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Abstract 27 

Using microbubbles has gained significant interest in many domestic and industrial applications 28 

due to bubble stability in solution and increased mass transfer area. The characterisation of 29 

microbubble populations is therefore important and aids in the understanding of their behaviour. 30 

Microbubble characterisation remains challenging, particularly at high bubble densities. We have 31 

developed an in situ and automated method, based on image analysis, to determine bubble size 32 

distributions and bubble rise velocity at bubble densities of up to approximately 7 bubbles mm-2. 33 

The method uses image analysis of a side-stream viewing slit and was tested using air bubbles in 34 

water at diameters between 20 and 150 µm under a range of different conditions. The developed 35 

system enables fast, simple and accurate size determination for microbubbles, including 36 

continuous sampling and observation. 37 

1. Introduction  38 

Bubbles are essential in two-phase (gas-liquid) and three phase (gas-liquid-solid) contacting in 39 

processing industries for example in aeration, flotation, absorption, fluidisation and distillation 40 

[1]–[6]. Bubble size and precise control of its distribution are central information in characterising 41 

processes, but is challenging given the complex relationship between bubble shape, size, 42 

movement and surrounding forces. Bubbles fall into different size categories. Macrobubbles, also 43 

referred to as millibubbles, are typically between 2-5 mm in diameter [2]. ISO/TC 281 defines a 44 

bubble as ‘gas in a medium enclosed by an interface’  and specifies bubbles of a volume equivalent 45 

diameter less than 100 µm as fine bubbles, while distinguishing between microbubbles (MBs, 1-46 

100 µm) and ultrafine bubbles (< 1 µm). The term ‘ultrafine bubble’ is favoured over the frequently 47 

used term ‘nanobubble’ due to the unclear definition of the latter term [7]. Given the various size 48 

range definitions for bubbles in the literature [3], [8], [9], the present study uses ISO terms and 49 

definitions. 50 

Due to their hydrodynamic properties MBs are used extensively in water clarification and solids 51 

removal processes, such as dissolved air flotation (DAF) [10]–[13]. Other applications include 52 

ozonation, removal of pesticides, disinfection, removal of oil, airlift bioreactors, aeration in aerobic 53 

activated sludge treatment, sludge solubilisation in biological water treatment and degreasing of 54 

solid surfaces [2], [14]–[19]. MBs have very large surface to volume ratios in the order of 105 m-55 
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1 resulting in surface forces such as surface tension and skin drag dominating over inertial forces. 56 

MBs also do not coalesce and break up in the same way as larger bubbles, which is thought to be 57 

due to repulsive forces caused by negative surface charge. High bubble density, large surface area 58 

and long residence time provide effective contacting between bubbles and particles in the 59 

surrounding liquid and decreased propensity of detachment from particles due to lower inertia 60 

[10], [20]–[28]. The highly stable nature of MBs in solution also make them particularly suited to 61 

aeration [29]–[31]. The stability and low rise velocities of MBs result in high residence times, 62 

allowing MBs to shrink and dissolve in unsaturated water prior to reaching the liquid surface. 63 

Reviews on bubble formation and bubble hydrodynamics cover rise velocity, coalescence, breakup 64 

and the various bubble interactions [6], [32]. Literature on MBs in particular, is related to its use 65 

for aeration processes and DAF. DAF MB research covers bubble-bubble/bubble-particle 66 

interactions, the effect of bubble characteristics such as size, hydrophobicity, zeta potential and 67 

the internal and external hydrodynamic behaviour of microbubbles which are determined by the 68 

fluid properties and bubble morphology [33]–[40]. Other research has focused on the effect of 69 

surfactants on the behaviour of MBs [41]–[45]. Computational fluid dynamics (CFD) modelling 70 

has been utilised to understand the flow around MBs and specifically the effect of MB size and 71 

density on flows within DAF tanks [46]–[51]. 72 

There are various bulk generation methods for MBs which fall into two categories, (1) gas-water 73 

circulation/shear force and (2) pressurisation/depressurisation [2]. In gas-water circulation, MBs 74 

are generated via breakup by flow turbulence and vortices. In pressurisation/depressurisation, MBs 75 

are produced by first supersaturating liquid with gas at high pressure, and subsequently reducing 76 

the pressure. Another method, which utilizes pressure drop, is hydrodynamic cavitation, in which 77 

a localised area of decreased pressure causes the nucleation of gas bubbles. Usually, for DAF 78 

pressurisation/depressurisation is applied. Water is saturated with air at 0.4-0.6 MPa and then 79 

passed through injection nozzles over which a pressure drop occurs resulting in the formation of 80 

MBs in the 40-150 µm range [10], [13], [52], [53]. The major drawback with the 81 

pressurisation/depressurisation method of MB generation is the need for large pressurisation tanks 82 

and the high operating costs involved in pressurising the recycle stream. Different MB generators 83 

include spiral liquid, Venturi and ejector type generators [18]. Venturi and ejector type generators 84 

utilise hydrodynamic cavitation via pressure changes in flow channels, with the Venturi type 85 
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generating bubbles of 1-60 µm [18], [54]. Spiral liquid type generators generate bubbles of 10-50 86 

µm via shear forces generated by centrifugation [55]. A fluidic oscillator type MB generator to 87 

produced bubbles of 40-250 µm [56]. 88 

Table 1 shows the various methods employed to characterise MB size distributions and rise 89 

velocities. The critical steps in bubble characterisation experiments are (1) the acquisition of 90 

bubbly liquid samples, (2) the measurement of bubble size and rise velocity and (3) data analysis. 91 

