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Abstract

New methods are proposed for adjusting probabilistic forecasts to ensure coherence with the ag-

gregation constraints inherent in temporal hierarchies. The different approaches nested within this

framework include methods that exploit information at all levels of the hierarchy as well as a novel

method based on cross-validation. The methods are evaluated using real data from two wind farms

in Crete and electric load in Boston. For these applications, optimal decisions related to grid opera-

tions and bidding strategies are based on coherent probabilistic forecasts of energy power. Empirical

evidence is also presented showing that probabilistic forecast reconciliation improves the accuracy

of the probabilistic forecasts.

Keywords: Forecasting, Temporal hierarchies, Cross-validation, Aggregation, Renewable energy

generation

1. Introduction

Data are often arranged in hierarchies characterised by an aggregation structure that holds

for all realised values; for example, the annual sum of monthly data series will be equivalent to

annual data series. When forecasts are independently produced for different series or levels within

a hierarchy these aggregation constraints will not hold, a property known as incoherence. To

ensure that operational decisions are aligned, a rich literature has emerged on forecast reconcilia-

tion (Athanasopoulos, Ahmed, and Hyndman, 2009; Hyndman et al., 2011; Athanasopoulos et al.,

2017; Wickramasuriya, Athanasopoulos, and Hyndman, 2018). These approaches not only ensure
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that forecasts are coherent but also lead to improvements in forecast accuracy by combining infor-

mation and forecasts from different hierarchical levels. However, a shortcoming of these approaches

is their focus on point forecasting despite the increasing importance of probabilistic forecasts on

decision-making (Gneiting and Katzfuss, 2014).

In a similar way to point forecasts, probabilistic forecasts can be produced independently for

each level in the hierarchy. However, independent series cannot be coherent since the aggregation

constraint induces dependence between the variables. This paper focuses on the open question of

reconciling probabilistic forecasts. Our contributions are as follows:

• We propose approaches for reconciling probabilistic forecasts that ensure coherence. We refer

to this as ‘probabilistic forecast reconciliation’ since information is combined from density

forecasts at all hierarchical levels.

• We focus on producing coherent probabilistic forecasts in the temporal rather than in the

cross-sectional hierarchical setting, although we note that the proposed approaches are general

enough to handle both settings.

• We propose an approach that considers reconciliation weights via a cross-validation procedure.

This is the first time that a cross-validation procedure is used to produce-coherent forecasts

in either the point or probabilistic domain.

To the best of our knowledge, the only other paper to tackle the issue of coherent probabilistic

forecasts is that of Ben Taieb, Taylor, and Hyndman (2017) where, with the exception of the mean

and variance, the construction of a coherent probabilistic forecast relies on a bottom-up approach.

In particular, Ben Taieb, Taylor, and Hyndman (2017) construct a coherent probabilistic forecast

in a bottom-up fashion where the dependency between nodes at each level is modelled by reordering

quantile forecasts as suggested by Arbenz, Hummel, and Mainik (2012). The method we propose is

distinct from Ben Taieb, Taylor, and Hyndman (2017) in two ways. First, our proposed method is a

true reconciliation method, since each probabilistic forecast is based on information from the entire

density and for all nodes in the hierarchy. Second, our problem focuses on temporal aggregation of

density forecasts which provides a distinct case since dependence within each level can be obtained

directly rather than through copula modelling.

The methods we propose are evaluated using wind power and electric load data measured at

various frequencies ranging from hourly to daily. These applications are chosen for two main reasons.
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First, due to the highly volatile nature of wind power generation and electric load, informed decision-

making depends not only on point forecasts but on probabilistic considerations. For instance,

dispatch and risk management decisions on unit commitment may be based on the probability that a

wind farm supplies at least 300kWh between midnight and 6am the following day. Second, wind farm

operators, grid system operators and electricity traders are each required to make decisions based on

different forecast horizons and sampling frequencies. Third, accurate probabilistic forecast in lead

times and resolutions typically up to 24 hours ahead facilitates optimal scheduling of energy storage

and peer to peer (P2P) energy trading under uncertainties between prosumers (Morstyn et al.,

2018). As such coherent probabilistic forecasts are crucial to ensure aligned decision-making. Our

empirical results demonstrate that the proposed reconciliation methods improve the accuracy of

probabilistic forecasts, with more substantial improvements at higher aggregation levels.

In the next section, we review the literature on forecast reconciliation for point forecasting.

Section 3 presents our newly proposed methods for producing coherent, reconciled density forecasts.

Section 4 introduces our dataset and describes the approach used to obtain base forecasts that can

subsequently be reconciled. Section 5 describes the empirical results of the various reconciliation

methods considered in Section 3. The final section provides a summary and conclusion.

2. Background: Point Forecast Reconciliation

2.1. Cross-sectional Hierarchical Reconciliation of Point Forecasts

Data are often organised in hierarchical aggregation structures. For example, a company may

organise its five stock keeping units (SKUs) into two categories, as depicted in Figure 1. If the

historical data at the bottom level (SKU) are available, then data at every other level can be

calculated using appropriate aggregations. Forecasts may be produced at any of the three levels

of the hierarchy. However, if forecasts are independently produced at all levels they will not be

coherent. For example, the sum of the forecasts of SKUs 1, 2 and 3 in Figure 1 is not guaranteed

to be the same as the forecast of Category 1.

One way to tackle this issue is to simply produce forecasts on a single hierarchical level. For

example, forecasts can be produced only on the very bottom level, and then aggregated to the higher

levels in the hierarchical structure, an approach known as the bottom-up approach (see for example

Dangerfield and Morris, 1992; Zellner and Tobias, 2000; Athanasopoulos, Ahmed, and Hyndman,
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Company

Category 1

SKU 1 SKU 2 SKU 3

Category 2

SKU 4 SKU 5

Figure 1: A cross-sectional hierarchy.

2009). In some cases, the bottom-level data may be too granular or noisy, rendering the forecasting

task difficult. Alternatively, forecasts may be produced at the very top-level and then appropriately

disaggregated to lower level forecasts, an approach known as top-down (Lütkepohl, 1984; Fliedner,

1999; Gross and Sohl, 1990). Disaggregation of the forecasts to lower levels may be based on

historical or predicted proportions of the lower level data (Athanasopoulos, Ahmed, and Hyndman,

2009). The top-down approach has the disadvantage of information loss, as aggregated series

may not reflect the individual characteristics of their descendants. Finally, forecasts can also be

produced at a middle level; forecasts for higher/lower levels nodes can be calculated by appropriate

aggregation/disaggregation of the middle-level forecasts. This approach is known as middle-out, a

conceptual combination of the bottom-up and top-down approaches.

A shortcoming of the methods above is that forecasts are only based on information at a single

level of the hierarchy. The optimal combination method (Athanasopoulos, Ahmed, and Hyndman,

2009; Hyndman et al., 2011) overcomes this problem by tackling hierarchical forecasting in two

stages. In the first stage, point forecasts are produced for all series at all levels independently.

