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Abstract of thesis presented to the Senate of Universiti Putra Malaysia 

in fulfilment of the requirement for the degree of Master of Science 

 

A CLASS OF DIAGONALLY PRECONDITIONED  

LIMITED MEMORY QUASI-NEWTON METHODS FOR  

LARGE-SCALE UNCONSTRAINED OPTIMIZATION 

 

By 

CHEN CHUEI YEE 

September 2009 

 

Chairman: Leong Wah June, PhD 

Faculty: Science 

 

The focus of this thesis is to diagonally precondition on the limited memory quasi-

Newton method for large scale unconstrained optimization problem. Particularly, the 

centre of discussion is on diagonally preconditioned limited memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) method.  

 

L-BFGS method has been widely used in large scale unconstrained optimization due 

to its effectiveness. However, a major drawback of the L-BFGS method is that it can 

be very slow on certain type of problems. Scaling and preconditioning have been 

used to boost the performance of the L-BFGS method. 

 

In this study, a class of diagonally preconditioned L-BFGS method will be proposed. 

Contrary to the standard L-BFGS method where its initial inverse Hessian 
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approximation is the identity matrix, a class of diagonal preconditioners has been 

derived based upon the weak-quasi-Newton relation with an additional parameter. 

Choosing different parameters leads the research to some well-known diagonal 

updating formulae which enable the R-linear convergent for the L-BFGS method.  

 

Numerical experiments were performed on a set of large scale unconstrained 

minimization problem to examine the impact of each choice of parameter. The 

computational results suggest that the proposed diagonally preconditioned L-BFGS 

methods outperform the standard L-BFGS method without any preconditioning.  

 

Finally, we discuss on the impact of the diagonal preconditioners on the L-BFGS 

method as compared to the standard L-BFGS method in terms of the number of 

iterations, the number of function/gradient evaluations and the CPU time in second.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Sarjana Sains 

 

SUATU KAEDAH KELAS KUASI-NEWTON INGATAN TERHAD 

DENGAN PRAPENSYARAT PEPENJURU BAGI 

PENGOPTIMUMAN TAK BERKEKANGAN BERSKALA BESAR 

 

Oleh 

CHEN CHUEI YEE 

September 2009 

 

Pengerusi: Leong Wah June, PhD 

Fakulti: Sains 

 

Tumpuan tesis ini adalah mencari prapensyarat pepenjuru untuk kaedah kuasi-

Newton ingatan terhad bagi menyelesaikan masalah pengoptimuman tak 

berkekangan berskala besar. Khususnya, tumpuan perbincangan adalah kepada 

kaedah Broyden-Fletcher-Goldfarb-Shanno ingatan terhad (L-BFGS) dengan 

prapensyarat pepenjuru.   

 

Kaedah L-BFGS telah digunakan secara meluas dalam pengoptimuman tak 

berkekangan berskala besar disebabkan oleh keberkesanannya. Walau 

bagaimanapun, satu kelemahan utama kaedah L-BFGS adalah ia boleh menjadi 

perlahan bagi sesetengah masalah. Penskalaan dan prapensyarat telah digunakan 

untuk meningkatkan prestasi kaedah L-BFGS.  
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Dalam kajian ini, beberapa cara telah diperiksa untuk menprasyarat kaedah L-BFGS 

secara pepenjuru. Bertentangan dengan kaedah L-BFGS yang piawai di mana 

penghampiran songsangan Hessian permulaan merupakan matriks identiti, suatu 

kelas prapensyarat pepenjuru telah diperolehi berdasarkan kepada hubungan kuasi-

Newton lemah dengan satu parameter tambahan. Pemilihan parameter yang 

berlainan dalam penyelidikan ini membawa kepada beberapa formula kemaskini 

secara pepenjuru yang terkemuka dan juga mengekalkan penumpuan R-linear.  

 

Ujikaji berangka telah dijalankan ke atas satu set masalah peminimuman tak 

berkekangan berskala besar untuk mengkaji impak setiap pilihan parameter. 

