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Chapter

The Gravity Effect of Topography:
A Comparison among Three
Different Methods
Carlo Iapige De Gaetani, Anna Maria Marotta,

Riccardo Barzaghi, Mirko Reguzzoni and Lorenzo Rossi

Abstract

In this paper, three different methods for computing the terrain correction have
been compared. The terrain effect has been accounted for by using the standard
right parallelepiped closed formula, the spherical tesseroid and the flat tesseroid
formulas. Particularly, the flat tesseroid approximation is obtained by flattening the
top and the bottom sides of the spherical tesseroid. Its gravitational effect can be
computed as the gravitational effect of a polyhedron, i.e. a three-dimensional body
with flat polygonal faces, straight edges and sharp corners or vertices. These three
methods have been applied in the context of a Bouguer reduction scheme. Two tests
were devised in the Alpine area in order to quantify possible discrepancies. In the
first test, the terrain correction has been evaluated on a grid of points on the DTM.
In the second test, Bouguer gravity anomalies were computed on sparse observed
gravity data points. The results prove that the three methods are practically equiv-
alent even in an area of rough topography though, in the second test, the Bouguer
anomalies obtained by using the tesseroid and the flat tesseroid formulas have
slightly smaller RMSs than the one obtained by applying the standard right paral-
lelepiped formula.

Keywords: Gravitational Terrain Effect, Bouguer reduction, Terrain Correction,
Parallelepiped, Tesseroid, Polyhedron

1. Introduction

The gravity effect of topography has been always intensively analyzed and
modeled. In all the classical books of Geodesy and Geophysics there are sections
devoted to this topic. Among the standard methods for modeling the gravity effect
of topography one can enumerate the Bouguer reduction, the Helmert reduction
and the isostasy reduction according to Airy-Heiskanen and Pratt-Hayford models
(see e.g. [1]). In more recent years, the Residual Terrain Correction (RTC) has been
devised as a method to be used in geodetic applications for gravity field and geoid
estimation (see e.g. [2]).

In all these approaches, the gravity effect of topography is computed by using a
Digital Terrain Model (DTM) at a given resolution, which is assumed to represent
the actual shape of the Earth surface. Thus, the topography is discretized at the
DTM resolution and the gravitational effect of each topography element is
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computed. In doing so, different formulas can be applied. Usually, the single terrain
element is modeled as a right parallelepiped (see e.g. [2]) or as a spherical or
ellipsoidal tesseroid [3]. In this study, we compare the two aforementioned
approach with that introduced by Tsoulis [4] in which the bottom and the top sides
of the tesseroid are flat surfaces (flat tesseroid). This is done for the computation of
the terrain correction in the framework of the Bouguer reduction.

The formulas giving the gravitational effect of a right parallelepiped, a spherical
tesseroid and a flat tesseroid are given in Section 2. In Section 3, the Bouguer
reduction is computed using these three different approaches in an area of the Alps,
both on a grid of points and on a set of observed gravity values, and comments on
the obtained results are given. Conclusions are then stated in Section 4.

2. The terrain correction and its computation

The terrain correction is commonly applied in the computation of the Bouguer
gravity anomalies. The gravity observation in a point P on the Earth surface is strongly
influenced by gravitational effect of the topographic masses. In order to use gravity in
geophysical analyses, e.g. for estimating the Moho depth or intra-crustal mass anom-
alies, the topographic gravity signal is removed from the observed data. In this con-
text, the most frequently used reduction is the Bouguer reduction (see e.g. [1]).

From the observed gravity value g(P) one removes the gravity effect of a plate of
height HP equal to the height of point P, the so-called Bouguer plate. This plate is
usually considered as an infinite horizontal slab of known constant density ρ even
though spherical plate models have been proposed [5]. If the infinite horizontal slab
model is assumed, the gravitational effect AB is given by the well-known formula
(see e.g. [1]):

AB ¼ 2πGρHP (1)

Where G = 6.67 � 10�11 m3/kg s2 is the universal gravitational constant. The
topography signal reduction is then refined through the so-called Terrain Correc-
tion (TC). This is computed accounting for the masses that are above or below the
plate of height HP (see Figure 1). This is a quantity always positive that must be
summed to the observed gravity reduced by the effect of the plate. Thus, one has:

g Pð Þ � AB þ TC Pð Þ (2)

Figure 1.
The plate and the terrain correction (HP = orthometric height, hP = ellipsoidal height).