While imaging methods have been most widely used, other techniques include light diffraction, 92 

drift flux analyses, porous plate, electro resistivity and optical detectors. Data analysis ranges from 93 

measuring the size of individual bubbles manually to sophisticated automated methods, which for 94 

example can determine bubble sizes within clusters. Most rise velocity measurements employed 95 

high-speed photography followed by image analysis. For example, some studies observed isolated 96 

individual bubbles using image sequences [42], [57], [58]. Other studies looked at the rise-velocity 97 

of bubble-floc agglomerates using commercial imaging software [59] or conducted measurements 98 

of individual bubbles using laser velocimetry [60]. 99 

Here we describe a new MB analytical setup that can measure microbubble sizes and size 100 

distributions, including single bubble and population size rise velocities at relatively high bubble 101 

densities of approximately 7 bubbles per mm2, with images of up to 100 bubbles per frame 102 

analysed. Bubbles were produced in pure water using a NIKUNI KTM20 regenerative turbine 103 

pump at different temperatures and with/without the presence of surfactants. Bubble solution was 104 

directed from the MB generator into a viewing slit where images were captured, followed by 105 

digitalised image analysis. This setup is relatively low cost and enables in situ (via a side stream), 106 

direct and continuous sampling of bubbles without altering the operation of the MB generator. 107 

Automated imaging analysis was developed in MATLAB to enable fast and detailed 108 

characterisation of dense populations of bubble diameters and rise velocity in pure water and water 109 

charged with surfactants.  110 
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Table 1: Summary of bubble size and rise velocity characterisation methods. 111 

  112 

Bubble Size 

Experimental Setup Measurement Analysis Size Range Reference 

Samples drawn into laser online particle 

counter 

Light diffraction 

(Chemtrac PC2400 D, 

USA) 

 

Conversion of diffraction to 

bubble size 

15-85  µm [61] 

Samples drawn into batch type particle 

counter 

Electrical resistivity 

(Multisizer II, Coulter) 

Conversion of resistivity to 

bubble size 

 

13-96  µm [61] 

Samples tapped into Perspex viewing 

cell (0.08 m, 0.08m and 0.015 m) 

 

Photography Image analysis software 

Image-Pro plus 

10-150  µm [30]  

Lab scale DAF unit with samples 

drawn into viewing chamber. 

 

Digital camera & 

backlighting 

Bubble size analyser 

software LabVIEW (BASF) 

 

60-131 µm [62] 

Samples from DAF unit tapped off into 

cuvette 

Photography Automatic image analysis 

Magiscan (Joyce Loebl) 

 

10-300 µm [63] 

Bubbles generated by diffusers in tank Acoustic spectrometry Analysis of signals obtained 

by acoustic bubble 

spectrometer system using 

software 

 

80-500  µm [56] 

Pilot flotation column Gas velocity and gas 

holdup 

 

Drift flux analysis 350-1100 µm [64] 

Lab scale flotation unit Digital camera Stochastic image analysis 

incorporating bubble 

clusters 

 

200-2000 µm [65] 

 

     

Flotation cell Digital camera Image analysis software 

Matrox Inspector 

 

500-3000 µm [66] 

McGill bubble size analyser (sampling 

tube & tilted viewing chamber) 

Digital camera 

 

One dimensional discrete 

Fourier analysis 

 

500-5000 µm [67] 

Bubble Rise Velocity 

Experimental Setup Measurement Analysis Size Range/Rise 

Velocity Range 

Reference 

Single bubbles transferred into a 

cuvette 

 

High speed camera Manual image analysis 10-120 µm 

1-12 mm s-1 

[57] 

Single bubbles generated in 

electrophoresis cell 

 

Photodetector Laser Doppler velocimetry ≈ 80  µm 

4-5 mm s-1 

[60] 

Carried out batch flotation of bubble-

particle flocs in jar tester 

High speed camera Particle image analyser 

software 

200-700  µm (Floc) 

9-15 mm s-1 

 

[59] 

Single bubbles transferred into a 

viewing chamber 

 

High speed camera MATLAB image analysis 1300-2000 µm 

200-500 mm s-1 

[58] 

Downward flow chamber used to 

isolate a bubble and keep stationary 

relative to camera with flow stopped 

periodically for velocity determination 

 

High speed camera Manual analysis using 

known distance travelled 

1000-5000 µm 

100-350 mm s-1 

[42] 
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2. Theory 113 

Precise control and knowledge of bubble size is critical in determining gas-liquid flow regimes. A 114 

series of dimensionless numbers are commonly used to characterise bubbles in terms of shape and 115 

flow regime. The Reynolds number (𝑅𝑒𝑏, equation (1)) describes the ratio of inertial to viscous 116 

force, the Eötvös  number (𝐸𝑜, equation (2)) is the ratio of gravitational force to surface tension, 117 

and the Morton number (𝑀𝑜 , equation (3)) is a constant for a given liquid and gas mixture at 118 

constant temperature and is used in conjunction with Eo to determine the shape of the bubble. The 119 

shape of bubbles moving in a fluid can be predicted by utilising a plot, called the Grace diagram, 120 

incorporating all three dimensionless numbers [68]. 121 

𝑅𝑒𝑏 =
𝜌𝑙𝑢𝑏𝐷𝑏

𝜇𝑙
     

 
(1) 

𝐸𝑜 =
∆𝜌𝑔𝐷𝑏

2

𝛾
       

 
(2) 

𝑀𝑜 =
𝑔𝜇𝑙

4∆𝜌

𝜌𝑙
2𝛾3

    
 

(3) 

Larger macrobubbles rise faster due to a lower surface to volume ratio and reduced drag, and 122 

therefore result in higher 𝑅𝑒𝑏 . Regardless of the 𝑀𝑜  number, bubbles are spherical under 123 

gravitational motion through a fluid when 𝑅𝑒𝑏 < 1, and/or when 𝐸𝑜 < 0.2 (air bubble in water with 124 

