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Abstract

Over the past two decades, several research groups have focused on the  
functioning of microRNAs (miRNAs), because many of them function as positive 
or negative endogenous regulators of processes that alter during the development 
of cancer. Prostate cancer is the second most commonly occurring cancer in men. 
New biomarkers are needed to support the diagnosis of prostate cancer. Although 
it is necessary to deepen the research on this molecule to explore its potential utility 
in the diagnosis, follow-up, and prognosis of cancer, our results support a role of 
miR-107 in the signaling cascades that allow cancer progression, and as shown here, 
in the progression of Prostate Cancer (PCa). These findings strongly suggest that 
miR-107 may be a potential circulating biomarker for the diagnosis and prognosis 
of prostate cancer.

Keywords: microRNAs, miR-107, biomarker, cancer hallmarks, therapeutic target

1. Introduction

Cancer can be defined as a state of uncontrolled cell-growth and dissemination 
that alters several cellular processes and functions [1]. Hanahan and Weinburg 
described, in 2000, six characteristics of cancer called “cancer hallmarks” that 
increased to ten in 2011 due to the complexity of the disease and the number of 
biological mechanisms that become altered. These cancer hallmarks include sus-
tained proliferative signals, evading growth suppressors, avoidance of immune 
destruction, replicative immortality, tumor-promoting inflammation, sustained 
invasion and metastasis, induction of angiogenesis, genetic instability and muta-
tion, resistance to cell death, and cell-metabolism deregulation [2].

Currently, more than 100 different types of cancer have been identified. 
According to the International Agency for Research in Cancer (IARC) in 2020, the 
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most common types of cancer were those of lung, breast, prostate, colon, and stom-
ach [3]. In the 2014 World Cancer Report, the World Health Organization (WHO) 
reported 14 million new cases and 8.2 million deaths in the year 2012 [4]. Last year, 
the Pan American Health Organization (PAHO) reported that in the Americas, 
the most frequently diagnosed types of cancer in men are prostate (21.7%), lung 
(9.5%), and colorectal (8.0%) cancer [5].

In 2018, the estimated number of new cases increased to 18 million, and it was 
expected that by 2030, more than 20 million cases will be registered annually [4]. 
Under this scenario, different methods of early diagnosis and treatment have been 
sought, which can effectively defeat the disease, leading to a significant reduction in 
the number of cases.

2. MicroRNAs as a potencial cancer biomarkers

MicroRNAs (miRNAs) are endogenous regulators of different biological pro-
cesses, including those that are altered in cancer development such as cell growth 
and proliferation, differentiation, apoptosis, angiogenesis, and others [6]. miRNAs 
are a family of small non-coding RNAs, 18 to 22 nucleotides long whose function 
is the post-transcriptional regulation of gene expression [7]. They have a specific 
region composed of around 6 nucleotides called the seed region that binds the 
3’UTR region of the target messenger RNA (mRNA). This union alters the stabil-
ity of the transcript leading to its degradation or storage in intracellular structures 
called p-bodies, thus leading to effective repression of translation [8].

Different authors have reported that miRNAs have a tissue-specific expression 
pattern and that this pattern is altered in cancer tissues [9, 10]. Therefore, it has 
been suggested that these changes in the expression of miRNAs can be used as 
possible biomarkers of the disease [11]. However, the standard determination of 
the relative expression of miRNA requires a tissue sample from the cancer patient, 
which is considered a highly invasive process [12, 13]. Consequently, other diagnos-
tic methods are required that are safe, effective, and accessible.

In 2008, Mitchell et al. described a specific type of miRNAs that were present in 
their stable form in different biological fluids, which they called circulating miR-
NAs (c-miRNAs) [14]. In their research, they analyzed the expression of different 
miRNAs in plasma, serum, and epithelial tissue samples. They observed that the 
miRNAs remained stable in serum and plasma, and in the tissue samples. They 
concluded that blood was a reliable source for the extraction and quantification of 
miRNAs. These findings have allowed the analysis of the expression of circulating 
miRNAs as a possible method for cancer diagnosis [14, 15].

