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Chapter

Integrating Resilience in
Time-based Dependency Analysis:
A Large-Scale Case Study for
Urban Critical Infrastructures
Vittorio Rosato, Antonio Di Pietro, Panayiotis Kotzanikolaou,

George Stergiopoulos and Giulio Smedile

Abstract

As critical systems shall withstand different types of perturbations affecting
their functionalities and their service level, resilience is a very important require-
ment. Especially in an urban critical infrastructures where the occurrence of natural
events may influence the state of other dependent infrastructures from various
different sectors, the overall resilience of such infrastructures against large scale
failures is even more important. When a perturbation occurs in a system, the
quality (level) of the service provided by the affected system will be reduced and a
recovery phase will be triggered to restore the system to its normal operation level.
According to the implemented recovery controls, the restoration phase may follow
a different growth model. This paper extends a previous time-based dependency
risk analysis methodology by integrating and assessing the effect of recovery con-
trols. The main goal is to dynamically assess the evolution of recovery over time, in
order to identify how the expected recovery plans will eventually affect the overall
risk of the critical paths. The proposed recovery-aware time-based dependency
analysis methodology was integrated into the CIPCast Decision Support System that
enables risk forecast due to natural events to identify vulnerable and disrupted
assets (e.g., electric substations, telecommunication components) and measure the
expected risk paths. Thus, CIPCast can be valuable to Critical Infrastructure Oper-
ators and other Emergency Managers involved in a crisis assessment to evaluate the
effect of natural and anthropic threats affecting critical assets and plan proper
countermeasures to reduce the overall risk of degradation of services. The proposed
methodology is evaluated in a real scenario, which utilizes several infrastructures
and Points of Interest of the city of Rome.

Keywords: time, resilience, dependency, critical infrastructure, impact, energy,
urban, telecommunications, graph, chain, cascading, risk management,
risk analysis

1. Introduction

Critical infrastructures consist of physical and cyber assets, systems, and net-
works, that are essential for the functioning of a society and economy. The damage
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to a critical infrastructure, caused by natural (e.g., earthquakes, fire) or anthropic
(e.g., hacking, sabotage, vandalism) events may produce a significant negative
impact for other systems and thus amplify the effects and reducing the system
capability to return to an equilibrium state.

In a scenario consisting of multiple infrastructures with several dependencies
among them, the implementation of mitigation controls that may affect the resil-
ience level of the systems, is valuable to preserve and restore the essential societal
services. Since resilience-related controls will positively affect the capability of a
system to resist, absorb, adapt and/or recover from the effects of a hazard in a
timely and efficient manner, it is important to analyse the effect of such controls, in
order to support decision making related to the selection and prioritization of
alternative mitigation controls. For example, when electric transmission or distri-
bution networks are affected by disturbances such as floods, in general, mitigation
and restoration actions are performed through protection and automation devices
and manual interventions to reduce the duration of the outage and preserve the
power supply to critical systems such as hospitals [1–3].

In the US, in order to support the different players involved in modeling,
simulation, and analysis of the nation’s critical infrastructures, the National Infra-
structure Simulation and Analysis Center (NISAC) was established. NISAC analysts
assess critical infrastructure risk, vulnerability, interdependencies, and event con-
sequences. In Europe, in order to support the different players involved in the
resilience enhancement, emergency and response management of critical infra-
structures to natural and man-made hazards, the Infrastructure Simulation and
Analysis Centre (EISAC) is aiming at establishing a collaborative, European-wide
network of national centres empowered by core technologies.

This paper extends a recent work on critical infrastructure dependency analysis
and introduces time-based analysis models to study the evolution of restoration
actions in a scenario of dependent systems. This model was integrated into CIPCast
Decision Support System, named CIPCast hereafter, that is part of the on-going
products and activities developed in the context of the Italian node of EISAC, called
I-EISAC, aiming to support infrastructure and civil protection operators operators
in the risk assessment of critical infrastructures.

CIPCast can provide an operational (24/7) forecast and risk analysis for different
infrastructures in a specific area showing risk maps of infrastructure elements
which could be damaged by different events e.g. earthquakes. In particular, CIPCast
allows: (i) Assessing the seismic vulnerability of different EDNs components; (ii)
estimating possible earthquake-induced physical damage; (iii) estimating the
impact on service(s) functionality in terms of outage duration associated with the
predicted physical damage and considering the known inter-dependencies; (iv)
estimating the consequences of the predicted outages, according to several metrics
accounting for economic losses and reduction of citizens well-being.

