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Zinc oxide is an important semiconductor material, which is useful in various 

applications such as photo-electric devices electronic devices, surface acoustic wave, 

devices field emitters sensors, ultraviolet lasers and solar cells. With a wurtzite 

hexagonal phase, ZnO have a direct band gap of 3.37 eV with the larger exciton binding 

energy (60 meV), possesses a wide range of technological applications including flat 

panel displays, UV lasers and chemical and biological sensors. Till now, many methods 

have been developed to synthesize zinc oxide nanocrystals including vapor phase 

growth, ultrasonic irradiation, hydrothermal, pulsed lased deposition, vapor–liquid–solid 

process, soft chemical method, electrophoretic deposition, sol–gel process. Depending 

on the adopted synthesis method, zinc oxide nanocrystals would show various 

morphologies under different formation mechanisms. 
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In this work, we studied preparation of ultra fine and nano sized ZnO by four important 

methods. ZnO nanoparticle, nanorod, nanowire have been successfully synthesized by 

facile methods like ultrasonic irradiation, sol-gel method, decomposition of Zn substrate 

and hydrothermal methods.  

 

In our work, three anionic surfactants Cetyl trimethylammonium bromide (CTAB), 

Tetrabutylammonium bromide (TBAB) and Sodium dodecyl sulfate (SDS) have been 

used as capping agent in the hydrothermal process. The results demonstrated that 

structure of the surfactant and its carbonyl chain group is important to crystal growth of 

the products. SEM and TEM micrograph revealed that nano fiber and ultrafine spherical 

ZnO prepared in the presence of CTAB and TBAB, but in the presence of SDS, sheet 

form of ZnO was prepared. 

 

The effect of ultrasonic irradiation was studied on preparation of ZnO. Nanoparticle of 

ZnO was synthesized after precipitation of zinc nitrate by urea at 90
°
C with irradiation 

of waves into the reaction flask for 2h. After heat treat at 350
°
C, sample was 

characterized with FT-IR, XRD, SEM, TEM and UV-vis. The results shows the 

nanoparticles of ZnO are in size range of 50-120nm. 

 

The effect of solvent was studied in this work, too. Ethanol, ethylene glycol and 

isopropanol were used as solvent in the reaction. In the other hand, characterization of 

products was shown that morphology and particle size of products was very different 

and depended to the dielectric constant of the solvents.     

 

http://en.wikipedia.org/wiki/Cetyl_trimethylammonium_bromide
http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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Zink oksida merupakan bahan semikonduktor yang baru dan penting, di mana ia meluas 

digunakan dalam pelbagai aplikasi seperti alat-alat fotoelektrik dan elektronik, 

permukaan gelombang akautik, pengesan alat pemancar, laser ultralembayung dan sel 

solar. Zink oksida mempunyai jurang tenaga sebanyak 3.37 eV dengan tenaga ikatan 

pengujaan yang besar (60 meV) dan mempunyai fasa wurzite heksagonal. 

Penggunaannya dalam bidang teknologi termasuk skrin rata, laser UV dan pengesan 

kimia dan biologi. Pelbagai kaedah telah diusahakan untuk mensintesis zink oksida 

seperti pembesaran fasa wap, ultrasonik, hidroterma, penempelan hembasan laser, proses 

wap-cecair-pepejal, kaedah tindak balas perlahan, elektroforetik dan proses sol-gel. 

Nano kristal zink oksida akan menunjukkan pelbagai mofologi melalui mekanisma 

pembentukan yang berlainan bergantung kepada kaedah sintesis. 
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Penyediaan ultrahalus dan nano zink oksida telah dilakukan melalui 6 kaedah yang 

sesuai dalam kajian ini. Sintesis zarah nano zink oksida, nanorod dan nanowayar telah 

dilaksanakan melalui kaedah mudah seperti ultrasonik, sol-gel, penguraian substrat zink 

dan kaedah hidroterma. 

 

Dalam kajian ini, tiga surfaktan anionik iaitu CTAB, TBAB dan SDS telah digunakan 

sebagai agen penutup dalam proses hidroterma. Keputusan menunjukkan bahawa 

struktur surfaktan dan rantai kumpulan karbonil sangat penting dalam pertubuhan kristal. 

FE-SEM dan TEM mikrograf menunjukkan fiber nano dan ultrahalus didapati dalam 

zink oksida yang disediakan oleh CTAB dan TBAB manakala bentuk kepingan jika SDS 

digunakan. 