These first stage forecasts are referred to as ‘base’ forecasts. In the second stage, these fore-

casts are adjusted or ‘reconciled’ to ensure coherence with aggregation constraints. More specif-

ically the reconciled forecast for each node is formed as a weighted combination of the ‘base’

forecasts of all nodes, in a way that ensures coherence for the hierarchy overall. The key ad-

vantage of reconciliation is that information is used at all levels of the hierarchy in contrast to

the approaches described in the previous paragraph that focus on a single level. More recently,

Hyndman, Lee, and Wang (2016) propose algorithms for fast computation of coherent hierarchical

forecasts, and Wickramasuriya, Athanasopoulos, and Hyndman (2018) suggest calculating coherent

forecasts through trace minimisation.
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2.2. Temporal Hierarchical Reconciliation of Point Forecasts

A time series can be aggregated or disaggregated to create alternative frequency (or resolu-

tion) as needed. Time series at different frequencies will exhibit different characteristics. Sea-

sonality and noise will be amplified in lower aggregation levels (higher frequencies), while the

long-term trend can be more easily estimated using higher aggregation levels (lower frequencies)

(Kourentzes, Petropoulos, and Trapero, 2014; Spithourakis et al., 2014). Similar to the case of

cross-sectional aggregation, forecasts produced using data at different frequencies will not generally

be coherent. For example, the sum of the forecasts for the next three months, produced using

data measured at the monthly frequency, will not equal to the one-step-ahead quarterly forecast

based on data measured at a quarterly frequency. This problem is particularly relevant for aligning

decisions across the different departments within a company (operations, sales, finance, marketing,

strategy), which usually operate at different data frequencies.

Similarly to cross-sectional aggregation, the issue of incoherent forecasts at different temporal

aggregation levels can be addressed either by combining (reconciling) the forecasts from multiple

aggregation levels or by producing forecasts for a single temporal aggregation level and then deriving

the forecasts at the other levels as discussed previously.

Nikolopoulos et al. (2011) show empirically that in the context of intermittent demand there ex-

ists an optimal aggregation level, unique to each series, and proposed the Aggregate-Disaggregate In-

termittent Demand Approach (ADIDA), where forecasts are produced at a (single) higher aggrega-

tion level and the lower level forecast is subsequently produced by disaggregation. This approach is

particularly relevant for slow moving data, as temporal aggregation will result in series with a lower

degree of intermittence (Petropoulos, Kourentzes, and Nikolopoulos, 2016). Rostami-Tabar et al.

(2013) derive analytical results that imply that improvement in forecasting performance is a function

of the aggregation level, under specific data generating processes.

The idea of using aggregation/disaggregation for forecasting was further extended to derive

the combined forecasts from forecasts simultaneously produced at multiple temporal aggregation

(MTA) levels by Kourentzes, Petropoulos, and Trapero (2014) and Petropoulos and Kourentzes

(2014). MTA was also applied to the context of intermittent demand (Petropoulos and Kourentzes,

2015), and Kourentzes and Petropoulos (2016) propose an extension to incorporate the effects of

external variables. More recently, Athanasopoulos et al. (2017) express the MTA approach as a
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Year

Semester 1

Quarter 1 Quarter 2

Semester 2

Quarter 3 Quarter 4

Figure 2: A temporal hierarchy.

hierarchical concept using a temporal hierarchy for forecasting. A simple temporal hierarchy is de-

picted in Figure 2, where the bottom-level data are at a quarterly frequency (1 quarter per node),

middle-level data are at a semesterly frequency (2 quarters per node), and the top-level represents

the yearly frequency (4 quarters for the top-level node).

The representation of multiple temporal aggregation as temporal hierarchies allows for the ap-

plication of the approaches designed for cross-sectional hierarchies, such as bottom-up, top-down,

middle-out and least squares combination. In the context of temporal hierarchies, Athanasopoulos et al.

(2017) consider weighted least squares reconciliation with three choices of weights. These are, in in-

creasing order of complexity, structural scaling (weights given by the number of disaggregate series

that are summed together to form an aggregate), series variance scaling (weights given by in-sample

variance of errors for each series) and hierarchy variance scaling (weights given by in-sample vari-

ance of errors for each node). Athanasopoulos et al. (2017) show empirically that simpler scaling

approximations provide better results, especially as the frequency of the bottom level increases.

The applicability of forecast reconciliation methods designed for cross sectional hierarchies to

temporal hierarchies is possible since the reconciliation stage is identical for both data structures.

However, the typical methods used to obtain base forecasts reflect important differences between

cross-sectional and temporal hierarchies. Each node in a cross-sectional hierarchy corresponds to a

single time series with all series measured in the same frequency; for example, the hierarchy depicted

in Figure 1 consists of 8 series. In practice, producing base forecasts for cross-sectional hierarchies

involves selecting and fitting as many models as the number of nodes (alternatively judgemental

forecasts can be used for some or all nodes).

In contrast, in a temporal hierarchy, each level corresponds to a time series with its own partic-

ular frequency. For example, the hierarchy depicted in Figure 2 consists of 3 series, yearly at the

6



top level, bi-yearly at the middle level and quarterly at the bottom level. In practice, base forecasts

are produced by selecting and fitting one model per temporal aggregation level. Obtaining base

forecasts for the entire hierarchy involves using different models to produce forecasts at different

hierarchical levels. For instance, for the hierarchy of Figure 2, using the model fit at quarterly

frequency, forecasts are produced at horizons up to four quarters ahead, using the model fit at

bi-yearly frequency, forecasts are produced at horizons up to two semesters ahead while using the

model fit at annual frequency, forecasts are produced one-year ahead. In this example, the term

‘one-year ahead forecast’ can be somewhat ambiguous since it can refer to a whole hierarchy of

forecasts some of which are bi-annual and quarterly. In the remainder of the paper, where the

context is unclear, we use the term ‘cycle’ to refer to a realisation or forecast of the entire hierarchy.

3. Probabilistic Forecast Reconciliation

Before introducing the notation, we briefly discuss the details of how temporal hierarchies can

be constructed. The highest frequency at which the data are measured as well as the cycle are both

usually given by the requirements of the forecasting problem. In this case, we let f be a vector

so that fl is the sampling interval (measured in the highest frequency time units) for level l of the

hierarchy. Then, f can be set according to the factors of f1, i.e. the number of highest frequency

time units in a cycle. In our applications in Section 4, the highest frequency at which data are

measured is hourly and a cycle is a day so f = [24, 12, 8, 6, 4, 3, 2, 1]. We note that partitions of

varying interval length within the same level could be used if there are good operational reasons

for doing so with no loss of generality with respect to our proposed reconciliation methods. For the

remainder of this section we will illustrate our proposed methods using the hierarchy in Figure 2

as an example. Here, data is measured quarterly, the cycle is a year and we set f = [4, 2, 1].

Let xtj,fl be the realisation of a variable recorded on cycle t during the jth period of the cycle

while sampling at an interval of fl. For example, x11,f1 = x11,4 denotes demand for the first year

(first four quarters), x32,2 denotes the demand for the second semester of the third year and x53,1

denotes demand for the third quarter of the fifth year. Let the scaled data be denoted by vectors

zt
l := (1/fl)(x

t
1,fl

, xt2,fl
, . . .)′ for all l = 1, . . . , L, where L is the number of levels of the hierarchy

(L = 3 for the example hierarchy in Figure 3). Then, zt
l is the vector of the realisations of all nodes at

level l, scaled to be in the same units as the bottom level L, i.e. the highest resolution. This scaling
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x11,4 or y11

x11,2 or y12

x11,1 or y14 x12,1 or y15

x12,2 or y13

x13,1 or y16 x14,1 or y17

Figure 3: An illustration of notation for a temporal hierarchy.

allows us to avoid the complex scale conversion in the density reconciliation between any levels and

to interpret reconciliation as forecast combination between levels. Afterwards, the probabilistic

forecasts can be rescaled back to the original units for each level. Finally, let yt := (z′t
1 , . . . , z

′t
L)

′.