The remainder of the paper is organized as follows. Section 2 presents related
works in the area. In Section 3, we introduce notions of time-based and resilience-
aware dependency analysis. In Section 4, we apply the analysis to a case study
related to the area of Rome. Finally, in Section 5, some conclusions and ideas for
future works are drawn.

2. Related work

Modeling critical infrastructures and urban systems for risk assessment purposes
is a well-known and established research field. Preliminary work that laid the
foundation in this area is often attributed to Rinaldi et al., first in [4] where authors
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categorised dependencies in critical infrastructures as Physical, Cyber/informa-
tional, Geographic, Logical and Social dependencies, and later in where authors
created taxonomies for disruptions or outages and marked them as cascading,
escalating, or common-cause [5]). Critical infrastructure modeling events where
first defined as cascade initiating (i.e., an event that causes an event in another CI)
and cascade resulting (i.e., an event that results from an event in another CI) by the
empirical study of Van Eeten et al. [6].

Basic modeling approaches usually fall within one of the following six categories
categories [5, 7]:

1.Aggregate supply and demand tools, which evaluate the total demand for
infrastructure services in a region and the ability to supply those services

2.Dynamic simulations, which analyze the effects of disruptions, and their
associated consequences.

3.Agent-based models, which model operational attributes and states of
infrastructure operation; usually on a graph model.

4.Physics-based models, which utilize standard engineering techniques such as
power flow and stability analyses for electric power grids.

5.Population mobility models that focus on geospatial movement.

6.Leontief input–output models, which utilize linear, time-independent analysis
of commodities among infrastructure sectors.

Our approach can be classified as both dynamic simulation and agent-based
model. It utilizes operational attributes to model interdependencies in urban envi-
ronments as a graph, while still allowing for dynamic input of data in order to
analyze the effects of disruptions in the urban web along with quantifying their
associated consequences.

Each critical infrastructures sector has its own group of research publications
that utilize some of the aforementioned techniques to model and analyse risk. For
example, in the water sector, OpenMI [8] supports federated modeling and simula-
tion for water systems, while multiple publications exist that analyze interdepen-
dencies at the transportation sector using traffic flow simulation models [9],
Bayesian networks to model the correlation structure of highway networks [10] etc.
The Energy sector is also a highly researched area. Wide Area Measurement Sys-
tems (WAMS) have been extensively researched, especially for the detection of
optimal locations for metering device placement, in order to achieve increased
robustness of the WAMS infrastructure. Modeling and quantifying dependencies
between the electrical and information infrastructures of WAMS in smart grids has
been recently studied in [11]. Topological observability of power systems has been
fully described in [12]. Still, cross-sector approaches do exist that opt to combine
combine models from multiple sectors and enable integrated or federated
simulations. Some examples include DIESIS [13] and EPIC [14].

The North American Electric Reliability Corporation (NERC) has recently
developed Critical Infrastructure Protection (CIP) standards which introduce cyber
security compliance requirements for power systems [15]. Various research has
developed methodologies that aim to quantify these requirements. In [15], authors
proposed a risk-based dependency analysis for modeling and quantifying depen-
dencies over time, which was also later used in [11] along with electrical centrality
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metrics to quantify the level of each dependencies in the smart grid. A different
approach for simulating common-cause and cascading effects was also introduced
by the authors in [16]. Similarly, authors in [17] proposed to use access graph
models to analyze trust between systems and the security exposure of a large scale
smart grid environments. In [18], authors developed a graph-based workflow
model for assessing the security risks from cybersecurity incidents on electric grids
and build relevant scenarios.

The presented approach is mostly based on the methodologies presented in [15].
We aggregate data into dependency matrices and utilize models from real-world
urban systems to map them into dependency graphs. The presented approach is
based on network modeling and path analysis. It depicts dependencies of the
connected urban infrastructures as a graph and identifies high risk, critical paths
that are either modeled as flows of information, power or other related type of
dependency. Similar techniques have been used in uniform [19, 20] or flow models
[12, 21].

3. Time-based and resilience-aware dependency analysis

3.1 Definitions and set up

We consider a directed graph G ¼ V,Eð Þ where V ¼ vif g, i ¼ 1, …m, is the set
of nodes (infrastructures, components or Point of Interest–POIs hereafter) and

E ¼ eij
� �

is the set of edges (or dependencies) and deg við Þ is the degree of node vi.
An edge eij from node vi to v j denotes a dependency (and consequently a risk
relation) denoted with vi ! v j that is derived from the dependence of node v j on a
service provided by node vi. A dependency is defined as a “one-directional reliance
of an asset, system, network or collection thereof – within or across sectors – on an
input, interaction or other requirement from other sources in order to function
properly” [22]. A node could thus represent a consumer or a producer of a service
provided by another node (or both), depending on its role in the system.

