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Abstract. State–space models (SSMs) are an important modeling framework for analyzing
ecological time series. These hierarchical models are commonly used to model population
dynamics, animal movement, and capture–recapture data, and are now increasingly being used
to model other ecological processes. SSMs are popular because they are flexible and they
model the natural variation in ecological processes separately from observation error. Their
flexibility allows ecologists to model continuous, count, binary, and categorical data with linear
or nonlinear processes that evolve in discrete or continuous time. Modeling the two sources of
stochasticity separately allows researchers to differentiate between biological variation and
imprecision in the sampling methodology, and generally provides better estimates of the eco-
logical quantities of interest than if only one source of stochasticity is directly modeled. Since
the introduction of SSMs, a broad range of fitting procedures have been proposed. However,
the variety and complexity of these procedures can limit the ability of ecologists to formulate
and fit their own SSMs. We provide the knowledge for ecologists to create SSMs that are
robust to common, and often hidden, estimation problems, and the model selection and valida-
tion tools that can help them assess how well their models fit their data. We present a review of
SSMs that will provide a strong foundation to ecologists interested in learning about SSMs,
introduce new tools to veteran SSM users, and highlight promising research directions for
statisticians interested in ecological applications. The review is accompanied by an in-depth
tutorial that demonstrates how SSMs can be fitted and validated in R. Together, the review
and tutorial present an introduction to SSMs that will help ecologists to formulate, fit, and val-
idate their models.

Key words: Bayesian; diagnostic; fitting procedure; frequentist; model selection; state–space model;
time series.

INTRODUCTION

State–space models (SSMs) are a popular modeling
framework for analyzing ecological time-series data.
They are commonly used to model population dynamics
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(Newman et al. 2014), including metapopulation dynam-
ics (Ward et al. 2010), they have a long history in fish-
eries stock assessment (Aeberhard et al. 2018), and have
been recently proposed as a means of analyzing sparse
biodiversity data (Kindsvater et al. 2018). Moreover,
they have been a favored approach in movement ecology
for more than a decade (Patterson et al. 2008), and are
increasingly used with biologging data (Jonsen et al.
2013). In addition, the flexibility of SSMs is advanta-
geous when modeling complex capture–recapture data
(King 2012). SSMs are also used in epidemiology (Dukic
et al. 2012, Fasiolo et al. 2016) and disease ecology
(Hobbs et al. 2015). These common uses of SSMs, and
their many unique applications (e.g., investigating ani-
mal health from photographs [Schick et al. 2013], plant
invasion [Damgaard et al. 2011], and host–parasitoid
dynamics [Karban and de Valpine 2010]), demonstrate
their widespread importance in ecology.
State–space models are popular for time series, in part

because they directly model temporal autocorrelation in
a way that helps differentiate process variation from
observation error. SSMs are a type of hierarchical model
(see Table 1 for definitions; Cressie et al. 2009) and their
hierarchical structure accommodates the modeling of

two time series: (1) a state, or process, time series that is
unobserved and attempts to reflect the true, but hidden,
state of nature; and (2) an observation time series that
consists of observations of, or measurements related to,
the state time series. For example, actual fish population
size over time would be the state time series, and incom-
plete and imprecise counts of fish sampled in a survey,
or caught in a fishery, would be the observation time ser-
ies. Process variation represents the stochastic processes
that change the population size of a fish stock through
time (e.g., the birth and death processes), and observa-
tion error reflects differences between the hidden state
and the observed data due to randomness or imprecision
in the sampling or survey methodology. These two
stochastic components act at different levels of the
model hierarchy, and the SSM framework allows them
to be modeled separately. The assumptions that the hid-
den states are autocorrelated (e.g., that a large popula-
tion in year t will likely lead to a large population in year
t + 1), and that observations are independent once we
account for their dependence on the states (Fig. 1a), allow
SSMs to separate these two levels of stochasticity. When we
fit a SSM to time series, we can often estimate the process
and observation parameters, as well as the hidden states.

TABLE 1. Our definitions of important terms in the context of SSMs.

Term Definition

Conditional likelihood
(Lc)

Likelihood function of the parameters of the SSM conditional on the states. In contrast to the joint and
marginal likelihoods, the function only includes the probability distribution of the observations (not
that of the states) and use sufficient statistics for the state values (e.g., states are fixed to their
estimated values)

Data stream Distinct set of observations. The term is generally used when more than one source of data is used in a
single model (e.g., a SSM that jointly models data from systematic survey and citizen science)

Hidden Markov model
(HMM)

Class of SSMs with a finite number of discrete hidden states. For example, these discrete states could be
categorical variables representing the behavioral modes of an animal (e.g., foraging, resting, traveling)
or binary variables representing whether the individual is alive or dead

Hierarchical model Class of statistical models that has multiple levels of stochasticity. They model randomness in the data
and in the process. Linear mixed effects models (i.e., linear models with fixed and random effects) are a
commonly used type of hierarchical model in ecology. SSMs are another type of hierarchical model

Joint likelihood (Lj) Likelihood function of both hidden states and parameters, which summarizes the complete SSM.
Although it is common to call this function a likelihood, this term can cause confusion because states,
but not parameters, are often viewed as random variables and often cannot be jointly estimated with
parameters by maximizing this function

Marginal likelihood (Lm) Likelihood function of the parameters of the SSM, where the states have been marginalized (i.e.,
integrated out or summed over all possible state values)

Observation equation Equation from a SSM that models how observations depend on hidden states. Synonymous, or closely
related, terms used in the literature include observation model, and measurement equation or model

Observation error Variation associated with the discrepancy between hidden states and observations. The observation
error will often reflect the imprecision of the sampling methodology

Process equation Equation from a SSM that models how unobserved states at a given time depend on past states.
Synonymous, or closely related, terms used in the literature include: process model, state equation,
state model, and transition equation

Process variation Variation associated with the underlying process and hidden states. In ecology, process variation often
represents biological variability

State Unobserved random variable that generally represents a true attribute of the system. A SSM has at
least one time series of hidden states (e.g., true population size through time or whether the individual
is alive or dead during each sampling period). Synonymous, or closely related, terms used in the
literature include: latent state and latent variable

State–space model
(SSM)

Class of hierarchical models for time series that specifies the dynamic of the hidden states and their link
to the observations (see Fig. 1a)
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These estimates of the hidden states generally reflect the true
state of nature better than the original observations (Fig. 1
b). For example, the estimates of the hidden states will gen-
erally reflect the true fish population size better than the
survey- or fisheries-based counts.
The first SSMs, often referred as normal dynamic lin-

ear models (NDLMs), were a special case where the
state and the observation time series were modeled with
linear equations and normal distributions. Two seminal
papers on NDLMs, Kalman (1960) and Kalman and
Bucy (1961), provided an algorithmic procedure, the
now-famous Kalman filter, for making inferences about
the hidden states given imperfect observations and
known parameters. These papers led to developments
that revolutionized aerospace engineering in the 1960s
and allowed the Apollo mission to correct the trajectory
of a spacecraft going to the moon, given inaccurate
observations of its location through time (Grewal and
Mohinder 2010). The earliest applications of SSMs to
ecological data, which used NDLMs and the Kalman
filter, were in the 1980–90s and focused primarily on
fisheries (Mendelssohn 1988, Sullivan 1992) and animal
movement (Anderson-Sprecher and Ledolter 1991). The
first animal movement SSMs were closely analogous to
the original aerospace application in that they recreated
the trajectory of an animal based on inaccurate observa-
tions. However, these ecological models required param-
eters to be estimated. Unlike a planned mission to the
moon, we rarely have a priori knowledge of the intended
speed and direction of an animal. Developments in the
time-series literature made use of the Kalman filter to
evaluate the likelihood function for unknown parame-
ters, thus allowing calculation of maximum-likelihood
parameter estimates in addition to state estimates (Har-
vey 1990). NDLMs, however, are a restricted class of
SSMs and their applicability to many ecological time
series, which have nonlinear and non-Gaussian struc-
ture, is limited.

Since their initial development, there have been
important advancements in SSMs, and in their appli-
cation in ecology. In the 1990s, the simultaneous pop-
ularization of Markov chain Monte Carlo methods
(MCMC [Gilks et al. 1995]), including the freely
available BUGS software (Lunn et al. 2009), and
high-speed desktop computing considerably expanded
the diversity of possible SSMs to include non-
Gaussian and nonlinear formulations (e.g., Meyer and
Millar [1999]). As a result, Bayesian ecological SSMs
were developed for a variety of applications in the fol-
lowing decades, including capture–recapture models
(e.g., Dupuis [1995], Gimenez et al. [2007], Royle
[2008]) and formulations structured around matrix
population models (Buckland et al. 2004). Further
developments have advanced fitting procedures in
both Bayesian and frequentist frameworks (de Valpine
2004, Ionides et al. 2015, Kristensen et al. 2016,
Monnahan et al. 2017). These methods provide the
means to fit increasingly complex SSMs with multiple
hierarchical levels (e.g., Jonsen et al. [2005]) and inte-
grate disparate data sets (e.g., Hobbs et al. [2015]).
However, although advancements in fitting SSMs have

changed how we model time series in ecology, the com-
putational burden required to fit some of these models is
often high enough that comparisons between multiple
SSMs can be difficult, and the complex structure of
some SSMs complicates model validation and diagnos-
tics. In the ecological literature, there has been a recent
interest in model comparison and validation for hierar-
chical models or models for data sets with complex
dependence structure (Hooten and Hobbs 2015, Roberts
et al. 2017, Conn et al. 2018). In line with this, new vali-
dation tools for SSMs are being developed (Thygesen
et al. 2017).
Although SSMs are powerful tools for modeling

ecological time series, the fitting procedures may seem
prohibitively complex to many practitioners. The

FIG. 1. The dependence structure and evolution of the two time series comprising a simple univariate state–space model. (a)
Dependence relationships with arrows, demonstrating that once the dependence of the observations yt on the states zt is accounted
for, the observations are assumed independent. (b) Our toy model (Eqs. 1, 2). The blue and red dots are the simulated observations
and states, respectively. The black line and gray band are the estimated states and associated 95% confidence intervals. The true
states, but not the observations, usually fall in the 95% confidence intervals. This demonstrates that the state estimates can be a clo-
ser approximation of the truth than the observations.
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variety of inference procedures and tools that can be
used to fit SSMs (Harvey 1990, Doucet et al. 2001,
Durbin and Koopman 2012, Ionides et al. 2015, Kris-
tensen et al. 2016) may bewilder all but the most
quantitative ecologists, thus limiting the ability of
many researchers to formulate, fit, and evaluate their
own SSMs. Although there are some popular
application-specific R (R Development Core Team
2019) packages with functions to fit specialized SSMs
(e.g., MARSS for multivariate NDLMs [Holmes et al.
2012]; bsam, for animal movement [Jonsen et al.
2005]), few ecologists are aware of the full range of
SSMs that can be fitted with such packages. In addi-
tion, these packages may be inadequate for the data-
at-hand, especially when using SSMs to answer novel
questions or with new data types. A further complica-
tion with the application of SSMs is the potential for
estimability issues where some states or parameters
cannot be estimated well, or at all, given the available
data (Dennis et al. 2006, Knape 2008, Auger-Méthé
et al. 2016). For example, such estimability issues may
arise because the formulation of a SSM is too com-
plex for the data (e.g., the time resolution of the pro-
cess model is too fine relative to the time resolution
of the observations). Although there has been some
effort to provide a general, and easy-to-use, set of
tools for ecologists to fit SSMs to their data (e.g.,
King et al. 2016, de Valpine et al. 2017), the available
tools and array of choices may be overwhelming to
those with little familiarity with SSMs. Given these
challenges and the recent advancements in inference
methods and model diagnostics, we believe the time is
ripe to provide a review of these developments for sci-
entists wanting to fit SSMs to ecological time series.
In this review, we first demonstrate the flexibility

of SSMs through a set of examples (Examples of
Ecological SSMs) and discuss how ecologists should
consider SSMs as a default modeling technique for
many of their time series (SSMs as a Framework for
Ecological Time Series). Next, we review the different
inference methods that can be used to fit a SSM to
data (Fitting SSMs). We then discuss how one can
assess whether a SSM suffers from estimability or
identifiability issues (Formulating an Appropriate SSM
for Your Data). Lastly, we describe model selection
procedures (Computationally Efficient Model Compar-
ison Methods) and diagnostic tools that can be used
to verify whether a model is adequate (Diagnostics
and Model Validation for SSMs), crucial steps that
are often ignored. This review is accompanied by an
in-depth tutorial that provides examples of how one
can use R (R Development Core Team 2019) to fit,
and validate, SSMs with various inference methods.
We believe this review will give a strong foundation
to ecologists interested in learning about SSMs and
hope it will provide new tools to veteran SSM users
interested in inference methods and model validation
techniques.

EXAMPLES OF ECOLOGICAL SSMS

State–space models are flexible hierarchical models for
time series, where observations are imperfect measures of
temporally evolving hidden states. Through examples, we
demonstrate that SSMs can model univariate or multivari-
ate observations, as well as biological processes that evolve
in discrete or continuous time steps. We also show that
SSMs can be linear or nonlinear, and can use a variety of
statistical distributions (e.g., normal, Poisson, multino-
mial). To show the structural flexibility of SSMs, we chose
many examples from population and movement ecology,
two fields that have been crucial in the development of
these models. However, SSMs can be used to model time
series from all branches of ecology.

A toy example: normal dynamic linear model

To formalize the description of SSMs, we start by
describing a simple toy example. It models a time series of
univariate observations, denoted yt, made at discrete and
evenly spaced points in time t (t = 1, 2, . . ., T). The time
series of states, denoted zt, is defined at the same time
points t as the observations. Our model is a simple normal
dynamic linear model (NDLM); thus process variance and
observation error are modeled with Gaussian distributions
and both time series are modeled with linear equations.
State–space models make two main assumptions. First,

SSMs assume that the state time series evolves as a Markov
process (Aeberhard et al. 2018). This Markov process,
which is generally of first order, is a relatively simple way to
incorporate temporal dependence. For our toy model, this
means that the state at time t, zt, depends only on the state
at the previous time step, zt−1. Second, SSMs assume that
the observations are independent of one another once we
account for their dependence on the states. More formally,
we say that, given the corresponding state zt, each observa-
tion yt is conditionally independent of all other observa-
tions, ys, s ≠ t. Thus, any dependence between observations
is the result of the dependence between hidden states
(Aeberhard et al. 2018). For our toy model, this means that
yt is independent of yt−1, and all other observations, once
we account for the dependence of yt on zt (Fig. 1a). In a
population dynamics context, this could be interpreted to
mean that the values of observations are autocorrelated
because the process driving them (i.e., the true population
size of the animal) is autocorrelated through time. In con-
trast, the discrepancy between the true population size and
the observation is not correlated in time. We can see this
structure in the equations for our toy SSM:

zt ¼ βzt�1þ ɛt, ɛt ∼N 0, σ2p
� �

, (1)

yt ¼ αztþηt, ηt ∼N 0, σ2o
� �

: (2)

The autocorrelation in the states is captured by the
parameter β. The observations are a function of the
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states only and the parameter α allows the observation
at time t to be a biased estimate of the state at time t.
The process variation (εt) and observation error (ηt) are
both modeled with normal distributions but have differ-
ent standard deviations (σ2p and σ2o). We have not defined
the state at time 0, z0, and many authors will provide an
additional equation, often referred as the initialization
equation, which describes the probability of different
values of z0 (e.g., z0 ∼N 0, σ2z0

� �
). For our toy example,

we view z0 as a fixed and unknown parameter.
The terminology used to refer to the process and

observation equations varies in the literature. A process
equation can be referred as a process model, state
equation, state model, or transition equation. An obser-
vation equation can be referred as an observation
model, measurement equation, or measurement model.
In this paper, we generally use the terms “process equa-
tion” and “observation equation,” respectively, and we
often describe SSMs with equations that combine a
deterministic function with a stochastic component (e.g.,
Eqs. 1, 2).
To reveal the dependence structure further and under-

stand how to fit SSMs to data, it can help to character-
ize a SSM in terms of probability distributions for the
states and the observations, for example,

f ðztjzt�1, θpÞ, t¼ 1, . . ., T , (3)

gðytjzt, θoÞ, t¼ 1, . . ., T : (4)

In the case of our toy model, f and g are two normal
probability density functions, and θp and θo are vectors
of parameters associated with each equation (i.e.,
θp ¼ β, σ2p

� �
, θo ¼ α, σ2o

� �
). Eq. 3 describes the autocor-

relation in state values as a first-order Markov process,
and Eq. 4 describes how observations depend simply on
the states. This definition also demonstrates that states
are random variables and thus that SSMs are a type of
hierarchical model.
One of the goals of fitting a SSM to data is typi-

cally to estimate unknown parameters. Here, to con-
trast them with the states, we refer to these as the
fixed parameters and denote them together as θ. For
example, here θ = (θp, θo, z0), thus α, β, σ2p, σ2o, z0 in
Eqs. 1, 2. A second important goal is to estimate the
unobserved states, z1:T = (z1, z2, . . ., zT), where T is
the length of the time series. The notation 1:t, which
we use throughout, refers to the sequence 1, 2, . . ., t.
Fig. 1b shows how close estimates of the states (ẑ1:T )
can be to their true values.
State-space models can be fitted using frequentist or

Bayesian approaches to statistical inference. When using
a Bayesian approach, a third level is added to the model
hierarchy: the prior distribution(s) for the fixed parame-
ters denoted by the probability density function, π(θ|λ),
where λ are known values called hyperparameters.
Although we refer to θ as fixed parameters to differenti-
ate them from the states, in Bayesian inference θ is a

vector of random variables. In Fitting SSMs and Appen-
dix S2, we discuss how we can use these probabilistic
descriptions of the model for inference.
This simple linear and normal model is a toy example

that we will use throughout to explain the concepts asso-
ciated with fitting and validating SSMs. We will also use
this model in Appendix S1 to demonstrate how to use R
to fit a SSM to data. Although the simplicity of this toy
example makes it a helpful teaching tool, it is not a par-
ticularly useful model for ecology. We now turn to the
description of a set of ecological SSMs.