2

Geodetic Sciences - Theory, Applications and Recent Developments



It must be underlined that both the plate and the TC effects are usually com-
puted at constant density ρ set at 2670 kg/m3. This means that residual effects
coming from masses having density different from the standard value given
above may still affect the reduced gravity values. However, it is assumed that, in
this way, the topography effect is substantially removed from the observed gravity
values g(P).

The reduced gravity data are then moved to the geoid by considering the gravity
gradient, which is approximated by the free-air normal gravity gradient ∂γ/∂h:

g Pð Þ � AB þ TC Pð Þ �
∂g

∂H
HP ffi g Pð Þ � AB þ TC Pð Þ �

∂γ

∂h
HP (3)

Finally, the normal gravity at point Q (see Figure 1) on the ellipsoid is
subtracted and the standard Bouguer anomaly is obtained as:

ΔgB ¼ g Pð Þ � AB þ TC Pð Þ �
∂γ

∂h
HP � γ Qð Þ (4)

While the Bouguer plate effect can be easily computed via e.g. Eq. (1), the
computation of the terrain effect is more complex. In planar approximation, this
effect is given by the integral formula:

TC Pð Þ ¼ Gρ

ððþ∞

�∞

ð

z

zP

ζ � zP

l3
dξdηdζ (5)

where ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xP � ξð Þ2 þ yP � η
� �2

þ zP � ζð Þ2
q

, xP, yP, zP
� �

are the coordinates of

the computational point P and ξ, η, ζð Þ are the coordinates of the integration point.
The integral is numerically evaluated by using a Digital Terrain Model (DTM). This
can be done using FFT methods in planar approximation as described in e.g. [6, 7].

Alternatively, the TC is computed by quadrature of the integral formula using
the DTM in the area S having a radius that depends on the topography roughness
(in high mountain range this radius can be 200 km). The TC effect can be thus
evaluated as:

TC Pð Þ ffi
X

n

k¼1

TCk (6)

where TCk is the volume integral giving the gravitational effect of the k-th DTM
element in S and n is the total number of DTM elements (see Figure 1). Different
mathematical models for the computation of TCk have been proposed. In this paper
three of them have been considered and compared, namely the formula of the
gravitational effect of a right parallelepiped, a spherical tesseroid and a flat
tesseroid.

Given the gravitational potential V of a body B of constant density ρ as the integral:

V Pð Þ ¼ Gρ∭
B

1

l
dv Qð Þ (7)

l ¼ r Pð Þ � r Qð Þj j

r Pð Þ = position vector of the computation point;
r Qð Þ = position vector of the integration point;
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one can compute the gravitational effect of a right parallelepiped assuming the
computational point P at the origin of a Cartesian reference system as the closed
formula [2]:

∂V

∂z
¼ Gρ kx ln yþ rð Þ þ y ln xþ rð Þ � z arctan

xy

zr

� ��

�

�

�

�

�

x1

x2

y1
y2

�

�

�

�

�

�

z1

z2
(8)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

and x1, x2ð Þ, y1, y2
� �

, z1, z2ð Þ are the coordinates of the
parallelepiped edges.

This formula is implemented in e.g. the TC program of the GRAVSOFT package
[8] that will be used in the computations described in the next section.

The gravitational effect of spherical tesseroid has been studied in several papers.
Relevant studies on this topic have been carried out by [3, 9–12]. In this study the
approach presented in [11], hereinafter referred to as UNIPOL, is used.

The UNIPOL approach grounds on the result that a closed formula of the volume
Newtonian integral (Eq. (8)) exists when the observation point P is located along
the polar axis (see e.g. [13]) and the tesseroids coincide with sectors of a spherical
zonal band of a spherical cap.