Our model extends the cumulative dependency risk model of [23, 24]. Without
loss of generality, let v0 ! v1 ! … ! vn be a dependency chain, involving nþ 1
nodes and their corresponding n dependencies. Let Lv j�1,v j

be the likelihood that a

disruptive event (threat) that happened in node v j�1 will also affect (cascade) to
node v j due to their dependency and let Iv j�1,v j be the relevant impact (damage)

caused to v j. We should note here that L is not the likelihood of threat manifesta-
tion, but rather the likelihood of an already manifested threat to cascade (i.e. affect)
different nodes.

Based on the definitions of [23], the risk exhibited by a node due to its n-th order
dependency is defined as:

Rv0,… ,vn ¼ Lv0,… ,vn � Ivn�1,vn �
Y

n�1

i¼0

Lvi,viþ1 � Ivn�1,vn : (1)

Then the cumulative dependency risk which includes the overall risk exhibited by
all the nodes within the sub-chains of an n-order dependency is defined as:

DRv0,… ,vn ¼
X

n

i¼1

Rv0,… ,vi �
X

n

i¼1

Y

i

j¼1

Lv j�1,v j

 !

� Ivi�1,vi : (2)
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3.2 Extending the model for resilience

Let  ¼ threatf g be the set of k natural or human-related threats that may affect
the quality of service provided by the generic node vi. The damage Di tð Þ associated

with the perturbation t is usually an s-shaped function. Let ℂvi ¼ cvi1 , … , cvil
� �

be the

set of lvi security controls that may be implemented in a system/infrastructure vi to
improve their resilience against threats (e.g. restoration security controls, redun-
dancy security controls etc).

By combining Resilience and Threat variables with the directed graphmodel of
interdependent POIs, we can perform a granular analysis of the risk imposed by POI
interdependencies based on their risk and resilience levels.We opt to use themulti-risk
dependency analysis method as proposed in [23–25] and implemented later in [15].

3.3 Resilience mapping

A many-to-many mapping may exist between the threats and the security con-
trols, i.e. a security control may mitigate, at some extent, one or more threats, while
a security threat may require one or security controls. For each security control,
different weights can be used to define the effectiveness of a control against differ-
ent threats and also for their application to specific infrastructures. This is a realistic
modeling of resilience, since many controls do not have the same effect against all
threats and different infrastructures are benefited more than others from specific
security controls, given the nature of the infrastructure and the intrinsic character-
istics of each threat.

For example, if infrastructure (node) v1 is affected by a power outage (i.e. the
initiating threat event), then a node v2 which is depended on v1 might suffer a
partial unavailability (modeled as impact Iv1,v2) at a certain extend quantified as the
likelihood Lv1,v2 . Lv1,v2 depicts the possibility that a power outage would affect node
v2 and Iv1,v2 depicts the amount of damage done to v2 due to its partial unavailability
incident.

In the aforementioned example, node v1 could have implemented the use of a
redundant power generator as a security control with quantified measurements (i)

Lv1,v2 and (ii) Iv1,v2 depicting (i) the resilience influence of control c on node v2 for
the given threat (in our case, the power outage), and (ii) the extent of reduction to
the initial estimated damage Iv1,v2 , respectively. The existence of the control c will

reduce the possibility of a power outage to affect v2 by Lv1,v2 percent, and/or the

corresponding impact from the same threat on v2 by Iv1,v2 .
Generalising this to n nodes, this gives us with a Resilience series calculation that

can be depicted as follows:

Resv0,… ,vn ¼
X

n

i¼1

Y

i

j¼1

Lv j�1,v j

 !

� Ivi�1,vi (3)

where Res depicts the overall resilience of a network against a specific threat∈

when the security control c is implemented in all nodes. It should be noted, that the
resilience expressed by Eq. (3) depicts the resilience of a network due to the
existence and the efficacy of security control c. However, the Resilience of a
network depends also on the vulnerability of the node v j to specific threats that may
produce a disservice of the network.

For example, if we consider an electric substation, in order to increase its resil-
ience against a seismic threat, there might be several options aiming to reduce the
likelihood of the threat that produces a failure and/or to reduce the magnitude of
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the impact e.g. to enhance the structural properties of the building or increment the
number of technical crews so that in case of a failure the duration of outage can be
reduced.