Handling nonlinearity

We use a set of simple univariate SSMs for population
dynamics to demonstrate that even simple ecological
models can rarely be blindly modeled as NDLMs. Jamie-
son and Brooks (2004) applied multiple SSMs to abun-
dance estimates from North American ducks obtained
through annual aerial counts. We start with one of their
simplest models, for which the process equation is the
stochastic logistic model of Dennis and Taper (1994).
This model allows for density dependence, that is, a
change in growth rate dependent on the abundance in
the previous year:

zt ¼ zt�1exp β0þβ1zt�1þ ɛtð Þ, ɛt ∼N 0, σ2p
� �

: (5)

As in the toy example above, zt denotes the true hid-
den state, in this case the number of ducks in year t. The
parameter β0 > 0 determines the median rate of popula-
tion growth when population size is 0. The parameter
β1 ≤ 0 determines how much the growth rate decreases
with an increase in population size, with β1 = 0 indicat-
ing no density dependence. The process variation, εt, is
normally distributed and represents the random change
in growth rate each year. The observations yt are mod-
eled as unbiased estimates of the true population size
with a normally distributed error:

yt ¼ ztþηt, ηt ∼N 0, σ2o
� �

: (6)

Even though the observation equation is linear with a
Gaussian error, the SSM is not a NDLM because of the
exponent in the process equation (Eq. 5). Jamieson and
Brooks (2004) also modeled the population size on a log-
arithmic scale, wt = log(zt), which resulted in the follow-
ing formulation:

wt ¼wt�1þβ0þβ1exp wt�1ð Þþ ɛt, ɛt ∼N 0, σ2p
� �

, (7)

yt ¼ exp wtð Þþηt, ηt ∼N 0, σ2o
� �

: (8)

Although such reconfiguration can sometimes lin-
earize the model, in this case the model remains nonlin-
ear. Jamieson and Brooks (2004) use a Bayesian
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framework to fit this model; see their original paper for
the description of the priors.
The modeling of density dependence has been exten-

sively debated in the literature, and Jamieson and
Brooks (2004) also explored an alternative process equa-
tion, a stochastic Gompertz model:

zt ¼ zt�1exp β0þβ1log zt�1ð Þþ ɛtð Þ, ɛt ∼N 0, σ2p
� �

, (9)

which assumes that the per-unit-abundance growth rate
depends on the log abundance, log(zt−1), instead of the
abundance, zt−1 (Dennis and Taper 1994). Such a model
is often linearized as follows:

wt ¼ β0þ 1þβ1ð Þwt�1þ ɛt, ɛt ∼N 0, σ2p
� �

, (10)

gt ¼wtþηt, ηt ∼N 0, σ2o
� �

, (11)

where wt = log(zt) and gt = log(yt) are the logarithms of
the states and observations, respectively (e.g., Dennis et al.
2006). This linear version of the model is a NDLM that
can be fitted with tools such as the Kalman filter (Dennis
et al. 2006). This statistical convenience may have con-
tributed to the uptake of the stochastic Gompertz SSM in
the literature. However, it may not always be adequate to
assume that the growth rate depends logarithmically on
population density (Dennis and Taper 1994).
Many papers have extended these models to incorpo-

rate external covariates (e.g., Viljugrein et al. 2005,
Sæther et al. 2008, Lindén and Knape 2009). For exam-
ple, one could account for the influence of fluctuating
availability of wetlands on the population size of ducks
by including the number of ponds in year t, pt, as a
covariate in the process equation and modifying the
Gompertz stochastic model as follows:

wt ¼ β0þ 1þβ1ð Þwt�1þβ2ptþ ɛt, ɛt ∼N 0, σ2p
� �

: (12)

This set of examples shows how easy it is to adapt and
extend models in the SSM framework. Although even
simple ecological models may only be linear with trans-
formations and assumptions, Jamieson and Brooks
(2004), Viljugrein et al. (2005), and Lindén and Knape
(2009) showed that accounting for observation error
improved the inference regardless of the process equa-
tion. For example, Viljugrein et al. (2005) demonstrated
that using a SSM, rather than a model that ignores
observation error, decreased the size of the bias in the
estimates of density dependence. This decreased bias,
and a better quantification of uncertainty, reduced the
cases where one would erroneously conclude the pres-
ence of density dependence.

Joining multiple data streams

Integrating multiple sources of data, often referred as
data streams, into a single model can offset their

individual limitations and reveal more complex ecologi-
cal relationships (McClintock et al. 2017). To showcase
how SSMs can extract the information provided by mul-
tiple data streams, we present a simplified version of a
state–space stock assessment model described by Nielsen
and Berg (2014). SSMs are often used in fisheries stock
assessments (Aeberhard et al. 2018), where the first data
stream, Ca,t, represents how many fish from each age
class a are caught in the commercial fishery in each year
t, and the second data stream, Ia,t,s, includes age-specific
indices from distinct scientific surveys, s, which can
occur in different years and only capture some portion
of the age classes.
The hidden state in each year t is a vector combining

the log-transformed stock sizes, Na,t, and fishing mortal-
ity rates, Fa,t, for each age class: zt = (logN1,t, . . ., log-
NA,t, logF1,t, . . ., logFA,t)0, where A represents the oldest
age class. Just as for the toy example, the process equa-
tions describe the state in year t as a function of the state
in year t − 1. However, unlike the toy model, we no
longer have a single process equation. We have instead a
set of equations describing recruitment, survival, and
mortality:

log N1,tð Þ¼ log N1,t�1ð Þþ ɛN1,t , (13)

log Na,tð Þ¼ log Na�1,t�1ð Þ�Fa�1,t�1�Ma�1,t�1

þ ɛNa,t , 2≤ a≤A,
(14)

log Fa,tð Þ¼ log Fa,t�1ð Þþ ɛFa,t , 1≤ a≤A, (15)

where age and year specific log fishing mortality rates,
logFa,t, are considered states that evolve as a random
walk through time, but the equivalent natural mortality
rate, logMa,t, is assumed known from outside sources.
Although the main equation describing the population
growth (Eq. 14) is based on demographic processes, the
other equations (Eqs. 13, 15) are simply assuming that
recruitment and fishing mortality are each correlated
across years. The formulation of Eq. 14, and Eqs. 16, 17
below, are based on the well-known Baranov catch equa-
tion, which states that a cohort continuously decreases
in size through time according to two sources of mortal-
ity (i.e., fishing and natural; see Aeberhard et al. [2018]
for details). Derived from a continuous-time equation,
the Baranov equation maps the surviving cohort size as
depending exponentially on fishing and natural mortal-
ity rates. Thus, as shown here, the SSM can be modeled
by expressing the age-specific stock size and mortality
rates on the logarithmic scale.
The process variation for all of these equations are

assumed to be Gaussian with zero mean, but they differ
in their variance and covariance parameters. For recruit-
ment and survival, the variation is assumed to be

uncorrelated, that is, ɛN1,t ∼N 0, σ2Na¼1

� �
, and

ɛNa,t ∼N 0, σ2Na>1

� �
. However, for fishing mortality, the
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yearly variation is assumed to be correlated across age
classes (i.e., εFt ¼ ɛF1,t, ⋯, ɛFa ,tð Þ0 ∼N 0, ΣFð Þ) due to
age/size correlations in capture probability. The covari-
ance matrix, ΣF, is assumed to have an autoregressive
order 1, AR(1), correlation structure (i.e., each element
Σa,~a ¼ ρ a�~aj jσaσ~a, where ρ is the correlation coefficient
and a�~aj j is the absolute age difference).
The two different sets of data streams (i.e., the

observed age-specific log-catches, logCa,t, and the age-
specific log-indices from scientific surveys, logIa,t,s) are
related to the time series of the unobserved states, zt,
with the following observation equations:

logCa,t ¼ log
Fa,t

Ka,t
1� e�Ka,t
� �

Na,t

� �
þηa,t,c, (16)

logIa,t,s ¼ log Qa,se
�Ka,t

Ds
365Na,t

� �
þηa,t,s, (17)

where Ka,t is the total mortality rate of age class a in year
t (i.e., Ka,t = Ma,t + Fa,t), Ds is the number of days into
the year when the survey s is conducted, and each Qa,s is
a model parameter describing the catchability coeffi-
cient. The observation error terms, ηa,t,c and ηa,t,s, are
assumed to be Gaussian distributed and their variances
are designed such that the catch data, and each scientific
survey have their own covariance matrix. We can use dif-
ferent covariance structures for each matrix (e.g., inde-
pendent catches across ages, but each survey index has
an AR(1) correlation structure across ages; see Berg and
Nielsen [2016] for other examples).
This example depicts how to harness more informa-

tion from independent data streams. The observation
equations (Eqs. 16, 17) account for the differences in
how each data stream is related to a common of set of
states (i.e., stock sizes, Na,t). In addition, the poten-
tially more biased data stream (i.e., the fisheries catch
data) provides direct information on the other set of
states (i.e., fishing mortality rate, Fa,t), which would
otherwise be difficult to estimate. This type of struc-
ture provides the opportunity to model more complex
ecological mechanisms (e.g., Eqs. 13–15). SSMs that
integrate multiple data streams have been used in other
fields of ecology, including movement ecology
(McClintock et al. 2017) and disease ecology (Hobbs
et al. 2015).

Accounting for complex data structure

State-space models are well suited to handle the com-
plex structure of many ecological data sets. For example,
the first difference correlated random walk model
(DCRW [Jonsen et al. 2005]), one of the earliest SSMs
for animal movement, was developed to account for the
peculiarities of Argos doppler shift location data (Jonsen
et al. 2005). Argos tags are often used to track marine
animals because they overcome some of the challenges
associated with using conventional GPS units in an

aquatic environment. However, unlike most GPS data
sets, Argos locations,

yi ¼
yi,lon
yi,lat

" #
,

have large observation errors (mean error ranging from
0.5 to 36 km [Costa et al. 2010]), including large outliers.
In addition, they are collected at irregular time intervals,
i (i.e., when the animal is at the surface and the satellites
are overhead), and have a quality rating that classifies
each location into one of six categories qi. All of these
aspects of the data are incorporated in the simplified ver-
sion of the DCRW presented below.
Although the observations are taken at irregular time

intervals, the process equation models the true locations

of the animal at regular time intervals t, zt ¼
zt,lon
zt,lat

� 	
, for

T time steps. The process equation assumes that the ani-
mal’s location at time t is not only dependent on the previ-
ous location, zt−1, but also on the animal’s previous
displacement in each coordinate, zt−1 − zt−2:

zt ¼ zt�1þγ zt�1� zt�2ð Þþ ɛt, ɛt ∼N 0, Σð Þ, 1≤ t≤T , (18)

where

Σ¼ σ2ɛ,lon ρσɛ,lonσɛ,lat
ρσɛ,latσɛ,lon σ2ɛ,lat

" #
: (19)

The parameter γ can take values between 0 and 1 (i.e.,
0 ≤ γ ≤ 1), and controls the degree of correlation
between steps. Values close to 0 mean that the movement
only depends on the previous location. Values close to 1
reflect strong correlation in both latitudinal and longitu-
dinal displacements, and thus mean that the animal has
a tendency to move at the same speed and in the same
direction as the previous step. The covariance matrix for
the process variation, Σ, allows for covariance between
longitude and latitude, but in many instances it is sim-
pler to assume that ρ = 0.
The observation equation accounts for various char-

acteristics of the Argos data:

yi ¼ 1� jið Þzt�1þ jiztþηi, ηi ∼T Ψ∘Si, Dið Þ, 1 ≤ i ≤N, (20)

where

Ψ¼ ψlon

ψlat

� 	
, (21)

Si ¼
slon,qi
slat,qi

� 	
, (22)

Di ¼
d f lon,qi
d f lat,qi

" #
, (23)

and N is the number of observed Argos locations.
Because data are taken at irregular time intervals, the

Xxxxx 2021 ECOLOGICAL STATE–SPACE MODELS Article e01470; page 7

R
E
V
IE
W



true location of the animal is linearly interpolated to the
time of the observation, with ji representing the propor-
tion of the regular time interval between t−1 and t when
the observation yi was made. Because the data often have
outliers, the measurement errors are modeled with t dis-
tributions, which have fat tails. Finally, to model the dif-
ferences in error size between the six quality categories,
each category, qi, is associated with unique bivariate t
distributions: T Ψ∘Si, Dið Þ. In particular, each category
is associated with a unique scale parameter, sc,qi , and
degrees of freedom, d f c,qi , for each coordinate (i.e., c =
lon or lat). Instead of estimating these 24 parameters,
many researchers fix them to known values derived from
field experiments (e.g., Jonsen et al. [2005]). To allow for
discrepancies between these fixed values and the ones
that may fit the data best, we can add a correction factor
for each coordinate, ψc. Note that the Hadamard pro-
duct, ∘, simply states that we perform entrywise multipli-
cation of the correction factors to the scale parameters;
that is, ψcsc,qi, for c = (lon, lat). Fig. 2 shows the DCRW
fitted to a polar bear track, and Appendix S1: Sec-
tion S2.3 provides the code to fit the model.
Data sets with unexplained outliers and data points

with differing quality ratings are common in ecology,
and the flexibility of SSMs allows one to account for
these characteristics in the model directly, rather than
arbitrarily discarding data.

Accommodating continuous-time processes

So far we have only described SSMs where the hidden
state evolves in discrete time steps. However, many bio-
logical processes occur in continuous time and modeling
them as such can facilitate the use of irregularly timed
observations (Dennis and Ponciano 2014, McClintock
et al. 2014). Using a simplified version of the movement
model of Johnson et al. (2008), we showcase how SSMs
can accommodate continuous-time process equations.
The SSM of Johnson et al. (2008) models the move-

ment of an animal with a continuous-time correlated
random walk. The process equation is formulated in
terms of how changes in velocity v through time affect
the location µ of an animal. Although the model
describes an animal moving in two dimensions (e.g., lati-
tude and longitude), for simplicity, we assume the veloc-
ity processes in each coordinate to be independent and
only describe the process for one coordinate. Velocities
at time t, denoted v(t), are the first set of states. Change
in velocity over time is described using a type of diffu-
sion model called an Ornstein-Uhlenbeck (OU) process.
At time t + Δ, velocity is:

v tþΔð Þ¼ e�βΔv tð Þþ ζ Δð Þ, ζ Δð Þ∼N 0, σ2OU 1� e�2βΔ� �
=2β

� �
, β>0,

(24)

where β represents how quickly the temporal correlation
in velocity tends towards 0, and ζ(Δ) is a random pertur-
bation. As both increase, the autocorrelation in velocity

decreases. In addition, as the time difference (Δ)
increases, the velocity value at time t + Δ depends less
on the previous velocity value and more on the random
perturbation. This assumption is often reasonable, as we
expect an animal to continue at the same speed during a
short period of time and be more likely to change speed
over long time periods.
Although the core of the process model describes

changes in velocity, the observations are locations. Thus,
we have a second set of states, the locations µ(t), which
are related to velocities as follows:

μ tþΔð Þ¼ μ tð Þþ
ZtþΔ

t

v uð Þdu: (25)

Integrating the rate of change, here speed, over the
time interval is often key to link continuous-time pro-
cesses to ecological observations (e.g., to model oxygen
concentration; Appling et al. [2018]). Such integration
can be difficult to handle, but Johnson et al. (2008)
solved Eq. 25 to show that the change in location in time
Δ is simply:

μ tþΔð Þ¼ μ tð Þþ v tð Þ 1� e�βΔ

β

� �

þξ Δð Þ, ξ Δð Þ∼N 0,
σ2OU

β2

� �
:

(26)

Because Δ can take any nonnegative value, we can
keep track of the states at any time intervals, thus easily
accommodating observations, yi, collected at irregular-
spaced times, ti. For the state, zi, the final process equa-
tions in matrix notation form are

zi ¼
μi
vi

� 	
¼ 1 1�eβΔi

� �
=β

0 e�βΔi

" #
μi�1

vi�1

� 	
þηi, ηi ∼N 0, Σ2

p

� �
,

(27)

where μi and vi are μ(t) and v(t) at the time when the ith
observation occurred, Δi = ti − ti−1, and the variance–
covariance matrix was solved to be

Σ2
p ¼

σ2OU

β2
σ2OU

2β2
1� e�βΔi
� �2

σ2OU

2β2
1� e�βΔi
� �2 σ2OU 1� e�2βΔi

� �
=2β

2
6664

3
7775: (28)

The observation equation can be chosen as usual, for
example, as simply adding normal error to the true loca-
tion:

yi ¼ μiþ ɛi, ɛi ∼N 0, σ2o
� �

: (29)

The SSM defined by Eqs. 27–29 is a linear Gaussian
SSM and can therefore be fitted with a Kalman filter.
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This model allows various extensions to include differ-
ent aspects of animal movement. For example, Johnson
et al. (2008) show how haul-out behavior of tagged seals
can be incorporated using data on how long the tag has
been dry (e.g., by making β an increasing function of dry
time). To account for the large outliers associated with
Argos data one can use a t distribution (see Accounting
for Complex Data Structure), in which case the Kalman
filter will no longer be adequate and other fitting meth-
ods will be required (Albertsen et al. 2015). Although
continuous-time models can be more complex to under-
stand, they are useful in a variety of contexts where data
are collected at unequal time intervals and when ecologi-
cal processes are intrinsically continuous (e.g., popula-
tion dynamics [Dennis and Ponciano 2014]).

Integrating count and categorical data streams

The SSM framework provides the flexibility to create
joint models that integrate different data types and link
biological processes. Here, we use the model of Schick et
al. (2013) to demonstrate how count and categorical
data can be integrated in a single SSM for the health,
monthly movement, and survival of North Atlantic right
whales (Eubalaena glacialis).
Schick et al. (2013) extracted two types of data from

photographic observations of individual whales. The first
type, denoted yi,t,k, is the number of sightings of individual
i in geographic zone k and month t. The second type,
denoted Hq,i,t is the value for the qth visual health metric
for individual i in month t. The six visual health metrics

(e.g., skin condition, entanglement status) are on ordinal
scales, each with two or three levels. In addition, ancillary
data (e.g., search effort, whale age) are used.
Three process equations model the health, survival,

and monthly movement of each individual whale. Whale
i in month t is characterized by its age ai,t, health status
hi,t (defined on an arbitrary, but positive, scale: (0,100)),
and location ki,t (one of nine geographic zones). Health
status, hi,t, is modeled as a function of previous health
status and age:

hi,t ¼ β0þβ1hi,t�1þβ2ai,t�1þβ3a
2
i,t�1þ ɛi,t, ɛi,t ∼N 0, σ2

� �
:

(30)

When β2 > 0 and β3 < 0, the quadratic age term
allows for the fact that health status, and thus survival
probability, initially increases but declines with advanced
age. Survival from month t to t + 1 is modeled as a Ber-
noulli process, with survival probability modeled with a
logit link function:

logit si,k,tð Þ¼ α0,kþα1hi,t: (31)

Here, α0,k denotes the fixed effect for zone k and α1
the relationship with health. Hence, survival probability
depends on health and on the occupied zone, allowing
researchers to identify the geographic zones associated
with reduced survival.
Although a whale is assumed to stay in a single zone

during the month, it can move between zones each

FIG. 2. The difference correlated random walk model (DCRW; Eqs. 18–23) fitted to a polar bear Argos track and validated with
GPS data. Panel (a) Maps the observed Argos data with points in shades of blue and green (darker colors representing higher-
quality observations), the estimated true locations in red, and the true locations of the bear (GPS data) with open circles. Panels (b)
and (c) Show the longitudes and latitudes of a small subset of the time series (indicated by a gray box in the map). These panels
highlight the temporal clustering of observations, which likely helped the state estimation procedures.
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month. The monthly location of each individual zi,t is
only known when the individual is sighted that month.
The subscript t, throughout, represents the number of
months since the beginning of the time series. For each
month of the year (January, . . ., December), denoted t(u),
the movement between zones is modeled with a transi-
tion matrix, where each element mj,k,t uð Þ describes the
probability of moving from zone j to zone k (i.e.,
mj,k,t uð Þ ¼Prðzi,t uð Þþ1 ¼ kjzi,t uð Þ ¼ jÞ). As the complete geo-
graphic range of the whales is assumed to be covered by
these zones, a living whale will be in one of the nine dis-
tinct zones at time t + 1, ∑9

k¼1mj,k,tðuÞ ¼ 1. The changes
in transition probabilities between the months of the
year, t(u), allow for the modeling of seasonal migration.
The model has two sets of observation equations.

