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Indirect photoelectrochemical processes are possible when employing a palladium film 29 

to separate photochemical and electrochemical reactions. Here, an exploratory indirect 30 

photoelectrochemical system is developed based on ZnO or Pt@ZnO nanoparticle 31 

photocatalysts ambiently deposited onto platinum, glassy carbon, or palladium membrane 32 

electrodes and exposed to blue (385 nm) LED light in the presence of glucose hole quencher 33 

(in aqueous NaCl). It is demonstrated that under these conditions photo-excitation followed by 34 

charge transport of conduction band electrons via inter-grain conduction across ZnO particles 35 

triggers the photo-current responses. The conduction band electrons then trigger formation of 36 

interstitial hydrogen in a palladium membrane. Transport of the hydrogen across the palladium 37 

membrane into the electrochemical compartment occurs within 1-2 minutes of switching on 38 

the light. A proof-of-principle fuel cell with oxygen gas diffusion electrode (cathode) and 39 

indirect photo-anode is shown to operate with up to 28 W cm-2 power output during 40 

illumination. Important power-limiting parameters and suggestions for future improvements 41 

are discussed.  42 

 43 

Graphical abstract 44 

 45 

Keywords: ZnO nanoparticles, Pt@ZnO, palladium membrane, photocatalytic hydrogen 46 

generation, glucose 47 

 48 
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1. Introduction 49 

Hydrogen is a gaseous energy-vector widely used in various industrial fields [1,2]. In 50 

the petroleum industry hydrogen is used in processes such as hydrocracking, hydro-51 

desulfurization and hydro-dealkylation [3,4]. Nowadays, hydrogen produced from renewable 52 

resources has been identified as a sustainable alternative energy carrier to relieve 53 

environmental problems and to lower the dependence on conventional fossil fuels. In 54 

particular, hydrogen used in proton exchange membrane fuel cells is attractive due the 55 

efficiency of the energy conversion without the release of greenhouse gases [4]. In contrast to 56 

processes based on bulk-scale hydrogen, it is possible to also employ hydrogen as energy-57 

vector on microscopic scale coupled for example to photocatalysis. 58 

 59 

In this study, we used a commercial nano-ZnO photocatalyst (MZ-300, Tayca, Japan) 60 

with nominally 35 nm diameter and 30 m2g-1 surface area  [5]. ZnO exhibits unique physical 61 

and (photo-)chemical properties and a band gap in the near ultraviolet [6,7]. However, it is 62 

known that the photo-current generation efficiency of ZnO can be low due to a high 63 

recombination rate of the photo-generated e-/h+ pairs [8,9]. To enhance the photocatalytic 64 

performance of the ZnO either hole quenchers can be added and/or photo-deposition of 65 

platinum nanoparticles has been suggested to help improve the charge separation and the 66 

hydrogen evolution reaction [10,11].  67 

 68 

Recently, the concept of an indirectly driven photoelectrochemical process has been 69 

proposed [12] based on the idea of separating the photoelectrochemical process and the 70 

electrolytic process with a thin palladium membrane. The key benefit of the indirect versus the 71 

direct photoelectrochemical process is in the possibility to employ different solution 72 

compositions for photocatalysis (e.g. with biomass) and for electrochemical energy conversion 73 

(e.g. with pure mineral acids). Hydrogen provides the “micro-energy vector” connecting 74 

photocatalysis through hydrogen-permeable palladium with the electrochemical reaction. The 75 

concept is based on a photo-redox process producing hydrogen at the surface of nanoparticles 76 

(e.g. for Pt@g-C3N4 [12] or here for Pt@ZnO [13]) deposited onto a palladium membrane. 77 

Under illumination and in the presence of glucose hole quencher, hydrogen is produced locally 78 

as energy carrier and transported towards a palladium membrane where hydrogen is readily 79 

absorbed. Once bound into palladium, the hydrogen can be transferred to the opposite side of 80 

the film and released in an electrochemical process [4,14,15]. This happens in contact with 81 
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electrolyte solution, where discharge of hydrogen produces protons (in aqueous acid). This 82 

anodic process can be coupled to a cathodic gas diffusion electrode where oxygen is reduced 83 