The notation yti will be used to denote the ith scalar element of yt for i = 1, . . . ,M , where M is

the number of nodes in the hierarchy (e.g. M = 7 in Figure 3).

3.1. Coherent and Reconciled Point Forecasts

Before describing our new methodologies for probabilistic forecast reconciliation we briefly re-

view the concepts of coherence and forecast reconciliation in the point forecasting setting. By

coherence we mean any vector yt for which the aggregation constraints implied by the hierarchy

hold. This can be expressed as yt = Szt
L. The matrix S is a M × m matrix that encodes the

aggregation constraints and recovers a full set of coherent forecasts from bottom level forecasts,

with m equal to the number of bottom level forecasts. For the simple hierarchy in Figure 3, S is

given by

S =



































1/4 1/4 1/4 1/4

1/2 1/2 0 0

0 0 1/2 1/2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



































(1)

All realisations of the data are guaranteed to be coherent, i.e. yt = Szt
L for all t. Forecasts with

this property are called coherent forecasts.
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As discussed in Section 2, forecast reconciliation refers to a process by which a vector of inco-

herent forecasts is made coherent. Letting ŷ be a vector of ‘base’ forecasts, then a reconciled point

forecast is given by ỹ = SP ŷ. The matrix P is a m ×M matrix that forms new point forecasts

for the bottom level of the hierarchy as linear combinations of the base point forecasts of all nodes.

These are subsequently aggregated up to a full hierarchy by pre-multiplying by S. Taken together,

SP is a matrix that maps any vector in R
M to the region where all aggregation constraints must

hold.

3.2. Coherent and Reconciled Probabilistic Forecasts

Some care must be taken in extending concepts such as coherent forecasts and reconciled fore-

casts to the probabilistic setting. Formal definitions of coherent probabilistic forecasts are provided

in Ben Taieb, Taylor, and Hyndman (2017) and Gamakumara et al. (2018). In brief, a coherent

probabilistic forecast is an M -dimensional multivariate distribution which, due to the degeneracy

induced by the aggregation constraints, is only supported on an m-dimensional linear subspace

of R
M . To visualise this, consider a trivariate density where yTot = yA + yB. In this case all

probability should be concentrated in the region where the aggregation constraint holds, which is a

2-dimensional plane within 3-dimensional space. This is depicted in Figure 4 where the red points

are generated from a coherent density and therefore all lie on the grey 2D plane spanned by the

columns of S. For points simulated from a coherent probabilistic forecast, there should be no values

of yTot, yA and yB for which the constraint does not hold. All regions in 3D space that do not

intersect with a region on the grey 2D plane are assigned zero probability.

Rather than work with analytical expressions for densities, we will instead aim to obtain a sample

from the joint predictive distribution of all nodes in the hierarchy. The step that is analogous to

obtaining base point forecasts is to generate a sample from the distribution f
(

yt+h|F t
)

, where F t

represents all the information up to time t. The key difference with the point forecasting case is

that a sample of N vectors from the predictive distribution are produced rather than a single vector

of forecasts. Denoting the ith vector from this sample as ŷ
t+h|t
i , we can store these in a matrix as

Ŷ =
(

ŷ
t+h|t
1 , . . . , ŷ

t+h|t
N

)

. Typically there is no guarantee that the aggregation constraints will hold

for each (or in fact any) of the columns of Ŷ .

However, if Ŷ is pre-multiplied by a suitable matrix to give Ỹ = SP Ŷ , the columns of the

resulting matrix do respect the aggregation constraints. These can therefore be thought of as
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Figure 4: Depiction of a 3 dimensional hierarchy where the red points have been simulated from a coherent prob-
abilistic forecast. All red points lie on a 2D plane (colored grey) spanned by the columns of S. For a coherent
probabilistic forecast the probability of a point lying in a region that does not include this plane is zero.

observations sampled from the reconciled probabilistic forecast. In this way existing reconciliation

methods for the mean are extended to a probabilistic setting. To summarise, the process for

forming probabilistic forecasts consists of two stages. In the first stage a sample is obtained from

an estimate of the joint density f
(

yt+h|F t
l

)

, and in the second, each sampled vector is reconciled

by pre-multiplying by a matrix that maps each vector to be coherent. At the first stage there are

alternative practical approaches to constructing a joint sample, while at the second stage there are

alternative reconciliation matrices that can be used. We now discuss each of these stages in detail.

3.3. Construction of Base Probabilistic Forecasts

The first stage of our procedure, namely to obtain a matrix Ŷ is itself broken down into two

steps. In the first step, each level will be modelled independently. Let Ẑl be a (f1/fl)×N matrix

defined similarly to Ŷ . Then, its columns are observations sampled from the joint predictive
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distribution but only using nodes in level l, i.e. f
(

zt+h
l |F t

l

)

. A sample from this joint density

can be produced by forming multi-step ahead forecasts in the usual recursive fashion and, as a

consequence, the dependence within each level is preserved. In the second step, we consider three

alternatives for forming a sample Ŷ using all Ẑl. Each of these alternatives can be thought of

as capturing the dependence between the elements of Ŷ in a different way - the appeal of these

methods is that they avoid the challenge of modelling dependence explicitly.

3.3.1. Stacked Sample

The most straightforward way to form Ŷ is to simply concatenate the matrices Ẑ
t+h|t
l which

we refer to as the ‘stacked’ sample.

Ŷ S =

















Ẑ1

Ẑ2

...

ẐL

















(2)

Using this approach leads to a joint distribution that preserves the dependence within each level

but effectively assumes independence between levels, since each Zl is obtained from an independent

modelling process.

3.3.2. Ranked Sample

An alternative to the stacked sample involves ordering the elements in each row of Ŷ S in

ascending (or descending) order after concatenation. We refer to this as the ‘ranked sample’

denoted Ŷ R. The rows of Ŷ R will have a comonotonic dependence structure with respect to

one another, and this approach can therefore be expected to work well in applications where

dependence is high. Furthermore, the ith column of Ŷ R can be thought of as a vector of the

(i/N)th quantiles, each element corresponding to a different node. As such, this approach also

has an interpretation as a method that reconciles quantiles. It also has similarities to the combi-

nation of probabilistic forecasts by Lichtendahl, Grushka-Cockayne, and Winkler (2013). Whereas

Lichtendahl, Grushka-Cockayne, and Winkler (2013) focus on combining probabilistic forecasts that

come from different models, the same idea can easily be applied to appropriately rescaled temporal

hierarchies. This relies on the fact that the probabilistic forecast at each node can be understood

as coming from a different model fit to the same quantity over a time interval of constant length.
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Lichtendahl, Grushka-Cockayne, and Winkler (2013) also propose an approach that averages cu-

mulative probabilities, but find this approach to be inferior to a quantile averaging approach. Our

own application of probability averaging to the reconciliation of temporal hierarchies leads to the

same conclusion and these results are omitted.

3.3.3. Permuted Sample

A final alternative would be to randomly shuffle the elements within each row of Ŷ S . We refer

to this as the ‘permuted sample’ Ŷ P . The shuffling has the effect of decoupling the dependence

within each level, making the rows of Ŷ P independent with respect to one another. Although

this may seem to be an unreasonable approach, it provides an interesting contrast with the ranked

sample and may be a useful method that guards against over-fitting when dependence is low.