First, the number of sightings of whale i in location k
and month t is modeled as a Poisson random variable.

yi,k,t ∼Pois λiEk,tð Þ, (32)

where Ek,t denotes the search effort in zone k and month
t and λi denotes the expected number of sightings of
individual i per unit effort. The number of sightings of
whale i is only modeled in months where the individual
is alive based on state si,k,t and in the appropriate
monthly geographical zones according to state zi,t. Sec-
ond, each visual health metric is modeled as coming
from a multinomial logit distribution. The probability of
being in each level of the qth health metric depends on
the true health status, hi,t, and the model is structured so
as to ensure that the ordinal aspect of the variables is
respected (i.e., that lower values means lower health).
For example, if the health metric Hq,i,t has a three-level
ordinal scale, the observation equations for this metric
are

Hq,i,t ∼Multinom 1, pq,i,t
� �

, (33)

logit pq,i,t,1
� �

¼ log
pq,i,t,1

pq,i,t,2þpq,i,t,3

 !
¼ cq,0,1þ cq,1,1hi,t,

(34)

logit pq,i,t,1þpq,i,t,2
� �

¼ log
pq,i,t,1þpq,i,t,2

pq,i,t,3

 !

¼ cq,0,2þ cq,1,2hi,t,

(35)

pq,i,t,3 ¼ 1�pq,i,t,1�pq,i,t,2: (36)

The vector pq,i,t contains the probabilities with which
an individual with true health hi,t is assigned a specific
health level. Because hi,t is positive, forcing the parame-
ters cq,0,1 < cq,0,2 and cq,1,1 < cq,1,2, and modeling cumu-
lative probabilities (Eq. 35) ensure that the order of the
levels is accounted for. The probabilistic nature of the

model allows health metrics to depend on the true health
status but to be observed with error.
By integrating different data types, this SSM allows

inference about various aspects of North Atlantic right
whales. For example, we can learn which visual health
metrics show the strongest links to underlying health,
whether geographic regions (and thereby human activ-
ity) have an impact on survival, and at which times of
the year movement to certain zones occurs. Although
this joint model may seem complex at first sight, each of
the individual hierarchical levels are relatively straight-
forward.

Capturing heterogeneity with random effects

SSMs can account for additional dependencies and
heterogeneity in parameter values with random effects.
This feature has been used to incorporate individual
variation in capture–recapture models (Royle 2008, King
2012). Capture–recapture models, such as the Cormack–
Jolly–Seber model, are often used to estimate survival
probabilities and gain insight on the factors that may
affect survival. They model data, where individuals are
uniquely identifiable via artificial (e.g., rings) or natural
marks (e.g., coloring [King 2012]). One of the first appli-
cations of SSMs to such data was by Royle (2008) to
demonstrate how to model variation in survival and cap-
ture probabilities. Royle (2008) applied the model to a 7-
yr study of European dippers (Cinclus cinclus).
Royle (2008) presents a SSM parameterization of a

Cormack–Jolly–Seber model, where the observation yi,t
represents whether individual i was capture during the
tth sampling occasion (i.e., yi,t = 1 means the individual
was captured at time t) and the state zi,t describes
whether individual i is dead or alive at time t (i.e., zi,t = 1
means the individual was alive at time t). At the time of
first capture, fi, the state is considered fixed: zi, f i = 1.
Afterward, the process and observation equations are
both Bernoulli trials, representing the survival and cap-
ture processes for each individual i:

zi,t ∼Bernoulli ϕi,t�1zi,t�1
� �

, f i< t≤ T , (37)

yi,t ∼Bernoulli pi,t zi,t
� �

, f i< t≤ T , (38)

where T is the total number of sampling occasions, and
ϕi,t is the probability of survival of individual i over the
interval (t, t + 1) if the individual was alive at time
t − 1, and pi,t is the probability of capturing individual i
during the tth sampling occasion if it is alive. These
probabilities are multiplied by the state values. Thus, an
individual’s probability of surviving to time t becomes 0
if the animal was dead at time t − 1 (i.e., zt−1 = 0)
regardless of the value of ϕi,t − 1, which means that once
the animal is dead it remains dead for the rest of the time
series. Similarly, the probability of being captured at time
t becomes 0 if the individual is dead at that time.
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We could simplify the model by having a single overall
survival probability (ϕi,t = ϕ) and a single capture prob-
ability (pi,t = p). However, differences between sampling
occasions and individuals (e.g., due to variations in envi-
ronmental and body conditions) often warrant for tem-
poral and individual variations in survival and capture
probabilities. Royle (2008) modeled the variations in
these probabilities as follows:

logit ϕi,t

� �¼ btþβi, βi ∼N 0, σ2β
� �

, (39)

logit pi,t
� �¼ atþαi, αi ∼N 0, σ2α

� �
, (40)

where at and bt are the fixed temporal effects (i.e., effects
associated with each sampling occasion), αi and βi are
the latent individual effects, and σ2α and σ2β are the vari-
ances for the random effects. Just as for generalized lin-
ear model, the logit link function ensures that
probability parameters stay between 0 and 1. The fixed
temporal effects require that we estimate (T − 1) +
(T − 2) additional parameters (for details, see Royle
[2008]). In contrast, the individual random effects allow
one to model heterogeneity in survival and capture prob-
abilities with only two additional parameters.
State-space models are now commonly used to model

capture–recapture data because their mechanistic struc-
ture allows one to incorporate additional complexity
(King 2012). Using random effects to model variation in
parameter values can be used in many other ecological
applications.

Modeling discrete state values with hidden Markov models

Hidden Markov models (HMMs) are a special class of
SSMs, where the states are discrete rather than continu-
ous (generally categorical with a finite number of possi-
ble values [Langrock et al. 2012]). HMMs have gained
popularity in ecology, where they are used to model cap-
ture–recapture data (e.g., Choquet and Gimenez 2012,
Johnson et al. 2016) and animals that switch between
distinct behavioral modes (Langrock et al. 2012).
Recently, McClintock et al. (2020) have demonstrated
that HMMs are widely applicable in ecology. Having dis-
crete states in a SSM becomes important when choosing
fitting procedures (see Fitting Models with Discrete
States), and thus we provide a few examples.
The two main characteristics of HMMs are (1) each

observation is assumed to be generated by one of N dis-
tributions, and (2) the hidden state sequence that deter-
mines which of the N distributions is chosen at time t is
modeled as a Markov chain, where the probability of
being in each mode at time t depends only on the state
value at the previous time step (Langrock et al. 2012).
The capture–recapture model presented in Capturing
Heterogeneity with Random Effects is an HMM, because
state zi,t can only have one of two discrete values: 0 if the
individual is dead or 1 if alive. The state value directly

affects the observation equation (Eq. 38), and the
observation, yi,t, is generated by one of two dis-
tributions: yi,t ∼ Bernoulli(0) if zi,t = 0 or yi,t ∼
Bernoulli (pi,t) if zi,t = 1. As seen in the process equa-
tion (Eq. 37), the probability of being in each state at
time t depends only on the state value at the previous
time step. This process can be viewed as a Markov chain
with the following transition probability matrix:

Γ¼ 1 0

1�ϕi,t�1 ϕi,t�1

" #
, (41)

where for each individual, the probability of staying
dead (i.e., Pr(zi,t = 0|zi,t−1 = 0)) is 1, that of resurrecting
(i.e., Pr(zi,t = 1|zi,t−1 = 0)) is 0, that of dying (i.e.,
Pr(zi,t = 0|zi,t−1 = 1)) is the probability that it did
not survive (i.e., 1−ϕi,t−1), and that of surviving (i.e.,
Pr(zi,t = 1|zi,t−1 = 1)) is ϕi,t−1.
In other contexts, the transition probabilities may be

more flexible, allowing for transition between all states,
and the SSM may include both discrete and continuous
states. For example, the model presented in Accounting
for Complex Data Structure was originally developed to
model the movement of animals tracked with Argos data
that switched between two behavioral modes (Jonsen
et al. 2005). Instead of having a single γ parameter that
controls how correlated the steps are (e.g., Eq. 18), this
model has two parameters, γbt , each one associated with
one of the behavioral modes, bt = 1 or bt = 2. When γ1
is close to 0 and γ2 is close to 1, the movement path
switches between tortuous and directed movement. The
switch between the behavioral modes is modeled with a
simple Markov chain (i.e., Pr(bt = j|bt−1 = i) = αij).
Although here we could allow the animal to switch back
and forth between the behavioral modes (i.e., no αij is set
to 0), the transition out of a given mode always needs to
sum to one (i.e., ∑2

j¼1αij ¼ 1 for i, j = 1, 2).

SSMS AS A FRAMEWORK FOR ECOLOGICALTIME SERIES

Time is one of the fundamental axes that shape eco-
logical systems (Wolkovich et al. 2014) and time series
are crucial to understand the complex processes and
interactions that govern all aspects of ecology (e.g.,
Boero et al. 2015, Damgaard 2019). Although SSMs
have a long history in only a few fields of ecology, the
breadth of their applications has been expanding and
could be extended to most ecological time series. SSMs
provide a framework that can be used to understand the
mechanisms underlying complex ecology systems and
handle the large uncertainties associated with most eco-
logical data and processes.
State–space models (SSM) have been increasingly used

in plant ecology. Damgaard (2012) showed the useful-
ness of using SSMs to analyze plant cover data collected
through quadrats (specifically through pin-point meth-
ods). Bell et al. (2015) demonstrated how SSMs could be
used to estimate canopy processes (e.g., conductance
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and transpiration) using imperfectly monitored stem sap
flux data. Clark et al. (2011) used the SSM approach to
model the growth, fecundity, and survival of more than
27,000 individual trees. They showed how these pro-
cesses are linked with light competition and spatiotem-
poral variation in climate.
State-space models are now used for paleoecological

research. For example, Tomé et al. (2020) used SSMs to
identify the drivers of changes in the mass and diet of a
small mammal during the late Pleistocene. They use three
separate linear Gaussian SSMs to model temporal
changes in mass (as estimated from molar size) and in two
stable isotopes (extracted from jaw bone collagen) as
responses to each other and of a set of covariates related
to climate (e.g., maximum temperature) and community
structure (e.g., species richness). Einarsson et al. (2016)
developed a SSM for sediment core data. One process
equation modeled the change in abundance of midge egg
capsules. The other modeled the change in pigment con-
centration characterizing potential resources (e.g., dia-
toms). These process equations modeled the abundance of
each group with a Gompertz population model (similar to
the model in Handling Nonlinearity), modified to add the
effect of the other group’s abundance at the previous time
step. The measurement equations modeled sediment mix-
ing and its associated uncertainty. They use their model to
show that the cyclic fluctuations in midges are likely dri-
ven by consumer–resource (a.k.a. exploiter–victim or
predator–prey) interactions.
Detecting cyclicity in ecological time series can be chal-

lenging because of temporal autocorrelation, and Louca
and Doebeli (2015) showed that SSMs can outperform
statistical tests for cyclicity. For example, they showed that
simpler models would often lead to erroneous conclusions
that cycles are present; the SSM generally had an appro-
priate 5% rate of Type I errors, but simpler tests had rates
as high as 79%. The midge example of Einarsson et al.
(2016) further demonstrates the usefulness of SSMs to
identify the mechanisms behind cycles in ecological time
series. Similar SSMs have been used to investigate fluctua-
tions in other ecological fields (e.g., host–parasitoid sys-
tems [Karban and de Valpine 2010]).
State-space models have been used in ecosystem ecol-

ogy and biogeochemistry. For example, Appling et al.
(2018) used a SSM to model changes in oxygen concen-
tration in an aquatic ecosystem as a function of three
important processes: ecosystem’s gross primary produc-
tion, respiration, and gas exchange rate with the atmo-
sphere. The process equation of Appling et al. (2018)
predicts the oxygen concentration at time t as a function
of its previous value and its instantaneous rate of change
(similar to the model in Accommodating Continuous-
Time Processes). The rate of change is modeled through
a mechanistic equation, which sums the three processes
of interest. The study compared various versions of the
model, including versions that were not SSMs (i.e., ver-
sions without measurement error or process variation),
and showed that the best SSM formulation significantly

improved the accuracy and reduced the bias of estimates
of gross primary productivity, respiration, and gas
exchange. In some cases, the magnitude of the bias of
the SSM was half as large as that of simpler models. The
study of Jia et al. (2011) is one of the many examples of
applications of SSMs in soil science. Jia et al. (2011) used
linear SSMs with normally distributed error to model
the effects of elevation and the physical and chemical
properties of soil (e.g., clay content and organic carbon)
on the total net primary productivity of managed grass-
lands. They showed that the SSMs described the spatial
patterns of soil total net primary productivity better
than classical regression methods.
The term SSM has been used broadly in ecology to rep-

resent various types of hierarchical models with complex
dependence structure. In particular, the term has been
used for occupancy models that are based on capture–re-
capture SSMs similar to the one described in Capturing
Heterogeneity with Random Effects (e.g., Kéry et al. 2009,
Mordecai et al. 2011). Although they have similar struc-
ture, many of them lack the specific temporal autocorrela-
tion in process equation that we generally ascribe to SSM
(Fig. 1a) and may be better thought of as a related, but
different, type of hierarchical model. For some of these
models, it may be worth adding the Markovian depen-
dence of the state in the process equation. However, to our
knowledge, there are no studies that compare these related
hierarchical models to SSMs.
The ubiquity of SSMs in ecology may have been

obscured as some complex SSMs that combine various
statistical techniques have not been identified as SSMs.
For example, Thorson et al. (2016) present a joint spe-
cies distribution model that has temporal dynamics.
Although not called a SSM, their model has the essential
structure of a SSM (Fig. 1a). We view their model as a
Gompertz SSM (similar to the model in Handling Non-
linearity) combined to dynamic factor analysis to reduce
dimensions and Gaussian random fields to account for
spatial autocorrelation. This complex multispecies
model was used to demonstrate that the spatiotemporal
patterns of butterflies from the same genus were signifi-
cantly correlated and to identify dominant patterns in
community dynamics of marine fish.
The complexity of SSMs may prompt ecologists to ask:

could we use a simpler alternative? In fisheries science,
early papers on SSMs showed that they were particularly
superior to simpler models when both the process variance
and the observation error are large (e.g., de Valpine and
Hastings 2002). When one of the sources of stochasticity
is small, and the model dynamics are not too complex,
simpler models that account for either just the process
variance or observation error give adequate results (de
Valpine and Hastings 2002). A key point, however, is that
the simpler model performs adequately only if the model
is well specified with regards to which source of stochastic-
ity is most important. Thus, using a process variance-only
model, is only suitable if we are certain that the observa-
tion error is negligible. Similarly, using an observation-
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error–only model, is only suitable if we are certain that the
process variation is small. Although simpler alternatives
can be adequate in some contexts (see Bolker [2008: Chap-
ter 11]), many studies have shown that SSMs provided bet-
ter inference than simpler models (e.g., Jamieson and
Brooks 2004, Jia et al. 2011, Louca and Doebeli 2015,
Appling et al. 2018). For example, Lindén and Knape
(2009) showed that, unlike SSMs, simpler models often
had unreliable point and uncertainty estimates for envi-
ronmental effects, and that the 95% confidence intervals
excluded the true simulated value much more than 5% of
the time (up to 30%). They showed that SSMs always out-
performed the simpler alternatives. As such, we believe
that SSMs, and their extensions, should be a default statis-
tical modeling technique for many ecological time series.
In the rest of the paper, we provide the tools that allow
ecologists to apply these complex models adequately.

FITTING SSMS

The goals of fitting a SSM to data include estimating
the parameters, θ, the states, z, or both. In ecology, we reg-
ularly need to estimate both, as we rarely know the value
of θ a priori and estimating the states is often a primary
goal of the analysis. In movement ecology, researchers
often fit SSMs similar to that described in Accounting for
Complex Data Structure because the states provide better
estimates of the true locations of the animal than the data.
In the SSM literature, a distinction is often drawn between
three different types of state estimation processes based on
the amount of observations used to inform the estimates
(Shumway and Stoffer 2016). Using all of the observa-
tions, y1:T, to estimate the states is referred to as “smooth-
ing.” Smoothing is common with ecological SSMs, as we
often have the complete data set in hand when we start the
analysis. We denote the smoothed-state estimate as ẑtj1:T,
with the subscript t|1:T identifying that the state at time t
is estimated using the observations from time 1 to T. In the
original engineering application and in other fields, states
are often estimated while data continue to be collected, so
only observations up to and including time t, y1:t, are used
to estimate the state ẑtj1:t. This ubiquitous estimation pro-
cedure is referred to as “filtering.” Finally, we can use a
subset of the observations that ends s time steps before
time t, y1:t−s, to predict the state at time t, ẑtj1:t�s, a proce-
dure we refer to as “forecasting.” A common forecast is
the one-step-ahead prediction, ẑtj1:t�1, which is also used
within fitting algorithms (Appendix S2) and to validate
models (Diagnostics and Model Validation for SSMs).
Although these three types of state estimation processes
are useful, the uncertainty associated with the state esti-
mates tends to decrease for processes that use more obser-
vations (e.g., Shumway and Stoffer 2016).
The states are random variables, and thus have proba-

bility distributions. The states are sometimes referred to as
random effects or latent variables. The fundamental differ-
ences in the procedures used to estimate states, as opposed
to parameters (see Frequentist Approach), mean that

although we use estimation as an all-purpose term for
both states and parameters, state estimation procedures
are often referred as predictions, even when smoothing
and filtering are used. The inferences about the states can
include a variety of summary measures of their probability
distributions. Above, the state estimates (e.g., ẑtj1:T )
referred to point estimates such as the expected value.
However, one can also calculate interval estimates (e.g.,
95% confidence intervals) and single measures of uncer-
tainty (e.g., standard deviations or variances).
Methods for fitting SSMs can be divided into the two

main inferential approaches: frequentist and Bayesian.
These approaches differ in their philosophies; see Bolker
(2008) for a discussion. In brief, frequentist methods
determine the probability of the data for a set of particu-
lar conditions (i.e., the hypothesis is fixed, but the data
have a probability distribution). In contrast, Bayesian
methods determine the probability that particular condi-
tions exist given the data at hand (i.e., the data are fixed,
but the hypothesis/parameters have probability distribu-
tions). The Bayesian approach requires the specification
of prior beliefs for these distributions. Because of the
early development of Bayesian computational methods
for hierarchical models, historically it was easier to fit
complex SSMs with a Bayesian approach and frequentist
methods were limited to simple models (de Valpine
2012). As we will show, this is no longer true. There are
now many accessible methods that allow one to fit com-
plex SSMs with a frequentist approach (e.g., see Laplace
Approximation Methods and Sequential Monte Carlo
Methods). Thus, researchers can choose to work with
their favored philosophical approach and/or based on
the advantages of the algorithms available within each
approach (seeWhen to Use Each Method?).
In terms of fitting procedures, frequentists maximize

the likelihood, and Bayesians focus on the posterior den-
sity. As we show below, despite these differences, both
approaches involve high-dimensional integration, which
is at the crux of the difficulties associated with fitting
SSMs to data. The many tools developed for fitting
SSMs are essentially different solutions to this high-
dimensional integration problem.