There are more than 1000 miRNAs registered in the miRNA database (miRDB) 
that have been found in the human body; one of them is miR-107, which, according 
to miRDB, can have more than 800 possible targets [16].

3. Is miR-107, a circulating miRNA?

MicroRNA-107 (miR-107) is a molecule composed of 23 nucleotides; it is 
considered a c-miRNA because it can be found in a stable form in plasma and urine 
[17]. This miRNA is highly conserved in humans and other species. In humans, it is 
transcribed from the introns of the pantothenate kinase 1 gene, located on the long 
arm of chromosome 10 [16]. It belongs to the miR-103/107 family, which partici-
pates in the regulation of proteins involved in cell proliferation, cell cycle arrest, 
and programmed cell death or apoptosis [18].
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Different research groups have reported that miR-107 is altered in different 
types of cancer in both men and women, including cervical [19], breast [20], ovary 
[21], colorectal [22], gastric [23], oral [24], penile [25], and prostate [13] cancers. 
Because of this, it has been proposed as a possible biomarker of cancer and a poten-
tial target for treatment.

So far, information on the expression of miR-107 in plasma has been published 
only on gastrointestinal cancer by Parvaee et al. [15], and in the urine of patients 
with prostate cancer by Lekchnov et al. [17]. Therefore, there is a great  opportunity 
in this field to contribute to the design of new diagnostic methods for the detection 
of cancer from the early stages of the disease.

4. miR-107 and its participation in prostate cancer

PCa is the second leading cause of death in men over 45 years of age; the 
American Cancer Society estimates that 1 in 41 men will die this year from this 
cause. Nevertheless, prostate cancer has not been studied to the same extent 
as breast cancer, and hence, there is a lack of information on the development, 
evolution, and the treatment of this disease. Although the evaluation of prostatic 
specific antigen (PSA) has contributed to the early detection of PCa, its use may 
also lead to non-conclusive results because of false positive and negative results. 
Also, its low specificity can lead to misdiagnosis and incorrect treatment of 
indolent PCa patients [25, 26]. Patients with prostate cancer who receive radical 
treatment for presumably locally confined cancer can experience clinical relapses, 
indicating that the extent of these cancers was greater than the one previously 
diagnosed [27]. The median survival of metastatic PCa patients is 5 to 8 months, 
and their 5-year survival rate is less than 30%. This poor prognosis is the result 
of many factors including the lack of initial symptoms when PCa develops, local 
invasiveness, or metastases to distant organs in the early stage of the disease, and 
misdiagnosis [28, 29].

A majority of PCa patients who initially respond to androgen suppression 
treatment (AST) develop metastatic castration-resistant prostate cancer (CRPCa) 
within 2 years of treatment [29]. This condition still cannot be predicted, although 
several biomarkers have been tested (proteomic and metabolomic approaches) 
[30, 31]. This is mainly due to the wide variability of proteins being tested,  
the masking effect of abundant serum proteins, the high salt concentration in 
the samples, and the variability between individuals that drastically reduce the 
reproducibility of the biomarker’s determinations. miRNAs have been found to 
participate in the alteration of many cellular processes that lead to the development 
of cancer including proliferation [32, 33], differentiation [34, 35], angiogenesis, 
and evasion of apoptosis [36]. miRNAs can serve as biomarkers because they are 
resistant to degradation by RNases either in tumors or serum. miRNAs are small 
(18-24 nt), endogenous, non-coding RNAs, encoded either on intergenic regions 
of DNA or on introns and exons of genes that act as post-transcriptional control 
genes, triggering degradation or blocking translation of mRNAs by complementary 
base pairing [37]. When discovered, miRNAs were shown to control fundamental 
cellular processes, such as cell differentiation and timing of the organism develop-
ment [38, 39], suggesting that aberrations of miRNAs could be involved in various 
human diseases, including cancer.