3.4. Reconciliation Methods

Once the matrix Ŷ has been formed either as the stacked, ranked or permuted sample, it is

pre-multiplied by SP to yield a reconciled sample. We consider several alternatives for P in this

section. Most of these choices of P correspond to existing methods shown to have some merit in

the literature on point forecast reconciliation. Their application in a probabilistic setting is novel

and their relative performance is an open question that we shall investigate. The final method,

which we propose in Section 3.4.4, has to the best of our knowledge never been used even for point

forecast reconciliation and represents an original contribution to the literature in its own right.

3.4.1. Bottom-Up (BU)

A simple choice for P is to simply ignore information above the bottom level of the hierarchy

and simply aggregate the base bottom level forecasts. For the example, in Figure 3 this implies:

PBU =

















0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

















, (3)

or more generally PBU =
[

0m×(M−m) Im

]

, where 0a×b denotes a a× b matrix of zeroes and Ia is

an identity matrix of order a,
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3.4.2. Global Average (GA)

Another method is to use information at all nodes of the hierarchy via a simple average, or

Ỹi,. =
1
M

M
∑

j=1
Ŷj,. ∀i.

This is equivalent to assuming that the matrix P is a matrix of ones scaled by (1/M), that is

PGA = (1/M)1m×M . We note that the global average leads to probabilistic forecasts that are

the same for every node, before being transformed back to the original scale. Simple averaging

across the top and bottom levels as well as all levels of a cross-sectional hierarchy was also consid-

ered by Abouarghoub, Nomikos, and Petropoulos (2018). Simple averages outperformed the OLS

combination and the bottom-up approaches in the case of energy transport forecasts.

3.4.3. Weighted Least Squares (WLS) via structural scaling

In the context of point forecasts, Athanasopoulos et al. (2017) consider reconciled forecasts as

Ỹ = S(S′W−1S)−1S′W−1Ŷ , where W is a diagonal matrix. Although, Athanasopoulos et al.

(2017) consider different weighting schemes, a simple yet effective choice of weights, particularly

well suited to temporal hierarchies, is structural scaling. Here, each series is assigned a weight in line

with the number of nodes aggregated to form that series. We adopt this approach here but note two

distinctions between our approach and that of Athanasopoulos et al. (2017). The first distinction is

a difference in notation - our definition of S already takes scaling into account. As such, using our

definition of S and setting W = I (an ordinary least squares estimator) is equivalent to a weighted

least squares estimator under the definition of S used by Athanasopoulos et al. (2017). Therefore,

despite setting W = I we use the terminology ‘WLS’ since this is more in line with the usage of

WLS in the rest of the literature. Another subtle difference between Athanasopoulos et al. (2017)

and our own approach is that for the former, the element on the diagonal of W corresponding to a

node in level l is set to fl while we prefer f2
l . This reflects the fact that W is a proxy for a variance

covariance matrix and that standard deviations rather than variances scale proportionally to the

underlying random variable.

3.4.4. Cross-Validated (CV)

A shortcoming of many of the approaches above, including WLS with structural scaling, is

that the weights are fixed. Even for a variance scaling WLS or MinT approach, weights are a

function of in-sample errors and are not directly determined with reference to the objective function

13



ultimately used to assess forecast quality. In this section we propose a class of data-driven weights

that are determined via cross-validation to maximise the sharpness of the reconciled predictive

distributions, subject to calibration. The notions of sharpness and calibration are discussed by

Gneiting and Katzfuss (2014). To the best of our knowledge, the use of cross-validation weights

has not been considered in hierarchical reconciliation, even in the case of point forecasting.

The cross-validation procedure involves splitting the sample into three non-overlapping sam-

ples, the training sample Ttrain, the validation sample Tval and the test sample Ttest. Before

cross-validation, base model parameters are estimated using only training data. We denote these

estimates as θ̂train. Then for all t + h in the validation sample, a sample is produced from

F̂ (yt+h|F t; θ̂train), where F̂ is used to denote the base predictive cumulative distribution func-

tion (CDF). After pre-multiplication by some matrix SP , a sample from the reconciled CDF

F̃ (yt+h|F t; θ̂train) is obtained. Let F̃ t+h
j,fl

be the CDF of the margin corresponding to the jth node

in the level l of the hierarchy. Finally let R(F, z) be a strictly proper scoring rule where F is a

predictive CDF, and z is a scaled realisation.

The objective function for our cross validation sums the scores over all levels, for all series within

each level and over all time points in the validation period. It is given by

CV (P ) = L−1
L
∑

l=1

CVl(P ) , (4)

where

CVl(P ) = (f1/fl)
−1

(f1/fl)
∑

j=1

∑

t+h∈Tval

R(F̃ t+h
j,fl

, zt+h
j,fl

). (5)

The scoring rule used for training reconciliation weights is the continuous ranked probability

score (CRPS) given in general by

R(F, z) =

∫

u
(F (u)− 1 {z ≤ u})2du , (6)

where 1 {.} is an indicator function equal to 1 if the statement in braces is true and 0 otherwise.

As an alternative, the log score could also be used, we prefer the CRPS since it is bounded and

optimisation with respect to this score is therefore more stable. We note that the same scoring rule

is used for training reconciliation weights in our empirical study but to ensure a fair comparison
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between all methods a different scoring rule will be used to evaluate the final forecasts.

The quantity CV (P ) is optimised with respect to P . Since the P matrix can be quite large we

consider the following sparse structure

PCV =

















v1,1 v2,1 0 v3,1 0 0 0

v1,1 v2,1 0 0 v3,2 0 0

v1,1 0 v2,2 0 0 v3,3 0

v1,1 0 v2,2 0 0 0 v3,4

















, (7)

To define this in general, suppose we consider row i of P which corresponds to a bottom level

node. Then non-zero weights are only assigned to that bottom level node and its ancestor nodes

(i.e. the parent node, the parent of the parent node etc.). This structure does not use information

from forecasts of sibling nodes to reconcile probabilistic forecasts. A motivation for this is that in

the temporal forecasting context, the dependence within each level can be easily preserved in base

forecasts. Due to the computationally intensive nature of cross-validation, for the case study in

Sections 4 and 5, we consider a variation of the structure above that optimises over fewer weights.

In particular the same value is used for all weights corresponding to the same level, giving the

following P matrix for the hierarchy in Figure 3:

PCV R =

















v1 v2 0 v3 0 0 0

v1 v2 0 0 v3 0 0

v1 0 v2 0 0 v3 0

v1 0 v2 0 0 0 v3

















, (8)

where vl corresponds to the weight on all the nodes in the level l. Note that the bottom-up method

in Section 3.4.1 is a special case of this structure, where vL = 1 and all other weights are zero.

We consider three cases for the weights: (1) all weights in a row sum to one and are positive;

(2) all weights in a row sum to one; and (3) all weights are unconstrained. Ensuring all weights

sum to one guarantees that unbiased base forecasts will also be unbiased after reconciliation and is

a property shared by the reconciliation matrix for bottom-up and WLS. Ensuring that all weights

are positive as well potentially leads to a more stable algorithm (highly correlated series cannot be

assigned weights that cancel one another out). Perhaps more crucially, restricting all weights to be
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positive ensures the sample of points from the reconciled density forecasts are non-negative as long

as the sample of points from the base density forecasts are non-negative.
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Figure 5: Hourly time series of wind speed, wind direction and wind power in the Rokas wind farm, Crete.

4. Empirical design

As a case study of the methods we propose in Section 3, we consider three datasets, the first

two are wind power data, while the third is data on electric load. In all three cases, spot power

exchange markets are typically a day-ahead auction, but the market price is calculated for each

hour of the following day. The nature of this market thus lends itself to a hierarchical approach

using a daily cycle and an hourly frequency at the bottom level. As such we construct a temporal

hierarchy with f = (24, 12, 8, 6, 4, 3, 2, 1)′ and the following S matrix
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Figure 6: Hourly time series of wind speed, wind direction and wind power in the Aeolos wind farm, Crete.