Frequentist approach

When we fit a SSM with a frequentist approach, we
search for the parameter values that maximize the likeli-
hood, a method called maximum-likelihood estimation,
with the resulting estimates called maximum likelihood
estimates (MLEs). For our toy SSM (Eqs. 1, 2), the joint
likelihood for θ and z1:T would be defined as:

Ljðθ, z1:T jy1:T Þ¼
YT
t¼1

g ytjzt, θoÞf ðztjzt�1, θp
� �

, (42)

where T is the length of our time series and θ is a vector
of (unknown) model parameters that contains the
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parameters for the process equation, θp, and the obser-
vation equation, θo, and in this example the initial state,
z0. Maximizing the joint likelihood with respect to both
parameters and the states is challenging. Instead, one
can use a process with two interrelated steps, each
focused on estimating either the parameters or the
states.
To estimate the parameters, we maximize the marginal

likelihood, Lm(θ|y1:T):

θ̂¼ argmax
θ∈Θ

Lmðθjy1:T Þ, (43)

where

Lmðθjy1:T Þ¼
Z

Lj θ, z1:T jy1:Tð Þdz1:T : (44)

Here, the key is that we integrate out the hidden states
and thus have a function that only depends on the obser-
vations. The parameter estimates that result from maxi-
mizing the marginal likelihood have desired statistical
properties (consistency and asymptotic normality; see
Douc et al. 2011, de Valpine 2012), where the estimates
are anticipated to improve with increasing sample size.
Such properties would be hard to achieve when maximiz-
ing the joint likelihood, because the number of states to
estimate generally increases with the number of observa-
tions.
To estimate the hidden states, we can use the condi-

tional distribution of the states given the observations
and the estimated parameter values, for example,

pðz1:T jy1:T , θ̂Þ¼
Ljðz1:T jy1:T , θ̂ÞR

Lj z1:T jy1:T , θ̂
� �

dz1:T
, (45)

where Ljðz1:T jy1:T , θ̂Þ is similar to the right-hand side of
Eq. 42, except that we use the MLEs for the parameters.
Conditional distributions of the states, in particular the fil-
tering distributions (pðztjy1:t, θ̂); see Appendix S2 for an
example), are at the base of filtering methods, such as the
Kalman filter (Kalman Filter) and particle filter (Sequen-
tial Monte Carlo Methods). The means and variances of
filtering densities can provide good point estimates and
measures of uncertainty for state values (Appendix S2).
As an approximation of the state estimates, one can also
maximize Ljðz1:T jy1:T , θ̂Þ with respect to ẑ1:T :

ẑ1:T ¼ argmax
z1:T ∈ZT

Ljðz1:T jy1:T , θ̂Þ, (46)

where ZT is the set of all possible values for the states.
This maximization treats the states as if they were equiv-
alent to parameters in an ordinary likelihood (see Aeber-
hard et al. [2018] for more details) and is often used
when the marginal likelihood is estimated with the
Laplace approximation (see Laplace Approximation
Methods). Although Eq. 46 treats the parameters as

known when estimating the states, one can propagate
the parameter estimation variability when reporting the
state estimate variance (e.g., see the sdreport function
from R package Template Model Builder [TMB] [Kris-
tensen et al. 2016]).
The marginal likelihood used to estimate the parame-

ters, and thus the states, requires the computation of the
high-dimensional integral found in Eq. 44. This compu-
tation is difficult to achieve for most SSMs and the fre-
quentist inference methods now discussed are different
ways to either evaluate the marginal likelihood (e.g.,
Kalman filter) or to approximate it (e.g., Laplace and
simulation-based approximations).

Kalman filter.—For simple linear SSMs with Gaussian
errors (i.e., NDLMs), the state estimates and marginal
likelihood can be directly calculated using the Kalman
filter (Kalman 1960). The Kalman filter provides an
algorithm that, using only elementary linear algebra
operations, sequentially updates the filtering mean and
variance of the states (Harvey 1990, Durbin and Koop-
man 2012). Although the Kalman filter was developed
to estimate the state values for models with known
parameter values, its output can be used to evaluate the
marginal likelihood and thus to find the MLE. The Kal-
man smoother is an analogous algorithm that uses back-
ward recursion in time to obtain the mean and variance
of each smoothing distribution (i.e., distribution of
ztj1:T ; Harvey [1990], Durbin and Koopman [2012]). See
Appendix S2 for a detailed example of the Kalman filter
as applied to our toy model.
In Appendix S1: Section S1.3.1, we demonstrate how

to use the R package dlm (Petris 2010) to perform Kal-
man filtering and smoothing, as well as forecasting. It
can also be used to find MLEs of unknown fixed param-
eters. The package is flexible enough to allow univariate
and multivariate NDLMs, accounting for constant or
time-varying distributions of states and observations.
More details about Kalman filter and smoother and dlm
can be found in Petris et al. (2009) and Petris (2010). See
also Shumway and Stoffer (2016: Chapter 6) for descrip-
tion of filtering, smoothing, forecasting, and maximum-
likelihood estimation.
The Kalman filter is among the most broadly used algo-

rithms to fit SSMs to ecological data. For example, it has
been used in population ecology (e.g., Dennis et al. 2006),
movement ecology (e.g., Johnson et al. 2008), community
ecology (Ives et al. 2003), and plant ecology (Hooten et al.
2009). The main advantage of the Kalman filter is that it
is fast and easy to calculate (de Valpine 2012). In addition,
unlike most other methods that provide an approximation
of the likelihood, the Kalman filter provides an exact eval-
uation of the marginal likelihood for linear and Gaussian
SSMs (e.g., toy model [de Valpine 2002]).
Although the Kalman filter is an important algorithm

for fitting SSMs to data, it does not work with nonlinear
and non-Gaussian SSMs. Approximate techniques based
on the Kalman filter are available for linear models
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whose observations follow an exponential family distri-
bution (e.g., Poisson, see Durbin and Koopman 2012:
Chapter 9). Other approximate filtering and smoothing
methods based on the Kalman filter, such as the
extended Kalman filter and the unscented Kalman filter
(e.g., Durbin and Koopman 2012: Chapter 10) are useful
for some nonlinear and/or non-Gaussian SSMs. Such
related methods have been used in ecology (e.g., Einars-
son et al. 2016). However, for more complex, nonlinear,
and non-Gaussian models, one must use one of the
methods described below.

Laplace approximation methods.—The Laplace approxi-
mation is a commonly used tool for obtaining an
approximation of the marginal likelihood of a SSM
(Fournier et al. 2012, Kristensen et al. 2016). The gen-
eral idea is that if the marginal likelihood (Eq. 44) is a
well-behaved unimodal function, it can be approximated
with a Normal density function. We can use this approx-
imation to find the MLE. For a given set of parameter
values, the Laplace approximation of the marginal likeli-
hood requires the maximization of the joint likelihood
(Eq. 42) with respect to the states. Thus, the parameter
estimation process also returns an approximation of the
state estimates. See Appendix S2 for details.
This method is flexible, and a variety of SSMs can be

fitted using the Laplace approximation. However, the
method assumes that the states can be locally approxi-
mated with a Gaussian distribution, which means that
the states are assumed to have an unimodal distribution.
Because the method uses the second derivative of the
log-likelihood (Appendix S2), we cannot use the Laplace
approximation with categorical states or other state dis-
tributions that are not twice differentiable. An important
advantage of the Laplace approximation, over the
simulation-based approaches described below, is the
speed at which SSMs are fitted to data (see Auger-
Méthé et al. 2017). Many software use the Laplace
approximation approach (e.g., Fournier et al. 2012). We
demonstrate in Appendix S1: Section S1.3.2 how TMB
(Kristensen et al. 2016) is a particularly useful R pack-
age for SSMs. The Laplace approximation has been used
in ecology, including in movement ecology (e.g., Auger-
Méthé et al. 2017) and fisheries science (e.g., Aeberhard
et al. 2018).

Sequential Monte Carlo methods.—Monte Carlo meth-
ods can be used to estimate the states and evaluate the
integral needed to obtain the marginal likelihood. Monte
Carlo methods are computer intensive sampling proce-
dures that generate random samples from specific proba-
bility distributions, which can then be used to evaluate
integrals. Although in this section we discuss Monte Carlo
methods in the context of a frequentist inference
approach, we will see in Bayesian framework that Monte
Carlo methods are commonly used for Bayesian inference.
Sequential Monte Carlo methods, also referred to as

particle filters, approximate the filtering distribution

through simulated sampling (de Valpine 2012). In the
context of SSMs fitted with a frequentist approach, these
Monte Carlo methods generally sample the state space
by generating samples using the process equation and
weighting the samples with the observation equation.
Sequential importance sampling (Doucet et al. 2001) is a
general procedure that can be used to generate N time
series of the states, referred to as particles, and using
their weighted average as the state estimates (see Appen-
dices S1, S2 for details). However, sequential importance
sampling is impractical for even moderately long time
series (e.g., T = 20) because only a small proportion of
the N randomly generated particles are generally sup-
ported by the observations. The reduced support for
many of the particles, known as particle depletion, is a
serious problem with sequential importance sampling
that leads to state estimates with unacceptably large vari-
ances.
The bootstrap filter (Gordon et al. 1993) is a proce-

dure designed to remedy particle depletion. The boot-
strap filter assesses the weight of a particle through time
and iteratively removes particles with low weights and
replaces them with duplicates of particles with higher
weights. There are various algorithms for the bootstrap
filter; see Appendices S1, S2 for an example. Although
simple bootstrap filters can reduce particle depletion,
they do not completely solve the problem particularly
for long time series. There are various remedies aimed at
reducing particle depletion (de Valpine 2012), including
more sophisticated importance sampling distributions
that include information from the observations (Pitt and
Shephard 1999) or changing the resampling methods
(Liu and Chen 1998). Sequential Monte Carlo methods
are also used for Bayesian inference and these methods
are often built to reduce particle depletion (e.g., particle
Markov chain Monte Carlo methods [Andrieu et al.
2010, Michaud et al. 2020]).
Sequential Monte Carlo methods, such as sequential

importance sampling, can be used to estimate the likeli-
hood. However, the likelihood maximization required
for frequentist inference comes with additional chal-
lenges (e.g., to maximize the likelihood, one must
explore what is often a complicated likelihood surface).
In principle, it is possible to use a general-purpose opti-
mization algorithm such as Nelder–Mead to maximize
the likelihood computed by a simple particle filter.
However, such an approach is usually prohibitively
expensive. In addition, the stochastic ingredients of a
particle filter make each of its runs different, making it
hard to identify the precise peak of the likelihood surface
(de Valpine 2012). Several methods have been proposed
to overcome this difficulty (de Valpine 2012, Michaud et
al. 2020).
Iterated filtering is an attractive method for maximiz-

ing the likelihood using particle filters (Ionides et al.
2015). This method repeatedly applies the particle filter
but perturbs the fixed parameters of the model at each
observation time step. These random perturbations
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enhance performance and forestall particle depletion by
continually reinjecting random variability into the filter.
However, because it applies artificial perturbations to
parameters, iterated filtering is not learning about the
model of interest (i.e., model with fixed parameters), but
about a modified model (i.e., model where fixed parame-
ters have been transformed into state variables). There-
fore, as filtering iterations proceed, one gradually cools
(i.e., reduces the magnitude of) the artificial perturba-
tions, so that the modified model approaches the model
of interest as the iterations proceed. Because statistical
inference hinges on identification of the global likeli-
hood maximum, it is usually advisable to perform many
independent iterated filtering computations, starting
from widely dispersed starting points. See Appendix S2
for more detail. Iterated filtering, and other similar
sequential Monte Carlo methods, can be easily imple-
mented using the R packages pomp and nimble (see
Appendix S1: Section S1.3.4; King et al. 2016, Michaud
et al. 2020, de Valpine et al. 2017).
The main advantage of sequential Monte Carlo meth-

ods is that they are flexible, and thus can be used to con-
duct inference on any SSM (Michaud et al. 2020).
Frequentist sequential Monte Carlo methods have been
used in ecological fields such as bioenergetics (e.g., Fuji-
wara et al. 2005) and movement ecology (e.g., Breed
et al. 2012). The main disadvantage of sequential Monte
Carlo methods is that they can be computationally
expensive.

Other methods.—The methods described above repre-
sent, in our view, the most commonly used methods
to fit SSMs to ecological data in a frequentist frame-
work. These methods are associated with comprehen-
sive R packages that facilitate their implementation.
However, many other methods exist (see de Valpine
[2012] for a review of frequentist methods). Of note,
Kitagawa (1987) provided a general algorithm for
non-Gaussian SSMs similar to the Kalman filter, but
that approximates the nonnormal distributions by dis-
cretizing them (e.g., through piecewise linear func-
tions). It can be viewed as discretizing the continuous
state space and reformulating the model as a HMM
(Pedersen et al. 2011). de Valpine and Hastings (2002)
demonstrated how flexible this approach was to fit
nonlinear non-Gaussian population dynamics models.
The main advantages of this approach are that it can
be computationally efficient for models with a few
state dimensions and does not require Monte Carlo
methods (de Valpine 2012). This approach appears
particularly promising for population modeling, where
the states are counts, and thus the state space is
already discretized (Besbeas and Morgan 2019). Ped-
ersen et al. (2011) demonstrated that although this
method is general and can provide results similar to
the Laplace approximation and Bayesian methods, it
is computationally limited to problems with only a
few state dimensions. This limitation arises from the

curse of dimensionality, where even if each dimension
has a manageable number of cells (e.g., 1,000 cells),
the number of values needed to be stored become
impractical as the number of dimension increases
(e.g., three dimensions would results in 1,0003 = 109

cells; see de Valpine 2012).

Bayesian framework

When we fit a SSM with a Bayesian approach, the
function of interest (also known as the target distribu-
tion) is the posterior distribution for the states and
parameters given the observations:

pðθ, z1:T jy1:T , λÞ¼
Ljðθ, z1:T jy1:T ÞπðθjλÞ

∬Lj θ, z1:T jy1:Tð Þπ θjλð Þdz1:Tdθ ,

(47)

where Ljðθ, z1:T jy1:T Þ is the joint likelihood (i.e.,
pðy1:T jθ, z1:T Þ; see for example, Eq. 42), and π(θ|λ) is the
prior distribution(s) for the parameters with fixed
hyperparameters, λ. Eq. 47 is an application of Bayes’
theorem pðθjyÞ¼ pðyjθÞp θð Þ

p yð Þ
� �

and the denominator of Eq.

47 represents the probability of the data (i.e., the mar-
ginal likelihood, which is the probability of the data for
all possible values of the states and parameters). In
Bayesian analyses, both the states, z1:T, and what we have
been referring to as fixed parameters, θ, are considered
random variables. The posterior distribution is a
complete characterization of these random variables
given the data and prior information. As such, the first
inferential goal of a Bayesian analysis is often to evalu-
ate the posterior distribution. Although point estimates
for the parameters and the states are not necessarily the
primary goal of a Bayesian analysis, they can be
obtained by summarizing the center of the posterior
distribution (e.g., mean or mode of the posterior distri-
bution). Similarly, we can use the posterior distribution
to obtain interval estimates and single measures of
variation.
As for the frequentist framework, the fitting proce-

dures are complicated by high-dimensional integrals and
it is common to avoid calculating the integral and the
posterior distribution explicitly. Instead, quantities of
interest are generally approximated using Monte Carlo
methods (see also Sequential Monte Carlo Methods),
where large samples of states and parameters are ran-
domly drawn from the posterior distribution. For exam-
ple, one can approximate the point estimate of a
parameter with the sample mean of the draws from the
posterior distribution (often referred as the posterior
mean). Simulating independent draws from Eq. 47 is
typically impossible. However, there are various algo-
rithms that can approximate the posterior distribution
with large samples of dependent draws. In particular,
Markov Chain Monte Carlo (MCMC) methods are a

Article e01470; page 16 MARIE AUGER-MÉTHÉ ETAL. Ecological Monographs
Vol. 0, No. 0

R
E
V
IE
W



broad class of algorithms that obtain samples from the
target distribution (here the posterior distribution Eq.
47), by sampling from a Markov chain rather than sam-
pling from the target itself. This Markov chain needs to
have an invariant distribution (i.e., the probability distri-
bution remains unchanged as samples are drawn) equal
to the target distribution (Geyer 2011), a quality that is
dependent on the initial condition of the chain and the
transition probabilities, and relates to the importance of
chain convergence as a diagnostic in MCMC sampling.
MCMC algorithms fall into two broad families:
Metropolis–Hastings samplers (which include Gibbs
samplers) and Hamiltonian Monte Carlo.