𝐷𝑏 < 1.2 mm). When surface tension is large enough, bubbles remain spherical up to 𝑅𝑒𝑏 < 600. 125 

When bubbles exhibit little internal circulation, then flow around a bubble can be described in the 126 

same way as for solid spherical particles. There are several correlations for the drag coefficient of 127 

spheres, which approximate the drag coefficients given by the standard drag curve [69]. When 128 

internal circulation is present the dynamics of rising bubble through liquid becomes more complex 129 

and relies mostly on numerical methods [70].  130 

For bubbles with 𝑅𝑒𝑏 < 1, the flow around the bubble is classified as creeping flow, therefore 131 

Stokes’ law (Eq. 4) can describe the rise velocity of an isolated bubble. The Hadamard-Rybczynski 132 

(H-R) equation  (Eq. 5) applies for a bubble with a mobile surface and internal circulation [71]. 133 

𝑢𝑡(𝑆𝑇) =
𝐷𝑏

2∆𝜌𝑔

18𝜇𝑙
 (4) 

 
(5) 
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𝑢𝑡(𝐻−𝑅) =
𝐷𝑏

2∆𝜌𝑔

6𝜇

𝜇𝑙 + 𝜇𝑔

2𝜇𝑙 + 3𝜇𝑔
 

One criteria used to predict the behaviour of MBs is the Bond criterion [72], which states that for 134 

𝐸𝑜 < 4  there is no internal circulation within rising bubbles [73].  135 

𝐸𝑜 =
𝐷𝑏

2∆𝜌𝑔

𝛾
 

> 4 𝐹𝑙𝑢𝑖𝑑 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 

< 4 𝑆𝑜𝑙𝑖𝑑 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 
(6) 

However it is well known from experimental observation that bubbles deviate from the Bond 136 

criterion due to the presence of surface active substances which immobilise the bubble surface 137 

[41]. This immobilisation occurs due to an accumulation of surface contaminants at the rear of a 138 

moving bubble; creating a surface tension gradient that opposes viscous stress at the surface. This 139 

phenomenon is known to occur more easily with microbubbles even with trace quantities of 140 

contaminants and can only be avoided by using ultra-pure water [42], [57]. Further correlations 141 

have been developed to predict the rise velocity in different scenarios for example for bubble-142 

particles flocs present at low and high Reb numbers [10], [73]–[75]. For spherical particles at 𝑅𝑒𝑏  143 

> 1 Clift et al. [70] present a summary of recommended drag coefficients (Table 2). At 𝑅𝑒𝑏 < 10, 144 

however, the deviation of the drag coefficient Cd from Stokes’ law is no more than twice the 145 

Stokes’ drag, which corresponds to a maximum reduction in rise velocity of 30% from that 146 

predicted by Stokes’ law. Clift et al. [71] also present drag coefficients for slow viscous flow past 147 

spheres using extensions of the creeping flow solution such as Oseen’s approximations. These 148 

extensions were developed because the creeping flow solutions are only valid for distances less 149 

than 𝐷𝑏 2𝑅𝑒𝑏⁄  from the sphere. In addition to the rise velocity for an individual bubble, the effect 150 

of multiple bubbles in a bubble population on rise velocity has also been considered [76]. 151 

Simulations have shown that at low volume fractions, cooperative wake interactions lead to an 152 

increase in rise velocity.  However, at higher volume fractions hindering viscous forces begin to 153 

dominate and reduce the rise velocity. Based on the Eotvos/Bond numbers used for spherical 154 

bubbles, these simulations were based on bubbles with diameters between 1.5 and 2 mm for 155 

air/water bubbles. 156 

 157 

 158 
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Table 2: Correlations for the drag coefficient of a sphere moving slowly through a viscous fluid 159 

according to Stokes’ law, the Oseen extension and a modified Oseen extension as well as 160 

correlations for drag at Reynolds numbers above 1. [70], [71]. 161 

Correlation  Range 

𝐶𝐷𝑆𝑇 =
24

𝑅𝑒𝑏
 

(7) 𝑅𝑒𝑏 < 1, Stokes’ Law 

𝐶𝐷 =
24

𝑅𝑒𝑏
[1 +

3

16
𝑅𝑒𝑏] 

(8) 𝑅𝑒𝑏 < 0.1, Oseen’s approximation 

𝐶𝐷

𝐶𝐷𝑆𝑇
− 1 =

3𝑐

16
𝑅𝑒𝑏 , 𝑐 = 0.43 

(9) 𝑅𝑒𝑏 < 1, Modified Oseen’s 

approximation 

𝑙𝑜𝑔10 [
𝐶𝐷𝑅𝑒𝑏

24
− 1] = −0.881 + 0.82𝑤 − 0.05𝑤2 

(10) 0.01 < 𝑅𝑒𝑏 ≤ 20 

𝑙𝑜𝑔10 [
𝐶𝐷𝑅𝑒𝑏

24
− 1] = −0.7133 + 0.6305𝑤 

(11) 20 ≤ 𝑅𝑒𝑏 ≤ 260 

log10 𝐶𝐷 = 1.6435 − 1.1242𝑤 + 0.1558𝑤2 (12) 260 ≤ 𝑅𝑒𝑏 ≤ 1500 

 162 

3. Materials and methods  163 

Method of MB generation 164 

A NIKUNI KTM 20N (Nikuni Co., Kawasaki City, Kanagawa, Japan; Aeration & Mixing LTD, 165 