S =











































24−1ι′24

12−1I2 ⊗ ι′12

8−1I3 ⊗ ι′8

6−1I4 ⊗ ι′6

4−1I6 ⊗ ι′4

3−1I8 ⊗ ι′3

2−1I12 ⊗ ι′2

I24











































, (9)

where ιa is an column of a ones and ⊗ denotes the Kronecker product. The overlapping hierarchy

consists of 1 × 24 hour forecast, 2 × 12 hourly forecasts, 3 × 8 hourly forecasts, 4 × 6 hourly

forecasts, 6 × 4 hourly forecasts, 8 × 3 hourly forecasts, 12 × 2 hourly forecasts and 24 × 1 hourly

forecasts. This amounts to L = 8 levels, M = 60 nodes and m = 24 bottom-level nodes in the

hierarchy. Forecasts of each series can be of interest due to different operational purposes. For
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instance, Fan and Hyndman (2011), Pinson (2013) and Hong and Fan (2016) explain that forecasts

up to 2 hours ahead are crucial for dispatch, real time generation control, reliability analysis,

spinning reserve allocation and load shifting by electricity retailers, while much longer lead times

up to several days ahead are also relevant to decision-making for unit commitment, transmission

operations, load-balancing and scheduling for spinning reserve, maintenance planning for generators

and planning for optimal trading strategies. Also, although we focus on probabilistic forecasts of

wind power and electric load up to 24 hours ahead, the method we proposed can be still applied to

multi-day ahead forecasts.

4.1. Wind Power Data

It is a major challenge for grid operators to maximise the utilisation of wind power due to

the intermittent nature of the generation. Due to the inherent uncertainty in the wind power

forecasting, probabilistic approaches have received increasing attention recently (Taylor, 2017;

Roulston and Smith, 2003; Gneiting et al., 2006; Jeon and Taylor, 2012; Hering and Genton, 2010;

Taylor and Jeon, 2015; Dowell and Pinson, 2015). Probabilistic forecasts enable more informed

decision-making by allowing for the optimal design of bidding strategies and power balance by

wind farm operators, grid system operators and electricity traders (Pinson, 2013). The wind power

data we consider come from the Rokas and Aeolos wind farms in Crete, the largest island in the

Aegean Sea. The island has an autonomous electricity grid and high wind energy potential. The

generation capacities of the Rokas and Aeolos wind farms were 16.3MW and 11.6MW, respectively,

in 2006.

Due to the highly non-linear evolution of wind power, rather than model and forecast this series

directly, we follow an indirect approach shown to be more accurate by Jeon and Taylor (2012).

Under this approach, data are collected on exogenous drivers of wind power, for example wind

speed. Forecasts of wind speed are produced and converted to wind power via a ‘power curve’

function. Jeon and Taylor (2012) do not use the deterministic power curve provided by turbine

manufacturers since there is some residual noise that can be attributed to other factors. These

include: changes in wind direction, air pressure, temperature, precipitation, the complexity of the

terrain, different behaviour between speed up and down, turbulence in the turbines, maintenance

of turbines, and errors in measurement. To account for the stochastic nature of the conversion from

wind speed to wind power, Jeon and Taylor (2012) instead propose using a kernel density estimate
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of wind power conditional on wind speed. This approach still requires the selection of a univariate

model for forecasting wind speed.

An advantage of the approach of Jeon and Taylor (2012) is that it can easily be extended to

consider an additional exogenous driver, namely wind direction. This requires the selection of a

bivariate model for forecasting wind speed and wind direction that are ultimately converted to

wind power forecasts. Both univariate (wind speed only) and bivariate (wind speed and direction)

candidate models are described in Section 4.3. Wind speed and direction recorded at the turbine

hub height of the two wind farms as well as wind power are plotted in Figures 5 and 6. Data are

recorded for each hour in 2006, which amounts to 8,760 observations in each series. Figures 5 and

6 show that wind power is more volatile than wind speed, and the volatilities tend to be clustered.

Figure 7 illustrates the 24 hourly, 8 hourly and 2 hourly time series of Rokas, aggregated from the 1

hourly time series. A lower frequency time series exhibits more smoothed movements. We observe

similar patterns for Aelos.
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Figure 7: The 24 hourly, 8 hourly and 2 hourly time series of wind power in the Rokas wind farm, Crete.

Each time series was split to Ttrain, a 6-month training period from 1 January 2006 to 30 June

2006, used to train models for wind speed and direction; Tval, a 3-month validation from 1 July

2006 to 30 September 2006, used to choose the most accurate model for each level in the temporal
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hierarchy and to select the cross-validation weights in Section 3.4.4; and Ttest, a 3-month test period

from 1 October 2006 to 31 December 2006, reserved for evaluation of reconciliation methods.
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Figure 8: Hourly time series of electric load in Boston, US.

4.2. Electric Load Data

Another case study used in the empirical study relates to electric load. For a discussion on

the importance of probabilistic forecasts for electric load forecasting see Hong and Fan (2016),

Hyndman and Fan (2010), Ben Taieb, Taylor, and Hyndman (2017) and references therein. We

note that Nystrup et al. (2018) has applied temporal forecast reconciliation methods to electric load

data but only in the point forecasting setting. The following empirical example therefore represents

the first attempt to bring these two strands of the literature together. Our data is the hourly time

series of electric load for Boston, MA (load zone code: NEMA), downloaded from ISO New England.

The time series is one of the data sets used in GEFCom2017 (Hong, Xie, and Black, In press). The

period used in our empirical analysis ranges from 1 November 2015 to 31 October 2018, returning

26,304 observations. We divided the data into three periods: Ttrain from 1 November 2015 to 31

October 2016; Tval from 1 November 2016 to 31 October 2017; and Ttest from 1 November 2017 to

31 October 2018. To account for special day effects, the public holidays in this period, published

by the US Office of Personnel Management, were encoded as an exogenous dummy variable and

used in the base forecasting models.
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Figure 9: Hourly time series of diurnal and weekly patterns in the in-sample period, identified by the mstl function
in the forecast package in R, and the corresponding deasonalised load series.

As shown in Figure 8, the load time series has strong yearly, weekly and diurnal patterns

(Hyndman and Fan, 2010; Roach, In press). The peak loads are not expected to be captured

accurately in a multiple temporal aggregation framework, such as temporal hierarchies, due to the

shrinkage on the seasonal component (Spiliotis et al., 2018). For this reason, instead of fitting

our base density forecasting models directly to the original time series, we fit the models to the

seasonally-adjusted time series. The weekly and diurnal patterns were captured on a rolling basis in

the data before each forecast origin in Tval and Ttest, using the mstl function in the forecast package

in R (Hyndman, 2014), which is discussed in detail in Section 6.8 of Hyndman and Athanasopoulos

(2018). This method decomposes a series into additive seasonal components. Letting xt be hourly
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load at time t, xt = dt + wt + et, where dt and wt are the daily and weekly seasonal components

respectively and et is a residual component. We fit our base model to et using the information

only available in the in-sample period. In the evaluation period, the two seasonal components

are updated on a rolling basis using information up to the forecast origin, t − 1. The forecasts

for dt and wt are obtained from a seasonal naive forecast with a 52-week yearly cycle so that we

take into account daily, weekly and yearly seasonality. Once we obtain density forecasts for et, we

reconstruct the predictive density in the original scale by adding back the forecasts for the daily

and weekly seasonality. The additive nature of this method preserves the coherence of the density

forecasts. We found this procedure returns markedly better forecasting results in our empirical

study compared to working directly with the original time series. The top two panels of Figure

9 show dt and wt respectively while the bottom panel shows the deseasonalised data. Alternative

methods for deaseasonalising the data could have been used, with the important caveat that the

deaseasonalised data must be coherent in precisely the same way as the raw data. This is a critical

precondition for using reconciliation techniques, and we do not recommend using reconciliation

if data is deseasonalised in a way that does not preserve coherence (for example multiplicative

seasonality).