Keputusan pengiraan mencadangkan bahawa kaedah L-BFGS berprapensyarat 

pepenjuru adalah lebih baik daripada kaedah L-BFGS tanpa sebarang prapensyarat. 

  

Akhirnya, kami membincangkan tentang impak setiap prapensyarat pepenjuru 

kepada kaedah L-BFGS dengan perbandingan kepada kaedah L-BFGS piawai. 

Lanjutan bagi penyelidikan masa depan juga diberi.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Preliminaries  

Optimization, a subject in applied mathematics, is a fascinating blend of heuristics 

and rigour, of theory and experiment. It is normally studied as a branch of 

mathematics and yet it has vast applications in almost every branch of science and 

technology such as engineering, economics, science and military. Optimization is 

recognized as the science of determining the optimal or best solutions to certain 

mathematically defined problems. As optimization as a whole, it is the central to any 

problem involving decision making by which the optimal solutions to the problems 

can be found from various schemes.   

 

One of the well-known methods in optimization is the Newton’s method. However, 

the evaluation of the Hessian matrix or its inverse is considered to be impractical and 

costly. Moreover, convergence to a solution cannot be guaranteed from an arbitrary 

initial point for a general nonlinear objective functions. With this, the quasi-Newton 

methods came to rise by which the Hessian matrix (or its inverse) of the function to 

be minimized need not be computed. A number of algorithms have been proposed 

under the quasi-Newton scheme.   

 

Since the origin of limited memory methods in 1977, many attentions have been 

given to limited memory quasi-Newton methods for solving large scale 
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unconstrained optimization problems. Despite the fact that the limited memory 

methods are often very effective, they can be slow and have limited accuracy, 

especially for ill-conditioned problem. It is well-known that the limited-memory 

methods can be greatly accelerated by preconditioning on the initial inverse Hessian 

approximation.  

 

The centre of this research revolves around solving large scale unconstrained 

minimization problems using limited memory quasi-Newton methods. Particularly, 

we focus on solving the problems by diagonally preconditioning on the limited 

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method.  

 

Before we begin with the main idea of this research, it is more appropriate to look at 

the mathematical background of an optimization problem first. Note that the 

mathematical background discussed in this chapter can be found in Gill et al. (1981), 

Fletcher (2004), Nocedal and Wright (2006) and Chong and Żak (2008). Additional 

information on this chapter can be obtained in those references too.  

 

 

1.2 Optimization Problem 

We consider the optimization problem  

  
minimize 𝑓 𝑥 

subject to 𝑥 ∈ Ω
                     (1.1) 
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where 𝑓:𝑅𝑛 → 𝑅 is the objective/cost function, the vector 𝑥 =  𝑥1, 𝑥2,… , 𝑥𝑛 
𝑇 ∈ 𝑅𝑛  

is a n-vector of independent variables and the set Ω ⊂ 𝑅𝑛  is the constraint/feasible 

set.  

 

If Ω = 𝑅𝑛 , the optimization problem is regarded as unconstrained optimization 

problem by which we  

  
minimize  𝑓 𝑥 

subject to 𝑥 ∈ 𝑅𝑛 .
                     (1.2)   

The problem of maximizing f is the same as minimizing –f since there is no loss of 

generality. 

 

A constrained optimization problem can be written as 

  

minimize 𝑓 𝑥 

subject to 𝑐𝑖 ≥ 0,    𝑖 = 1, 2,… ,𝑘,

𝑐𝑖 = 0,    𝑖 = 𝑘 + 1,𝑘 + 2,… ,𝑚.

          (1.3) 

If the objective function and the constraint functions are in the form of linear 

functions, the problem is regarded as linear programming. Otherwise, the problem 

becomes a nonlinear programming problem.   

 

Following, we shall discuss on the mathematical background of large scale 

unconstrained optimization. Since we aim to solve minimization problems, it is 

necessary to include the definitions of types of minimizer.  
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Definition 1.1: Suppose that 𝑓:𝑅𝑛 → 𝑅 is a real-valued function defined on some set 

Ω ⊂ 𝑅𝑛 . A point 𝑥∗ ∈ Ω is a local minimizer of f over Ω if there exists 휀 > 0 such 

that 𝑓 𝑥 ≥ 𝑓 𝑥∗  for all 𝑥 ∈ Ω\ 𝑥∗  and  𝑥 − 𝑥∗ < 휀. 