Metropolis–Hastings samplers.—Metropolis–Hastings
samplers are at the base of most MCMC algorithms
used to sample the posterior distribution in a Bayesian
analysis. Metropolis–Hastings samplers are iterative
algorithms that construct an appropriate Markov chain
to sample the target distribution. The general idea is that
for each step j of the chain, we use a proposal distribu-
tion to generate a candidate value for the variable of
interest (e.g., a parameter value). The probability that
this candidate value is selected for that step rather than
the previous value of the chain is based on the relative fit
of the model with that candidate value compared to the
previous value of the chain (see Appendix S2 for
details).
In the context of SSMs, we have a multivariate poste-

rior distribution for the states and the parameters. Using
Metropolis–Hastings algorithms to sample for more
than one random variables is complex, but there are var-
ious implementation tools to do so. For example, for
each iteration j of the chain, one can first sample sequen-
tially all parameter values, and then sequentially sample
the state values (Newman et al. 2014; see also Appendix
S2). If groups of variables are related, they can be sam-
pled simultaneously from a multivariate distribution
rather than sequentially. In practice, states and parame-
ters are often correlated, and thus it may be difficult to
implement an efficient MCMC sampler that does not
require very long simulations before convergence (New-
man et al. 2014).
Gibbs samplers are commonly used Metropolis–Hast-

ings samplers for multivariate distributions, where the
proposal distributions are conditional distributions of
the target distribution and thus the candidate values are
always accepted (Geyer 2011; see also Appendix S2).
For NDLMs, the entire sequence z0:T can be simulated
at once from its conditional distribution, given the data
y1:T and the time-invariant parameter θ, using the for-
ward filtering backward sampling algorithm described
in Carter and Kohn (1994). The forward filtering back-
ward sampling algorithm can also be used to conduct
inference for the SSMs that are conditionally linear and
Gaussian. However, Gibbs samplers for nonlinear and
non-Gaussian models often require sampling from each
conditional distribution sequentially (see Prado and

West 2010: Chapter 4.5, for an overview). A drawback of
this particular Gibbs sampler design is that consecutive
draws of zj0:T and z j�1

0:T tend to be highly correlated, slow-
ing the convergence and deteriorating the quality of the
Monte Carlo approximations. Despite these drawbacks,
Metropolis–Hastings samplers, including Gibbs sam-
plers, are commonly used to fit ecological SSMs because
they are flexible and freely available software to imple-
ment these algorithms have been available since the
1990s (Meyer and Millar 1999). They have been used to
fit many of the original models described in Examples of
Ecological SSMs, including the population models of
Viljugrein et al. (2005), the movement model of Jonsen
et al. (2005), the health and survival model of Schick
et al. (2013), and the capture–recapture model of Royle
(2008).
Combining sequential Monte Carlo methods (Sequen-

tial Monte Carlo Methods) within MCMC algorithms
can help alleviate some of the efficiency problems pro-
duce by generic MCMC algorithms (Michaud et al.
2020). In these combined algorithms, a sequential
Monte Carlo algorithm draws the states, and an MCMC
algorithm draws the parameters. Particle MCMC meth-
ods (Andrieu et al. 2010) are particularly useful for
SSMs (Michaud et al. 2020). Some particle filters, such
as the bootstrap filter (Sequential Monte Carlo Methods
and Appendix S2), can return unbiased estimates of the
marginal likelihood (Eq. 44). At each iteration j, a parti-
cle MCMC algorithm will estimate the marginal likeli-
hood and use it to draw a full state sequence (i.e., one
sample particle will be used for z j1:T ). Although particle
MCMCs may still suffer from poor mixing when the
likelihood estimates are highly variable, these algorithms
tend to reduce the correlations between successive draws
of the states (Michaud et al. 2020). Custom-made parti-
cle MCMC algorithms have been used to fit different
ecological SSMs, including population models (e.g.,
Knape and de Valpine 2012, White et al. 2016) and com-
plex models for range expansion (Osada et al. 2019).
The recent implementation of such algorithms in R
packages such as pomp and nimble will facilitate their
uptake (Michaud et al. 2020).
There are a few important general Bayesian software

and R packages that can be easily used to fit ecological
SSMs using Metropolis–Hastings samplers. Generating
draws from the posterior distributions can done using
software from the BUGS (Bayesian analysis using Gibbs
sampling; see Lunn et al. 2013) project and their associ-
ated R packages: WinBUGS can be called in R via
R2WinBUGS (Lunn et al. 2000), OpenBUGS via BRugs
(Lunn et al. 2009), and MultiBUGS R interface is in
development (Goudie et al. 2017). Gimenez et al.
(2009a) provide a tutorial on how to fit ecological mod-
els (including some of the SSMs of Handling Nonlinear-
ity) with WinBUGS in R. JAGS (just another Gibbs
sampler; Plummer 2003) is an alternative to BUGS pro-
ject software that is written for UNIX, thus preferred by
Mac and Linux users. JAGS is available through the R
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package rjags (Plummer 2018). The R package nimble
(de Valpine et al. 2017) is a recent alternative to JAGS
and BUGS software that is more transparent in how the
sampling is performed. nimble allows users to write cus-
tom Gibbs samplers that perform block updating or
implement a variety of other techniques including parti-
cle MCMC (de Valpine et al. 2017, Michaud et al. 2020).
All these software allow one to write general models in a
language based on BUGS. The user can set up the sam-
pler in R, and once compiled, can use it to simulate
draws to make inference about states and parameters.
See Appendix S1: Sections S1.3.5 and S1.3.6 for detailed
examples in JAGS and nimble.

Hamiltonian Monte Carlo.—An efficient alternative to
Metropolis–Hastings sampling is provided by Hamil-
tonian Monte Carlo (HMC) methods, which have
gained popularity in recent years thanks in part to
their implementation in the Stan software (Stan
Development Team 2012). These methods are inspired
by analogies drawn from physics and rely heavily on
deep differential geometric concepts, which are beyond
the scope of this review. HMC can be a more efficient
sampler than Metropolis–Hastings, as fewer iterations
are typically required and fewer rejections occur. This
is achieved by the addition of a momentum variable
that helps the Markov chain to remain within the
typical set of the target distribution, rather than con-
ducting random walk to explore the target distribu-
tion as is frequently done by Metropolis–Hastings
samplers. Interested readers can read the introduction
for ecologists by Monnahan et al. (2017) and explore
the statistical details in Neal (2011) or Betancourt
(2017). Conducting inference for general SSMs via
HMC is possible when all parameters and states are
continuous or when the posterior distribution can be
marginalized over any discrete parameters or states.
Continuous distributions are required because density
gradients of the target distribution are required to
direct the sampling through the typical set of the tar-
get distribution (Betancourt 2017, Monnahan et al.
2017). Unlike Metropolis–Hastings samplers, HMC
methods draw samples from the joint posterior distri-
bution directly and can scale well to high-dimensional
spaces. General SSMs can be fitted either by defining
the posterior as in Eq. 47 or by marginalization over
the state process to derive the posterior distribution
of the time-invariant parameters only, pðθjy1:T , λÞ.
One of the most popular software that uses Hamilto-

nian Monte Carlo is Stan, available in R through the
package rstan (Stan Development Team 2018). See
Appendix S1: Sections S1.3.7 and S2.3.2 for detailed
examples using rstan. Monnahan et al. (2017) showed that
Stan can fit ecological SSMs more efficiently than Gibbs
software like JAGS. Although the parameterization of the
SSM affects Stan’s efficiency, it can reduce computing
time by orders of magnitude (Monnahan et al. 2017).
Other advantages of Stan over JAGS include better

diagnostics for when the algorithms is unable to explore
the entire posterior, which could result in biased inference
(Monnahan et al. 2017). The main disadvantage of HMC
is that one cannot easily work with discrete parameters,
which makes it harder to have SSMs with discrete latent
states (e.g., counts, categories; Monnahan et al. [2017]).
We discuss methods to work around this limitation in Fit-
ting Models with Discrete States. The use of HMC is
increasing in ecology (Monnahan et al. 2017), and HMC
has been recently used to fit ecological SSMs (e.g., in
ecosystem ecology [Appling et al. 2018], and in fisheries
science [Best and Punt 2020]).

Other algorithms.—The algorithms and software just
discussed are the most commonly used to fit SSMs to
ecological data in a Bayesian framework. For a more
general introduction on how to develop statistical algo-
rithms to fit Bayesian ecological models, please refer to
Hooten and Hefley (2019). However, the development of
Bayesian sampling algorithms is an active field of
research. New methods, such as variational inference,
appear particularly promising for fitting SSMs (e.g.,
Ong et al. [2018]).

Convergence diagnostics.—Regardless of the sampling
method, it is important to assess whether it has reached
the target posterior distribution. Convergence between
multiple chains usually indicates that they have reached
the invariant distribution. As such, multiple approaches
have been developed to assess whether chain conver-
gence has been achieved. In general, samples from the
first iterations are discarded, as these likely occurred
before the chain has reached the target distribution (Gel-
man and Shirley [2011], but see Geyer [2011]). In the
Metropolis–Hastings setting, this period is referred to as
“burn-in.” A somewhat similar initial period, referred as
the “warm-up,” is discarded with HMC. Then, as a first
step, convergence within and between chains can be
assessed visually via traceplots (see Appendix S1). More
formal metrics exist. The Gelman–Rubin metric, R̂ (Gel-
man and Rubin [1992]; see Brooks and Gelman [1998]
for the multivariate analogue), is one of the most popu-
lar multichain diagnostics. Although R̂ < 1.1 generally
indicates convergence (Gelman et al. 2013), recent
research indicates that a threshold closer to one may be
more suitable in some scenarios (Vats and Knudson
2018). Note that pseudo-convergence can occur in many
different scenarios. For example, the sampler can get
caught in one mode if the target distribution has multi-
ple modes that are not well connected by the Markov
chain dynamics (Geyer 2011). Running the chain for a
long period can help limit these pseudo-convergence
problems (Geyer 2011). A detailed summary of conver-
gence methods is available in Cowles and Carlin (1996),
and further research on convergence diagnostics includes
Boone et al. (2014), VanDerwerken and Schmidler
(2017), and Vats and Knudson (2018). Both JAGS and
BUGS project software, as well as the R package coda
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(Plummer et al. 2006), provide several methods to assess
convergence.

Priors.—Selection of priors is a significant part of a
Bayesian analysis because priors affect the resulting pos-
terior distribution (Robert 2007). Several approaches can
be taken depending on the information available about
the model parameters and the philosophy of the modeler.
Ecologists often use “noninformative” priors. These pri-
ors (e.g., a uniform distribution over the parameter space)
are often thought to be objective and are generally chosen
with the goal of maximizing the influence of the data on
the posterior. However, noninformative priors may still
have important effects on the posterior, and they should
not be used naively (Gelman et al. 2017, Lemoine 2019).
For example, Lele (2020) showed that noninformative pri-
ors could significantly influence the parameter and state
estimates of ecological SSMs. Alternatively, ecologists can
use informative priors, which are created using knowledge
of the parameters or previously collected data (e.g.,
Meyer and Millar [1999], Dunham and Grand [2016]). As
there are many advantages to using informative priors,
they are increasingly used in ecological models (Hooten
and Hobbs 2015). For example, informative priors can be
used to supplement SSMs with limited time–series data
(Chaloupka and Balazs 2007) and can improve state esti-
mates (Dunham and Grand 2016). In most cases, nonin-
formative and informative priors are used in the same
model on different parameters. For technical reasons, it
can sometimes be advantageous to use conjugate priors
(i.e., priors with the same distribution as the conditional
posterior distribution or the posterior distribution). Kass
and Wasserman (1996) and Millar (2002) have summa-
rized priors typically used in fisheries models, including
many SSMs. Lemoine (2019) advocates for the use of
weakly informative priors as default in ecology and pro-
vides a guide to their implementation. More generally,
Robert (2007) and Gelman et al. (2013) provide a thor-
ough review of available priors, selection, and examples
for a variety of models.

Information reduction approaches

Although not commonly used with SSMs, information
reduction approaches, such as synthetic likelihood or
approximate Bayesian computation (ABC), appear
promising to fit complex, highly nonlinear, ecological
SSMs (Fasiolo et al. 2016). These methods bypass the cal-
culation of the exact likelihood (Csilléry et al. 2010, Fasi-
olo et al. 2016). Instead, these methods generate samples
from the model and transform them into a vector of sum-
mary statistics that describe the data in the simplest man-
ner possible (Csilléry et al. 2010, Fasiolo et al. 2016). The
simulated summary statistics are then compared to
observed summary statistics using a predefined distance
measure (Fasiolo et al. 2016). Information reduction
approaches smooth the likelihood, reducing some of the
common implementation problems encountered with

other fitting methods. However, the results from informa-
tion reduction approaches are often imprecise and, thus,
may be most useful in the model development phase (Fasi-
olo et al. 2016, Fasiolo and Wood 2018). Interested read-
ers are referred to Csilléry et al. (2010), Fasiolo et al.
(2016), and Fasiolo and Wood (2018).

Fitting models with discrete states

Depending on the complexity of the SSM and one’s
favored inferential approach, having discrete states can
either facilitate or complicate the fitting process. A
SSM with a single time series of categorical states, gen-
erally referred as an HMM (Modeling discrete state val-
ues with Hidden Markov models), can be relatively easily
fitted with a frequentist approach. The key advantage
of these HMMs is their mathematical simplicity: what
would be a high-dimensional integration in a SSM with
continuous state values (e.g., Eq. 44) is now a simple
sum. As such, having a finite number of possible state
values (i.e., discrete states) significantly simplifies the
analysis (Langrock et al. 2012). The mathematical
simplicity of HMMs makes them highly attractive, and
various efficient tools and R packages have been devel-
oped to fit HMMs to data. We refer readers interested
in HMMs to McClintock et al. (2020) and Zucchini et
al. (2016).
Although one can use Metropolis–Hastings samplers

(Metropolis–Hastings Samplers) to fit HMMs with a
Bayesian approach (e.g., Zucchini et al. 2016), these
algorithms are far less efficient than those used to fit
HMMs in a frequentist framework. In addition, HMC
algorithms (Hamiltonian Monte Carlo) do not gener-
ally allow sampling of discrete states. However, recent
work has demonstrated the gain in speed that can be
made by marginalizing the latent states and how this
can be implemented with Gibbs sampling (e.g., JAGS)
and HMC software (e.g., Stan [Leos-Barajas and
Michelot 2018, Betancourt et al. 2020, Yackulic et al.
2020]). Marginalizing the states means that when we
estimate the parameter values, we do not sample the
hidden states at each iteration, but rather track the
likelihood of being in any given state (Yackulic et al.
2020). One can then estimate the states values using
the conditional distribution (Eq. 45) or approximations
of it (see Yackulic et al. [2020] for more details), or
algorithms that are commonly used with frequentist
HMMs, such as the Viterbi algorithm (Zucchini et al.
2016, Leos-Barajas and Michelot 2018). This two-step
approach used when marginalizing the states has many
parallels with the frequentist approach described in
Frequentist Approach, where we first estimate the
parameters using the marginal likelihood and subse-
quently estimate the hidden states based on the esti-
mated parameter values.
Although there are many efficient tools to fit simple

HMMs with a frequentist approach, it can be more chal-
lenging to fit SSMs that combined both continuous and
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discrete states. Just as for Bayesian methods, some of the
computationally efficient methods (e.g., Laplace approx-
imation method described in Laplace Approximation
Methods) do not allow for discrete states. One can use
instead frequentist methods that rely on sampling the
states (e.g., sequential Monte Carlo methods described
in Sequential Monte Carlo Methods). One could poten-
tially develop algorithms that marginalize the discrete
and continuous states with different approaches.
For Bayesian SSMs with discrete states, one addi-

tional consideration is label-switching (Jonsen et al.
2013). The labels given to the N discrete states are
arbitrary, and thus there are N! potential label assign-
ments (Zucchini et al. 2016). The different label per-
mutations result in the same model. Thus, when the
MCMC chains have reached convergence, all possible
labels will have been assigned to each state and infer-
ence on the states will be difficult. For example, we
will no longer be able to take the mean of the poste-
rior distribution to estimate the states because all
ẑt,1:T ≈ N=2. One solution is to impose constraints on
the parameters that would be violated when labels are
permuted (Zucchini et al. 2016). For example, in the
two-behavior movement model described in Modeling
discrete state values with Hidden Markov models we
would constrain γ1 ≤ γ2.

When to use each method?

Choosing from this multitude of fitting methods can
appear daunting, but can be guided by a choice of infer-
ence framework and the limitations of each methodol-
ogy. In Table 2, we list the methods just discussed, with
some pros and cons. We simply state the associated infer-
ential framework (frequentist vs. Bayesian), and we let
the readers decide their favorite inferential framework.
In general, there are more computationally efficient
methods for simple models in the frequentist framework
(e.g., Kalman filter and Laplace approximation), but
such generalization cannot be made for more complex
models.
In some cases, it may also be easier to use one of the

more specific ecological SSM R packages. For example,
the package MARSS (which stands for multivariate
auto-regressive state–space; Holmes et al. [2012, 2018])
can be useful to model multiple populations, if these can
be reasonably formulated with a linear and normal
SSM. Those interested in fisheries stock assessment
SSMs should look at the package stockassessment
(available on GitHub;14 Nielsen and Berg [2014]). Those
interested in SSMs for animal movement should explore
bsam (Jonsen et al. 2005, Jonsen 2016), crawl (Johnson
et al. 2008, Johnson and London 2018), and momen-
tuHMM (McClintock and Michelot 2018).

FORMULATING AN APPROPRIATE SSM FORYOUR DATA

SSMs are powerful tools, but their inherent flexibility
can tempt ecologists to formulate models that are far
too complex for the available data. The model structure
or the characteristics of the specific data set may make it
impossible to estimate every parameter reliably. In such
cases, parameter estimates will no longer provide key
information on the underlying biological process and
state estimates may become unreliable (e.g., Auger-
Méthé et al. [2016]). Formulation of SSMs needs to be
guided by the inference objectives and the available data.
In this section, we discuss how to assess whether a model
is adequate for your data and how one can alleviate
potential estimation problems.