 

Kesan ultrasonik ke atas penyediaan zink oksida juga dikaji. Zarah nano zink oksida 

telah dihasilkan selepas pemendakan zink nitrat oleh urea pada 90 ˚C dengan penyinaran 

gelombang selama 2 jam. Selepas rawatan haba pada 350 ˚C, sampel yang dihasilkan 

akan diperihalkan dengan FT-IR, XRD, FE-SEM, TEM dan UV-Vis. Keputusan 

menunjukkan bahawa zarah nano zink oksida di antara 50-120 nm telah dihasilkan. 

 

Kesan pelarut juga dikaji dalam kajian ini.. Etanol, etilene glikol dan isopropanol telah 

digunakan sebagai pelarut. Keputusan menunjukkan bahawa mofologi dan saiz zarah 

produk adalah berlainan dan adalah bergantung kepada pemalar dielektrik pelarut.    
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CHAPTER I 

 

INTRODUCTION 

   

Recently, zinc oxide (ZnO) has attracted much attention within the scientific 

community as a future material. This is however, somewhat of a misnomer, as ZnO 

has been widely studied since 1935 by Bunn, with much of our current industry and 

day to day lives critically reliant upon this compound. The renewed interest in this 

material has arisen out of the development of growth technologies for fabrication of 

high quality single crystal and epitaxial layers, allowing for the realization of ZnO 

based electronic and optoelectronic devices.    

 

ZnO exhibits a direct band gap of 3.37 eV at room temperature with a large exciton 

binding energy of 60 meV. ZnO has several advantages over GaN in this application. 

The most important being its larger exciton binding energy and ability to grow single 

crystal substrates. The strong exciton binding energy, which is much larger than that 

of GaN (25eV) and the thermal energy at room temperature (26meV), can ensure an 

efficient exciton emission at room temperature under low excitation energy. Other 

favorable aspects of ZnO include its broad chemistry leading to many opportunities 

for wet chemical etching, low power threshold for optical pumping, radiation 

hardness and biocompatibility. Together, these properties of ZnO make it an ideal 

candidate for a variety of device ranging from sensors through ultraviolet laser 

diodes and nanotechnology based devices such as displays. 
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As research into ZnO continues, difficulties such as the fabrication of p-type ZnO that 

have so far stalled the development of devices, are being overcome (Tsukazaki et al., 

2005).     

 

1.1 Zinc Oxide Crystal structure and lattice parameters 

 

At ambient pressure and temperature, ZnO crystallizes is in the wurtzite structure. This 

is a hexagonal lattice, belonging sublattices of Zn
2+ 

and O
2-

, such that each zinc ion is 

surrounded by a tetrahedral of O
2-

 ions, and vice-versa. This tetrahedral coordination 

gives rise to polar symmetry along hexagonal axis. This polarity is responsible for the 

number of properties of zinc oxide, including its piezoelectricity and spontaneous 

polarization, and is also a key factor in crystal growth, etching and defect generation. 

The four most common face terminations of wurtzite ZnO are the polar Zn terminated 

(0001) and O terminated (000 ) faces and non polar (11 ) (a -axis) and (10 0) face 

which both contain an equal number of Zn and O atoms. The polar faces are known to 

posses different chemical and physical properties, and O terminated face posses a 

slightly different electronic structure to the other three faces. Additionally, other surfaces 

and the (1010) surface are found to be stable; however (11 ) face is less stable and 

generally has a higher level of surface roughness than its counterparts.  

Aside from causing the inherent polarity in the ZnO crystal, the tetrahedral coordination 

of this compound is also common indicator of sp
3
   covalent bonding. However; the Zn-

O band also possesses very strong ionic character, and thus ZnO lies on the border line 

between being classed as a covalent and ionic compound, with an ionicity of ƒi=0.616.  
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The lattice parameters of hexagonal unit cell are a = 3.2495Ǻ and c=5.2069Ǻ, and 

density is 5.605 cm
-3

. In an ideal wurtzite crystal the axial ratio c/a and the u parameter 

(which is a measure of the amount by which each atom is displaced with respect to the 

next along the c- axis) are correlated by the relationship uc/a= (3/8)
1/2

 where c/a = 

(8/3)
3/2

 and u =3/8 for an ideal crystal. ZnO crystals deviate from this ideal arrangement 

by changing both of these values. This deviation occurs such that tetrahedral distances 

are kept roughly constant in the lattice.  