In recent years, several detailed studies have described the mechanisms through 
which miRNAs are stabilized and how they are detected in plasma and serum [10, 14]. 
Plasma/serum miRNAs are resistant to endogenous ribonuclease activity by binding to 
specific plasma proteins or by packing into various serum secretory vesicles, including 



Male Reproductive Anatomy

4

apoptotic bodies and exosomes [14, 40–42]. Various blood-based miRNAs have been 
identified, including those in this study, and can be used for cancer detection, moni-
toring tumor dynamics, and predicting prognosis and chemoresistance [43–47].

Several reports have shown that changes in the level of circulating miRNAs 
associate with prostate cancer [48]. One of these miRNAs is miR-107, which is 
overexpressed by more than 11-fold in PCa [48] but whose role has not been studied 
in the context of cancer progression [49].

In 2019, Zhang et al. studied the role of miR-107 in prostate cancer in both 
the tissue and cancer cells (DU145 and PC3); they found that its levels decreased 
compared to the levels in healthy cells and tissue. Then they induced the overex-
pression of miR-107 and performed functional tests to evaluate its effects. In the 
colony formation test, they found that the increase in the expression of miR-107 
significantly inhibited cell proliferation. They complemented this finding with the 
flow cytometric cell cycle test and concluded that the inhibition resulted from an 
arrest in the G1/S phase of the cycle, due to the binding of miR-107 to cyclin E1. 
In the migration and invasion tests, they did not find any influence of miR-107 on 
these cellular processes [13].

Previous studies show the tumorigenicity of the miR-107 family [50–53]; thus, 
the inhibition of the expression of miR-107 might be a target for the treatment. 
miR-107 may promote the progression of prostate cancer to CRPCa, the end-stage 
of a multifactorial and heterogeneous disease process [54, 55]. Significant progress 
in understanding the molecular basis of CRPCa has been achieved in recent years 
[56] but despite this, CRPCa remains a lethal disease [57].

Recently, Liang et al. [58] reported that miR-107 induces chemoresistance in 
colorectal cancer (CRC) through the CAB39-AMPK-mTOR pathway, promoting 
metastasis. In this context, miR-107 levels could potentially be determined at the 
time of diagnosis to identify patients with aggressive disease/micro metastases 
and/or to predict recurrence following primary treatment.

Studies of Bryant et al. [48] strongly suggest that the presence of miR-107 in 
plasma can be used as a biomarker for cancer detection, monitoring, and prognosis 
predictor in PCa patients. They reported 12 miRNAs differentially expressed in 
the plasma of PCa patients compared to controls. Among these 12 miRNAs, 11 
were significantly correlated with metastases. The association of two miRNAs, 
miR-141 and miR-375 with metastatic PCa was confirmed in a separate cohort. 
Furthermore, an analysis of urine revealed that miR-107 and miR-574-3p were also 
notably associated with PCa risk [48].

The role of miR-107 in other hallmarks of prostate cancer is not yet known. 
However, it would be relevant for the medical and scientific community to deter-
mine the participation of this miRNA in the development, growth, and metastasis 
of this disease; this will encourage further research tending to mitigate this pathol-
ogy. The pleiotropic functions of miR-107 in diverse types of cancer indicate that 
it targets a variety of genes involved in tumor proliferation, invasiveness, metas-
tasis, angiogenesis, and response to chemotherapy. Because of their carcinogenic 
or cancer-suppressor effects, miR107 can be used as a potential diagnostic and 
prognostic biomarker, or as a target for therapeutic intervention [48].