(see Fig. 1). Overall, the photo-redox process in the presence of a quencher such as glucose 84 

(here chosen to represent biomass) can be shown to transform power via hydrogen transport 85 

through palladium [16].  86 

 87 

 88 

Figure 1 – Schematic illustration of an indirectly driven photoelectrochemical cell based on 89 

(A) hydrogen generation and transfer to a palladium membrane and (B) electron generation 90 

and transfer to a palladium membrane. 91 

 92 

A peculiar mechanistic issue arises for this type of reaction sequence when either the 93 

production of hydrogen (see Figure 1A) or the production of electrons (see Figure 1B) can be 94 

responsible for the uptake of hydrogen into the palladium membrane. Although the mechanism 95 

based on hydrogen may appear more plausible, it is shown here that in fact the mechanism 96 

based on electronic transport appears to dominate for ZnO. Ambiently deposited ZnO 97 

nanoparticles are investigated (and compared to Pt@ZnO nanoparticles) and transport via 98 

electron hopping is shown to be effective without sintering of the ZnO nanoparticles. Factors 99 

such as surface conductivity, surface poisoning, glucose concentration, substrate effects, and 100 

electrolyte effects are considered. In addition to the previous reports on indirect 101 

photoelectrochemical processes [12], this constitutes a new case at the level of proof-of-102 

principle. 103 

 104 
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2. Experimental 105 

2.1. Chemical Reagents. All reagents were used without further purification. Deionised water 106 

(CE Instruments Ltd ultra-pure water system 18.2 MΩ cm at 22 ± 2 °C) was used for the 107 

preparation of all solutions. 108 

 109 

2.2. Procedure for Pt@ZnO. The Pt@ZnO powder was produced from of mixture containing 110 

20 mg ZnO (Tayca Corporation MZ-300 lot N. 300194) and 0.3 mg K2PtCl6 (Sigma-Aldrich) 111 

dispersed in 20 mL H2O and 2 mL methanol (VWR Chemicals). This mixture was inserted in 112 

a glass container with magnetic stirring and illuminated for 20 h using a power LED ( = 385, 113 

ca. 100 mWcm-2, Thorlabs, UK). The coloration of ZnO changes from white to grey. After of 114 

the synthesis of the Pt@ZnO, it was separated, washed with ethanol, centrifuged (Eppendorf 115 

5804-R) and dried at room temperature. Heat treatments were performed at 200 C and at 116 

400C in an open tube furnace (Elite Thermal Systems Ltd TSH 12/65/550) for 2h.  117 

 118 

2.3. Instrumentation. The characteristic powder patterns in the 2 range from of 20 to 95 119 

were obtained by X-ray diffraction (PXRD) with a STADI P system with Cu Kα1 radiation 120 

(1.5406 Å). Transmission electron microscopy (TEM) images were obtained with a JEOL 121 

JEM-2100Plus system equipped with an Oxford Instruments X-MaxN TSR Windowless 122 

Energy dispersive X-ray analyser (EDX). 123 

 124 

Electrochemical measurements were performed with an Autolab PGSTAT using GPES 125 

software (Metrohm, UK). Cyclic voltammetry measurements were carried out over a potential 126 

range from +0.6 V to −0.8 V vs. SCE and with a scan rate of 50 mV s-1 without and with 127 

application of pulsed light (1 s off and 2 s on) using a power LED ( = 385, approx. 100 mWcm-128 

2, Thorlabs, UK). For initial measurements at platinum or glassy carbon disk electrodes (3 mm 129 

diameter, BASi), a three-electrode cell was employed with a saturated calomel (SCE, 130 

Radiometer, Copenhagen) reference electrode and a platinum wire counter electrode (Advent 131 

Materials, UK) as illustrated in the Fig. 2A. The working electrode was prepared by deposition 132 

of a volume of 2-16 L of a mixture of 6 mg of ZnO or Pt@ZnO in 1 mL of 1:1 v/v ethanol 133 