In a complex study of a large CI system, such as the city of Rome, the interplay
among network topology, size, quality and distribution of technical systems along
the network, emergency management ability do have an impact on the evolution
and the duration of a crises and thus influence the system resilience. They have
been thus studied in order to establish the “sensitivity” of the resilience score with
respect to each one of the described properties [3].

Conveniently, the Resilience introduced by a security control against a specific
threat on the entire network of interdependent nodes can be algorithmically
modeled as a matrix multiplication. For the first matrix, columns represent existing
nodes, while rows represent different security controls. Cell values depict the pos-
sibility of a security control to mitigate some part of the impact of a specific threat
for each node present in the graph. The second matrix depicts the impact reduction
that can be achieved by security controls onto the existing interdependent nodes.
Similarly, columns represent existing nodes, while rows represent different security
controls, but, here cell values depict the maximum potential impact reduction
achieved at each node by the implementation of each security control. Thus, in this
matrix, cells have negative values. Resilience is then modeled as the matrix multi-
plication of the two matrices (threat reduction and impact reduction matrices), as
depicted in Figure 1.

3.4 Calculating cumulative dependency risk in the presence of resilience
controls

By combining Eq. 1 and Eq. 2 with Eq. 3, the cumulative dependency risk in the
presence of resilience controls can be defined as follows:

DRRes
v1,… ,vn

¼
X

n

i¼1

Y

i

j¼1

Lv j�1,v j

 !

� Ivi�1,vi �
Y

i

j¼1

Lv j�1,v j

 !

� Iv j�1,v j

" #

(4)

As discussed above, Lv j�1,v j
introduces a likelihood for the security controls

(actions). Specifically, it quantifies the possibility of one security control to mitigate
some part of the impact of a threat.

Impact I in Eqs. 1 through 4 is assigned values that reflect the maximum
expected impact for each modeled dependency. This first implies that eqs will

always calculate produce the worst case cascading risk DRRes
v1,… ,vn

, and also that all

modeled dependencies exhibit the same impact growth rate; something that is not
true in real-world situations, where different infrastructure resilience allows for
different impact growth rates over time. Thus, we use the same modeling approach
as in [15] and incorporate a dynamic time-based analysis model where Ti,j denotes

Figure 1.
Resilience security control calculation for the entire network against a single threat∈.
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the time period over which a dependency between two infrastructures exhibits its
maximum expected impact Ii,j, and Gi,j denotes the expected growth of the failure.
The growth rates used in this model are split into three types, namely: slow, linear
or fast. Finally, let t denote an examined time period after a failure.

Growth rates Gi,j are defined based on the maximum potential Impact Ii,j and a
growth relation between time step t and Ti,j. Specifically, “slow” growth rates
follow a exponential evolution of type

I tð Þ ¼ I
t
T (5)

which begins at a slow pace and gradually increases in speed. “Linear” growth
rates follow a typical approach

I tð Þ ¼ I �
t

T
(6)

whereas “fast” impact growth rates are calculated using a logarithmic approach

I tð Þ ¼ I � log Tt (7)

in which incidents impose a very fast impact growth rate that gradually
decreases in speed. For any t> ¼ T, impact growth caps at I tð Þ ¼ I.

In real-world implementations of the methodology, all aforementioned values
for Ti,j and Gi,j, along with Ii,j and Li,j, are obtained through on-site assessment,
expert knowledge and quantification of infrastructure characteristics.

3.5 Qualitative ranking scales

The above equations need some sort of value ranges in order to quantify results.
To support calculation of these equations, we opted to use the same scales as in [15].
All the values are assigned from the following Likert scales:

• Iϵ 1::9½ �, where 1 is the lowest impact and 9 is the highest impact.

• T, tϵ 1::10½ �, which is a granular time scale that uses the unavailability time
periods: 1 = 15 min, 2 = 1 h, 3 = 3 h, 4 = 12 h, 5 = 24 h, 6 = 48 h, 7 = 1w, 8 = 2w,
9 = 4w and 10 = more than 4w.

• Gϵ 1::3½ �, where the value of 1 represents the slow growth rate, and values (2)
and (3) represent the linear and fast evolution rates for impact respectively.

Each Impact value reflects a different qualitative criterion, based on the needs
and threats of any given infrastructure. Nevertheless, quantification is uniform
amongst all possible implementations, where a value of 1 reflects minimum to no
Impact, while a value of 9 reflects catastrophic impact of an incident.