5. miR-107 and its participation in other urologic cancers

Both men and women can develop urological cancers, such as urethral, bladder, 
and kidney cancers. Other urologic cancers are gender specific. Males, besides the 
prostate, can experience testicular and penile cancer. The role of miR-107 in some 
of these cancers has not been reported previously.
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Investigation of bladder cancer-related miRNAs shows a specific downregula-
tion of miR-107 in the in-situ carcinoma lesions in comparison to a normal bladder 
[49]. Several studies have shown that miR-107 sponge effects could be involved 
in processes that upregulate circular RNAs (circRNA) in bladder cancer-related 
pathways. For example, overexpression of the circRNAs of the transcription factor 
(TCF) 25 (circ-TCF25) and transferrin receptor (TFRC) (circ-TFRC) negatively 
correlated with miR-107 promotes progression of bladder cancer through the 
circ-TCF25-miR-103a-3p/miR-107-CDK6 and circ-TFRC-miR-107-TFRC pathways, 
respectively [59, 60].

So far, only one study mentioning a relationship between miR-107 and kidney 
cancer has been published. Song et al. found that cell proliferation and invasiveness 
of renal cell carcinoma, which is the most common type of kidney cancer in adults, 
can be suppressed by high expression of miR-107 through an apparent cell cycle 
arrest at the G2/M phase [61]. In contrast, it has been found that high expression 
of miR-107 is frequently associated with a bad prognosis in patients with penile 
cancer [25]. Overexpression of miR-107 in penile cancer tissues was also reported 
by Zhang et al. [62].

6. Strategy and methodology of study of miR-107

While several techniques and methodologies have been used for the study of 
miR-107, the most used techniques are qRT-PCR, proliferation assays, Western 
blotting, luciferase reporter, and immunofluorescent and immunohistochemical 
assays (Figure 1, Table 1). Yet, other authors have used less conventional method-
ologies. Thus, the optimized electrochemical sensor technic enabled the PCR-free 

Figure 1. 
Methodology most frequently used in the study of miR-107.
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Mice (LDLr −/−): fed a high-fat 

(liver tissue).

Hibiscus sabdarifa: polyphenols.

quercetin3-O-β-D-glucuronide

chromatography column, LC-MS, RT-PCR, Western blot, 

GC-MS, liver histology

to measure the lipid droplet content.

ANOVA,U Mann–Whitney, 

t-Student's, Fisher's test P< 0.05

Polyphenols reduced the expression 

of miR-107 in the liver

[63]

Human glioma tissue.

U251 and MO59K

cell line.

BALB/C-nu athymic nude mice.

qRT-PCR, transfection (miR-107), proliferation 

assay (MTT), Anchorage-independent growth 

assay, Cell apoptosis (annexing), luciferase reporter, 

Lentiviral construct transduction, Western blot and 

immunofluorescence analysis, computer-aided algorithms 

from PicTar.

Student’s t-tests, Spearman’s 

rank correlation.

P< 0.05.

upregulation of miR-107 suppressed 

glioma

cell growth

[64]

HepG2 cells and HEK 293. cell transfection (miR-107), western blot, RT-PCR, DNA 

constructs, luciferase assay, Triglyceride assay,

student's t-test. P<0.05 miR-107 induced lipid accumulation 

in hepatocytes.

[65]

52 tumor of

Kidney cancer.

HKC cell line.

Male nude mice

RT-PCR, Western blot, plasmid construction, transfection/

infection, luciferase reporter assay, flow cytometric

Wilcoxon rank sum test, 

ANOVA, Student t test.

miR-107 inhibit cell proliferation in 

renal cell carcinoma.

[61]

Primary cortical neurons, 

HEK293 and SHSY5Y cells.

Osthole (7-methoxy-8- 

isopentenoxy coumarin)

Viral vector transduction, activity of LDH, cellular apoptosis 

(TUNEL), Immunofluorescence, RT-PCR, transfection 

(miR-107), western blot.

ANOVA, Bonferroni’s, P< 0.05. Osthole is neuroprotective via 

up-regulate miR-107 in AD.