(VWR Chemicals) and H2O.  134 

 135 



6 
 

 136 
Figure 2 – (A) Experimental system for three-electrode measurements (platinum disk working 137 
electrode, SCE reference, Pt wire counter electrode) with a single compartment for the photo-138 

electrochemical measurements. (B) Schematic drawing of the 3D-printed cell for two-electrode 139 
measurements with a fuel or catalysis side for the photochemical process, a palladium 140 
membrane/working electrode to allow transport of hydrogen, an electrochemical compartment 141 

with electrolyte, and an oxygen breathing gas diffusion electrode. 142 
 143 

 144 

Figure 3 – (A) Laminated film electrodes based on 0.025 mm thickness palladium and 0.11 145 
mm thickness porous carbon (Toray 030). (B) Photographic image of the illuminated 3D-146 
printed two-compartment indirect photo-electrochemical cell. 147 
 148 

Zero current chronopotentiometry and chronoamperometry experiments were 149 

performed in an indirect photo-fuel cell according to the illustration in Fig. 2B. The electrodes 150 

were prepared using copper tape to provide electric contact and thermal lamination film 151 

(polypropylene film) to leave exposed only an area of 2 mm diameter on both sides and for 152 
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both types of electrodes. Porous carbon (Toray Paper 030, see Fig. 3A) was used as cathode 153 

and modified with 6 L of a mixture of 5 mg Pt/C catalyst (HISPEC 4000, Johnson Matthey, 154 

40 wt% Pt) dispersed in 1 mL isopropanol and 2 L of Nafion 117 solution (5 wt%, Aldrich) 155 

to improve the proton mobility when the oxygen is reduced and to keep the catalyst on the 156 

carbon membrane. As anode was used palladium membrane (Goodfellow, 0.025 mm thickness, 157 

optically tested) modified with 4 L of the mixture of ZnO or Pt@ZnO dispersed in 158 

ethanol/H2O (usually 6 mg solid per mL of ethanol/H2O 1:1). A solution of 10 mmol L-1 H2SO4 159 

was inserted in the electrochemical compartment and a solution of 500 mmol L-1 glucose in 10 160 

mmol L-1 NaCl was filled into the catalytic compartment. Measurements were conducted at 161 

open circuit potential (OCP), with light irradiation ( = 385 nm) for 950s, either in ambient air 162 

or with argon de-aeration. Subsequently, cyclic voltammetry measurements were carried out 163 

starting at OCP with a scan rate of 1 mV s-1 to give information about the fuel cell power 164 

generation. 165 

 166 

3. Results and Discussion 167 

3.1. Production and Characterisation of ZnO and Pt@ZnO Nanophotocatalysts 168 

 ZnO and Pt@ZnO materials were employed with and without initial heat treatment to 169 

make photo-electrochemical experiments more reproducible. A mild 200 oC heat treatment 170 

seemed to give the most encouraging results (vide infra; also see data in Fig. S1). The 171 

morphology of the ZnO or Pt@ZnO powders with 2 h heat treatment at 200 C in air was 172 

characterised by TEM (additional data for materials without heat treatment with 200 oC and 173 

400 oC treatment are essentially identical as shown in Fig. S2). In Fig. 4A and 4B a mixed 174 

morphology can be seen with spherical, hexagonal and elongated hexagonal shapes, which 175 

suggest some aggregation and particle diameters of typically 29 nm (close to the nominal 176 

particle size, 35 nm, for this commercial nano-material). With platinum nanoparticles “photo-177 

attached” onto the ZnO nanoparticles (by photoconversion of Pt4+ to Pt0 when stirring a 178 

suspension of ZnO and K2PtCl6, see experimental) a grey powder (in contrast to white ZnO) is 179 

obtained. Formation of platinum is confirmed in Fig. 4C as dark dots attached to the ZnO with 180 

an average particle size of 3.2 nm (Fig. 4D). XRD measurements were performed (see Fig. 4E) 181 

in order to determine the crystalline phase of these materials. For both materials ZnO and 182 

Pt@ZnO the same diffraction peaks for the hexagonal wurtzite phase were confirmed in good 183 

agreement with 36-1451 standard data from the JCPDS data base with strong and sharp 184 

diffraction peaks at 2 = 31.7, 34.4, 36.2, 47.5, 56.8, 62.9, 66.4, 68.0, 69.1, 72.5, 185 
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77.1, 81.3, 89.6, 92.8 corresponding to crystalline planes (100), (002), (101), (102), (110), 186 