Sheffield, UK) regenerative turbine pump was used in all experiments to produce MBs. The pump 166 

has a liquid and gas inlet with control of both streams, allowing variation of gas liquid ratio in the 167 

pump. The Nikuni KTM design harnesses three forces in a single stage pump. A frictional force 168 

directing flow in the direction of impeller rotation, an axial force pushes fluid present in the pump 169 

either side of the centre of the impeller into the chambers and centrifugal force encourages fluid 170 

to swing outwards away from the centre of the impeller towards the side of the pump casting. 171 

These forces in combination with the action of the impeller result in a series of vortexes to form, 172 

creating areas of low pressure in which air is sheared and becomes entrained forming MBs [77]. 173 

Unless otherwise stated, the pump was operated at manufacturer recommended parameters of 0.3 174 

MPa Outlet pressure, -0.03 MPa Inlet pressure, liquid flow rate of 16.5 L min-1 and an ambient air 175 

intake of 1.5 L min-1 (Figure 1) 176 

Temperature controlled flow loop and MB imaging 177 
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The following methodology lays out the experimental setup and procedure developed in the 178 

investigation of the size distribution and rise velocity of MBs produced under varying operating 179 

conditions. Unbuffered deionized (DI) water from an in-house reverse osmosis system was used 180 

for all experiments and preparation of stock solutions. Two ionic surfactants; cetyl trimethyl 181 

ammonium bromide (CTAB) (CAS-57-09-0), glycolic acid ethoxylate lauryl ether (GAELE) 182 

(CAS- 220622-96-8) and two non-ionic surfactants; polyethylene glycol sorbitan monolaurate 183 

(Tween-20) (CAS-9005-64-5) and Triton-X-100 (CAS- 9002-93-1) were sourced from Sigma 184 

Aldrich. All surfactant dosages were calculated based on the critical micelle concentration (CMC) 185 

for CTAB, GAELE, Tween 20 and Triton X-100 of 0.92, 0.22, 0.06 and 0.10 mM, respectively 186 

(manufacturer information). Air microbubbles were generated in a temperature-controlled loop 187 

system with a liquid reservoir volume of 30 L. The system was equilibrated at stable desired 188 

temperature (10 - 60 ºC) for 2 min before measurements were started. Temperature control was 189 

carried out using a 6 mm diameter cooling/heating coil with an approximate length of 4 metres. 190 

Recycling of liquid resulted in high bubble densities in the closed loop and enabled stream split at 191 

the pump outlet, including control of bubble density in the observation unit by adjustment of a 192 

needle valve. Solution flowed from the needle valve to the viewing slit along plastic tubing (≈ 30 193 

cm). Solution entry through a perforated bottom (1 mm holes) ensured homogenous bubble 194 

distribution in the viewing slit (< 3 mm thick Perspex, 530 mm height × 110 mm width × 8 mm 195 

depth). Both reservoir loop and viewing slit were cleaned daily and rinsed with DI water followed 196 

by the desired surfactant solution for surfactant series experiments.  197 

For each experiment, 200 images were captured with a Thorlabs DCU224C camera (Thorlabs, 198 

United States) with Navitar 12× zoom lens (Navitar, United States) at 10 frames per second. The 199 

camera was mounted on an adjustable support system to ensure that position and distance from the 200 

viewing slit (5-10 cm) could be accurately controlled. A backlight system (Nightsearcher Galaxy 201 

Pro at 15 cm distance) ensured sufficient contrast. A scale image was taken before each experiment 202 

to be used when converting bubble diameters from pixel width to µm. For accurate bubble rise 203 

velocity measurements, the needle valve was only opened briefly to allow bubbles into the viewing 204 

slit and then shut, with imaging conducted after the dissipation of eddies and flow stratification in 205 

viewing slit and free bubble motion was present. The delay required varied on a case by case basis, 206 

especially with temperature variation as more turbulence was present at higher temperatures, 207 
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although generally it would take no more than 1 minute for the bubble motion to stabilise. Images 208 

were captured 30 cm above the slit entrance to minimise entrance effects. 209 

 210 

Figure 1: Setup of temperature-controlled flow loop and microbubble observation.  211 
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Image Processing 212 

A MATLAB (R2018b) (Supporting Information) code for image analysis was developed to 213 

identify the position and diameter of bubbles that are in focus. The identification was based on the 214 

exclusion of image objects based on three factors; threshold binarising via Otsu’s method  [78], 215 

eccentricity and minimum intensity of object. Binarising the image is used as a means of singling 216 

out bubbles by eliminating background image. This is done by simple exclusion/inclusion decision 217 

based on the darkness of each pixel. Eccentricity is used as a means of excluding/including bubbles 218 

based on the roundness of objects within the image. Minimum intensity is used as a means of 219 

including/excluding objects based on the darkness of each object. For example, out of focus and 220 

smaller bubbles would appear lighter than in focus bubbles.  All three parameter thresholds could 221 

be set manually and tested in order to optimise bubble identification. Figures 2(a) and (b) illustrate 222 

how image analysis was used to record bubble size distribution and rise velocity. First, the image 223 

was loaded and converted to a grayscale intensity image and transformed to its complement. The 224 

image was then binarised according to a user-defined threshold based on image contrast and 225 

background brightness (A). The objects in the image were filtered based on eccentricity in order 226 

to eliminate any overlapping bubbles and minimum intensity to eliminate bubbles that were out of 227 

focus (B & C). The minimum intensity filtering step C, is applied by considering the grayscale of 228 

the original image which is actually a negative of the original image. In the MATLAB code the 229 