4. Case study: City of Rome

The city center of Rome was chosen as a case study due to the high concentration
of various commercial activities and power centres both local and international as
well as the presence of CIs which are essential to maintain vital societal functions
(Figures 2 and 3). In particular, the area of interest holds the major Italian
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government offices, San Giovanni Calibita Fatebenefratelli Hospital located in the
Tiber Island and Termini Railway Station, one of the most important railway sta-
tions of Italy as it connects Northern and Southern Italy.

Figure 2.
The area of interest: an urban district of Rome. The map was anonymized and MV Electric substations and
Base Transceiver Stations were removed to hide sensitive information.

Figure 3.
The dependency graph used in the case study.
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As reported in Table 1, we considered 8 categories including CI and Point of
Interests and selected a set of specific components (nodes, hereafter) for each
category that are located in the area of interest. In particular, we considered the
following categories:

i. the Electric Distribution Network (EDN) of Rome consisting of 40Medium
Voltage (15 kV) substations;

ii. the Mobile Telecommunication System consisting of 31 Base Transceiver
Stations (BTS);

iii. the Water Supply Network (WSN) consisting of 1 water pumping station;

iv. the Railway system including 12 stations;

v. a set of hospitals, medical offices and pharmacies;

vi. a set of government offices and embassies;

vii. a set of cash dispensers;

viii. a set of restaurants.

4.1 Dependency graph

In order to model the interdependencies among the different nodes, we assumed
a cyber risk assessment as the case scenario. In particular, we considered a depen-
dency matrix [26] that allows to reveal the potential vulnerability of a given node to
the unavailability, corruption or disclosure of data from an interdependent node
regardless of the current state of the shared data infrastructure. In other words, we
assume a cyber threat threat∈ affecting the considered nodes and we use a
precomputed dependency matrix as a means to assign a cyber vulnerability to each
node w.r.t. the data disruption from all interdependent nodes.

Category Subcategory Acronym Nr.

Energy MV Electric substation ES 40

Telecommunications Base Transceiver Station BTS 31

Finance Cash Dispenser CD 20

Government Government Office GO 15

Embassy EM 20

Transport Railway Station RS 12

Health Medical Office DO 15

Pharmacy PH 12

Hospital HP 5

Food Restaurant RE 10

Water Water Pumping station WP 1

Total: 182

Table 1.
CI categories and components modeled in the case study.
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The dependency matrix is consistent with the main cyber interdependencies that
exist among the nodes modelled in the scenario although only a limited number of
CI were considered for each sector present in the dependency matrix. Indeed, the
electric substations (ES) supply energy to all nodes of other CI and thus a failure
occurring in an ES would be disruptive for all nodes that receive energy from that
ES. In addition, some of the ES are Remotely controlled and thus a failure occurring
in those BTS nodes that in turn provide telecommunication services to the Remotely
Controlled ES may compromise the control operations of the EDN.

In the absence of information regarding specific interdependencies, we
employed a proximity criterion to model the relations among specific nodes. For
example, we assumed that each energy consumer (i.e., all nodes that are not ES) is
supplied by the nearest ES as well as each internet/telephony consumer is supplied
by the nearest BTS. In addition, we did not model the intra-sector dependencies i.e.
any dependency among the nodes of the same CI sector was not considered.

4.2 Likelihood matrix

As described previously, we employed the dependency matrix defined in [26] to
model the interdependencies of the case study. That matrix was filled by gathering
over 4:000 distinct data dependency metrics from CI stakeholders and reports the
same CI sectors that were modelled in the case study and the cyber vulnerability of
each sector w.r.t. all CI sectors. Table 2 shows the value for both Inbound and
Outbound data dependencies. Inbound data dependency represents information
and data consumed by the examined CIs, while outbound data dependency
represents the data leaving each examined CI, to be used by other CIs.

The columns for each sector represent how that sector is dependent by data
coming into that sector. Most organisations can intuitively estimate this value, and
that’s how the data was collected in [26]. For example, in Table 2, column BTS
represents the data, informations and services any BTS station would receive from

Figure 4.
A set of dependency risk paths with cumulative dependency risk. Dashed/continuous lines indicate the risk
without/with the implementation of security controls.
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each other sector, and how much that BTS station depends from that data, infor-
mation or service.

Based on this matrix, we normalised the values and neglected the
intradependencies and the low intradependencies. In other words, we treated the
cyber vulnerability of a node as a likelihood that the node being affected. The
resulting matrix is shown in Table 2.