(103), (200), (112), (201), (004), (202), (104), (203) and (210), respectively [17]. It is 187 

noteworthy that no diffraction peaks for Pt are detected in the Pt@ZnO material, which is 188 

mainly due to the low volume of Pt and the small crystal size for Pt deposited onto the ZnO 189 

nanoparticles. Similar behaviour also was noted by Li et al. [10]. 190 

  191 

 192 

Figure 4 – Transmission electron micrograph (TEM) images for ZnO (A, B) and for Pt@ZnO 193 

(C, D); X-ray diffractogram of ZnO and Pt@ZnO (E). Both samples were previously heat 194 

treated at 200 C. 195 
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 196 

The elemental mappings and composition of the materials were measured by energy 197 

dispersive X-ray analysis (EDX) and are shown in the Fig. 5. The spectra in Fig.5A and 5E 198 

show in % atomic elements O and Zn (with C, Cr, Cu due to the substrate). Pt is observed in 199 

Fig. 5E. Fig. 5B – 5D and Fig. 5F – 5H show elemental mappings for both materials. 200 

Nanoparticles of Pt are homogenously distributed over the bigger ZnO nanoparticles. 201 

   202 

 203 

Figure 5 – Energy dispersive X-ray spectroscopy (EDX) data and mapping for the ZnO (A-D) 204 

and for Pt@ZnO (E-I). 205 
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 206 

3.2. Photoelectrochemical Characterisation of Pt@ZnO and ZnO Nanophotocatalysts 207 

 In initial photoelectrochemical experiments, the selected electrolyte was 10 mmol L-1 208 

phosphate buffer solution at pH 7 containing 500 mmol L-1 glucose as the hole quencher. A 209 

volume of 8 µL of Pt@ZnO suspension (48 µg Pt@ZnO) was deposited onto either glassy 210 

carbon or platinum disk electrodes. Data in Fig. S3 show that only very poor photo-211 

electrochemical responses are observed for both types of electrodes. For the platinum electrode 212 

the photo-electrochemical responses were more significant (Fig. S3B), but also rapidly 213 

decaying after three voltammetric cycles. This is tentatively assigned to phosphate-induced 214 

inactivation/modification of the Pt@ZnO surface. According to Hermann et al. [18], zinc oxide 215 

nanoparticles are highly sensitive towards phosphate anions even at pH 7.  216 

 217 

To avoid this problem, the phosphate buffer solution was replaced by aqueous 10 mmol 218 

L-1 NaCl. Exploratory experiments were carried out with Pt@ZnO nanoparticles in 10 mmol 219 

L-1 NaCl to assess the effects of the amount of deposition and the concentration of glucose hole 220 

quencher. Fig. 6A shows cyclic voltammetry data obtained under pulsed light conditions ( = 221 

385 nm; 1 s off 2 s on; approx. 100 mWcm-2) for electrodes immersed in 10 mmol L-1 NaCl 222 

with varying concentrations of 0 – 1000 mmol L-1 glucose. The photocatalyst, 48 µg Pt@ZnO, 223 

is deposited onto a 3 mm diameter platinum disc electrode and an onset of photocurrents is 224 

observed at -0.6 V vs. SCE (see Fig. 6A). With a more positive applied voltage, the 225 

photocurrent responses increase reaching approx. 190 A at 0.6 V vs. SCE (corresponding to 226 

2.7 mAcm-2). These are substantial photocurrent responses and the effect of glucose 227 

concentration (Fig. 6B) suggests that glucose acts as a quencher of holes. An optimum 228 

photocurrent response is observed with 500 mmol L-1 glucose (see Fig. 6B). When varying the 229 

amount of photocatalyst on the electrode surface, 8 L (or 48 g) Pt@ZnO on the 3 mm 230 

diameter electrode surface appears to provide optimum conditions for maximum photocurrent 231 

generation (Fig. 6C).  232 

 233 

 234 
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 235 

Figure 6 – 3D graphic of current vs. potential data from cyclic voltammetry experiments (scan 236 

rate 50 mVs-1; 3 mm diameter Pt electrode) for different concentrations of glucose in 10 mmol 237 