In this case the gravitational contribution of spherical tesseroid of height h can
be expressed as:

∂V

∂r
¼

Gρ

r2
Δλ I1 þ I2 þ I3 þ I4 þ I5ð Þ (9)

with

I1 ¼
1

3
Rþ hð Þ2 þ r2 3 cos 2φ2 � 2

� �

þ r Rþ hð Þ cosφ2

h i

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ hð Þ2 þ r2 � 2r Rþ hð Þ cosφ2

q

I2 ¼
1

3
R2 þ r2 3 cos 2φ2 � 2

� �

þ rR cosφ2

� 	

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ r2 � 2r Rþ hð Þ cosφ2

q

I3 ¼ �
1

3
Rþ hð Þ2 þ r2 3 cos 2φ1 � 2

� �

þ r Rþ hð Þ cosφ1

h i

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ hð Þ2 þ r2 � 2r Rþ hð Þ cosφ1

q

I4 ¼
1

3
R2 þ r2 3 cos 2φ1 � 2

� �

þ rR cosφ1

� 	

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ r2 � 2r Rþ hð Þ cosφ1

q

I5 ¼ � cosφ2 sin
2φ2r

3

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ hð Þ2 þ r2 � 2r Rþ hð Þ cosφ2

q

þ Rþ hð Þ � r cosφ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ r2 � 2r Rþ hð Þ cosφ2

q

þ R� r cosφ2

0

B

@

1

C

A

In Eq. (9), R is the radius of the Earth and φ and λ colatitude and longitude,
respectively. When the observation point P is not located along the polar axis, the
UNIPOL approach maps each tesseroid defined in the Earth-Centered Rotational
reference frame (ECRTesseroid) into a sector of a spherical zonal band of a spherical
cap in the Earth-Centered P-Rotational reference frame, having the same origin O
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and polar axis coinciding with the line connecting O to the observation point P
(ECPTesseroid), for which it is possible to use the exact solution in Eq. (9) (Figure 2).

Mapping can be done by means of two procedures, depending on the spherical
distance of the tesseroid from the observation point (Figure 3a).

The first procedure (ST procedure) involves a local second-order decomposition
of each tesseroid into a number NS of small equal-area sectors of a spherical band,
which develop along the local ECP meridians (dashed black lines) and parallels
(dashed blue lines in Figure 3b). Sensitivity tests [11] show that the optimum value
of NS for which the ST procedure converges varies only with the latitude and
decreases from the equator to the North Pole. In the present study we useNS ¼ 4, in
agreement with [11].

Figure 2.
Geometry used to calculate the contribution of a spherical tesseroid (green rectangle) to the gravitational
acceleration at a point P outside a spherically symmetric earth. a) Representation in the earth-Centered
rotational reference frame (ECR). b) Representation in the earth-Centered P-rotational reference frame
(ECP), defined with respect to the observation point P. R stands for the mean radius of the spherical earth; φ
and λ stand for colatitude and longitude, respectively.

Figure 3.
Scheme of the UNIPOL approach. a) Set of tesseroids in the earth-centred rotational (ECR) reference frame.
The yellow circlet indicates the observation point. The blue dashed circle around the observation point marks the
area where tesseroids are at a distance ≤0.1° from the observation point and the ST procedure is required. Cyan
and pink colors are used to indicate the tesseroids that require the application of the ST (cyan) and the RT
(pink) procedure. b) Tesseroids mapped in the earth-Centered P-rotational (ECP) reference frame ECP and
decomposition of some of them into sectors of a spherical band (light blue-colored tesseroids) in the local ECP
reference frame. c) Tesseroids mapped in the earth-Centered P-rotational (ECP) reference frame ECP (pink
areas) and re-orientation of some of them in the local ECP reference frame (red sectors). Modified from
Marotta and Barzaghi [11].
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The second procedure (RT procedure) is based on the rotation of an ECRTesseroid

(pink areas in Figure 3c) around its center and on its resizing to form a sector of a
spherical band (red lines in Figure 3c) that develops along the local ECP-meridian
and has the ECP-longitudinal dimension such that the ECPTesseroid maintains the
same area of the original ECRTesseroid.

In agreement with [11], in the present study we use the ST procedure for angular
distance between the observational point and the center of the tesseroid less than
0.1°. For angular distance greater than 0.1° we use the RT procedure.

Finally, the Flat Tesseroid (FT) approximation is considered. In this case, the
bottom and the top of the tesseroid are flattened thus obtaining a particular poly-
hedron. A polyhedron is by definition a three-dimensional body with flat polygonal
faces, straight edges and sharp corners or vertices and, through proper determina-
tion of its vertices, it can realize volumes approximating both right and spherical
prisms.