4.3. Base Probabilistic Forecasting Models for Wind Power and Electric Load

Table 1: Models chosen for each wind farm and each hierarchical level. Univariate models produce wind speed density
forecasts only and convert these to power forecasts. Bivariate models produce density forecasts of wind speed and
wind direction before converting these to power forecasts.

Level Base forecast model for Rokas Base forecast model for Aeolos

24 hourly Univariate ARFIMA-FIGARCH with Gaussian Univariate ARMA-FIGARCH with Student t

12 hourly Bivariate VARMA-GARCH with Student t Bivariate VARMA-GARCH with Student t

8 hourly Bivariate VARMA-GARCH with Student t Univariate ARMA-FIGARCH with Student t

6 hourly Bivariate VARMA-GARCH with Student t Bivariate VARMA-GARCH with Student t

4 hourly Bivariate VARMA-GARCH with Student t Bivariate VARMA-GARCH with Student t

3 hourly Bivariate VARMA-GARCH with Student t Bivariate VARMA-GARCH with Student t

2 hourly Univariate ARMA-GARCH-skew t Bivariate VARMA-GARCH with Student t

1 hourly Univariate ARMA-FIGARCH with skew t Univariate ARMA-GARCH with skew t

Before addressing the issue of of probabilistic forecast reconciliation it is first necessary to de-

termine base forecasting models. Recall that for wind power, we use an indirect approach where

we forecast wind speed and possibly wind direction before converting these to power forecasts. For

wind speed and direction, statistical models are considerably cheaper than a numerical weather pre-
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Table 2: Models chosen for each hierarchical level for electric load in Boston.

Level Base forecast model for Boston

24 hourly ARFIMA-GARCH with Student t

12 hourly ARFIMA-FIGARCH with Gaussian

8 hourly ARMA-FIGARCH with Student t and Box-Cox transformation

6 hourly ARMA-GARCH with Student t and Box-Cox transformation

4 hourly ARMA-GARCH with Gaussian and Box-Cox transformation

3 hourly ARMA-FIGARCH with Student t and Box-Cox transformation

2 hourly ARMA-GARCH with Student t

1 hourly ARMA-FIGARCH with Gaussian

diction (NWP) system (Sloughter, Gneiting, and Raftery, 2010) while being very competitive for

short lead times (Pinson, 2013). The models we consider include univariate autoregressive moving

average − generalized autoregressive conditional heteroskedasticity (ARMA−GARCH) models for

forecasting wind speed alone as well as their VEC−type bivariate equivalent (VARMA−GARCH)

models (Bollerslev, Engle, and Wooldridge, 1988) for forecasting both wind speed and wind direc-

tion. We also model the long memory dependence in the mean and the volatility of the wind

speed time series using the autoregressive fractionally integrated moving average model (ARFIMA;

Granger and Joyeux, 1980; Hosking, 1981) and the fractionally integrated generalized autoregressive

conditionally heteroskedastic model (FIGARCH; Baillie, Bollerslev, and Mikkelsen, 1996) respec-

tively. For deseasonalised electric load, we also consider the univariate statistical models described

above. Univariate models are commonly used in the literature when forecasting short-term energy

load (Taylor, 2003; Nystrup et al., 2018).

We fit all contender models to Ttrain with Gaussian, Student t and skew t distribution as-

sumptions for the noise term. To account for a potentially high degree of non-normality, we also

considered a Box-Cox transformation (Box and Cox, 1964). In all cases, 1,000 Monte-Carlo simu-

lated sample paths were generated to construct 1 to 24 hour ahead density forecasts for each level

of the hierarchy from each forecast origin in Ttest. We opted not to re-estimate model parameters

as we rolled the forecast origin forward, as it was impractical due to high computational cost. All

models were evaluated over Tval using the average value of CRPS across all horizons (1 to 24 hours

ahead).

If we look at the models selected for wind power first, the best model for each hierarchical level is

presented in Table 1. It is notable that Student t and skew t were selected more frequently compared

to the Gaussian distribution, which indicates that the conditional distribution of wind speed is non-
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Gaussian. In line with Taylor, McSharry, and Buizza (2009), the univariate model of wind speed

with fractional integration in level and volatility was found to produce the most accurate density

forecasts for daily (24 hourly) wind speed forecasts. For other frequencies, the bivariate VARMA-

GARCH model was frequently identified as the best for both wind farms, indicating for these

hierarchical levels, using wind direction as a driver of wind power produces more accurate density

forecasts. Regarding the base models chosen for load forecasting, the most accurate density forecast

models chosen in Tval for each temporal hierarchical level was shown in Table 2. Skewness and excess

kurtosis of the load time series were higher than for the wind time series. As a consequence models

with a Box-Cox transformation were chosen more often for the load data.

All computation was carried out on a standard desktop computer with an Intel i7-7700 CPU

and without parallel processing. The following computation times correspond to the case of the

electric load of Boston, which is the longest time series among our data sets. Overall, it takes 16

minutes to fit the models chosen in Tables 1 and 2 at all 8 frequencies and a further 9.2 seconds to

produce base density forecasts at all levels. Training the reconciliation weights via cross validation

is much slower taking up to 6.2 hours (for the case where the permuted sample is used with the

constraint that all reconciliation weights are positive and sum to one). Once these weights have

been determined, or for methods based on known weights (such as WLS), reconciliation of base

forecasts is almost instantaneous, taking only 0.04 seconds. Taking all of this into account, in

practice, when forecasts are required at a very short lead time, estimated parameters of the base

forecasting models and the reconciliation weights should be calculated once then retained. We have

followed this approach in implementing our rolling window evaluation.

5. Empirical results

5.1. Cross-validation Weights

The weights for the cross-validated method described in Section 3.4.4 are calculated based on

forecast evaluation over Tval. The weights for each of the three different constraints using the PCV R

matrix are presented in Table 3 for the Rokas wind farm, Table 4 for the Aeolos wind farm and

Table 5 for the electric load of Boston. It is noteworthy that there is a tendency for high weights (in

absolute value) on the 1 or 2 hourly hierarchical level for Rokas and Aeolos, while no such pattern

is observed for the load data. This is sensible as wind power data are characterised by a high degree
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of intermittence with potentially strong signals at higher frequencies. Within the framework we

consider, and with the caveat that different sampling methods and constraints on the weights lead

to differences in forecast accuracy, there is some evidence that high-frequency data is informative

for all levels of the hierarchy for the wind power data.

Table 3: Weights(v) of the CV method in Section 3.4.4 derived for Rokas, determined by minimising the average of
the level-wise average CRPS values in the hierarchy. The sum of v is the row sum.