L-1 NaCl with pulse of light of 1s off and 2 s on using a power LED  = 385 nm (A). Plot of Ip 238 

vs. concentration of glucose (B). 3D graphic with cyclic voltammetry data for the optimization 239 

of the mass of Pt@ZnO electrode (1 µL equals 6 µg Pt@ZnO) (C). 240 

 241 

Photocurrents are generated starting at an onset potential of -0.6 V vs. SCE, and a 242 

proposed mechanism can be expressed as a sequence of excitation and charge separation 243 

(equation 1), hole quenching by glucose forming gluconic acid (equation 2), hydrogen 244 

formation (equation 3) and discharge (equation 4). Alternatively, the electrons could diffuse 245 

through the ZnO towards the electrode (equation 5). Similar reaction schemes can be written 246 

either for Pt@ZnO or for ZnO. 247 

 248 

Pt@ZnO   +   hv               Pt-@ZnO+                                                                  (1) 249 

2 Pt-@ZnO+  +  H2O  +  glucose    2 Pt-@ZnO  +  gluconic acid + 2H+            (2) 250 

2 Pt-@ZnO + 2 H+             2 Pt@ZnO +  H2(aq)                                                (3) 251 

H2(aq)                        2 H+(aq)   +  2 e-(Pt)                                                         (4) 252 
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Pt-@ZnO           Pt@ZnO  +   e-(Pt)                                                                   (5) 253 

 254 

In order to better understand the underlying processes, both Pt@ZnO and ZnO are 255 

investigated and compared without heat treatment, with 200 and 400 C heat treatment, and in 256 

the presence of argon/absence of O2. Data in Fig. 7B and 7F demonstrate that an initial gentle 257 

heat treatment of the photocatalyst powder can be used to stabilise the photo-current responses. 258 

A treatment for 2 h at 200 C leads to well-defined photocurrents, whereas treatment at 400 C 259 

(Fig. 7C, G) clearly causes detrimental effects on the photo-redox process. Given that there is 260 

no significant change in the electron optical data for photocatalyst before and after 200 C heat 261 

treatment, it seems likely that these effects are linked to surface conditioning (dehydration) or 262 

inter-grain contacts. This in turn could affect either chemical/catalytic reactivity of the surface 263 

or electron transport properties across grain boundaries in the ambiently deposited 264 

photocatalysts. Therefore, 200 oC heat treatment can “condition” the ZnO surface to maintain 265 

activity. 266 

 267 

 268 

Figure 7 – Cyclic voltammetry data (scan rate 50 mVs-1; 3 mm diameter Pt electrode) showing 269 

the influence of the heat treatment in the current of the Pt@ZnO/Pt electrode in 10 mmol L-1 270 

NaCl + 500 mmol L-1 glucose without and with pulsed light (1s off and 2 s on;  = 385 nm) in 271 

air (A-C) and under argon (D). Influence of the heat treatment in the current of the ZnO/Pt 272 

electrode in 10 mmol L-1 NaCl + 500 mmol L-1 glucose without and with pulsed light in air (E-273 

G) and under argon (H). 274 
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 275 

Fig. 7D and 7H show data for experiments comparing argon de-aerated electrolyte with 276 

ambient oxygen containing electrolyte (7B, 7F). Only a minor improvement is observed for 277 

both Pt@ZnO and for ZnO photocatalyst materials. This can be attributed to O2 absence 278 

stopping recombination losses with hydrogen or electrons. When investigating the reactivity of 279 

ZnO versus that of Pt@ZnO the similarity of the photocurrent data is striking. Does the 280 

platinum deposit really affect the mechanism under these conditions? Therefore, it is of interest 281 

to explore substrate electrodes other than platinum (platinum was chosen initially to capture 282 

hydrogen). Fig. 8 shows voltammetry data obtained with pulsed light for Pt@ZnO (A, B) and 283 

for ZnO (C, D) deposited on a 3 mm diameter glassy carbon disc electrode and immersed into 284 