4.3 Security Controls

Given the absence of information regarding the security controls implemented
by the considered nodes, we assumed that each node vi having a dependency with v j

where j∈ 1, ::,Nif g, is equipped with lvi security controls against the examined

threat. We assumed that the likelihood values of the restoration controls Lvi,v j
¼

const: ∀ j∈ 1, ::,Nif g. Table 3 shows the likelihood values of the restoration controls.

4.4 Impact Assessment Criteria

In order to assess the impact of cyber attacks on the nodes, we considered the
work of Fekete [27] that defines three impact assessment criteria in terms of critical
proportion, time and quality aspects. Critical proportion refers to the number of
elements or nodes of a CI such as critical number of services, size of population or
number of customers affected and redundancies. Critical time considers aspects
such as duration of outage, Mean Time to Repair (MTTR), Mean Time to Func-
tionality (MTTF) and business continuity or interruption. Critical quality refers to
the quality of the services delivered (e.g., the water quality) or the public trust in
quality (e.g., trust in finance, feeling of security).

In the following subsections, a description of how the mentioned impact assess-
ment criteria were applied to the case study will be provided. In particular, the
assumptions that were made to take into account such criteria will be described in
order to model the expected time-related impact I tð Þ in terms of the maximum
expected impact I, the impact time T and the impact growth rate G, as defined
in Section 3.

Inbound Dependencies

CI Sector ES BTS CD GO EM RS DO PH HP RE WP

ES — 0.36 — 0.34 0.34 0.43 0.39 0.39 0.39 — 0.31

BTS 0.7 — 0.45 0.4 0.4 0.44 0.51 0.51 0.51 — 0.34

CD 0.71 0.72 — 0.4 0.4 0.4 0.42 0.42 0.42 0.44 0.5

GO 0.59 0.51 0.7 — — 0.36 0.61 0.61 0.61 0.36 0.51

EM 0.59 0.51 0.7 — — 0.36 0.61 0.61 0.61 0.36 0.51

RS 0.68 0.4 0.42 0.29 0.29 — 0.5 0.5 0.5 0.51 0.3

DO 0.41 — 0.3 0.51 0.51 — — — — — 0.44

PH 0.41 — 0.3 0.51 0.51 — — — — — 0.44

HP 0.41 — 0.3 0.51 0.51 — — — — — 0.44

RE — — — 0.27 0.27 — 0.38 0.38 0.38 — —

WP 0.49 — — 0.29 0.29 0.32 0.36 0.36 0.36 — —

Table 2.
The likelihood matrix used in the case study.
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4.4.1 Maximum expected impact matrix

In order to apply the critical proportion criterion, given the difficulty of
obtaining the number of customers supplied by a specific node from the CI owners,
we assumed the number of inhabitants living in the geographical area where the
specific node is located as the number of customers. Indeed, the areas considered
are the census areas delivered by the Italian National Institute of Statistics (ISTAT) of
which the number of inhabitants is known. This criterion was applied to model the
maximum expected impact I for each couple of nodes i and j belonging to Energy,
Telecommunication, Transport and Finance sectors. Thus, I was computed by
combining the total number of customers supplied by i and j nodes so that the more
customers are involved in the disruption of the nodes, the more impact we obtain.

Furthermore, the critical quality criterion was applied to compute I for each
couple of nodes i and j belonging to Government, Health, Food and Water. In this
case, we set a subjective value that takes into account the importance of the
unavailability of the data for the specific nodes.

Table 4 summarises the criteria applied based on the sector nodes considered. It
should be noticed that while I is time dependent when considering ES, BTS, RS and
CD nodes (case A), this is not true when considering GO, EM, DO,PH, HP and RE
nodes (case B) where I was set higher for the nodes that could be more impacted by
the lack of data services. For case C, the two criteria were both considered and Iwas
computed according to the metric reported in Table 4. The resulting impact matrix
is shown on Table 5.

Let v0, v1, ::, vn be a subchain of risk. We assumed that the reduction of impact

Ivi�1,vi on node vi due to the restoration action cvi�1 implemented by vi�1 is given by:

Ivi�1,vi ¼ α � Ivi�1,vi (8)

Table 6 shows the percentage of reduction α of the initial estimated damage
Ivi�1,vi for the generic dependency risk subchain vi�1 ! vi.

4.4.2 Impact time and Impact growth rate matrices

Regarding the critical time criterion, we considered the expected duration of
failure of nodes to compute the impact and growth time matrices. In particular, we
assigned a low value to sectors that are highly dependent on the data availability and

vi Lvi ,v j

ES, BTS, CD, GO, EM 0.3

RS, HP, WP 0.1

DO, PH, RE 0

Table 3.
Resilience influence of security control cvi on node v j for the given threat with dependency risk subchain vi ! v j.