       

The structure of ZnO can be simply describe as a number of alternating planes 

composed of tetrahedral coordinated O
2-

 and Zn
2+

 ions, stacked alternatively along the c 

axis (Figur1). The tetrahedral coordination in ZnO results in non central symmetric 

structure and piezoelectricity. Another important characteristic of ZnO is the polar 

surface. The most common polar surface is the basal plane. The oppositely charged ions 

produce positively charged Zn-(0001) and negatively charged  polar surface, 

resulting in a normal dipole moment and spontaneous polarization along the c axis. 

Another polar surface is the { }. By projecting the structure along [1 ], as shown 

in (Figur1), beside the most typical ± (0001) polar surface that are terminated with Zn 

and O, respectively, ± (  ) and ± ( ) are also polar surfaces. The ( ) type 

surfaces are not common for ZnO, but they have been observed in nanohelical structure 

found recently (Wang et al., 2004). The charges on the polar surfaces are ionic charges, 

which are non transferable and non flowable. Because the interaction energy among the 

charges depends on the distribution of the charges, the structure is arranged in such a 
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configuration to minimize to electrostatic energy. This is the main driving force for 

growing the polar surface dominated nanostructures.  

   

 

 Figure 1:(a) Wurtzite structure model of ZnO (b) The structure model of ZnO , 

displaying the ±(0001),± ) and ± (  ) polar surfaces.  Zinc oxide bulk, 

thin films and nanostructures processing, properties and applications 

 

1.2 Band gap energy 

 

The electronic band structure of ZnO has been calculated by a number of groups (Jaffe 

et al., (2000), Usuda and Hamada et al., (2002)) .The results of band structure 

calculation using the Local Density Appropriation (LDA) and incorporating atomic self-

interaction corrected pseudopotentials to accurately account for the Zn3d electrons is 

shown in Figure 2. The band structure is shown along high symmetry lines in the 

hexagonal Brillouin zone. Both the valence band maxima and the lowest conduction 
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band minima accrue at the  point K=0 indication that ZnO is direct band gap 

semiconductor.  The bottom 10 bands correspond to Zn 3d levels. The next 6 bands from 

-5 eV to 0 eV correspond to O 2p bonding state. The first two conductions band states 

are strongly Zn localized and correspond to empty Zn 3s levels. The higher conduction 

bands are free electron like. The O 2s bands associated with core like energy states 

accrue around -20 eV. The band gap as determined from this calculation is 3.77 eV. This 

correlates reasonably well with the experimental value of 3.47 eV, and is much closer 

than the value obtained from standard LDA calculations, which tend to underestimate 

the band gap by 3eV due to its failure in accurately modeling the Zn 3d electrons. 

 

In addition to calculation for the band structure of bulk ZnO Ivanov and Pollmann have 

also carried out an extensive study on the electronic structure of the surfaces of wurtzite 

ZnO (Ivanov et al., 1981), Using Empirical Tight Binding Method (ETMB) to determine 

Hamiltonian (eV) for the bulk state, the scattering theoretical method was applied to 

determine the nature of the surface states. The calculated data was found to be in very 

good agreement with experimental data obtained from electron loss energy spectroscopy 

(EELS) and ultra violet photoelectron spectroscopy (UPS). There is a common and 

simple method for determining of band gap that is base on absorption spectroscopy. For 

a direct bandgap, the absorption coefficient α is related to light frequency according to 

the following formula: 

    α = A 
*
 (hν − Eg)

1 / 2 
            Eq(1)                                              Eq(2) 

http://www.answers.com/topic/absorption-spectroscopy
http://www.answers.com/topic/attenuation-coefficient-1
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Figure 2: The LDA band structure of bulk wurtzite ZnO calculated using dominant 

atomic self-interaction-corrected pseudopotentials. Zinc oxide bulk, thin films and 

nanostructures processing, properties and applications  

 

 

Where α is the absorption coefficient, a function of light frequency, ν light frequency, h 

Planck's constant,  hν the energy of a photon with frequency ν, Eg the band gap energy, A 

*
 a certain frequency-independent constant, with formula above,  and  are the 

effective masses of the electron and hole, q the elementary charge, n the  index of 

refraction and c the light, respectively.  

 

1.2.1 Opportunities from band gap engineering  

 

ZnO has been identified as a promising candidate for UV opto-electronic devices and the 

main emphasis is on band-gap engineering for the design of ZnO-based short 

http://www.answers.com/topic/attenuation-coefficient-1
http://www.answers.com/topic/planck-constant-1
http://www.answers.com/topic/photon-2
http://www.answers.com/topic/effective-mass
http://www.answers.com/topic/elementary-charge
http://www.answers.com/topic/refractive-index
http://www.answers.com/topic/refractive-index
http://www.answers.com/topic/refractive-index
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wavelength transparent opto-electronic devices. In the case of ZnO, alloying with MgO 

and CdO is an effective means of increasing or decreasing the energy band gap, 

respectively (Makino and Segawa et al., 2000).   