By assuming the FT approximation, one can apply the linear integral algorithm
for the computation of the gravitational effect implied by the topographic masses as
proved in [4]. The implementation of such approach is based on the double appli-
cation of the divergence theorem of Gauss to volume integrals of the general
expressions for the gravity field resulting from a polyhedral constant density mass
and evaluated at an arbitrary point in space. Given the potential of the body B in
Eq. (7), the three components of the attraction of this body in a Cartesian
orthogonal frame (x, y, z) can be expressed as

Vxi Pð Þ ¼ Gρ∭
B

∂

∂xi

1

l


 �

dv Qð Þ i ¼ 1, 2, 3 (10)

where Vxi Pð Þ is the partial derivative of the potential V Pð Þ along the xi direction.
The double application of the divergence theorem transforms these expressions

first into an equal set of surface integrals (of the same number of faces of the
polyhedral source) and subsequently each of them into a set of line integrals defined
for each individual segment belonging on that face of the polyhedron. The solution
of each line integral produces the final analytical formulas that, in terms of first-
derivatives of the potential, are given by [4]:

Vxi Pð Þ ¼ Gρ
X

n

p¼1

cos Np, ei
� �

X

m

q¼1

σpqhpqLNpq þ hp
X

m

q¼1

σpqANpq þ sin gAp

� �

" #

(11)

In Eq. (11), p defines one of the polygonal surfaces Sp, q defines one of the
segments delimitating the p polygonal surface, Np is the outer unit normal of the
polyhedral plane p, ei is the unit vector situated in the computation point P, σpq is
equal to �1 when the normal of segment q lying on the plane of polygon Sp points to
the half-plane that contains the projection P’ of P on Sp, σpq is equal to +1 otherwise,
hpq is the distance between P’ and the segment q, hp is the distance between P and
the plane p. LNpq and ANpq are transcendental expressions:

LNpq ¼ ln
s2pq þ l2pq
s1pq þ l1pq

(12)

ANpq ¼ arctan
hps2pq
hpql2pq

� arctan
hps1pq
hpql1pq

(13)
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The l1pq and l2pq terms are the three-dimensional distances between P and the
end points of the segment pq, while s1pq and s2pq are the one-dimensional distances
between the origin P” of a 1D local coordinate system defined on the segment pq

and its two end points. Last term of Eq. (11), sin gAp

� �

, is the singularity term that

appears for specific locations of P’ with respect to the closed polygonal line Gp. It
expresses the analytical solutions of the corresponding limiting values of the line
integrals that are obtained from the partial application of the divergence theorem
for a small circle containing the singularity point when its radius tends toward zero.
This singularity terms yield finally the values �2πhp when P’ lies inside Sp, �πhp
when P’ is located on Gp but not at any of its vertices,�ϑhp when P’ is located at one
of the vertices of Gp and ϑ is the angle defined by two subsequent segments that
meet at the corresponding vertex, and 0 when P’ is located outside Sp. In Eq. (11),
the two coordinate transformations occurring in every face of the polyhedron are
given by two nested summations, firstly over faces and secondly over segments, of
the same transcendental expressions depending on the vertices of the polyhedron.
This means properly managing the relative position of points P, P’ and P” with
respect to every surface Sp that can be done algorithmically by standard tools of
vector calculus. Figure 4 presents a sketch of their relative positions.

Once clarified that the linear integral approach requires the control of the rela-
tive position of the vertices of a polyhedral mass with respect to the computation
point, in the following a brief description of the implementation of such approach in
the framework of residual terrain correction algorithms assessment is provided.
Let us consider a set of n points in space Pi (i = 1 to n) on which the gravitational
effect of the terrain must be computed and a set of m gridded points Q j (j ¼ 1 to m)

with grid spacings Δφ j in latitude and Δλ j in longitude describing the DTM consid-

ered to compute this effect. The coordinates of Pi and Q j are expressed in terms of

spherical coordinates φ, λ, rð Þ referring to the same reference system, as well as the
angular grid spacings Δφ j and Δλ j. On the basis of the spherical coordinates of