 

Definition 1.2: Suppose that 𝑓:𝑅𝑛 → 𝑅 is a real-valued function defined on some set 

Ω ⊂ 𝑅𝑛 . A point 𝑥∗ ∈ Ω is a strict local minimizer of f over Ω if there exists 휀 > 0 

such that 𝑓 𝑥 > 𝑓 𝑥∗  for all 𝑥 ∈ Ω\ 𝑥∗  and  𝑥 − 𝑥∗ < 휀. 

 

Definition 1.3: Suppose that 𝑓:𝑅𝑛 → 𝑅 is a real-valued function defined on some set 

Ω ⊂ 𝑅𝑛 . A point 𝑥∗ ∈ Ω  is a global minimizer of 𝑓over Ω if 𝑓 𝑥 ≥ 𝑓 𝑥∗  for all 

𝑥 ∈ Ω\ 𝑥∗ . 

 

 

1.3 Functions and Derivatives 

A function 𝑓:𝑅𝑛 → 𝑅 is said to be continuously differentiable at 𝑥 ∈ 𝑅𝑛 , if 
𝜕𝑓 𝑥 

𝜕𝑥𝑖
 

exists and is continuous for 𝑖 = 1, 2,… , 𝑛. The gradient of f at x is given by  

  ∇𝑓 𝑥 =  
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
,⋯ ,

𝜕𝑓

𝜕𝑥𝑛
 
𝑇

.             (1.4) 

A function 𝑓:Ω → 𝑅𝑛 , Ω ∈ 𝑅𝑛 , is said to be continuously differentiable on Ω if it is 

differentiable on Ω, and the components of f have continuous partial derivatives. It is 
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denoted by 𝑓 ∈ 𝒞1 . It will be denoted as 𝑓 ∈ 𝒞𝑝  if the components of f have 

continuous partial derivatives of order p. 

 

A function 𝑓:𝑅𝑛 → 𝑅 is said to be twice continuously differentiable at 𝑥 ∈ 𝑅𝑛 , if 

𝜕2𝑓 𝑥 

𝜕𝑥𝑖𝜕𝑥𝑗
 exists and is continuous for 𝑖 = 1, 2,… ,𝑛. The second derivative of 𝑓 𝑥  is 

written as  

  𝐺 𝑥 = ∇2𝑓 𝑥 =

 

 
 
 
 

𝜕2𝑓 𝑥 

𝜕𝑥1
2

𝜕2𝑓 𝑥 

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓 𝑥 

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓 𝑥 

𝜕𝑥2𝜕𝑥1

𝜕2𝑓 𝑥 

𝜕𝑥2
2 ⋯

𝜕2𝑓 𝑥 

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓 𝑥 

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓 𝑥 

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓 𝑥 

𝜕𝑥𝑛
2  

 
 
 
 

.          (1.5) 

The matrix 𝐺 𝑥  is called the Hessian matrix of the function 𝑓:𝑅𝑛 → 𝑅 at x and it is 

an 𝑛 × 𝑛 symmetric matrix if 𝑓 is continuous.  

 

Definition 1.4: A vector 𝑑 ∈ 𝑅𝑛 , 𝑑 ≠ 0, is a feasible direction at 𝑥 ∈ Ω if there 

exists 𝛼0 > 0 such that 𝑥 + 𝛼𝑑 ∈ Ω for all 𝛼 ∈  0,𝛼0 . 