Case v j Impact assessment criterion Ivi ,v j

A ES, BTS, RS, CD Nr. of customers node-dependent

B GO, EM, DO, PH, HP, RE Service criticality sector-dependent

Table 4.
Maximum expected impact criteria for the dependency risk subchain vi�1 ! vi.
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that produce a quick impact such as Energy and Telecommunication and Finance
and assigning a higher value to other sectors such as Water and Food that produce
their negative effect in a longer period. The resulting impact time matrix is shown
on Table 7.

Regarding the recovery time matrix, we modeled a time T ¼ 15m for the electric
substations ES are remotely controled as the SCADA system of the electric network

allows to reactivate the electric supply in the order of minutes whereas T ¼ 1h for a
generic ES only a manual intervention performed by a repair crew can be operated
with a longer time (approximately 1 hour). The resulting recovery time matrix is
shown on Table 8.

Regarding the impact growth rate, Table 9 shows the the criterion adopted and
Table 10 shows the resulting values for each couple of nodes. We considered the
same growth rate for the recovery actions.

4.5 Results

The execution of the model based on the graph of 182 nodes produced about
750.000 risk paths with order ranging from five to eight and potential risk values
between 0.27 and 9.53. Figure 4 shows some significant dependency paths together
with their cumulative dependency risk values.

The charts show that one dependency path (CD1-ES1-BTS1-GO1-ES2) exhibits
its highest risk value at time t ¼ 1h and then the implementation of mitigation
strategies with a rapid response decreases the overall dependency risk. In general,

Inbound dependencies

CI Sector ES BTS CD GO EM RS DO PH HP RE WP

ES — ⋆ — 7 4 ⋆ 4 4 7 — 7

BTS ⋆ — ⋆ 7 4 ⋆ 3 3 6 — 6

CD ⋆ ⋆ — 3 2 2 2 2 4 2 2

GO 8 8 3 — — ⋆ 3 3 5 3 5

EM 4 4 2 — — 3 2 2 4 2 4

RS ⋆ ⋆ 2 ⋆ 3 — 3 3 4 3 3

DO 2 — 2 3 2 — — — — — 3

PH 2 — 2 3 2 — — — — — 3

HP 7 — 4 5 4 — — — — — 5

RE — — — 3 2 — 2 2 2 — —

WP 3 — — 3 3 3 3 3 3 — —

Table 5.
Maximum expected impact matrix used in the case study. ⋆ represents node-dependent impact.

vi�1 vi α

ES, BTS any 0.5

CD, GO, EM, RS, DO, PH, HP, RE, WP any 1

Table 6.
Percentage of reduction α of the initial estimated damage Ivi�1 ,vi for the dependency risk subchain vi�1 ! vi.
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Inbound dependencies

CI Sector ES BTS CD GO EM RS DO PH HP RE WP

ES — 15 m — 15 m 15 m 15 m 15 m 15 m 15 m — 15 m

BTS 3 h — 1 h 1 h 1 h 1 h 1 h 1 h 1 h — 1 h

CD 3 h 3 h — 3 h 3 h 3 h 12 h 12 h 3 h 2w 24 h

GO 3 h 3 h 3 h — — 12 h 12 h 12 h 12 h 2w 24 h

EM 3 h 3 h 3 h — — 12 h 12 h 12 h 12 h 2w 24 h

RS 3 h 3 h 3 h 12 h 12 h — 12 h 12 h 12 h 2w 24 h

DO 3 h — 3 h 24 h 24 h — — — — — 24 h

PH 3 h — 3 h 24 h 24 h — — — — — 24 h

HP 3 h — 3 h 24 h 24 h — — — — — 24 h

RE — — — 2w 2w — 2w 2w 2w — —

WP 24 h — — 24 h 24 h 24 h 24 h 24 h 24 h — —

Table 8.
The maximum recovery time matrix used in the case study.

Inbound dependencies

CI Sector ES BTS CD GO EM RS DO PH HP RE WP

ES — 3 h — 3 h 3 h 3 h 3 h 3 h 3 h — 24 h

BTS 3 h — 1 h 3 h 3 h 3 h 3 h 3 h 3 h — 3 h

CD 3 h 3 h — 3 h 3 h 3 h 12 h 12 h 3 h 2w 24 h

GO 3 h 3 h 3 h — — 12 h 12 h 12 h 12 h 2w 24 h

EM 3 h 3 h 3 h — — 12 h 12 h 12 h 12 h 2w 24 h

RS 3 h 3 h 3 h 12 h 12 h — 12 h 12 h 12 h 2w 24 h

DO 3 h — 3 h 24 h 24 h — — — — — 24 h

PH 3 h — 3 h 24 h 24 h — — — — — 24 h

HP 3 h — 3 h 24 h 24 h — — — — — 24 h

RE — — — 2w 2w — 2w 2w 2w — —

WP 24 h — — 24 h 24 h 24 h 24 h 24 h 24 h — —

Table 7.
The maximum impact time matrix used in the case study.