Sampling scheme Hierarchical level

Method 24h 12h 8h 6h 4h 3h 2h 1h Sum

Permuted Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00
∑

vi = 1 -0.37 0.05 0.38 -0.15 0.19 0.10 0.87 -0.07 1.00

Unconstrained -0.28 -0.03 0.44 -0.19 0.20 0.09 0.87 -0.05 1.05

Ranked Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.01 0.00 0.02 0.00 0.98 0.00 1.00
∑

vi = 1 -0.34 0.29 0.23 -0.07 0.49 -0.38 0.64 0.14 1.00

Unconstrained -0.25 -0.08 0.62 -0.11 0.53 -0.61 0.94 -0.04 1.00

Stacked Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.78 1.00
∑

vi = 1 -0.01 -0.04 0.04 -0.02 0.03 0.07 0.38 0.56 1.00

Unconstrained -0.01 0.00 0.05 -0.03 0.08 0.24 0.01 0.35 0.69

Table 4: Weights(v) of the CV method in Section 3.4.4 derived for Aeolos, determined by minimising the average of
the level-wise average CRPS values in the hierarchy. The sum of v is the row sum.

Sampling scheme Hierarchical level

Method 24h 12h 8h 6h 4h 3h 2h 1h Sum

Permuted Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.25 1.00
∑

vi = 1 -0.01 -0.00 0.53 -0.34 -0.00 0.34 -0.19 0.68 1.00

Unconstrained 0.06 -0.23 0.46 -0.43 -0.09 0.18 0.00 0.86 0.82

Ranked Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.84 1.00
∑

vi = 1 0.17 0.14 0.16 -0.34 -0.40 0.48 -0.03 0.82 1.00

Unconstrained 0.18 -0.13 0.24 -0.34 -0.59 0.72 -0.00 0.78 0.86

Stacked Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.99 1.00
∑

vi = 1 0.01 -0.01 0.03 -0.05 -0.01 0.02 0.02 1.00 1.00

Unconstrained -0.01 -0.02 0.03 -0.07 0.13 0.04 0.32 0.34 0.77
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Table 5: Weights(v) of the CV method in Section 3.4.4 derived for Boston, determined by minimising the average of
the level-wise average CRPS values in the hierarchy. The sum of v is the row sum.

Sampling scheme Hierarchical level

Method 24h 12h 8h 6h 4h 3h 2h 1h Sum

Permuted Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.00 0.82 0.00 0.00 0.00 0.18 0.00 1.00
∑

vi = 1 -0.20 0.18 0.60 -0.31 0.47 0.17 0.32 -0.22 1.00

Unconstrained 0.26 0.16 -0.10 -0.42 0.68 0.34 0.46 -0.38 1.00

Ranked Sample
∑

vi = 1 & ∀vi ≥ 0 0.07 0.12 0.06 0.17 0.20 0.11 0.15 0.13 1.00
∑

vi = 1 0.07 0.12 0.06 0.17 0.20 0.11 0.15 0.13 1.00

Unconstrained 0.01 0.16 0.09 0.13 0.22 0.14 0.12 0.14 1.01

Stacked Sample
∑

vi = 1 & ∀vi ≥ 0 0.00 0.08 0.00 0.00 0.89 0.00 0.03 0.00 1.00
∑

vi = 1 0.01 0.23 -0.04 0.06 0.75 -0.34 -0.03 0.36 1.00

Unconstrained -0.07 0.22 0.57 -0.58 0.30 0.33 0.06 0.16 1.00

5.2. Forecast evaluation

We now turn our attention to evaluating the forecast performance of all the methods suggested

in Section 3 over Ttest, for all three datasets. To evaluate the accuracy probabilistic forecasts

of the hierarchy as a whole, we used the energy score, a multivariate scoring rule introduced by

Gneiting and Raftery (2007) that generalises the CRPS. This score is used to evaluate all density

forecasts, including base forecasts, reconciled benchmarks and the CV method. The use of energy

score should be distinguished from the score used in Equation 5 with the latter used to train the

cross validation weights but not evaluate forecasts. Let (y̆t
1, . . . , y̆

t
N )′ and (y̆t∗

1 , . . . , y̆t∗
N )′ be samples

of vectors independently drawn from a multivariate predictive density F̆ (y) and yt be the eventual

realisation of the vector that is the target of the forecast. The breve notation is used to denote that

the sample from the predictive density can be either base forecasts (ŷ) or reconciled forecasts (ỹ).

The energy score is given by

ES(F̆ (yt),yt) =

N
∑

i=1

||y̆t
i − yt|| −

1

2

N
∑

i=1

||y̆t
i − y̆t∗

i || , (10)

where ||v|| =
√

∑

v2i denotes the Euclidean norm. Energy score was chosen since, as a multivariate

score it takes into account both the margins and dependence structure of the multivariate density

forecast. In addition to computing the energy score for the entire hierarchy, we also consider looking
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at the energy score for the bottom level series (z8) and the top level series, (z1). In the latter case,

energy score is equivalent to CRPS.

For all possbile combinations of reconciliation methods (defined in Section 3.4) and sampling

scheme (defined in Section 3.3), the energy scores of the density forecasts of each hierarchy (60

nodes) are evaluated for all t ∈ Ttest. These values are averaged across Ttest, to be presented in

Table 6 for each data set. Lower values of this score indicate more accurate forecasts.

Table 6: Energy score of all the nodes in each hierarchy
Data: Rokas Aeolos Boston

Sampling Scheme: Permuted Ranked Stacked Permuted Ranked Stacked Permuted Ranked Stacked

Base 86.5 84.2 86.5 72.3 69.6 72.2 6437 6638 6420
Bottom-up 79.9 74.0 79.7 67.8 60.1 67.7 6944 5951 5963
Global Average 93.5 72.1 93.4 79.8 60.0 79.9 4571 3889 4097
WLS 85.4 72.7 85.4 72.6 60.1 72.6 4200 3881 3958
Cross-validated

-
∑

vi = 1 & ∀vi ≥ 0 75.6 71.5 83.3 62.7 59.8 67.8 3910 3993 3796

-
∑

vi = 1 70.7 71.6 82.1 61.5 59.6 67.3 4375 3993 4843
- Unconstrained 71.3 72.0 100.3 60.3 59.0 74.3 5197 4214 4390

Note: Lower values are better. The best value in each of the Rokas and Aeolos wind farms and the electric load of
Boston is in bold.

We also tested the statistical significance of the differences in performance for every combination

of approaches in terms of multiple comparisons from the best (MCB), which focuses on the average

(across origins) ranks. In Figure 10 we plot the mean ranks of each approach and sampling scheme

together with their intervals. The intervals are calculated based on studentised range and are

formed arbitrarily as the mean rank plus/minus half of the studentised range (for more details,

see Koning et al., 2005). The results of each data set are presented in different panels. The best

method for each data set is depicted at the bottom of the respective panel, with the worst-performing

method presented at the top of each panel. To distinguish between the three sampling schemes, the

permuted, ranked and stacked cases are respectively depicted as red, blue an green. The difference

between the forecast performance of two methods is statistically significant if their intervals do not

overlap. The grey-shaded area denotes the range covered by the intervals of the best method in each

case, so if the intervals of another method fall in this area, then that method is not significantly

different than the best one.

Based on the results from Table 6 and Figure 10 we make a number of conclusions. From

Table 6 we observe that the base forecasts (i.e. no reconciliation) are usually amongst the poorest

performing methods. Indeed, Figure 10 shows that the gains in performance from using the best
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Figure 10: Multiple comparisons from the best. Intervals are given by the mean rank plus/minus half of the
studentised range. Methods with a range lying entirely outside the grey bands have a significantly poorer forecasting
performance than the best method.
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approaches in each case are statistically significant compared to base. Furthermore, all reconciliation

approaches are significantly better than bottom-up (as well as base) for energy load, irrespective

of the sampling scheme. These results establish that forecast reconciliation methods that combine

information from base forecasts at all levels can improve forecast accuracy in the probabilistic

setting. This novel result generalises similar well-established results for point forecasting.