MinIntensity values were set as 100 minus the MinIntensity. For ease of understanding, the plots 230 

are made using labels of 100-MinIntensity to highlight this flipping of the thresholding logic. For 231 

rise velocity analysis, the code was extended to record the bubble x-coordinate, y-coordinate, mean 232 

intensity and diameter. These four parameters were then used to identify the same bubble in 233 

consecutive images by creating an image link and track bubbles in order to determine rise velocity. 234 

Bubbles would be identified as the same bubble between two consecutive linked images if the 235 

difference of the values of the four parameters fell within specified criteria, a maximum x-236 

coordinate difference (≈ 200 µm), maximum mean intensity difference (≈ 2), maximum diameter 237 

difference (≈ 2 µm) and maximum y-coordinate difference (≈ 1000 µm). Once optimised these 238 

four criteria can remain unchanged. However, the maximum y-coordinate difference may be 239 

changed on a case-by-case basis. For example, when analysing smaller bubbles a lower maximum 240 

y-coordinate setting can account for slower rise velocities and thereby improve accuracy of results. 241 
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To avoid false linkage of bubbles between two images, bubbles were eliminated from the analysis 242 

if more than one bubble in the  second image fell within the specified criteria. 243 

 244 

(a) 245 

 246 

(b) 247 
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Figure 2: (a) Flowchart of the size distribution code procedure along with step images, and (b) 248 

flowchart of the rise velocity code procedure along with two examples showing the tracking of 249 

bubbles in consecutive images demonstrating the ability to analyse two images with different 250 

sized bubbles and bubble density. 251 

To avoid skewing of results by any excessively large and small bubbles within a sample, including 252 

false identifications due to image processing error, the 1st and 4th quartile of the size distribution 253 

was not taken into account when calculating mean bubble diameter, shown in Figure 3. Figure 3a 254 

shows a cumulative frequency plot of the bubble size distribution and figure 3b shows a normalised 255 

plot of the size distribution. Lines are added in both plots to highlight the interquartile range (IQR) 256 

and the mean diameter which is calculated using the data within the IQR. The effect of using only 257 

the IQR on the obtained mean diameters was investigated and showed differences no bigger than 258 

2.3% compared to analysis using all the data. The results of this analysis can be seen in the 259 

supporting information (Figure S2). 260 

 261 
     (a)                                                                             (b) 262 

Figure 3: Typical size distribution produced by the image analysis showing the interquartile 263 

range (IQR) and the IQR mean diameter. 264 

4. Results and discussion 265 

Sensitivity analysis and validation of image processing  266 

Obtaining a true measure of accuracy for the described method is difficult as there is no accurate 267 

methodology to compare with. In order to maximise accuracy, the effect of sampling on the bubble 268 
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size must be minimised. In our case this was done by keeping connecting tubing from pump outlet 269 

and viewing slit to a minimum length and diverting at low flow rates so as to minimise turbulent 270 

effects which could lead to bubble coalescence or breakup. The second factor which determines 271 

accuracy is the image analysis itself. In our case the source of error in identifying and determining 272 

MB size lies in the setting of the values for the imbinarise, eccentricity and minimum intensity 273 

factors. The parameters initially need to be set by the user within ranges of 0-1 for Imbinarise and 274 

Eccentricity and 0-100 for MinIntensity. Figure 4 illustrates the effect of changing the factors for 275 

a given image beyond the thresholds at which incorrect bubble inclusion and exclusion could 276 

occur. At low Imbinarise threshold i.e. 0.65, dark areas between bubbles and out of focus bubbles 277 

would be incorrectly included. At high Imbinarise threshold i.e. 0.85, areas of in focus bubbles 278 

would be excluded. At low eccentricity thresholds i.e. 0.2, bubbles were incorrectly excluded and 279 

at high thresholds i.e. 0.9, overlapping bubbles were incorrectly included. At high MinIntensity 280 

thresholds i.e. 85, smaller bubbles would be disproportionately excluded and at lower thresholds 281 

i.e. 60, out of focus bubbles would be incorrectly included and appear smaller than in reality. It 282 

was found that outside set ranges for Imbinarise (0.7 - 0.8), Eccentricity (0.3 - 0.8) and 100-283 

MinIntensity( 15– 40), bubbles were either incorrectly excluded, included or incorrectly 284 

represented (Figure 4). These ranges are therefore the feasible range for factor settings. Note, factor 285 

ranges were determined for specified experimental conditions with clear water and air bubble 286 

mixtures. Under different experimental conditions, for example under different lighting 287 

conditions, these factors would need to be re-evaluated to optimise bubble identification. Key 288 

parameters affected are the Imbinarise and MinIntensity factors, as both build on intensity and 289 

brightness of object pixels. For example, Imbinarise values need to be set as low as 0.5 to fully 290 

capture bubbles in solution under brighter lighting conditions with backlighting moved closer to 291 

the viewing slit. Regardless of the camera used by converting images to grayscale and known scale 292 

the code will function properly. 293 
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 294 

Figure 4: Images (3.4 mm × 4.3 mm) showing the effect of varying the factors in the Matlab 295 

analysis with baseline settings of Imbinarise = 0.75, Eccentricity = 0.5 and 100-MinIntensity = 296 

25. Red circles highlight incorrect bubble inclusion or exclusion. 297 

A sensitivity analysis was carried out to determine the effect of altering the parameters within the 298 

feasible ranges on a single set of 200 images to quantify potential error introduced in the image 299 

processing. First, a baseline of parameter values (Imbinarise = 0.75, Eccentricity = 0.5, 100-300 

MinIntensity = 25) was established by utilising visual observation, comparing the original image 301 

to the processed image and determining the optimum parameter values. Each parameter was then 302 

altered whilst keeping the others constant, recording mean diameter and total number of bubbles 303 

identified. Figure 5 shows the results of the sensitivity analysis. Varying the minimum intensity 304 

and binarising factor had a larger effect on the perceived mean bubble size than the eccentricity 305 

factor, with a total range of only 4 µm when altering the eccentricity factor compared to a range 306 

of more than 8 µm when altering minimum intensity and binarising factor.  307 
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 308 