[66]

SGC-7901, MKN-45, KATO III, 

BGC-823, AGS, MKN-28 and 

MKN1 cells lines.

male nude mice: implanted 

miRNA-107 (tumor)

Transfection (miRNA-107), si-RNA, plasmid, RT-PCR, 

wound healing assay, luciferase activity, Western blot.

ANOVA, dunnett's multiple. 

P< 0.05

miR-107 acts as tumor inhibitor for 

gastric cancer

[67]

primary preadipocyte (mice) Plasmid vector, transfection, cDNA synthesis, qPCR, 

luciferase reporter assays, caspase-3 activity, flow cytometry 

(apoptosis), TUNEL, western bloth, immunofluorescent.

Student’s t-test. P< 0.05 and 

< 0.01.

miR-107 induced apoptosis pathway. [68]

SGBS cells: qPCR, western blotting, Transfected SGBS cells (miR-107, 

[3H]palmitic acid).

not reported miR-107 reduces adipogenesis [69]
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HCC patients:

1.FFPE cohort (tissue)

2. serum cohort (serum)

Patient receiving before 

cisplatin, lipiodol, doxorubicin.

qPCR. Total RNA Chi-square test, Mann-

Whitney U.

P≤0.05

miR-107 is biomarkers for 

predication of TACE treatment 

outcomes in HCC patients.

[70]

42 OA patients (cartilage 

samples): chondrocytes

48 rats: establish OA

model

Transfection (chondrocytes/miR-107), flow cytometry, 

apoptosis (annexin/TUNEL assay), luciferase reporter, 

western blot, RT-q PCR,

Student's t-test.

P≤0.05

miR-107 induced apoptosis and 

autophagy of OA chondrocytes

[71]

PC-3, DU145, LNCaP,

267B1, X/267B1, and Ki/267B1 

cells

RNA isolation, qRT-PCR, electrochemical measurements 

(CHI 660D electrochemical workstation): frequency range 

of 0.1 Hz to 100 kHz with an alternating current amplitude 

of 10 mV.

Student's t-test. P< 0.05 Viability of the electrochemical 

evaluation method in clinical 

environment.

[72]

75 ADHD patients: stimulation 

in rDLPFC. for 6 weeks:

18 healthy children.

Venous blood in both case.

RNA extraction, serum miRNA extraction, miRNA reverse 

transcription, fluorescence qPCR.

Mann-Whitney U test or 

Student's t-test. P< 0.05

serum miRNA-let-7d in ADHD

patients is higher as compared to 

healthy children.

[73]

SKOV3 and 293T cells; 

transfected with lentiviruses

qRT-PCR, luciferase report assay, western blot, xenograft 

model and immunohistochemistry assay.

ANOVA, Student's t test, 

P<0.05

miR-107 as a tumor suppressor in 

ovarian cancer.

[74]

Patients with AD.

SH-SY5Y and PC12 cells

Mouse model: introducing 

6-OHDA into the right ventral 

tegmental area

Cell transfection, qPCR, caspase-3 activity (ELISA), ROS, 

LDH, SOD, luciferase reporter assay, western blot. Rota-rod 

test.

patients with AD: motor imagery test

(fMRI)

ANOVA,

Tukey's test,

P< 0.05.

miR-107 may be a therapeutic target 

for the treatment of AD-related 

impairments.

[75]

HT-22 cell line coimmunoprecipitation, chromatin immunoprecipitation, 

Luciferase reporter, qRT-PCR, apoptosis

detection (annexin), western blot.

Student's

t-test, ANOVA, Tukey's test

P< 0.05

RMST activates p53/miR-107 

signaling pathway

[76]

Serum samples (NSCLC).

cell line BESA-2B, NSCLC, A549, 

H1299, HCC827, PC-9, 95-D, 

H1975, HEK-293T

luciferase reporter gene, qRT-PCR, western blot, 

Immunohistochemistry.

t-tests for two-group 

comparisonsP< 0.05.

miR-107 could inhibit the 

progression of

NSCLC

[77]
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40 Sprague Dawley (SD) rats.