Table 6 also highlights the best performing combination of method and sampling scheme for

each dataset in bold. In all cases these are methods that determine the reconciliation weights using

cross validation rather than global average or WLS. Moreover, the performance of global average

and WLS (permuted and stacked sampling schemes) are also significantly worse than the best

approaches for wind energy. This novel result suggests that the optimality properties established

theoretically for point forecast reconciliation do not carry over to the probabilistic case.

Finally, the importance of correctly selecting a sampling scheme to construct joint base forecasts

prior to reconciliation is apparent. For wind energy output, permuted and ranked sampling schemes

generally dominate the stacked, while the opposite is true for energy load. As long as reconciliation

is used, the ranked sample provides the best result overall in the sense that for each dataset nearly

all methods using a ranked sample cannot be statistically distinguished from the best method.

5.3. Level-specific results

While the results discussed so far evaluate the methods on the basis of the entire temporal

hierarchy, in some cases only forecasts at a specific frequency are of interest. In light of this we

break down the results to focus on individual levels in isolation. Table 7 provides the energy score

(identical to CRPS) for the forecast wind power/electric load over the entire 24 hourly period.

Table 8 provides the energy score for the forecast wind power/electric load for the next 24 1-

hourly forecasts (since only the bottom level is evaluated - bottom-up results are identical to base).

The general results are similar to those seen for looking at the overall hierarchy. Reconciliation

improves forecast accuracy relative to base and bottom-up forecasts; there is merit in taking a CV

approach relative to WLS; and the ranked sample offers the most robust sample scheme when used

in conjunction with reconciliation.

In Figure 11 we plot the CRPS values of base forecasts, WLS using ranked sample and cross-

validated using ranked sample with sum-to-one weights over different horizons. Although the three

months in the evaluation period is not sufficient to obtain smooth lines of CRPS in the plots, there
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Table 7: Energy score of the top node: 24 hourly
Data Rokas Aeolos Boston

Sampling Scheme Permuted Ranked Stacked Permuted Ranked Stacked Permuted Ranked Stacked

Base 45.5 45.5 45.4 36.2 36.0 36.1 2512 2518 2512
Bottom-up 41.8 35.9 41.7 34.9 28.8 34.9 4158 3219 3285
Global Average 44.5 34.3 44.4 38.9 29.2 39.0 2290 1977 2021
WLS 44.5 34.3 44.4 38.9 29.2 39.0 2290 1977 2021
Cross-validated

-
∑

vi = 1 & ∀vi ≥ 0 37.3 32.8 43.3 31.0 28.5 34.9 1983 2030 1877

-
∑

vi = 1 32.5 33.3 41.4 30.1 28.5 34.5 2150 2030 2525
- Unconstrained 33.5 34.2 55.5 29.1 27.7 39.9 2768 2159 2208

Note: Lower values are better. The best value in each of the Rokas and Aeolos wind farms and the electric load of
Boston is in bold.

Table 8: Energy score of the bottom nodes: 1 hourly
Data Rokas Aeolos Boston

Sampling Scheme Permuted Ranked Stacked Permuted Ranked Stacked Permuted Ranked Stacked

Base 12.1 12.2 12.1 10.0 9.8 10.0 919 895 880
Bottom-up 12.1 12.2 12.1 10.0 9.8 10.0 919 895 880
Global Average 15.3 12.0 15.3 12.7 9.8 12.7 708 597 641
WLS 12.2 12.1 12.2 10.1 9.7 10.1 614 604 604
Cross-validated

-
∑

vi = 1 & ∀vi ≥ 0 11.9 12.0 12.2 9.9 9.8 10.0 599 610 594

-
∑

vi = 1 11.7 12.0 12.1 9.7 9.7 9.9 678 610 729
- Unconstrained 11.7 12.0 14.3 9.7 9.7 10.6 781 638 666

Note: Lower values are better. The best value in each of the Rokas and Aeolos wind farms and the electric load of
Boston is in bold.

is a clear tendency for the CRPS values to increase with forecast lead times in each plot. The

title of each plot in Figure 11 indicates the average improvement of cross-validated over base, in

terms of CRPS, where lower values are preferred. For example, the 24 hourly density forecast of

cross-validated produced CRPS values that are 27.0%, 21.0% and 19.0% smaller than base in Rokas,

Aeolos and Boston, respectively. For the two wind farms, as we increase the forecast resolution by

moving further down the plot, this enhancement tended to be reduced. This indicates that wind

power density forecasts at the higher resolution are enhanced by synthesizing forecasts at lower

resolutions. For electric load, the highest gain was for 12 hourly, followed by 1 hourly. Overall,

these results demonstrate how reconciliation is able to ‘hedge’ against misspecification error at all

levels by synthesizing information across all hierarchical nodes.

6. Concluding Comments

This paper introduced methodology for the reconciliation of probabilistic forecasts. Despite a

particular focus on temporal hierarchies, the method can be applied to cross-sectional hierarchies
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Figure 11: Probabilistic Evaluation of wind power forecasts in the evaluation period using CRPS for the Rokas and
Aeolos wind farms and the electric load of Boston, comparing (1) base using the ranked sample and (2) WLS using
the ranked sample and (3) Cross-validated using the ranked sample with sum-to-one weights. The improvement of
cross-validated over base is presented in average percentage for each level separately, on top of each plot. Lower
values are better. 31



with little to no loss of generality. We proposed three schemes for obtaining samples of base

forecasts from the joint predictive densities, namely permuted, ranked and stacked sampling. These

approaches correspond to the cases of no dependence between the hierarchical nodes, comonotonic

dependence between nodes and temporal model driven dependencies within a level respectively.

Since these samples do not respect aggregation constraints they are subsequently reconciled using

the bottom-up, global average and WLS approaches. Furthermore, we investigated for the first time

the use of a cross-validation approach for obtaining the reconciliation weights. The performance

of the various combinations of sampling schemes and reconciliation methods was subsequently

measured by producing and evaluating probabilistic wind power and electric load forecasts.

The empirical results from two wind farms in Greece and from energy load in Boston suggest

that cross-validation reconciliation based on ranked samples offers the best performance overall

compared to all other approaches. Performance enhancement for density forecast evaluation in

terms of energy score is up to 15% for wind power data and up to 40% for load data relative to

base. For wind data, lower resolutions (higher levels of aggregation) enjoyed the most performance

benefits, providing direct managerial benefits for transmission operations and planning for optimal

trading strategies. The results also show that comonotonic aggregation of quantiles is the most

robust method when using reconciliation.

Looking forward, our research also poses new research questions that lie outside the scope of the

current paper. For example, although an advantage of the stacked sample, ranked sample and per-

muted sample is their ease of construction, it may be worthwhile developing more complicated merg-

ing schemes. These could be based on the algorithms developed by Ben Taieb, Taylor, and Hyndman

(2017) thus extending that method to utilise information about the entire predictive density of the

full hierarchy of base forecasts. It may also be worthwhile investigating whether the sparse structure

of the P matrix can be selected in a more data driven way, especially for cross sectional hierarchies

where a different pattern of sparsity may be required. Finally, it would be interesting to see if

methods that can generate density forecasts based on ensembles or physical models can also benefit

from using (temporal) hierarchical reconciliation.
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