 

Let 𝑓:𝑅𝑛 → 𝑅 be a real-valued function and let 𝑑 be a feasible direction at 𝑥 ∈ Ω, 

the directional derivative of 𝑥 in the direction of 𝑑 is denoted by  

  
𝜕𝑓 𝑥 

𝜕𝑑
= lim𝛼→0

𝑓 𝑥+𝛼𝑑 −𝑓 𝑥 

𝛼
= ∇𝑓 𝑥 𝑇𝑑.           (1.6) 
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Suppose that 𝑥 and 𝑑 are given, then 𝑓 𝑥 + 𝛼𝑑  is a function of 𝛼 and  

  
𝜕𝑓 𝑥 

𝜕𝑑
=  𝜕

𝜕𝛼
𝑓 𝑥 + 𝛼𝑑  

𝛼=0
.             (1.7) 

By the chain rule,  

 
𝜕𝑓 𝑥 

𝜕𝑑
=  𝜕

𝜕𝛼
𝑓 𝑥 + 𝛼𝑑  

𝛼=0
= ∇𝑓 𝑥 𝑇𝑑 =  ∇𝑓 𝑥 ,𝑑 = 𝑑𝑇∇𝑓 𝑥 .         (1.8) 

In short, if  𝑑 = 1 which means 𝑑 is a unit vector, then 
𝜕𝑓 𝑥 

𝜕𝑑
 or  ∇𝑓 𝑥 ,𝑑  is the 

rate of increase of 𝑓 at the point 𝑥 in the direction 𝑑. 

 

Following, we will discuss on the first order conditions of functions. Let 𝑓:𝑅𝑛 → 𝑅 

be a continuously differentiable function defined on 𝑅𝑛 .  

 

Theorem 1.1 First-Order Necessary Condition (FONC):  

Let Ω be a subset of 𝑅𝑛  and 𝑓 ∈ 𝒞1  a real-valued function on Ω. If 𝑥∗  is a local 

minimizer of f over Ω, then for any feasible direction d at 𝑥∗, we have  

  𝑑𝑇∇𝑓 𝑥∗ ≥ 0.              (1.9) 

Proof.  

Define 

  𝑥 𝛼 = 𝑥∗ + 𝛼𝑑, 𝑥 𝛼 ∈ Ω.          (1.10) 

 



7 
 

If 𝛼 = 0, it is clear that 𝑥 0 = 𝑥∗. The composite function is defined as: 

  𝜙 𝛼 = 𝑓 𝑥 𝛼  .            (1.11) 

By Taylor’s theorem, 

  

𝑓 𝑥∗ + 𝛼𝑑 − 𝑓 𝑥∗ = 𝜙 𝛼 − 𝜙 0 

= 𝜙′ 0 𝛼 + 𝑜 𝛼 

= 𝛼𝑑𝑇∇𝑓 𝑥 0  + 𝑜 𝛼 ,

          (1.12) 

where 𝛼 ≥ 0.  

Thus if 𝜙 𝛼 ≥ 𝜙 0 , that is  

  
𝑓 𝑥∗ + 𝛼𝑑 − 𝑓 𝑥∗ ≥ 0,

𝑓 𝑥∗ + 𝛼𝑑 ≥ 𝑓 𝑥∗ ,
           (1.13) 

for sufficiently small values of 𝛼 > 0, then we must have 𝑑𝑇∇𝑓 𝑥∗ ≥ 0.               ∎ 

 

Corollary 1.1 Interior Case:  

Let Ω be a subset of 𝑅𝑛  and 𝑓 ∈ 𝒞1  a real-valued function on Ω. If 𝑥∗  is a local 

minimizer of f over Ω and if 𝑥∗ is an interior point of Ω, then  

  ∇𝑓 𝑥∗ = 0.             (1.14) 

Proof.  

Suppose that f has a local minimizer 𝑥∗ that is an interior point of Ω. Because 𝑥∗ is 

an interior point of Ω, the set of feasible directions at 𝑥∗ is the whole of 𝑅𝑛 . Thus, for 

any 𝑑 ∈ 𝑅𝑛 , 𝑑𝑇∇𝑓 𝑥∗ ≥ 0  and −𝑑𝑇∇𝑓 𝑥∗ ≥ 0 . Hence, 𝑑𝑇∇𝑓 𝑥∗ = 0  for all 

𝑑 ∈ 𝑅𝑛 , which implies that ∇𝑓 𝑥∗ = 0.                           ∎ 