Figure 5: Sensitivity analysis on the effects of image processing factors on determined mean bubble size 309 

and tracked bubble count. (IQR = interquartile range). 310 

In order to quantify the maximum potential error in mean diameter identification a sensitivity 311 

analysis was carried out by testing all possible combinations of the parameters at the extremes 312 
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within the feasible range. Full results of this sensitivity can be found in the Supporting Information. 313 

The total range in mean diameter obtained from this sensitivity analysis was 20.7 µm, which 314 

equates to an error of ± 9.7% from the mean diameter obtained at the set baseline parameter values 315 

(Imbinarise = 0.75, Eccentricity = 0.5, 100-MinIntensity = 25). The maximum error in obtaining 316 

mean diameter is expected to be less than 10%. However, there is an inherent error introduced due 317 

to overlapping bubbles being ignored by the analysis. For bubbles in the millimetre range this can 318 

lead to an underestimation of larger bubbles of 7.9% - 11.6% and 2% - 7% after stochastic 319 

correction, respectively  [65]. For MBs it is unlikely that such underestimation is significant due 320 

to their more uniform distribution. In order to validate the image processing technique more than 321 

500 bubbles within a set of seventeen images, from two different experimental runs, were manually 322 

sized utilising the Imdistline function on MATLAB. The manual analysis allowed measurement 323 

of visible bubbles that would be excluded by the automized method due to overlapping. Due to the 324 

rather small number of bubbles analysed, the shape of the size distribution plots in Figure 6(a) are 325 

not smooth normal distributions, however it is clear that the total range is the same for both 326 

methods and Figure 6(b) shows a clear match in size distributions. In both cases the mean diameter 327 

differs by less than 2% when comparing manual and MATLAB measurements. Thus, reinforcing 328 

the results of the sensitivity analysis which indicates a maximum error of 10%. 329 

 330 

 331 

Figure 6: Size distribution and mean diameter obtained using manual image analysis and MATLAB 332 

analysis of seventeen different images from two different experimental runs (a) & (b) using threshold 333 

factors of Imbinarise = 0.75, Eccentricity = 0.5, 100-MinIntensity = 25. 334 
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Effect of operating conditions 335 

Figure 7 shows the results testing at different pump operating conditions including inlet pressure, 336 

outlet pressure and water temperature. Baseline operating conditions of 0.3 MPa outlet pressure, -337 

0.03 MPa inlet pressure, liquid flow rate of 16.5 L min-1 and an ambient air intake of 1.5 L min-1 338 

were used. 339 
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 340 

Figure 7: Mean diameter and size distribution of bubbles under various (a-b) pump inlet 341 

pressure, (c-d) pump outlet pressure, and (e-f) temperature . Error bars on plots represent the 342 

standard deviation of the mean diameter obtained from experimental repeats. Baseline operating 343 

parameters (0.3 MPa outlet pressure, -0.03 MPa inlet pressure, Temperature 20 Cº) 344 
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Despite a slight increase in mean diameter as the magnitude of inlet pressure increased, there was 345 

no significant change in the mean MB diameter or size distribution when changing the inlet 346 

pressure, as the outlet/operating pressure within the pump was kept constant. At higher 347 

outlet/operating pressures, the size of the MBs produced by the pump decreased from 129 µm to 348 

86 µm, well above any potential error from image analysis. Increased outlet pressure clearly allows 349 

smaller MBs to be produced. In the case of pressurisation/depressurisation type MB generation, 350 

an increased pressure and hence larger operating costs leads to smaller bubbles due to more gas 351 

being dissolved in the fluid and a larger pressure drop occurring over the injection nozzles [10]. In 352 

the case of the regenerative turbine pump used in this study, it is likely that smaller bubbles are 353 

produced due to increased shear forces within the pump because of higher localised pressure drops 354 

at vortices within the pump. At higher temperature, there was a slight increase in the average size 355 

of MB produced by the pump from 88 µm to 102 µm. The shift is more obvious when looking at 356 

the size distribution plots (Figure 6F) as the temperature increases. The total size distribution range 357 

remains the same, with peaks shifting towards larger bubble sizes. This increase in bubble size 358 

could be attributed to the expansion of air as it enters the pump. The set air flowrate of 1.5 l min-1 359 

is drawn at room temperature and therefore once exposed to higher temperatures inside the pump; 360 

the volume of air will increase due to thermal expansion. It is possible that MBs are fully formed 361 

within the pump prior to the gas temperature equilibrating with the water temperature, resulting in 362 

MB expansion after formation. It is also possible that a reduction in gas/liquid viscosity and surface 363 

tension could fundamentally alter the shear forces that lead to MB formation. Over the range of 364 

10-60 ºC, viscosity reduces by over 60% and surface tension reduced by over 10% (Table S2). 365 

 366 

Effect of surfactant 367 

Surfactants reduce the surface tension of bubbles by the absorption of surfactant molecules onto 368 

the gas-liquid interface, with the hydrophobic surfactant moieties orientated towards the gas 369 

bubbles and the hydrophilic surfactant moieties orientated towards the bulk liquid.  This results in 370 

enhanced bubble stability due to a reduction in bubble coalescence. Ionic surfactants CTAB 371 

(cationic) and GAELE (anionic) and non-ionic surfactants Triton X-100 and Tween 20 were used 372 

in this experiment. Due to foaming that occurred at higher proportions of the CMC there was an 373 
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upper limit for surfactant concentration. The results of the non-ionic surfactants, Triton X-100 and 374 