Identifiability, parameter redundancy, and estimability

When we estimate the parameters of a model, denoted
here as M(θ), we often want to find the set of parameter
values, θ, that results in the best fit to the data. For this
to be possible, the model needs to be identifiable. Identi-
fiability refers to whether or not there is a unique repre-
sentation of the model. A model is globally identifiable
if M(θ1) = M(θ2) implies that θ1 = θ2. For example, in a
frequentist framework, an identifiable model would have
only a single θ value that would maximize the likelihood
(Fig. 3a). A model is locally identifiable if there exists a
neighborhood of θ where this is true (Fig. 3b). Other-
wise a model is nonidentifiable (Fig. 3c; Rothenberg
[1971], Cole et al. [2010]).
An obvious case of nonidentifiability is when a model

is overparameterized and can be reparameterized with a
smaller set of parameters. For example, if two parame-
ters only appear as a product in a model (e.g., y = αβx);
that model could be reparameterized with a single
parameter replacing that product (e.g., y = γx, where
γ = αβ). The parameter redundancy of the original
model will result in nonidentifiability (Catchpole and
Morgan 1997) and nonidentifiability caused by the
inherent structure of a model is referred to as intrinsic
parameter redundancy (Gimenez et al. 2004) or struc-
tural nonidentifiability (Cobelli and DiStefano 1980).
Regardless of the amount or quality of data, it is impos-
sible to estimate all the parameters in such a model.
Having a structurally identifiable model does not

guarantee that one can estimate its parameters with the
data at hand. Nonidentifiability can be caused by a
specific data set with, for example, missing or sparse
data (Gimenez et al. 2004). This problem is known as
extrinsic parameter redundancy (Gimenez et al. 2004) or
practical nonidentifiability (Raue et al. 2009). A parame-
ter is defined as practically nonidentifiable if it has a
confidence interval that is infinite (Raue et al. 2009). It
is also possible for a data set to create estimation prob-
lems with an otherwise structurally and practically iden-
tifiable model, a phenomenon referred to as statistical
inestimability (Campbell and Lele 2014). If a model is14https://github.com/fishfollower/SAM
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statistical inestimable, a confidence interval for a param-
eter will be extremely large but not infinite. This often
occurs because the model is very similar to a submodel
that is parameter redundant for a particular data set,
which is known as near redundancy (Catchpole et al.
2001, Cole et al. 2010).
Having a nonidentifiable model (either structurally or

practically) leads to several problems. First, there will be
a flat ridge in the likelihood of a parameter redundant
model (Catchpole and Morgan 1997), resulting in more
than one set of MLEs. However, despite the parameter
redundancy, numerical methods for parameter estima-
tion usually converge to a single set of MLEs. Therefore,
without further diagnostics, one may not realize that the
MLEs are not unique. Second, the Fisher information
matrix will be singular (Rothenberg 1971) and therefore
the standard errors will be undefined in a nonidentifiable
model. However, the exact Fisher information matrix is
rarely known and standard errors are typically approxi-
mated using a Hessian matrix. The Hessian describes the
local curvature of a multiparameter likelihood surface.
The Hessian is generally evaluated numerically, which

can lead to explicit (but incorrect) estimates of standard
errors. Third, many model selection methods (see Com-
putationally Efficient Model Comparison Methods) are
based on the assumption that a model is identifiable and
that the penalty for complexity is a function of the num-
ber of unique and estimable parameters (Gimenez et al.
2004). If a model is statistically inestimable or near
redundant, these three problems may also occur, as the
model is close to being nonidentifiable. For example the
log-likelihood profile will be almost flat.
Checking for identifiability and estimability should

become part of the model-fitting process and several
methods are available to do so. A clear sign of problems
is a flat log-likelihood profile (Fig. 3c), and plotting the
log-likelihood profile for each parameter can serve as a
diagnostic for this (Fig. 3; Dennis et al. [2006], Raue et
al. [2009], Auger-Méthé et al. [2016]). Correlation
between parameters can also be indicative of estimation
problems, and it may be useful to inspect the log-
likelihood or posterior surface of pairs of parameters
(Campbell and Lele 2014, Auger-Méthé et al. 2016).
Depending on model complexity and computation time,

TABLE 2. Comparison of the fitting methods discussed in Fitting SSMs.

Method Framework Pros Cons R package

Kalman filter and
MLE

Frequentist Efficient and exact Only applicable to linear Gaussian SSMs dlm, MARSS

Laplace
approximation

Frequentist Efficient and flexible States need to be approximable with a continuous
unimodal distribution (e.g., no discrete states)

TMB

Particle filter and
iterated filtering

Frequentist Flexible Can be slow and sensitive to starting values pomp, nimble

MCMC-MH Bayesian Flexible Can be slow and sensitive to convergence problems rjags, nimble,
R2WinBUGS,
BRugs

MCMC-HMC Bayesian Efficient and flexible Require continuous parameters and states or
marginalization

rstan

Information
reduction

Bayesian Flexible and fewer
estimation
problems

Can be slow and imprecise EasyABC

Notes: HMC, Hamiltonian Monte Carlo; MCMC, Markov chain Monte Carlo; MH, Metropolis–Hastings; MLE, maximum-
likelihood estimate.

FIG. 3. Examples of log-likelihood profiles for a parameter θ under various identifiability scenarios: (a) globally identifiable, (b)
locally identifiable, and (c) nonidentifiable model.
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simulations can be an easy way to investigate the estima-
bility of SSMs (Auger-Méthé et al. 2016). For a specified
SSM and a known set of parameters, one simulates the
state process and observation time series, and then esti-
mates the parameters and states. One then compares
estimated parameter and state values with the known
true values. Parameter estimates from nonidentifiable
models will usually be biased with large variances.
In addition to these simple checks, three advanced

methods to assess estimability and identifiability problems
exist. First, data cloning has been shown to be useful with
ecological models (Peacock et al. 2017). Data cloning
involves using Bayesian methodology with a likelihood
based on K copies of the data (clones). The posterior vari-
ance of a parameter will tend towards K times the asymp-
totic variance of the parameter, so that if a parameter is
identifiable, the posterior variance will tend to zero as K
tends to infinity. If a parameter is not identifiable, the pos-
terior variance will tend to a fixed (nonzero) value (Lele et
al. 2010). Campbell and Lele (2014) show how this
method can be extended to find estimable parameter com-
binations in nonidentifiable models.
Second, one can use the fact that the Hessian matrix

in a nonidentifiable model will be singular at the MLE.
As a singular matrix has at least one zero eigenvalue, the
Hessian method involves finding the eigenvalues of the
Hessian matrix. If the Hessian matrix is found numeri-
cally, the eigenvalues for a singular matrix may be close
to zero rather than exactly zero. Therefore, if any of the
eigenvalues are zero or close to zero, the model is
deemed nonidentifiable or parameter redundant, at least
for that particular data set (Viallefont et al. 1998). The
Hessian matrix will also have eigenvalues close to zero if
the model is statistically inestimable or near redundant
(Catchpole et al. 2001).
Third, one can use the symbolic method. This method

uses the concept that a model can be represented by an
exhaustive summary, which is a vector of parameter
combinations that uniquely define the model. For exam-
ple, this vector could be k = (Lm(θ|y1), Lm(θ|y1:2), ...,
Lm(θ|y1:T))0, where the first element is the marginal likeli-
hood (Eq. 44) for the first observation (y1), the second
element is the marginal likelihood for the first two obser-
vations (y1:2), etc. This straightforward exhaustive sum-
mary works well for HMMs (Cole 2019), but can be
impractical for SSMs with continuous states as it
involves integration. Suitable, but more complex to
derive, exhaustive summaries for SSMs are given in Cole
and McCrea (2016). To investigate identifiability, we
form a derivative matrix by differentiating each term of
the exhaustive summary vector with respect to each
parameter. Then, we find the rank of this matrix. The
rank of a matrix is the number of columns that are lin-
early independent. Because each column of the deriva-
tive matrix is associated with one of the parameters, the
rank is the number of estimable parameters (or parame-
ter combinations). If the rank is less than the number of
parameters, then the model is nonidentifiable or

parameter redundant (Catchpole and Morgan 1997,
Cole et al. 2010). This method can be used to investigate
practical identifiability as well as structural identifiabil-
ity by choosing an exhaustive summary that includes the
specific data set (Cole et al. 2012). In some more com-
plex models, the computer can run out of memory calcu-
lating the rank of the derivative matrix. Cole et al.
(2010) and Cole and McCrea (2016) provide symbolic
algebra methods for overcoming this issue. The alterna-
tive is a hybrid symbolic-numerical method, which
involves finding the derivative matrix using symbolic
algebra, but then finding the rank at five random points
in the parameter space (Choquet and Cole 2012).
Each of the numerical methods (log-likelihood profile,

simulation, data cloning, Hessian method) can be inaccu-
rate. They are also not able to distinguish between estima-
bility, practical identifiability, and structural identifiability
when applied to a specific data set, although in some cases
a large simulated data set could be used to test structural
identifiability. Being able to distinguish between these
problems is useful, as it can help us assess whether gather-
ing more data will help. The symbolic method is accurate,
but is more complicated to use, as it involves using a sym-
bolic algebra package. Code for assessing estimability
using simulations and the Hessian method is given in
Appendix S1: Section S1.4. Code for the symbolic algebra
method is given in Appendix S3.
In Bayesian analysis, identifiability and estimability

issues have a different focus because priors can affect our
capacity to differentiate between parameters (Cressie et al.
2009). In general, parameters are said to be weakly inden-
tifiable when the posterior distribution significantly over-
laps with the prior (Garrett and Zeger 2000, Gimenez et
al. 2009b). If priors are well informed by previous data or
expert knowledge, their strong influence on the posterior
distribution is no longer an identifiability/estimability
issue but one of the benefits of Bayesian analysis. How-
ever, misusing informed priors (e.g., when the information
is not reliable) may hide identifiability issue or cause the
estimability problems (Yin et al. 2019). Thus, one should
choose priors with great care. To help ensure that the data
inform the model and that the posterior is well behaved,
Gelfand and Sahu (1999) suggested using informative pri-
ors that are not too precise (see Priors for other considera-
tions). Weak identifiability can result in multiple
implementation issues, including slow convergence (Gime-
nez et al. 2009). Diagnostics for parameter identifiability
in the Bayesian framework include some of the tools
described above and the visual or numerical assessment of
the overlap between priors and posterior distributions
(Garrett and Zeger 2000, Gimenez et al. 2009b).

Remedies for identifiability issues

When we fit a SSM to our data, we hope that it will
provide accurate and precise estimates of our parameters
and states. But how can we achieve these goals? First, we
need to have a structurally identifiable model. Second,

Article e01470; page 22 MARIE AUGER-MÉTHÉ ETAL. Ecological Monographs
Vol. 0, No. 0

R
E
V
IE
W



one needs a data set appropriate for the model and vice
versa; otherwise one can face estimation problems even
with structurally identifiable models. Generally, we
assume that having more data will allow us to estimate
parameters and states better. However, as discussed
below, increasing the length of the time series may not
be the best way to improve estimation.

Reformulate the SSM.—To create a structurally identi-
fiable model, one should start by avoiding overparam-
eterization. As mentioned above, models where some
parameters only appear as products of each other
should be simplified. The same holds for models
where parameters only appear as sums (e.g.,
y = (α + β)x), or differences, or fractions. Models
where the magnitude of two sources of error are sim-
ply additive are also problematic (e.g., Y ∼ N(X, σ2)
and X ∼ N(µ, τ2), will result in Y ∼ N(µ, σ2 + τ2),
where σ and τ cannot be uniquely identified). As
such, one needs to check that none of the parameters
are confounded and carefully inspect the combination
of the sources of variability in all hierarchical models,
including SSMs (see below). Some of the tools dis-
cussed above can help construct structurally identifi-
able models. In particular, the symbolic method can
be used to identify the parameters that are con-
founded in a nonidentifiable model, and thus can be
used to select estimable parameter combinations. This
involves solving a set of partial differential equations
formed from the same derivative matrix used to check
identifiability (Catchpole et al. 1998, Cole et al.
2010).

Make simplifying assumptions when data are limited.—A
full model may be too complex for the data at hand and
it may be advantageous to make simplifying assump-
tions. For example, when the data available for older age
classes are limited, researchers can have difficulties fit-
ting the fisheries stock assessment model presented in
Joining Multiple Data Streams. To help the estimation
process, one can create a cumulative age class, A+, that
accounts for all fish older than a certain age (Nielsen
and Berg 2014). To allow fish to remain in the cumula-
tive age class, we need to add the following equation to
the model

log NAþ,t
� �¼ log NAþ�1,t�1e

�FAþ�1,t�1�MAþ�1,t�1
�

þNAþ,t�1e
�FAþ ,t�1�MAþ ,t�1Þþ ɛNAþ ,t

: (48)

The similar size of these older fish makes them more
likely to be caught by the same type of fishing gear, and
thus their catchability and fishing mortality can be fur-
ther assumed to equal that of the previous age class
(QAþ ,s ¼QAþ�1,s and FAþ ,t ¼FAþ�1,t). Although this
appears to add complexity, creating this cumulative age
class and equating some terms reduces the number of

states and parameters to estimate. However, some sim-
plifying assumptions may result in estimation problems.
For example, the original DCRW model of Jonsen et al.
(2005) has a single correction factor rather than one per
coordinate (ψ = ψlon = ψlat, see Accounting For Com-
plex Data Structure). The common correction factor can
result in estimation problems because longitude and lati-
tude often differ in the degree of correction they need
(Auger-Méthé et al. 2017). As long as they are biologi-
cally reasonable, such simplifying assumptions can be
useful in a wide range of fields, including in community
ecology, where SSMs can link multiple species to com-
mon latent variables and thus reduce the dimension of
the model (Thorson et al. 2016).

Estimate measurement errors externally.—SSMs can be
associated with significant estimability problems, partic-
ularly when trying to estimate the two main sources of
variability (Knape 2008, Auger-Méthé et al. 2016). As a
result, researchers often fix some of the parameters to
known values, or use informed priors if they are working
in a Bayesian framework. In particular, many use fixed
values for the measurement errors and use for them
independent estimates of measurement errors (e.g., Jon-
sen et al. [2005]). Although such methods can alleviate
estimation problems (Knape 2008), one must be careful
not to use biased or misspecified values.

Integrate additional data.—Covariates that provide addi-
tional information about a state or a process (e.g., sur-
vival) may be a means of overcoming identifiability
problems. Polansky et al. (2021) showed that nonidenti-
fiability in the estimation of a fecundity and observation
correction parameter could be overcome by including a
covariate in the model for fecundity.
Similarly, identifiability issues can be overcome by

combining a SSM with a model for another data set that
has parameters in common with the SSM. For example,
in integrated population models, SSMs for time series of
census data are combined with capture–recapture data
(Besbeas et al. 2002, Abadi et al. 2010). Adding addi-
tional data sources can be extremely useful, but may not
remove all identifiability issues. Methods for checking
identifiability in integrated models are discussed in Cole
and McCrea (2016).

Use replicated observations.—Having replicated observa-
tions through time (e.g., two independent population
surveys) can help differentiate process variation from
observation error, improve the parameter estimates’
accuracy, and improve the capacity of model selection
methods to identify the correct observation distribution
(Dennis et al. 2010, Knape et al. 2011). In many
instances, such replicated observations have already been
collected, but are aggregated. For example, in popula-
tion monitoring studies, subsamples (e.g., transect por-
tions) are often aggregated into one overall estimate of
abundance. Dennis et al. (2010) demonstrated that using
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these as replicates, rather than aggregating them, can
improve the estimates. One can also take advantage of
time series with multiple data sources to estimate the
errors of each data source (e.g., double-tagged individu-
als in movement SSMs [Winship et al. 2012]). For animal
movement models, individuals can be also seen as repli-
cates of the same process, but often the SSMs are fitted
separately to each individual track. To improve infer-
ence, one can create a population model, where each
individual track is linked to a distinct state time series
but all share the same parameters (Jonsen 2016).
Although the gains that can be made with replications
are significant, one must understand the assumptions of
models for replicated data. Simple population models
for replicated data sets may assume that the replicates
are independent (Dennis et al. 2010). However, many
temporally varying factors (e.g., weather) may affect the
sampling conditions and/or the behavior of animals and
result in correlations between replicates. Knape et al.
(2011) demonstrated how to account for such depen-
dence in population dynamics models. For animal move-
ment, one may want to consider whether it is
appropriate to assume that the behavioral mechanism
driving movement is identical across individuals and, if
not, may want to modify the model accordingly. How-
ever, as the gains that can be made with replications far
surpass those that could be made with longer time series
(Dennis et al. 2010), one should consider using replica-
tion in models and when designing studies. For example,
Knape et al. (2011) suggested that in some cases man-
agers may want to sample a population twice every sec-
ond year rather than once a year. As SSMs are
becoming the prime method to fit ecological time series,
such study design issues should be explored further.

Match temporal resolution for states and observations.—
The temporal resolution of the data can affect the
parameter and state estimates, and it is important to
define a model at a resolution that is appropriate for the
data. In many cases, adequate temporal span or resolu-
tion is more important than increased data quantity. For
example, if a model describes a long-term cycle, then col-
lecting data from more individuals is unlikely to make
parameters estimable if the data set is not long enough
to span the cycle being described (Peacock et al. 2017).
If developing a model to classify a movement path into
distinct behavioral modes, one must sample the move-
ment track at a high enough frequency so that multiple
locations are recorded in each movement bout (Postleth-
waite and Dennis 2013). If one has a data set with loca-
tions every 8 h, it would be challenging to estimate
behavioral states lasting <16–24 h. One can use pilot
data, simulations, and data cloning to identify the tem-
poral (and spatial) scale of sampling appropriate for the
model, in something akin to a power analysis (Peacock
et al. 2017). Overall, finding an appropriate model for
your data, or collecting the appropriate data for your
questions, can be an iterative process where one assesses

the estimability of different models under different data
conditions.

COMPUTATIONALLY EFFICIENT MODEL COMPARISON

METHODS

Model comparison (or selection) can be used to
compare the relative fit of models representing multi-
ple working hypotheses, and to identify the model
among these that best describes the data (see Diagnos-
tics and Model Validation for SSMs for methods to
evaluate the absolute fit of a model). Because differ-
ent model structures can affect the estimated states
and parameters (Knape et al. 2011), model compar-
ison can be extremely useful in helping to refine state
estimates (Auger-Méthé et al. 2017). Model compar-
ison is common in ecology and has been used to
compare SSMs (e.g., Siple and Francis [2016]). How-
ever, it is not uncommon for users to fit only a single
SSM, likely because of the computational burden of
fitting complex SSMs and some of the known limita-
tions of applying model selection methods to SSMs
(Jonsen et al. 2013). With the improved efficiency of
fitting algorithms and advancements in model selec-
tion measures, model comparison of SSMs is becom-
ing more attainable.
One common view is that ecological systems are so

complex that it is impossible to develop a model that
truly describes them, and that the goal of model selec-
tion is to find the best approximation of the truth (Burn-
ham and Anderson 2002). Under this paradigm, a useful
way to compare models is to assess how well they can be
used to predict new data. Comparing the out-of-sample
predictive accuracy of models can be done with cross-
validation. However, it is rarely done with ecological
SSMs because it requires fitting the same model multiple
times, and thus can add significant computational bur-
den to the analysis. Many advocate cross-validation as
the best method for model selection (Gelman et al. 2014,
Link et al. 2017), and gains in efficiency of fitting algo-
rithms are making its use increasingly feasible. We dis-
cuss cross-validation as a model selection, and
validation, method in Diagnostics and Model Validation
for SSMs. Here, we focus on what can be considered
approximations of predictive accuracy. In particular, we
discuss information criteria measures used with frequen-
tist and Bayesian approaches.