For a semiconductor to be useful, particularly in reference to optoelectronic device, band 

gap engineering is a crucial step in device development. By allowing the starting 

semiconductor with another material of different band gap, the band gap of resultant 

alloy material can be fined tuned, thus affecting the wavelength of exciton emissions. 

 

1.3 Electrical properties 

 

The electrical properties of ZnO are hard to quantify due to large variance of quality of 

sample available. The background carrier concentration varies a lot according to the 

quality of layers but is usually 10
16

 cm
-3

. The largest reported n-type doping is 10
26

 

electrons cm
-3 

and largest reported p-type doping is 10
19

 holes cm
-3

. However such 

high levels of p-conductivity are questionable and have not been experimentally 

verified. The exciton binding energy is 60 meV at 300K, and is one of the reasons why 

ZnO is so attractive for optoelectronic device applications.  

 

1-4 Optical properties  

 

The optical properties of ZnO are heavily influenced by energy band structure and lattice 

dynamics. Meyer et al.,(2004) had a comprehensive review of the optical properties of 

excitonic recombination in bulk n-type ZnO .This work gives a comprehensive treatment 
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and analysis of the excitonic spectra obtained from ZnO, and assign many defect related 

spectra feature, as well as donor-acceptor pair (DAP) emission. A broad defect related 

peak extending from 1.9 to 2.8 eV is also a common optical feature of ZnO. Known as 

the green band, the origin of its luminescence is still not well understood and has in the 

past been attributed to a variety of different impurities and defects A broad defect related 

peak extending from 1.9-2.8 eV is also common optical feature of ZnO, known as the 

green band, the origin of its luminescence spectra of n type ZnO measured at 4.2 K. The 

excitonic, DAP and extended green band emission can all be clearly seen, as can the 

phonon replicas produced from the longitudinal optical phonons (LO). 

 

In terms of more fundamental optical properties of ZnO, there have been a number of 

comprehensive studies to determine the refractive index and dielectric constant of this 

material (Yoshigawa et al., 1997). The measurements were all carried out using 

spectroscopic ellipsometry.  

 

1-5 ZnO nanostructures 

 

Nanostructured ZnO materials have received broad attention due to their distinguished 

performance in electronic, optics and photonics. With reduction in size, novel electrical, 

mechanical, chemical and optical properties are introduced, which are largely believed 

to be to be the result of surface and quantum confinement effects. Nanowire structures 

are the ideal system for the studying the transport process in 1D-confined objects, which 

are of benefit not only for understanding the fundamental phenomena of low 

dimensional systems, but also for developing new generation nanodevices with high 
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performance. The lack of center of symmetry in wurtzite, combined with a large 

electrochemical coupling, results in strong piezoelectric properties and the consequents 

use of ZnO in mechanical actuator and piezoelectric sensors. In addition ZnO is a wide 

band gap (3.37eV) compound semiconductor that is suitable for short wavelength 

optoelectronic applications. The high exciton binding energy (60 meV) in ZnO crystal 

can ensure efficient excitonic emission at room temperature and room temperature 

ultraviolet (UV) luminescence has been reported in disordered nanoparticles and thin 

films. ZnO is transparent to visible light and can be made highly conductive by doping. 

ZnO is versatile functional material that has a diverse group of growth morphologies 

such as nanorods, nanobelts, nanowires, nanocages, nanocombs, nanosprings, nanorings 

and nanohelixes (Wang et al., 2001). 

 

1.5.1 Nanorods and nanowires 

 

Growth of 1D nanostructure usually follows the VLS approach, in which a liquid alloy 

droplet composed of a metal catalyst component (such as Au, Fe) and a nanowire 

component (such as Si, III–V compound, II–V compound, oxide) is first formed under 

the reaction conditions. The metal catalyst can be rationally chosen from the phase 

diagram by identifying metals in which the nanowire component elements are soluble in 

the liquid phase but do not form solid compounds more stable than the desired nanowire 

phase. For the 1D ZnO nanowires grown via a VLS process, the commonly used catalyst 

for ZnO is Au (Yang et al., 2001). The liquid droplet serves as a preferential site for 

absorption of gas phase reactant and, when supersaturated, the nucleation site for 

crystallization. Nanowire growth begins after the liquid becomes supersaturated in 