10 mmol L-1 NaCl with 500 mmol L-1 glucose. Both the Pt@ZnO and the ZnO photocatalyst 285 

give similar photo-current responses. This observation strongly points to a mechanism that 286 

doesn’t require platinum as catalyst and therefore, the mechanism is based predominantly on 287 

electron transport (see equation 4) as opposed to the hydrogen diffusional transport (see 288 

equation 3). 289 

 290 

 291 

Figure 8 – Current vs. potential data from cyclic voltammetry experiments (scan rate 50 mVs-292 
1; 3 mm diameter glassy carbon) for a Pt@ZnO/GC electrode immersed in 10 mmol L-1 NaCl 293 

+ 500 mmol L-1 glucose without and with pulsed light (1s off and 2 s on;  = 385 nm) in air 294 

(A) and under argon (B).  As above, but for a ZnO/GC electrode immersed in 10 mmol L-1 295 

NaCl + 500 mmol L-1 glucose in air (C) and under argon (D).  296 
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reduction. In the presence of argon, the photo-current responses remain similar (Fig. 9C) but 303 

the dark currents are simplified to only the response for the nano-ZnO semiconductor. At a 304 

potential of approx. -0.6 V vs. SCE a cathodic peak is followed by a chemically reversible 305 

reduction/re-oxidation feature consistent with the ZnO surface state reduction and reversible 306 

filling of the ZnO conduction band (in the presence of glucose). This behaviour is retained 307 

under an atmosphere of hydrogen (Fig. 9E, 9F), which clearly shows that hydrogen is not an 308 

intermediate in this process (that is, the process in equation 3 can be ruled out under these 309 

conditions). Hydrogen oxidation (under hydrogen atmosphere) was observed only for the 310 

platinum disc electrodes or for Pt@ZnO coated glassy carbon electrodes (see Fig. S4). The 311 

approximate (poorly defined) equilibrium potential (measured at a platinum disk) for hydrogen 312 

in 10 mmol L-1 NaCl with 500 mmol L-1 glucose was at approx. -0.5 V vs. SCE (see Fig. S4). 313 

Perhaps interestingly, somewhat lower photocurrents are observed also in the absence of 314 

glucose and under hydrogen (Fig. 9G, H) and similar currents are seen also in ambient oxygen 315 

in the absence of glucose (not shown). It can be concluded that some oxygen (either ambient 316 

in solution or generated at the semiconductor surface) can be tolerated in this process. The 317 

somewhat lower plateauing photocurrent and shift in onset potential can be attributed to the 318 

absence of hole quencher. 319 

 320 

 321 

Figure 9 – Cyclic voltammetry data (scan rate 50 mVs-1; 3 mm diameter glassy carbon) 322 
showing the influence of environment on the photocurrent for ZnO/GC electrode in 10 mmol 323 

L-1 NaCl + 500 mmol L-1 glucose without and with pulsed light (1s off and 2 s;  = 385 nm) in 324 
air (A, B), under argon (C, D), under hydrogen (E, F), and under hydrogen without glucose (G, 325 
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H).  Also shown are cyclic voltammograms without pulse of light (B, D, F and H) 1st cycle (−), 326 

5th cycle (−) and 10th cycle (−).  327 
 328 

 329 

Photocurrent responses from both Pt@ZnO and from ZnO (after 200 C heat treatment) 330 

are reasonably robust but do decay with prolonged operation (or also for lower glucose 331 

concentrations). Fig. 10 shows data for up to 5 repeat voltammograms for Pt@ZnO and ZnO 332 

and for both glassy carbon and platinum disk electrode substrates. In all cases a gradual change 333 

occurs, and plateauing is observed. Glassy carbon electrodes seem to perform better when 334 

compared to platinum electrodes. Given the surface sensitivity of the overall photo-redox 335 

process, it seems likely that the degradation of the photocurrents is linked to species absorbed 336 

to the ZnO surface. Glucose adsorption itself may play a role and the adsorption of reaction 337 

products such as gluconic acid. 338 

 339 

 340 

Figure 10 – Cyclic voltammetry (scan rate 50 mVs-1; 3 mm diameter Pt or GC electrode; using 341 

pulsed light 1s off and 2 s on;  = 385 nm) for 48 µg of Pt@ZnO or ZnO deposits (both with 342 