MC3T3-E1 cells

Agrimonia pilos (isolated 

polysaccharide)

Rats induced SANFH (dex)

Femoral head tissue: apoptosis cellular (TUNEL), RT-PCR, 

cell proliferation (annexin), MC3T3-E1 cells transfected with 

anti-miR-107, flow cytometry, ALP activity, western blot.

ANOVA. P< 0.05 polysaccharides promote 

cell proliferation/ osteogenic 

differentiation by enhancing miR-107

[78]

HeLa and HEK Reporter gene assay (FuGENE 6), RT-PCR, immunoblot/ 

Immunofluorescence assay, chromatin immunoprecipitation,

ChIP-seq analysis: microRNA103–3p/107 target,. motif 

discovery (RSAT), Gene ontology analysis, genomic 

distribution (CEAS), siRNA transfections.

ANOVA, Bonferroni, 

KruskalWallis, Dunn’s, t-test, 

Mann-Whitney U. P< 0.05.

miR-107 is potent regulators of GR 

function

[79]

30 HIBD rats

Neonatal male Sprague-Dawley: 

HIBD

injected with adenovirus: primary 

neuron cells

Neuronal cells (infected with adenovirus): RT-qPCR, 

Protein extraction, western blot, luciferase reporter, 

immunofluorescence, fluorescent hybridization, RNA 

immunoprecipitation. hippocampal neurons (NisslStaining).

unpaired t-test, ANOVA,

Tukey test.

P < 0.05.

miR-107 network has the potential to 

provide novel

insights into treatment targets for 

HIBD.

[80]

70 tumor human tissue (NPC)

Fresh frozen cell lines: HNE1, 

HONE1, 5–8F, 6–10B, and C666-1 

and NP69:

qRT-PCR, western blot, cell apoptosis (anexin), flow 

cytometry, DIG-UTP-labeled miR-107, FISH kit, 

Immunofluorescence/ Immunohistochemical analysis

BALB/c mice: (transfected HNE1 cells) lung

Student’s t-test/Chi-square test, 

Pearson correlation. P< 0.05

circTGFBR2 suppresses the 

proliferation,

migration, and invasiveness of NPC 

cells by sponging miR-

107

[81]

HIBD: hypoxic-ischemic brain damage. NPC: nasopharyngeal carcinoma. NP69: immortalized nasopharyngeal epithelial cell line. RT-qPCR: quantitative polymerase chain reaction. HeLa: Human cervical 
carcinoma cells. HEK: human embryonic kidney cells. GR: glucocorticoids. SANFH: steroid-induced osteonecrosis of the femoral head. Dex: dexamethasone. ALP: Alkaline phosphatase. BESA-2B, NSCLC, 
A549, H1299, HCC827, PC-9, 95-D, H1975: Human normal bronchial epithelial cell line: HEK-293T: human embryonic kidney cell line. NSCLC: Non-small cell lung cancer. TGFβR2: Transforming growth 
factor β receptor 2. HT-22: Immortalized mouse hippocampal neuron cell line. RMST: rhabdomyosarcoma 2-associated transcript. hnRNPK: Heterogeneous nuclear ribonucleoprotein K. SH-SY5Y: human 
neuroblastoma cell line. PC12: cells rat pheochromocytoma. LDH lactate dehydrogenase release. SOD: superoxide dismutase. ROS: reactive oxygen species. 6-OHDA: 6-hydroxydopamine. fMRI: magnetic 
resonance imaging. AD: Alzheimer's disease. ADHD: attention deficit hyperactivity disorder. rDLPFC: right dorsolateral prefrontal cortex. A549: human lung carcinoma cells. Human_Br07: human-origin 
seasonal influenza A virus H3N2. PC-3, DU145 and LNCaP: human transformed prostate epithelial cell lines. 267B1, X/267B1: cell line nontumorigenic in nude mice. Ki/267B1: cell line moderately tumorigenic 
nontumorigenic in nude mice. OA: Osteoarthritis. TRAF3: TNF Receptor Associated Factor 3. HCC: hepatocellular carcinoma. FFPE: Formalin-Fixed Paraffin-Embedded. TACE: transcatheter arterial 
chemoembolization (cancerous tumor therapy). SGBS: Simpson-Golabi-Behmel syndrome preadipocytes. LDLr -/-: deficient in LDL receptor. LC-MS: Liquid chromatography–mass spectrometry. GC-MS: 
Gas chromatography–mass spectrometry. U251 and MO59K: Human glioma cell lines. MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. SALL4: Sal-like 4. HKC: Human renal proximal 
tubular epithelial cell line. SHSY5Y: neuron cell line. SGC-7901, MKN-45, KATO III, BGC-823, AGS, MKN-28 and MKN1: gastric cancer cell lines. TGFBR2: transforming growth factor-β receptor II.