Tween 20 are shown in Figure 8. 375 

 376 

Figure 8: Mean diameter and size distributions of MBs produced at different proportions of 377 

CMC (critical micelle concentration) of Tween 20 (Top) and Triton X-100 (bottom). Error bars 378 

on plots represent standard deviation of the mean diameter obtained from experimental repeats. 379 

The results for Tween 20 show a consistent trend in bubble diameter change, with the distribution 380 

shifting towards smaller diameters as surfactant concentration increases. Mean bubble diameter 381 

decreased as the proportion of critical micelle concentration (CMC) is increased to 0.05, with an 382 

overall reduction in mean size of  from 93 µm to 79 µm. Tween 20 has previously been shown to 383 

be effective at reducing bubble size by an order of magnitude when using porous glass membrane 384 

for bubble generation [79]. In the case of Triton X-100 there was no discernible trend in bubble 385 

size with mean size fluctuating as surfactant concentration was increased. With Triton X-100 386 
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foaming was a significant problem even at lower proportions of the CMC. Use of ionic surfactants 387 

CTAB and GAELE exhibited significant reductions in bubble size (Figure 9). In both cases, there 388 

was a much larger drop in mean diameter than for the two non-ionic surfactants, from 90 µm to 40 389 

µm. The difference between ionic and non-ionic surfactant suggests that surface charge is an 390 

important factor during bubble production within the pump, potentially reducing coalescence via 391 

increased repulsive forces between bubbles. This is supported by surface tension measurements 392 

that showed no significant variation at surfactant concentrations used, suggesting that surface 393 

charge effects alone are capable of reducing the mean bubble diameter. While no literature data 394 

for MB production in presence of GAELE was available, similar anionic surfactants have been 395 

tested, including sodium n-dodecylbenzene sulfonate [79] and sodium dodecal sulphate, with the 396 

latter showing bubble size reduction from 52 µm to 30 µm [80]. CTAB showed a larger reduction 397 

in bubble size at 0.01 CMC than GAELE. Previous literature has shown cationic surfactants has a 398 

greater effect at lower proportion CMC than anionic surfactants [81]. For cationic surfactants, a 399 

positive charge is applied to the surface and for anionic surfactants, a negative charge is applied to 400 

the surface [82]. Given that MBs generally have a negative surface charge in water, anionic 401 

surfactants will be repelled, while cationic surfactants would be attracted. This could cause cationic 402 

surfactants to adsorb at higher surface concentrations than anionic surfactants at low proportions 403 

of the CMC. 404 

 405 
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 406 

Figure 9: Mean diameter and size distributions of MBs produced at different proportions of 407 

CMC (critical micelle concentration) of CTAB (Top) and GAELE (bottom). Error bars on the 408 

plots represent standard deviation of the mean diameter obtained from experimental repeats. 409 

Rise Velocity 410 

The rise velocity experiments were performed over a temperature range of 10 - 60 ºC in DI water 411 

with three repeats for each temperature (Figure 9). Due to the high density of data points, outliers 412 

were eliminated by comparing points to the Stokes’ law and retaining > 98% of all data with the 413 

best agreement. This was done to highlight that most data is located densely close to Stokes’ 414 

prediction. Figures showing the deviation from Stokes’ law for all data are presented in the 415 

Supporting Information. The rise velocity was shown to fit reasonably well with the predicted 416 

Stokes’ velocity. This matches with the theory that the drag coefficient of small spherical bubbles 417 

overlaps with those of rigid spheres [69]. Although at higher temperatures, the rise velocity became 418 
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more scattered and spread out. This can be explained by the presence of significant instability, 419 

which was observed in the flow with turbulence being much more prevalent in the experimental 420 

runs at 60 Cº where dynamic viscosity was half that at 20 Cº. 421 

 422 
Figure 10: Rise velocity of MBs in DI water at different temperatures with Stokes’ velocity 423 

(solid line) and the Hadamard-Rybczynski velocity (dashed line). 424 

The Reb, Mo and Eo numbers were calculated for a bubble range of 1-150 µm, over 10 - 60ºC, 425 

rising in water at Stokes’ velocity as seen in Figure 11. Mo numbers were in the 10-11 range. The 426 
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Eo number reached a value of 0.0033 at the maximum considered bubble size of 150 µm and did 427 

not vary significantly with temperature, confirming that at such small bubble sizes the surface 428 

forces are dominant over the gravitational forces and that bubbles should maintain spherical. The 429 

maximum Eo value is also well below the Bond criterion cut-off of 4, suggesting that there is no 430 

internal circulation present within the MBs. The Reb number remained below 10 at all times but 431 

did exceed 1 for all temperature ranges. This suggests that certain bubbles at the higher end of the 432 

size distribution are expected to be excluded from the creeping flow regime and therefore exhibit 433 

rise velocities above the Stokes’ prediction. The rise velocity plots obtained here do not exhibit 434 

this effect. Rise velocity matched with the Stokes’ prediction. Experiments with larger bubbles 435 

could specify the transition of flow conditions.  436 

Another factor to consider is the effect of bubble-bubble interactions on the rise velocity. High 437 

bubble volume fractions can lead to reduced rise velocities, whereas at lower volume fractions the 438 

rise velocity can be increased due to wake interactions. Here, bubble volume fractions were in the 439 

order of 1 × 10−3, with a rise velocity assumed within 5% of the Stokes’ prediction [83], while 440 

we observed higher deviations in some cases (SI, Figure S1). Substituting a bubble diameter of 441 

100 µm, bubble volume fraction of 1 × 10−3 and vessel diameter of 0.01 m into the Richardson-442 