Pt@ZnO

ZnO

(A) (B)

(C) (D)

Pt

Pt

GC

GC



16 
 

200 C heat treatment) on the electrode immersed in 10 mmol L-1 NaCl + 500 mmol L-1 343 

glucose. (A) Pt@ZnO/Pt, (B) Pt@ZnO/GC, (C) ZnO/Pt, (D) ZnO/GC.  344 

 345 

These data show that the photo-redox process based on photoexcitation of ZnO in the 346 

presence of glucose is very similar on both platinum or glassy carbon. Most likely, ZnO after 347 

excitation undergoes hole quenching, and then conduction of electrons in ZnO towards the 348 

underlying electrode occurs. However, the conduction band electrons from ZnO can still be 349 

harvested in the form of hydrogen (vide infra). Next, an indirect photoelectrochemical system 350 

is investigated based on a palladium membrane electrode. This type of electrode allows the 351 

photochemical generation of hydrogen (or conduction band electrons) to be separated from the 352 

electrochemical electricity generation. Figure 11A shows a schematic drawing of the indirect 353 

photoelectrochemical system. 354 

 355 

3.3. Indirect Photoelectrochemical Energy Conversion with ZnO and Pt@ZnO 356 

Nanophotocatalysts 357 

Palladium films are known to absorb hydrogen and to allow rapid diffusion of hydrogen across 358 

to the opposite side of a thin membrane [15]. Here, a commercial 0.025 mm thick palladium 359 

membrane is employed. It has been shown that the diffusion coefficient for hydrogen in 360 

palladium or in palladium alloys is approximately D = 10-11 m2 s-1 [19] at room temperature. 361 

Therefore, the transport time for hydrogen diffusing through a membrane of thickness L = 362 

0.025 mm can be estimated as typically  ≈ L2/D ≈ 62 s [20].  363 

 364 

Data in Figure 11B show chronopotentiometry transients for a palladium membrane 365 

electrode (exposed area 2 mm diameter) exposed to 500 mmol L-1 glucose in water. Both ZnO 366 

and Pt@ZnO provide photo-potential transients within a “switch-on” period of typically 1-2 367 

minutes after switching on the light source. In the presence of ambient oxygen or in the 368 

presence of argon Pt@ZnO seems to perform slightly better giving a more negative steady state 369 

equilibrium potential after a period of 1000 s. The anticipated equilibrium potential for a H2/O2 370 

electrolytic cell at 1 bar pressure would be 1.23 V [21], but here the oxygen pressure is lower 371 

and, more importantly, the hydrogen pressure locally at the palladium surface (facing into the 372 

electrochemical cell) is substantially lower due to the binding of hydrogen into the palladium 373 

[22]. The presence of oxygen on both sides of the palladium membrane also affects the apparent 374 
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equilibrium pressure. De-aerating with argon on the electrolyte side where the electrochemical 375 

process occurs (see Figure 12B) improves the photo-potential to approx. - 0.8 V, but losses due 376 

to oxygen and the hydrogen concentration gradient through the palladium membrane are still 377 

limiting factors.  378 

 379 

 380 

Figure 11 – (A) Schematic drawing of the indirect photoelectrochemical cell with 10 mmol L-381 
1 NaCl and 500 mmol L-1 glucose in the photocatalysis compartment and 10 mmol L-1 H2SO4 382 

in the electrochemical compartment. (B) Zero current chronopotentiometry data for 24 g ZnO 383 

or Pt@ZnO deposited onto a palladium membrane (2 mm diameter) in air and under argon (on 384 

the side of the electrolyte) using a 3D-printed fuel cell (see experimental). Light was switched 385 

on at 50 s. 386 

 387 

The generation of hydrogen at the palladium membrane is clearly detected. The fact that 388 

hydrogen is generated must be linked to the production of electrons in the ZnO deposit (Fig. 389 

