small range of 1.31–1.66, except for the 15 min sample. The tortuosity is a measure of the complexity 
of the propagation path of sound waves through the material, where more complex paths usually lead to higher 
sound absorption. However, no direct correlation is exhibited between α and α∞ for the experimental aerogels. 
� increases with processing time from the minimum value of 29 µm to the maximum of 97 µm (Fig. 6d). The 
viscous characteristic length is defined as “the surface-to-pore volume ratio of the pore-solid interface”9 and is 
thus proportional to the microscopic dimensions of pores. Smaller values lead to increased viscous effects and 
thus to an improved dissipation of sound energy, explaining the acoustic behaviour pictured in Fig. 6a. Finally, 
the variation of �′ (between 154 and 202 µm) is a function of thermal losses at high frequencies52 and thus has 
limited effect on sound absorption over the range investigated (Fig. 6d).

Discussion
In conclusion, we have developed a novel ultralight aerogel for the design of thin and light materials with excel-
lent acoustic properties. We have exploited the chemical properties of GO/PVA blends and a specific environ-
mentally friendly manufacturing process to embed the aerogels in structural HC cores. The physicochemical 
characterisation has demonstrated the effects of the blend composition on the physical properties of the material, 
the existence of hydrogen bonds between GO sheets and PVA molecules and the ability of the two components 
to form a homogeneous and expanded structure. We have also evaluated the effects of composition, thickness, 
and processing time on the acoustic properties of the proposed material. Thanks to the hierarchical porosity, the 
resulting absorber is endowed with the advantages of a density as low as 2.10 kg m−3, and tuneable sound absorp-
tion and transmission functionality. The novel aerogel-based structures provide a solution for the development of 

Figure 6.   Semi-phenomenological analysis of GPA-1 samples with different processing times: (a) comparison 
between semi-analytical model predictions (solid lines) and experimental measurements (markers) of the sound 
absorption coefficient. (b) Flow resistivity, (c) tortuosity, (d) viscous and thermal characteristic lengths affected 
by processing time with average absorption coefficient trend.
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acoustic materials in structural engineering applications requiring high sound absorption and sound transmis-
sion losses as well as excellent mechanical stiffness and strength. Additionally, the inherent potential of GO to 
unlock multifunctional features such as EMI shielding and fire-retardancy may prompt advanced applications 
in the aerospace and power generation industries.

Methods
Materials.  Graphite oxide (GtO) powder was supplied by Xiamen TOB New Energy, PVA (98–99% hydro-
lyzed, medium molecular weight) was purchased from Sigma Aldrich. Deionized MilliQ® water was used 
throughout all the experiments. All the chemicals were used as received without further treatment or purifica-
tion.

Sample fabrication.  The fabrication process is schematised in Fig.  7. GtO was dispersed in water 
(8 mg mL−1) and exfoliated to form a GO suspension through probe sonication (Dr. Hielscher GmbH UP100H, 
with an amplitude of 80% and continuous pulsing) for 40 min under constant magnetic stirring and in an ice 
bath to ensure a homogeneous process with controlled temperature. A PVA solution (5 wt%) was obtained by 
dissolving the raw polymer in water: the system was heated up to 90 °C on a hot plate with continuous magnetic 
stirring until the solution became clear. Blends of GO and PVA were then obtained with ultra-high shear mixing 
(IKA Ultra-Turrax T25) at 20,000 rpm for 15 min in a typical blend, or with varying processing times for poros-
ity optimisation purposes. Proper amounts of the two components were mixed so that the designed mass ratio 
could be reached (Table 1).

Aerogels were obtained with unidirectional freeze-casting of the blends in a Nomex HC core with the aid of a 
silicone mould having an aluminium plate as base directly placed on a copper heat sink immersed in liquid nitro-
gen. Templated structures were finally freeze-dried (LTE LyoTrap Mini) for 96 h, leaving the GPAs embedded 
in the Nomex core. Samples consisting of pure GO suspension and pure PVA solution were also manufactured 
as reference material.

Characterisation.  The composition of the starting blend determined the morphology of the aerogels, eval-
uated with DM (Keyence VHX 6000) and SEM (Hitachi SU3900). Chemical structure was evaluated by Fourier-
Transform Infrared Spectroscopy (FT-IR, Perkin-Elmer Frontier FTIR Spectrometer) with a liquid nitrogen 
cooled MCT detector from 400 to 4000 cm−1. The crystalline structure of the blends was finally analysed with 
X-Ray Diffractometry (XRD, STOE STADI P) in the range of 2θ = 4−50

◦ at room temperature using a Cu-Kα 
generator with 1.54 Å wavelength. XRD data were additionally processed to calculate the interplanar distance d 
between GO layers using Bragg’s law47 as expressed in Eq. (1), where � is the radiation wavelength and θ is the 
reflection angle of the (001) phase.

The density of the samples ( ρs ) was calculated from their weight and volume. The porosity of each sample 
was calculated as expressed in Eq. (2), where ρGO and ρPVA are the densities of bulk GO (0.26 g cm−3) and PVA 
(1.25 g cm−3), respectively, while wGO and wPVA are the mass percentages of the two components in the blend.

The coefficients expressing acoustic performances, α and STL , were measured following the standard test 
methods ASTM E105054 and ASTM E261155, respectively. Detailed experimental procedures can be found in 
Supplementary Information.

Detailed information on the measurement of the non-acoustic properties can be found in Supplementary 
Information. Briefly, porosity was evaluated using the density of the aerogels as expressed in Eq. (2), flow resis-
tivity was indirectly determined from impedance tube measurements according to equation (S9)55–57, tortuosity 
was experimentally derived from equation (S10) using an ultrasonic time-of-flight method58, and finally viscous 
and thermal characteristic lengths were obtained by applying an inverse identification method59,60.

(1)d = �
/

2 sin θ

(2)φ =

(

1−
ρs

wGOρGO + wPVAρPVA

)

× 100

Figure 7.   Diagram of ultralight GO/PVA aerogel fabrication process.
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