Frequentist approach

The most common model comparison measure in
ecology is Akaike’s Information Criterion (AIC; Aho
et al. [2014]). AIC was derived to estimate the expected
and relative distance between the fitted model and the
unknown true data-generating mechanism (Burnham
and Anderson 2002), and can be viewed as −2 times an
approximation of the predictive accuracy of the model
(Gelman et al. 2014):
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AIC¼�2logLðθ̂mlejyÞþ2k, (49)

where Lðθ̂mlejyÞ is the likelihood of the model at the
MLE (i.e., the probability of the observed data given the
model) and k is the number of parameters estimated.
The model with the lowest AIC, thus the shortest dis-
tance from the truth, is considered the best model. Mod-
els with more parameters will be more flexible and will
tend to fit the existing data better by chance alone. Thus,
AIC penalizes a model for its number of estimated
parameters to compensate for overfitting.
There are many issues related to using AIC with

SSMs, and some have cautioned against this practice
(e.g., Jonsen et al. [2013]). We identified five different
concerns. The first three concerns are related to the fact
that the states of a SSM can be considered as random
effects. First, using AIC to understand whether includ-
ing random effects improves the model is difficult
because some of the models may have parameters at the
boundary of parameter space (Bolker et al. 2009). For
example, testing whether or not there is process variance
in SSMs (e.g., comparing our toy model to a model with
no process variance, where σp = 0) could result in
boundary problems, and is not recommended. Second,
when you have random effects, it is difficult to quantify
the effective number of parameters (Bolker et al. 2009).
For SSMs, it is difficult to know to what extent the states
should be counted as estimated parameters and con-
tribute to k. However, if all of the compared SSMs have
the same number of states and no additional random
effects, these two issues should be less problematic. In
such cases, we would expect any bias in the penalty k to
be the same across models and thus have little effect on
the difference in AIC across models. Third, one must
decide whether the marginal likelihood or the condi-
tional likelihood should be used when calculating AIC
of a model with random effects (Müller et al. 2013). In
contrast to the marginal likelihood, where we integrate
out the states (Eq. 44), the conditional likelihood
considers the states as known Lcðθojz1:T , y1:T Þ¼QT

t¼1gðytjzt, θoÞ: When the conditional likelihood is
used in the AIC framework, both the parameter and
state estimates are plugged in and different approaches
can be used to account for the number of states (Vaida
and Blanchard 2005, Müller et al. 2013). This condi-
tional AIC is a measure of the model’s ability to pre-
dict new observations that share the same latent states,
whereas the marginal AIC does not assume that the
latent states are shared with the new observations and
measures the model’s ability to predict new observa-
tions from the same process (Vaida and Blanchard
2005). For example, for a SSM describing the popula-
tion dynamics of a fish species, we would interpret the
conditional AIC as assessing the ability to predict
another survey of the same population during the same
time period. The marginal AIC would be assessing the
ability of the model to predict a survey from a similar

population of the same species. To our knowledge the
marginal likelihood has always been used with SSMs
fitted in a frequentist framework. In most SSMs, the
number of states increases with the sample size (i.e.,
with the length of the time series). Because frequentist
model selection methods rely on asymptotic properties,
which can be attained when the sample size is large
compared to the number of quantities estimated, con-
ditional AIC may be unreliable for most SSMs. This
characteristic may explain why potential advantages of
using the conditional likelihood remain uninvestigated
in the frequentist SSM literature (the conditional likeli-
hood is used in Bayesian information criteria; see
Bayesian approaches for a discussion). The fourth
source of concern is related to the problems associated
with using AIC to choose the number of components
in mixture models, which are particularly relevant for
choosing the number of states in HMMs (Jonsen et al.
2013). Pohle et al. (2017) outline solutions to this
HMM-specific problem.
The final concern, which is specific to cases with small

sample size, is one that has been studied in the SSM lit-
erature. When the sample size n is small and the number
of parameters k is relatively large (e.g., when k≈n=2), the
2k penalty is inadequate and AIC has a tendency to
favor more complex SSMs (Cavanaugh and Shumway
1997). Many use the corrected AIC (AICc) for small
sample size (Burnham and Anderson 2002). However,
Cavanaugh and Shumway (1997) noted that AICc may
be inadequate for many SSMs, and suggested an alterna-
tive: the bootstrap-corrected measure, AICb. AICb has
been used for ecological SSMs (Ward et al. 2010, Siple
and Francis 2016), especially by users of the R package
MARSS (Holmes et al. 2012). This package for estimat-
ing the parameters of linear multivariate auto-regressive
SSMs with Gaussian errors (i.e., multivariate NDLMs)
has a function that calculates various versions of AICb.
AICb was developed in the context of linear Gaussian
SSMs, but is thought to be relatively robust to violations
to normality (Cavanaugh and Shumway 1997). We can
describe AICb as

AICb¼�2logLmðθ̂mlejy1:T Þþ2
1
N

∑
N

i¼1
�2log

Lmðθ̂ijy1:T Þ
Lmðθ̂mlejy1:T Þ

 !
,

(50)

where θ̂i is the ith bootstrap replicate of θ̂, N is the num-

ber of replicates, and Lm θ̂ijy1:T
� �

is the marginal likeli-

hood of the model with the bootstrapped parameter sets
given the original data. This bootstrap replicate can be
achieved by simulating a time series from our model with
θ̂mle and estimating the parameters using this new time
series. AICb was shown to outperform AIC and AICc

when used with SSMs that had relatively small sample
size for the number of parameter estimated (Cavanaugh
and Shumway 1997). The disadvantage of AICb is that

Xxxxx 2021 ECOLOGICAL STATE–SPACE MODELS Article e01470; page 25

R
E
V
IE
W



it requires fitting the model N times. In the case of mod-
els that are computationally demanding to fit, one may
need to continue to rely on AICc when sample sizes are
small. Although AICc tends to erroneously choose more
complex models compared to AICb, it is better than
AIC and many other metrics for SSMs with small sam-
ple size (Cavanaugh and Shumway 1997). Another simi-
lar computationally intensive AIC variant for SSMs
fitted to small samples has been developed by Bengtsson
and Cavanaugh (2006), but its use in ecology has been
limited by some of its constraints (e.g., Ward et al.
2010). For large data sets, some ecologists prefer to use
BIC over AIC because AIC tends to choose more com-
plex models as sample size increases. However, these
two measures are used to achieve different inferential
goals, and choosing between them is largely a philosoph-
ical question (see Aho et al. 2014, Hooten and Hobbs
2015).
Overall, AIC and its small sample alternatives can be

used with SSMs in many instances, especially when the
number of states and random effects are the same. AIC
has been used for decades with SSMs (Harvey 1990),
and simple simulation studies have shown that AIC can
be used to reliably select between SSMs (Auger-Méthé
et al. 2017). Further research on the capacity of AIC to
compare the predictive abilities of SSMs when the num-
ber of states or random effects vary, and research on
how to account for the number of states in the penalty
term would be useful. In the meantime, one should be
aware of the limitations outlined above, and interpret
the results accordingly.
Other frequentist methods may be used to select

between SSMs. For example, likelihood ratio tests can
be used to select between nested models, especially when
conducting planned hypothesis testing (e.g., Karban and
de Valpine 2010). However, likelihood ratio tests will suf-
fer from some of the same issues as the those highlighted
for AIC. Newman et al. (2014) also highlighted the
potential use of score tests, transdimensional simulated
annealing, and other methods. To our knowledge, these
alternative methods have not been used in the SSM liter-
ature, but may be the focus of future research.

Bayesian approaches

Two Bayesian information criteria, the deviance infor-
mation criteria (DIC, see Appendix S4) and the Watan-
abe–Akaike information criterion (WAIC), are popular
with hierarchical models, and have been used with SSMs.
They replace the information criteria based on MLEs,
such as AIC, which do not have a clear interpretation
for Bayesians (Hooten and Hobbs 2015). DIC and
WAIC are similar to AIC, but they both use information
from the posterior and estimate the effective number of
parameters using data-based bias correction rather than
a fixed rule. These data-based methods attempt to
account for the effects of priors and the hierarchical

structure (e.g., the characteristics of the random effects)
on the flexibility of the model.
Although DIC has been used to select ecological

SSMs (e.g., Michielsens et al. 2006), and MCMC sam-
pler software (e.g., JAGS [Plummer 2003]) and R pack-
ages like rjags (Plummer 2018) have functions that
compute it easily, this information criterion is known to
have many drawbacks that hinder its suitability for
SSMs. DIC performs better when the number of effec-
tive parameters is much smaller than the sample size
(Hooten and Hobbs 2015), a condition likely uncommon
with SSMs because the number of latent states scales
with the sample size. In addition, DIC is known to be
problematic for mixture models, can poorly estimate the
effective number of parameters (e.g., can return negative
numbers), relies on approximate posterior normality,
and is not fully Bayesian because its measure of fit relies
on the posterior mean of θ (i.e., a point estimate; see
Appendix S4) instead of the entire posterior distribution
(Gelman et al. 2014, Hooten and Hobbs 2015, Kai and
Yokoi 2019). These limitations may explain why Chang
et al. (2015), in contrast to Wilberg and Bence (2008),
showed that DIC had difficulties selecting amongst eco-
logical SSMs.
Many now favor WAIC, a recently developed Bayesian

information criterion (Gelman et al. 2014, Hooten and
Hobbs 2015)

WAIC¼�2∑
T

i¼1
log
Z

pðyijθÞpðθjyÞdθþ2pwaic: (51)

The first component of WAIC is a measure of fit that,
unlike DIC, uses the entire posterior distribution for θ
rather than a point estimate. As such, we can consider
this measure of fit as truly Bayesian. There are different
ways to estimate the effective number of parameters,
pwaic. Gelman et al. (2014) recommend using
∑T

i¼1Varpost logpðyijθÞð Þ, as it gives results closer to the
leave-one-out cross-validation. In our formulation of
WAIC (Eq. 51), we used a −2 multiplier, as it helps high-
light the similarity to AIC (Eq. 49). However, this multi-
plier may obscure how WAIC is a measure of the
predictive accuracy of the model, and some researchers
prefer not using it (e.g., Vehtari et al. 2017). See Appen-
dix S4 for how Eq. 51 is calculated in practice.
WAIC has been used to compare ecological SSMs

(e.g., Baldwin et al. 2018, Ferretti et al. 2018) and can be
computed using the R package loo (Vehtari et al. 2017).
Recent reviews of Bayesian model comparison methods
favor WAIC over DIC (Gelman et al. 2014, Hooten and
Hobbs 2015) because it is a fully Bayesian metric, it is
not affected by parameterization, and will not return
negative values for the effective number of parameters.
However, WAIC has a few shortcomings, and new
approximations of predictive accuracy have been
recently proposed (e.g., Pareto-smoothed importance
sampling leave-one-out cross-validation [Vehtari et al.
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2017]). Both parts of WAIC are computed by using the
sum over each data point i, and thus rely on partitioning
the data into disjoint, ideally conditionally independent,
pieces (Gelman et al. 2014). Naively partitioning can be
problematic with SSMs, because the time-series nature
of the data generally results in dependence structures
(see Appendix S4 for a potential solution). Although
AIC and DIC rely on a point estimate rather than sum-
ming over each data point, they also assume conditional
independence.
Just as for AIC, we could use either the conditional or

marginal likelihood with DIC and WAIC (Kai and
Yokoi 2019, Merkle et al. 2019). With the Bayesian
approach, the likelihood is generally defined as fully
conditional on both parameters and latent states and
both are generally sampled when sampling the posterior.
Thus, the conditional likelihood is usually used with
Bayesian metrics even though this is rarely specified
(Millar 2018, Merkle et al. 2019). Although computing
the marginal likelihood version of these Bayesian metrics
is more computationally expensive, their conditional
counterparts are often unreliable (Millar 2009, 2018,
Merkle et al. 2019). In particular, DIC and WAIC were
shown to select the true underlying SSM more reliably
when the marginal likelihood is used (Kai and Yokoi
2019).
As Gelman et al. (2014) noted, we are asking close to

the impossible from these information criteria measures:
an unbiased estimate of out-of-sample prediction error
based on data used to fit the model that works for all
model classes and requires minimum computation. As
such, metrics such as WAIC can be unreliable estimates
of the predictive ability of ecological models (Link et al.
2017). Although further research is needed to assess
when WAIC is appropriate for SSMs and to identify
data partitioning schemes that resolve some of the
potential biases, WAIC based on the marginal likelihood
is likely the best information criterion for Bayesian
SSMs at this point. Future work should explore how
promising new approximation methods (see Vehtari
et al. 2017, Bürkner et al. 2020) perform with ecological
SSMs. If the models are relatively inexpensive to fit, then
one can bypass many of the shortcomings of WAIC, and
other approximations of predictive ability, by comparing
models using more computer intensive cross-validation
methods (Gelman et al. 2014, Link et al. 2017, Vehtari
et al. 2017). Cross-validation will also require one to
partition data intelligently, but this may be more easily
implemented with blocking (Gelman et al. 2014, Roberts
et al. 2017).
Other methods could be used to compare models in

a Bayesian framework (e.g., Newman et al. [2014]).
For example, reversible-jump MCMC has been used to
compare SSMs (McClintock et al. 2012), but is known
to be difficult to implement (Hooten and Hobbs 2015).
The importance of multiple covariates in a model (e.g.,
the effect of temperature and precipitation on bird

survival) can be assessed by multiplying coefficients in
a model by indicator variables which when equal to
one include the covariate and when equal to zero
exclude the covariate (O’Hara and Sillanpää 2009).
Such techniques have been used to compare ecological
SSMs (Sanderlin et al. 2019), but such an approach is
designed for nested models only. Posterior predictive
loss approaches appear to be suitable for time-series
data (Hooten and Hobbs 2015) and have been used to
compare ecological SSMs (Mills Flemming et al.
2010). Although these alternative approaches may not
be as commonly used to compare ecological SSMs,
and will have drawbacks, many of them warrant fur-
ther exploration.

Model averaging

Model averaging can combine the strength of several
models and account for model uncertainty, something
model selection cannot offer (Buckland et al. 1997,
Hooten and Hobbs 2015). Wintle et al. (2003) argued
against using a single model to make predictions
because uncertainty about model structure is often
high in ecology, and alternative models can have pre-
diction differences with important repercussions for
management decisions. When one selects a single
model, and presents the parameter and state estimates
based on this best model, one implicitly assumes that
the model is true and that the uncertainty is only in
the estimation process (Buckland et al. 1997, Wintle et
al. 2003). One can instead use model averaging, where,
for example, each model is weighted and the predic-
tions are a weighted sum across the plausible models
(Wintle et al. 2003). Both the parameters and the pre-
dictions could be averaged, but this must be done with
care and we would generally caution against averaging
parameters. In many cases, differences in model struc-
ture result in changing the meaning of parameters,
thus making their average nonsensical (Dormann et al.
2018). Model averaging has been used in a few studies
applying SSMs to ecological data (e.g., Maunder and
Deriso 2011, Moore and Barlow 2011) and was shown
to provide unbiased estimates (Wilberg and Bence
2008). However, simulation studies have shown that
model averaging may not always provide more accu-
rate point estimates than the best SSMs (Wilberg and
Bence 2008, Chang et al. 2015). In addition, although
model averaging generally reduces prediction errors
compared to each of the contributing models, these
gains can be counteracted by factors such as uncer-
tainty in the model weights and covariance between
models (Dormann et al. 2018). In addition, calculating
weights using parametric methods such as AIC can
perform poorly (Dormann et al. 2018). We refer inter-
ested readers to a recent review by Dormann et al.
(2018), which provides an in-depth discussion of model
averaging in ecology.
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DIAGNOSTICS AND MODELVALIDATION FOR SSMS

Although model selection can help us identify which
of the fitted models best describes the data, it rarely pro-
vides an assessment of the absolute fit of that model. As
such, the selected model could be a poor representation
of the data-generating process (i.e., could poorly
describe the ecological process and/or measurement pro-
cess) and relative measures of fit, such as AIC, do not
quantify how closely the model matches the data. Thus,
before interpreting model results, it is crucial to carry
out some of the following model diagnostics. First, it is
essential to examine whether estimated parameters seem
biologically reasonable. For example, our understanding
of the system may stipulate that a response variable
should increase with a covariate. A model with parame-
ter estimates inconsistent with such a priori understand-
ing or with unrealistic effect sizes will be suspect.
Second, it is important to assess the influence of individ-
ual observations on estimated parameters. For example,
outliers can have a strong influence on parameter esti-
mates. Third, one should examine whether the model
assumptions are reasonable. For example, with SSMs,
assumptions are made about the probability distribu-
tions for states and observations (e.g., Eqs. 1, 2 assume
both are normal). Fourth, it is important to examine the
goodness of fit, which defines how well the model
describes the data used to fit the model. At the
individual-observation level, goodness of fit measures
how far an observation is from its predicted value (e.g.,
yt� ŷtj j, t = 1, . . ., T). At the model level, it summarizes
the overall fit of a model to all observations (e.g., the
average squared errors). Fifth, one ought to assess the
model’s predictive accuracy, or how well the model pre-
dicts an outcome for an observation that was not used
to fit the model (e.g., via cross-validation). With time-
series models, including SSMs, one can use the first t
observations to fit the model, and then use the model to
predict the t + 1 observation, or fit the model to all T
observations and see how well future observations are
predicted.

Challenges with SSMs

For simple statistical models, such as linear regression,
diagnostics for most of the above features are well estab-
lished. Diagnostics for SSMs, however, can be challeng-
ing for two reasons. First, observations are temporally
dependent. Many diagnostics rely on response or con-
ventional residuals, which we define as follows for our
toy model:

etj1:T ¼ yt� ŷtj1:T , (52)

where ŷtj1:T is the predicted observation at time t given
all observations. This predicted value depends on the
smoothed-state estimate at time t, ẑtj1:T , and the

observation equation. For example, for our toy model
(Eqs. 1, 2), ŷtj1:T ¼E½ytjy1:T � ¼ αẑtj1:T . Harvey (1990)
notes that these response residuals are not serially inde-
pendent. Their use can impair one’s capacity to identify
model misspecification (Harvey 1990), and can have
negative consequences for model inference and further
model diagnosis (e.g., inflated goodness of fit [Thygesen
et al. 2017]). Second, as for most hierarchical models, we
generally do not have direct observations of the hidden
states, zt; thus one cannot directly compare predicted
states with their “true” values.
Because of these challenges, researchers often fail to

check the absolute fit of SSMs, and thus risk making
conclusions based on a misspecified model or risk hav-
ing biased parameter and state estimates. Here, we pro-
vide a list of tools to help researchers perform this
essential model-checking step. We start with the tools
commonly used to assess Bayesian hierarchical models.
These tools can be easily used with frequentist and Baye-
sian SSMs alike, but have important limitations. We then
discuss the tools that have been the focus of model vali-
dation developments for SSMs, which specifically
address the issue of temporal dependence in the residu-
als. We end with methods relying on out-of-sample vali-
dation (e.g., cross-validation), which we believe is the
gold standard for assessing the predictive ability of a
model, and we hope will become the focus of future
developments for SSMs. This order also reflects an
increased division between the data used to estimate the
model parameters and hidden states and the data used
to perform the diagnostics.