Table 1. 
Methodology and techniques used in the study of miR-107.
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quantification of miR-375 in CaP cells with acceptable specificity, confirming its 
potential applicability for point care (POC) purposes [72]. Detection at attomole lev-
els of miRNA in samples is possible by electrocatalytic detection using gold-loaded 
nanoporous superparamagnetic iron oxide nanocubes, that has proved successful in 
the detection of miR-107 from cancer cell lines [82]. Other authors mentioned the 
use of chromatographic techniques such as Liquid chromatography-mass spectrom-
etry (LC–MS) to extract and identify polyphenols from the plant Hibiscus sabdarifa, 
which reduced the expression of miR-107 in the liver [63] as well as of osthole (a 
coumarin compound) which is neuroprotective [66], and polysaccharides from 
Agrimonia pilosa, which promote cell proliferation enhanced by miR-107 [78, 83].

A variety of statistical tests have been used to validate the results, including 
parametric (ANOVA, student-t, Tukey) and non-parametric (Mann–Whitney U, 
Kruskal Wallis, Bonferroni, Dunn’s multiple comparison, Chi-square, and Pearson 
correlation) tests. The probability level in all cases have been P < 0.05. In conclu-
sion, the new technology and the use of diverse statistical tools validate the study 
and significance of mirR-107 in diverse biological situations, including CaP.

7. miR-107 as a possible blood biomarker

In 2019, Parvaee et al., evaluated the expression of three miRNAs, including 
miR-107, in blood samples from 50 patients with gastrointestinal cancer. After extract-
ing and analyzing the plasma, they observed that the expression of miR-107 was 
significantly lower in patients with this type of cancer, compared to healthy volunteers 
(93.8% sensitivity and 78.8% specificity). From the ROC curve evaluation, they found 
that the patients could be distinguished from healthy people at cutoff levels of 0.504 
(miR-107), 0.266 (miR-194), and 0.394 (miR-210). Finally, they concluded that 
miR-107 could serve as a possible plasma biomarker, assuring the minimum degree of 
invasion for the patient and an adequate level of reliability in the diagnosis [15].

8. The future for the miR-107

Given its role in cell cycle arrest and its direct involvement in cancer, the thera-
peutic potential of miR-107 is anticipated [13]. miR-107 may be a key target for the 
treatment of prostate cancer, arresting tumor growth, and cell survival.

9. Conclusion

The findings condensed in this review enable us to envisage miR-107 as a 
biomarker and possible therapeutic target for diverse types of prostate cancer. 
Although it is necessary to deepen the research on this molecule to explore its 
potential utility in the diagnosis, follow-up, and prognosis of cancer, our results 
support a role of miR-107 in the signaling cascades that allow cancer progression, 
and as shown here, in the progression of PCa to CRPCa. Our research suggests a 
potential utility of miR-107 as an accurate tool for diagnoses and follow-up of PCa.
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