Zaki correlation [84] for particle sedimentation at Re < 0.2 gives a rise velocity within 0.5% for a 443 

single bubble at terminal velocity (SI, Text S2). Significant reductions in rise velocity (>5%) are 444 

predicted at volume fraction an order of magnitude higher than used here. Future work should 445 

focus on the effect of bubble density and volume fraction on the observed rise velocity. 446 

 447 

 448 
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Figure 11: Plot of Reynolds and Eötvös numbers for bubbles rising at the predicted Stokes’ 449 

velocity over a range of temperatures in RO water. 450 

The effect of surfactant on rise velocity was also tested (Figure 12). The rise velocity matched well 451 

with the Stokes’ prediction, including at higher temperatures. The match in rise velocity between 452 

experiments using DI water and experiments with added surfactants suggests that the surface of 453 

MBs is immobilised regardless of the presence of surfactants. This is in line with other studies 454 

showing that for bubbles under 300 µm, the surface of the bubble can act like a solid even in clean 455 

liquids as a result of tangential shear stress caused by trace impurities [57], [68]. Previous research 456 

has shown that simply exposing the water used in the experimental system to unpurified 457 

atmospheric air, results in a decrease of the rise velocity from the Hadamard-Rybczynski 458 

prediction to a match of  the Stokes’ prediction [60]. As the MB generation setup in this research 459 

uses atmospheric air to generate MBs and is open to the atmosphere, it is therefore expected that 460 

bubbles behave according to Stokes’ law. 461 

 462 

 463 

Figure 12: Rise velocity of bubbles in 0.01 CMC (critical micelle concentration) CTAB solution 464 

at 10 and 60 ºC. 465 

Assumptions and Wider Applicability of Image Analysis Method 466 



27 

 

The image analysis method described has been designed and optimised for MB solutions such as 467 

found in DAF. Overlapping bubbles are ignored, while their effect on the obtained size distribution 468 

is assumed negligible. Similarly, non-circular shapes including overlapping bubbles are excluded. 469 

Hardware, solution conditions and the image analysis can be altered to meet different analytical 470 

challenges. For example, the analysis algorithm can be readily changed to account for different 471 

shapes including non-spheres, agglomerates and coalescing bubbles. With the employed 472 

equipment, imaging in the range of 20-150 µm was easily achieved. For significantly smaller sizes 473 

(<< 1 µm) higher resolution and enhanced zoom capabilities are required. For bubble densities 474 

>> 7 mm-2 higher framerate collection may be required to track single bubbles. For analysis in 475 

opaque solutions the addition of contrasting agents, optical filters and further electronic image 476 

manipulation may be required to differentiate between liquid and bubbles. Ongoing work 477 

addresses the above areas to extend the capabilities of our system. 478 

5. Conclusions 479 

An automated image-based method to describe microbubbles in size, size distributions and rise 480 

velocities was developed. The method was tested with 50 – 150 µm air microbubbles at densities 481 

of up to Stokes’ bubbles / mm2 produced by a regenerative turbine pump with a water flowrate of 482 

16 l min-1 and an air flowrate of 1.5 l min-1. Series of bubble suspension images were collected 483 

from a side-stream viewing slit and processed through image analysis code that converted, filtered 484 

and statistically evaluated the initial images to yield both position and diameter of a subset of 485 

focussed bubbles within each image. The error of mean bubble size determined by the automated 486 

image analysis and manual evaluation was smaller than 2%. To show the ability of the method to 487 

detect small shifts in bubble size distribution, experiments were carried out over a range of 488 

operating conditions including pump pressure variation, water temperature variation and surfactant 489 

addition. Decreases in pump outlet pressure from 0.4 MPa to 0.2 MPa led to increasing mean 490 

bubble sizes from 86 µm to 129 µm. Temperature increase from 10 ºC to 60 ºC at an operating 491 

pressure of 0.3 MPa resulted in mean diameters increasing from 88 µm to 102 µm. Ionic surfactants 492 

reduced bubble size by 56%, in contrast to non-ionic surfactants, which had no significant effect 493 

on bubble size. Rise velocity analysis showed bubbles obeying Stokes’ law for solid spheres 494 

moving through viscous fluid under creeping flow conditions irrespective of surfactant addition. 495 

Fast data processing allowed continuous measurements. Side stream sampling image analysis 496 
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provides scope for in-situ microbubble measurements and may be also applicable for 497 

characterising suspended solids.  498 

Supporting Information  499 

One text containing MATLAB codes, one table on results of sensitivity analysis, one figure on 500 

deviation of bubble rise velocity to Stokes’ prediction, one figure on effect of calculating mean 501 

diameter with interquartile range (IQR) and Richardson-Zaki calculations.  502 

 Nomenclature 503 

𝑐 Numerical constant 
𝐶𝐷 Drag coefficient 
𝐶𝐷𝑆𝑇 Stokes’ drag coefficient 

𝐷𝑏 Bubble diameter 

𝐸𝑜 Eötvös number 

𝑔 Gravity 

Mo Morton number 

𝑅𝑒𝑏 Bubble Reynolds number 

𝑢𝑏 Bubble rise velocity 

𝑢𝑡(𝑆𝑇) Stokes’ bubble terminal rise velocity 

𝑢𝑡(𝐻−𝑅) Hadamard-Rybczynski bubble terminal rise velocity 

𝑤 log10 𝑅𝑒𝑏 

𝛾 Surface tension 

𝜇𝑙 Liquid viscosity 

𝜇𝑔 Gas viscosity 

𝜌𝑙 Liquid density 

𝜌𝑔 Gas density 

∆𝜌 𝜌𝑙 − 𝜌𝑔 
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