11A, vide supra). These electrons lower the work-function of the palladium and then lead to 390 

proton uptake to give interstitial hydrogen in the palladium lattice. The overall process can lead 391 

to an indirect photocurrent as is shown in Fig. 12. Fig. 12A shows cyclic voltammetry data 392 

(under constant illumination) and in ambient air conditions. From the apparent equilibrium 393 

potential (OCP) at -0.25 V, the potential is slowly scanned positive (into the power generation 394 

region). The same data when plotted as power versus potential (Fig.12C) shows that the 395 

Pt@ZnO photocatalyst performs slightly better with maximum power of 20 nW (or 0.63 W 396 

cm-2). Under argon atmosphere in Fig. 12D (with argon in the electrochemical compartment; 397 

this is more effective compared to purging with argon in the photocatalysis compartment) the 398 
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cyclic voltammetry response starts at approx. -0.8 V and reaches higher currents, but then 399 

shows depletion effects and a collapse in current at lower voltages. The corresponding power 400 

output peaks at 0.9 W (or 28 W cm-2). Here, the Pt@ZnO photocatalyst clearly outperforms 401 

the ZnO photocatalyst. The reasons for this and the effects introduced by the palladium 402 

interface will require further study. The rather limited generation of power is likely to be linked 403 

to the performance of the photocatalyst and additional impedance introduced by the palladium 404 

membrane. In the future, improvements will be possible. 405 

 406 

407 
Figure 12 – (A, B) Cyclic voltammetry (scan rate 1 mVs-1) starting at OCP. A deposit of 24 408 

g ZnO or Pt@ZnO on a palladium membrane was employed in air (A) and under argon (B). 409 

(C, D) Power plots (power = current × voltage) due to indirect H2 generation measured in the 410 

3D-printed photo-fuel cell in air (C) and with argon de-aeration in the electrochemical 411 
compartment (D). 412 

 413 

4. Conclusion 414 

It has been shown that commercial nano-ZnO (with approx. 29 nm diameter) ambiently 415 

deposited onto platinum or glassy carbon disc electrodes can be used for photo-current 416 

generation. Glucose added as hole quencher (here employed to mimic biomass) substantially 417 
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increases the anodic photocurrents, but operation in the absence of glucose (in aqueous 10 418 

mmol L-1 NaCl) is also possible. Perhaps surprisingly, both ZnO and Pt@ZnO perform equally 419 

well, which is indicative for an electron transport mechanism in ZnO, rather than a hydrogen 420 

intermediated mechanism in the surrounding solution. This was further confirmed with 421 

experiments performed under hydrogen atmosphere, which allowed formation of hydrogen at 422 

the ZnO surface to be ruled out. However, hydrogen was formed when conduction band 423 

electrons in ZnO reached the surface of a palladium membrane. This was shown by monitoring 424 

photo-potentials and photocurrents in an indirect photo-electrochemical cell. Power-generation 425 

was demonstrated. However, more work will be necessary to improve the performance and to 426 

better understand the power-limiting photo-current inhibition effects in the mechanism. The 427 

ZnO surface seems to play an important role with both glucose adsorption and possibly 428 

gluconic acid absorption affecting the processes. More work will be needed to explore the 429 

effects of simple molecules such as glucose on the fate of the conduction band electrons in 430 

ZnO.  431 

 432 

Indirect photoelectrochemical system are attractive due to the separation of the photocatalysis 433 

and the electrolytic power generation. The photocatalytic process when separated does not 434 

require electrolyte and could be performed in complex waste media. However, a much better 435 

design will be necessary for higher power output and crucially, the palladium membrane needs 436 

to be replaced with hybrid materials or composites to perform better and at lower costs. To 437 

develop better indirect photo-electrochemical fuel cells in the future, it will be necessary to 438 

also develop (A) more stable photocatalysts, (B) improved light absorbers by better interfacial 439 

design, and (C) new photocatalysts that allow hydrogen intermediate production and capture 440 

under illumination and in the presence of hole quenchers [12]. Hydrogen as a reaction 441 

intermediate is more likely to be transferred effectively (from further distance) to the palladium 442 

membrane when compared to conduction band electrons in the nanoparticulate ZnO 443 

semiconductor.  444 

 445 
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