Posterior predictive measures

Posterior predictive checking is a common Bayesian
method to quantify the discrepancies between the data
and the model (Gelman et al. 2013, Conn et al. 2018). It
has been used to verify the fit of SSMs to ecological data
(e.g., Hobbs et al. 2015). The idea behind posterior pre-
dictive checking is that if the model fits the datawell, then
data generated from the model should have characteris-
tics similar to those of the observed data (Gelman et al.
2013). These posterior predictive checks often involve cal-
culating a posterior predictive P value, pB:

pB ¼Pr T yi, θ
� �

≥ T y, θð Þjy� �
, (53)

where each yi is a time series that has been simulated
from the fitted model (i.e., representing a replicate time
series that could have been observed from the model), y
is the observed data, θ contains the model parameters,
and T(y,θ) is a test quantity summarizing the data (e.g.,
the mean) or a discrepancy function (e.g., χ2 measure).
This P value is similar to the one used in frequentist
inference. It measures the probability, under the model
of interest, of finding a test quantity as extreme as that
associated with the data. Posterior predictive checks use
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three steps: (1) sample a set of posterior θ values, (2)
simulate one yi from each, and (3) calculate the test
quantity for each yi. We estimate the P value with the
proportion of the replicates that have a test quantity
value greater or equal to that of the real data. Posterior
predictive P values near 0 or 1 indicate that the pattern
observed with the data would be unlikely if the model
were true. Thus, unlike P values associated with classic
statistical tests used to reject null hypotheses (e.g., t-
test), we are seeking a posterior predictive P value close
to 0.5 not smaller than 0.05. The relevance of the P value
largely depends on the choice of test quantity. Hobbs et
al. (2015) used the mean and standard deviation of the
observed data, as well as a discrepancy function

T y, θð Þ¼∑T
t¼1 yt� ŷtj1:T
� �2

¼ ∑
T

t¼1
e2tj1:T

� �
that measures

the disagreement between the SSM and the data. New-
man et al. (2014) and Conn et al. (2018) provide lists of
important alternative functions. Although we described
posterior predictive checks in a Bayesian framework and
have defined the test quantity as a function of y, King et
al. (2015) have applied similar concepts in a frequentist
framework, using test quantities that describe character-
istics of the estimated hidden states, z (e.g., autocorrela-
tion function at lag 1 of the states).
Although common, posterior predictive P values

have important limitations (Conn et al. 2018).
Because they use the data twice, once to fit the model
and once to test the model fit, they tend to be con-
servative (i.e., tend to return value closer to 0.5 than
to 0 or 1), and often have insufficient power to detect
lack of fit. One can alter the method described above
and generate all the observation replicates using only
a single sample from the posterior parameter distribu-
tion. This method was shown to have better theoreti-
cal properties (e.g., better Type I error rate control),
and to detect lack of fit more reliably for some eco-
logical hierarchical models (Conn et al. 2018). Follow-
ing King et al. (2015), we recommend assessing
discrepancies between the SSM and the data by look-
ing at where T(y,θ) falls in the frequency distribution
of T(yi, θ) (Fig. 4a, d). This graphical method is also
more useful in assessing the ecological importance of
the discrepancies than looking at the P value, and
can provide a better sense of why the model may be
inappropriate for the data (Conn et al. 2018).
Posterior predictive checks are also useful to assess

the validity of model assumptions (Gelman et al. 2013).
We can use a single sample from the posterior distribu-
tion of the hidden states to assess the assumptions asso-
ciated with the process equation (Thygesen et al. 2017).
For example, we can sample a time series of state zi from
the posterior state distribution of our toy model to cal-
culate the process variation as ɛit ¼ zit�βzit�1, and verify
whether the ɛit are normally distributed with a mean of 0
as assumed by Eq. 1. Departures from the assumed dis-
tribution (e.g., if the mean of the process variation is far

from 0), indicate that the model is not adequate for the
data. This method is generally recommended for assess-
ing the assumptions of Bayesian hierarchical models
(Gelman et al. 2013), but Thygesen et al. (2017) used the
Laplace approximation implemented in TMB to create a
posterior distribution of the states for non-Bayesian
models.

One-step-ahead residuals and their extensions

The model diagnostic that has received the most atten-
tion in the SSM literature is the one-step-ahead residuals
(Harvey 1990, Thygesen et al. 2017), also known as
recursive residuals (Frühwirth-Schnatter 1996). Unlike
the response residuals (Eq. 52), the one-step-ahead resid-
uals should not have temporal dependence when the
model is adequate because the residual for the tth obser-
vation uses the expected observation at time t given
observations only up to time t−1:

etj1:t�1 ¼ yt� ŷtj1:t�1: (54)

Effectively, for response residuals (Eq. 52) we use the
smoothed estimates of states, ẑtj1:T , to predict the obser-
vation at time t, whereas for one-step-ahead residuals,
we use the prediction of the states, ẑtj1:t�1. In the context
of a Kalman filter, we can calculate ŷtj1:t�1 using the
one-step-ahead forecast prediction that is already calcu-
lated as part of the recursive algorithm. As more infor-
mation is available for fitting the model as t increases,
the variance of prediction residuals will tend to decrease
with t. To account for this change in variance, it is useful
to scale the prediction residuals by their standard devia-
tions (a procedure equivalent to calculating standardized
Pearson residuals):

~etj1:t�1 ¼
etj1:t�1

sd etj1:t�1
� � : (55)

For the special case of SSMs with normally dis-
tributed states and observations, such standardized
residuals are independent and identically distributed
with a standard normal distribution and can be used to
test a variety of assumptions. Diagnostic procedures
include qq-normal plots to check for normality, autocor-
relation function plots to see if the residuals are indepen-
dent, and plots of the residuals against observed values
to check for non-constant variance.
For nonnormal SSMs, the probability distribution of

these standardized one-step-ahead residuals are not
standard normal, making the exploration of residuals
harder. Probability scores (P scores), and their trans-
formed version, prediction quantile residuals, are useful
alternatives (Frühwirth-Schnatter 1996, Thygesen et al.
2017). A P score, ut, is the cumulative distribution func-
tion for the predicted observations evaluated at the tth
observed value:
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ut ¼FYtjy1:t�1
ytð Þ¼PrðYt ≤ ytjY 1:t�1 ¼ y1:t�1Þ: (56)

If FYtjy1:t�1
describes the cumulative distribution func-

tion of the true model, then the resulting ut are uni-
formly distributed (Conn et al. 2018). Deviations from
uniformity suggest model misspecification. As this is
simply an application of the probability integral trans-
formation (i.e., if Y has the cumulative density function
FY, then FY(Y) is distributed with Uniform(0,1) [Smith
1985]), these are a specific case of probability integral
transform (PIT) residuals (Warton et al. 2017). To get
normally distributed residuals, we can transform the P
scores to prediction quantile residuals, vt, as follows:

vt ¼Φ�1 utð Þ, (57)

where Φ−1 is the inverse of the standard normal cumula-
tive distribution function (also known as the standard
normal quantile function). When the model is true, vt
should be an independent sample from a standard nor-
mal. Thus, we can assess whether the data fit the model

assumptions using the same diagnostic procedures avail-
able for standardized one-step-ahead prediction residuals
in the case of normally distributed SSMs (see Fig. 4b, c,
e, f and Newman et al. [2014], Thygesen et al. [2017]).
P scores and prediction quantile residuals can be diffi-

cult to estimate for nonnormal SSMs because their cal-
culation requires knowledge of the cumulative
distribution function (cdf) for Ytjy1:t�1, which in many
cases will not be known nor have an analytical form.
However, Thygesen et al. (2017) developed methods for
approximating the cdf based on the Laplace approxima-
tion that can be implemented easily in TMB. Because
this method depends on the Laplace approximation, it is
important to assess the accuracy of this approximation
(see Appendix S1: Section S1.2.3). The quantile residu-
als of Thygesen et al. (2017) are applicable to a broad
range of frequentist SSMs, although there are some limi-
tations in using them with multivariate time series. We
are not aware of equivalent methods for as broad a
range of Bayesian SSMs, although some exist for a lim-
ited class (Frühwirth-Schnatter 1996, Gamerman et al.
2013).

FIG. 4. Examples of diagnostic plots for a well-specified (a, b, c) and a misspecified model (d, e, f). The data for all plots were sim-
ulated from the toy model (Eqs. 1, 2) with α= β= 1 and the σp= σo= 0.1. The correctly specified model used the correct known values
of α and β, and estimated σp and σa. Although the misspecified model also used the correct known values of α and β, it wrongly
assumed a value of σo= 0.5 and then estimated σp. (a), (d) A frequentist version of the posterior predictive check, where the test quan-

tity is the standard deviation of the observations, T yð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑T

t¼1ðyt�yÞ2= T�1ð Þ
q

. The histograms represent the frequency of test
quantity for 200 data sets simulated using the estimated parameters with the original data set. The vertical bar is the test quantity for
the original data set. (b), (e) The autocorrelation function (ACF) of the one-step-ahead residuals. (c), (f) Comparison of the distribu-
tion of the observed one-step-ahead residuals (histograms) to a standard normal probability density function (curves).
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Cross-validation

Although one-step-ahead residuals and their exten-
sions remove data when calculating the expected value of
the observation at time t, they use the complete data set to
estimate the model parameters. Thus, these residuals can-
not be used to assess the predictive ability of the model
fully. Assessing the predictive ability of a model is thought
to be best achieved with out-of-sample data, where two
independent data sets are used: one to fit (or train) the
model and one to validate (or test or evaluate) it (Hooten
and Hobbs 2015). Although rarely done with SSMs, there
are examples where independent information on the true
values of the hidden states was collected (e.g., Auger-
Méthé et al. 2017; Appendix S1: Section S2.2), a data
stream was used as validation data (e.g., Hobbs et al.
2015), or part of a time series was selected as a validation
time period (e.g., Holdo et al. 2009).
When using a single subset of the data as validation,

we can only assess the predictive ability for those specific
observations. Instead, one can use cross-validation
methods that look at the predictive ability of all data
points by sequentially leaving out small subsets of the
data (Hooten and Hobbs 2015). k-fold cross-validation
is a ubiquitous statistical method, where k groups of
similar size sequentially serve as the validation data set,
and the remaining k−1 groups are collectively used as
the training set. Leave one out is a common version that
leaves each of the data points out sequentially. To assess
the predictive ability of the model, we can use score or
discrepancy functions, such as the mean-squared predic-
tion error (MSPE) for group k:

MSPEk ¼ ∑
n

i¼1
yi,k,oos� ŷi,k,oos
� �2

=n, (58)

where we assume that T/k is an integer n, oos means out
of sample, yi,k,oos is the ith observation in subsample k,
and ŷi,k,oos is the expected observation based on the
model fitted to the data set without sample k. As an
overall value, we can then average the k MSPEk. Such
functions directly assess the predictive ability of the
model and thus are intuitive measures of how good a
model is.
As mentioned in Computationally Efficient Model

Comparison Methods, cross-validation is also often
deemed the preferred method for model comparison
(Gelman et al. 2014, Hooten and Hobbs 2015). The
model set can be ranked based on predictive accuracy,
with better models having lower prediction error (e.g.,
lower MSPE or its square root, RMSPE [Hooten and
Hobbs 2015]). Although cross-validation can be imple-
mented relatively easily, it can be computationally
demanding (Link and Sauer 2016, Vehtari et al. 2017).
Cross-validation generally requires refitting the models
k times, which can be a daunting task with Bayesian
models (but see Hooten and Hobbs 2015, for suggested

solutions). In addition, cross-validation assumes that the
training and evaluation data sets are independent
(Roberts et al. 2017). The main challenge with using
cross-validation with SSMs is that, because of the tem-
poral dependency in the data, removing only a few data
points will underestimate the prediction error and
removing many will lead to propagation of error (New-
man et al. 2014).
Despite these drawbacks cross-validation is a powerful

tool, which has been promoted for use with complex
ecological models (Link et al. 2017). At present, there
are few cross-validation methods specifically designed to
handle the dependency structure of SSMs (Ansley and
Kohn 1987, de Jong 1988). These are appropriate for
only a restricted set of SSMs and appear to be rarely
used. However, the time-series literature (e.g., Tashman
2000, Bergmeir and Benı́tez 2012, Bürkner et al. 2020)
and the suggestions of Roberts et al. (2017) on block
cross-validation methods to account for dependence
structure in ecological data are useful starting points for
the development and evaluation of such methods for
SSMs. Cross-validation methods for time series include
procedures analogous to the one-step-ahead residuals
(One-step-ahead Residuals and Their Extensions), but
where model parameters differ across the k folds and are
estimated using only observations prior to the expected
values (Hyndman and Athanasopoulos 2018). One may
need to consider additional modifications, such as
whether one should use a rolling window for the training
data set (Tashman 2000).
The topic of model validation for SSM is one that has

been relatively poorly studied, with a few notable excep-
tions (e.g., Frühwirth-Schnatter 1996, King et al. 2015,
Thygesen et al. 2017). Because of the additional parame-
ter identifiability and estimability problems discussed in
Formulating an Appropriate SSM for Your Data, we
believe this topic deserves more attention. Beyond the
tools we have outlined, SSM developers and users can
gain inspiration from the tools developed for hierarchi-
cal models (PIT-trap residuals [Warton et al. 2017]). For
researchers using Bayesian SSMs, we point readers
towards the review of Conn et al. (2018) on model-
checking methods for Bayesian hierarchical models.
Finally, we would like to remind readers that, although
it is crucial to perform a model validation step, passing
this step does not mean that the model is representing
the truth. It simply means that one could not find differ-
ence between the data-generating system and the model.
This could be due to a low sample size or the conserva-
tive nature of some of the methods described.

CONCLUSION

Through a diverse set of examples, we have demon-
strated that SSMs are flexible models for time series that
can be used to answer a broad range of ecological
questions. They can be used to model univariate or
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multivariate time series. SSMs can be linear or nonlinear,
and have discrete or continuous time steps. They can
have normal or nonnormal sources of stochasticity, and
thus can model continuous, count, binary, or categorical
data. They are particularly useful when one has signifi-
cant process variation and observation error. Account-
ing for these sources of uncertainty can substantially
affect management decisions, making SSMs the perfect
modeling tool in many contexts (e.g., Jamieson and
Brooks 2004, Hobbs et al. 2015).
As we have outlined, a variety of tools to fit SSMs to

data exist. Historically, many researchers wrote SSMs so
they could be fitted with the Kalman filter and its exten-
sions. However, the diversity of fitting procedures avail-
able now allows researchers to create models that are
more representative of the structure of their data and the
ecological processes they are interested in. In addition,
flexible fitting tools now exist in both the frequentist and
Bayesian frameworks, allowing researchers to choose
their preferred inferential framework rather than have
their model dictate the framework they can use. Within
each inferential framework, the choice of a fitting proce-
dure will be a compromise between flexibility and effi-
ciency. In particular, highly efficient fitting methods (e.g.,
Laplace approximation and Hamiltonian Monte Carlo)
have more restrictions than their slower alternatives (e.g.,
particle filter and Gibbs samplers).
Although these tools provide the means to fit complex

SSMs, it is crucial to formulate the model appropriately.
As discussed, SSMs can suffer from parameter estimabil-
ity problems, but various tools exist to assess whether this
is the case and to identify the type of study design or
model simplification that will resolve these problems. In
general, making use of replication or including covariates
can help reduce some of the common estimation prob-
lems.
Researchers often forgo doing model selection and vali-

dation with SSMs, but we advocate that these should
become part of every SSM user’s workflow. Model mis-
pecification can affect ecological inferences and the accu-
racy of state estimates. Although no model selection
measure is perfect for SSMs, AIC and WAIC can be use-
ful. Although model validation is also difficult with SSMs,
posterior predictive measures and one-step-ahead residu-
als and their extensions are relatively easy ways to assess
whether the model describes the data well and whether
some of the model assumptions are met. Cross-validation
methods are often computationally expensive, but provide
one of the best ways to select and evaluate models when
correlation is handled appropriately.
Although there are many tools already available to fit,

compare, and validate SSMs, five topics warrant further
research. First, although we advocate that SSMs be a
default framework to model many ecological time series,
it is important to pinpoint the conditions under which
simpler alternatives perform adequately (e.g., when do
models without observation error provide reliable parame-
ter and state estimates?). Such research should account for

the additional identifiability and estimability issues that
comes with fitting SSMs and the types of data sets that
allow SSMs to return reliable estimates. Second, as SSMs
are often the primary tools used to analyze time series, it
is important to explore the data-collection designs that
optimize the estimation of SSMs, so that the best data
possible are collected. Third, there is a need for further
developments of computationally efficient model selection
procedures for SSMs. Using the marginal likelihood with
AIC and WAIC appears most adequate for SSMs, espe-
cially if one has a single observation time series. However,
we should explore when the conditional likelihood can be
used and whether it affects the predictive accuracy of the
states and parameters differently. To facilitate the uptake
of WAIC based on the marginal likelihood, new R func-
tions that automatically calculate this information crite-
rion should be written. In addition, it would be helpful to
explore how newer tools to approximate predictive ability
(e.g., Vehtari et al. 2017, Bürkner et al. 2020) perform with
SSMs. Fourth, although there have been a few important
advances in model validation methods for SSMs, this
remains a relatively untouched research area. Given the
increasing use of SSMs in management, it is crucial that a
broader range of validation methods be developed for
these complex models. Fifth, with the increasing efficiency
of fitting procedures, cross-validation is becoming a feasi-
ble procedure to assess predictive accuracy and compare
models. As such, the time is ripe to start developing
proper cross-validation procedures that will account for
dependencies in the data.
Overall, we provided a review of the topics needed to

formulate and fit SSMs to ecological data, and Appendix
S1 provides an extensive set of examples of methods to
facilitate this process. We hope this guide will help
researchers develop and apply SSMs to their own data,
and foster the development of SSMs in multiple fields of
ecology.
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Auger-Méthé, M., and A. E. Derocher. 2021. Argos and GPS
data for a polar bear track. Dryad, Dataset https://doi.org/
10.5061/dryad.4qrfj6q96
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