Growth rate node i

G Slow Linear Fast

Growth rate node j Slow Slow Slow Linear

Linear Slow Linear Fast

Fast Linear Fast Fast

Table 9.
Impact growth rate metric.
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we observed an high risk value of subchains including the electric nodes due both to
the high number of dependencies of nodes on the electric nodes and the high
maximum impact associated.

Figure 5 shows a map representation of the dependency risk paths considered in
Figure 4 with the census areas involved. In particular, let CA1,CA2, ::,CAM be the
set of generic census area containing the CI nodes of all possible dependency chains.
The generic CAk s.t. 1≤ k≤M, CAk ¼ v j

� �

, ∣CAk∣ ≤ n is associated specific a color

according to the cumulative risk value DRk
v0,… ,vn

of a v0, v1, ::, vn dependency

subchain s.t. ∄ a p0, p1, ::, pg dependency chain s.t. DRk
v0,… ,vn

<DRk
p0,… ,pg

with some

Inbound dependencies

CI Sector ES BTS CD GO EM RS DO PH HP RE WP

ES — F — F F F F F F — L

BTS F — L L L L L L L — S

CD F L — L L L L L L L S

GO F L L — — L L L L L S

EM F L L — — L L L L L S

RS F L L L L — L L L L S

DO F — L L L — — — — — S

PH F — L L L — — — — — S

HP F — L L L — — — — — S

RE — — — S S — S S S — —

WP L — — S S S S S S — —

Table 10.
The impact growth rate matrix used in the case study.

Figure 5.
Result map showing the risk value of each census area.
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ph ∈CAk (0≤ h≤ g). In other words, each census area is colored according to the
maximum risk value of a subchain that includes some nodes v j that are located in
that area (i.e. v j ∈CAk).

Results depicted in Figure 4 indicate cascading events between infrastructures.
Each one of the four scenarios was validated to be true against real world data and
historical analysis of such infrastructures. Following this, results indicate that the
presented methodology is able to both (i) effectively project adverse effects from
cascading events and accurately predict potential impact over time periods, and
also (ii) highlight direct and indirect dependency vulnerabilities between highly
dependent CIs.

On the latter, results delineate the criticality behind dependencies of Telecom-
munications and the Electrical sector. The sharp increase in impact over a very short
time period (purple line, scenario 1) clearly shows that potential unavailability of
the Electrical sector quickly and critically affects the Telecommunications. We
followed up on this finding and results are proven true both from empirical analysis
and also from historical data on locations analyzed by the tool.

Another potential use of the presented methodology includes capturing the
effect of applying security controls and how these controls affect the resilience of
systems over time. By analyzing the impact escalation and trajectory in analyzed
attack paths, we see that the level of risk reduction for each of the presented
scenarios is directly related with the time of deployment. Early application of
security controls (scenario CD1, ES1, BTS1, GO1, ES2) seems to reduce the overall
risk by 25% in less than two hours after the initiation of the attack path, while
controls implemented later during the exposure to the adverse event show relatively
smaller mitigation percentages of the overall risk (around 18%).

Red areas shown in Figure 5 are highly populated areas containing electric nodes
thus producing possible high impact in case of failure. This explains why several nodes
of the subchains with high cumulative dependency risk are concentrated in this area.

5. Conclusions

By extending previous time-based dependency analysis models and by integrat-
ing the effect of resilience-related security controls, in this paper we have examined
the effect of possible mitigation strategies in dynamically reducing the conse-
quences of cascading effects. The model was applied to a real case study involving
an urban area of Rome where a number of critical infrastructures deliver services to
inhabitants and businesses. The model was set up by considering a precomputed
dependency graph that exhibits the cyber dependencies of a set of infrastructures.
The results highlight the most critical dependency chains and the areas with high
concentration of critical nodes. The model was integrated into CIPCast Decision
Support System allowing all actors involved in securing critical infrastructures to
plan mitigation strategies aiming at reducing the overall risk of service degradation
in the considered area.
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