Q j φ j, λ j, r j
� �

, the grid spacings Δφ j, Δλ j and the radius of the computation point ri,

a six-facet polyhedron can be defined. In particular, the eight vertices of this polyhe-

dron will be: A φ j, λ j, ri
� �

, B φ j, λ j þ Δλ j, ri
� �

, C φ j þ Δφ j, λ j þ Δλ j, ri
� �

,

D φ j þ Δφ j, λ j, ri
� �

, E φ j, λ j, r j
� �

, F φ j, λ j þ Δλ j, r j
� �

, G φ j þ Δφ j, λ j þ Δλ j, r j
� �

,

Figure 4.
Sketch of the relative position of points P, P’ and P” and of the local reference system defined in the computation
point P.
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H φ j þ Δφ j, λ j, r j
� �

. Note that the two planar surfaces identified by the closed poly-

gons ABCD and EFGH have their vertices whose radiuses depend in the first case on
the radius of the computation point Pi while in the second case on the radius of the
DTM point Q j. Figure 5 illustrates in graphical form how the single polyhedron is

built.
This procedure defines the spherical coordinates of the vertices of the polyhe-

dron that are at the height of the terrain and at the height of the computation point,
i.e. the level at which the Bouguer plate is computed. The computation of the first-
order derivative along the direction of ri of the gravitational effect of such polyhe-
dron corresponds to the terrain correction to be applied at Pi as contribute of Q j.

Such value is obtained by running the code polyhedron.f made available by the
author [4] implementing the linear integral approach. As input, the relative carte-
sian coordinates of the polyhedron vertices with respect to the computation point
and their topological relationships are required. These are obtained applying a
change of reference system to the polyhedron vertices. In particular, their coordi-
nates were roto-translated into a local reference system having the origin at the
computation point Pi, the z axis pointing up along the direction of ri and the x and y
axes parallel to the local East and North directions, respectively. Regarding the
topological relationships defining the outer normal direction of the six planes of the
polyhedron, they are defined by a topology matrix containing the counterclockwise
sequence of the vertices as seen from outside. As output, the absolute value of the
computed Vr is taken. This procedure contemplates two nested loops over all the m
DTM points Q j and the n computation points Pi. Within the loop over the compu-

tation points, different local reference systems are defined. This leads to slight
changes in the directions of the x and y axes but not on the z axis, always normal
and pointing outside the reference sphere defined on Pi, then maintaining

Figure 5.
Sketch of the polyhedron vertices building procedure on the basis of the DTM point Q j and the computation

point Pi .
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consistency between the different Vr computed by the same DTM point Q j with

respect to the different computation points Pi.
The three different models adopted in computing the TC account for a different

geometry of the single terrain element. The tesseroid formula (Eq. (9)) considers the
radial convergence component of the vertical edges of each terrain element and,
besides that, gives a spherical approximation of the top and the bottom of this
element. The flat tesseroid has the same geometry in the radial component but top
and bottom are planar surfaces. Thus, its geometry is, in principle, less accurate than
the one of the tesseroid. Finally, the computation based on the right parallelepiped
disregards also the radial convergence of the vertical edges. Hence, this model
describes the topography geometry of each element in a way that does not adhere
properly the two main features of the given DTM element. However, since in com-
puting the TC effect only the differences between the height of the computation
point and the heights of the DTM needs to be considered, the above-mentioned
differences between the geometries of the elements used in computing the TC should
have a limited impact on the computed values. To prove this, we have devised a test
in the Alpine area where the largest discrepancies are expected in the TC effect
evaluated with the three different geometries of each single DTM element.

3. The numerical tests on the three proposed approaches

The three different mathematical models presented in Section 2 have been applied
in two TC computation tests. Both tests have been carried out in the Alpine area.

In the first test, the SRTM3 DTM (see [14]) have been selected in the area
(called AREA_1):

46°≤φ≤47° 11°≤ λ≤ 12°

The statistics of the height data in this area (see Figure 6) are given in Table 1.
Points for the TC computation have been selected on a 30 � 30 regular grid in the

inner area:

46:25°≤φ≤46:75° 11:25°≤ λ≤ 11:75°

The computation points are thus in an inner area which have 0.25° from the
extents of the outer one containing the DTM. So, the terrain correction in points

Figure 6.
The DTM (AREA_1) and the points for TC computation.
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close to the DTM boundaries is not computed according to the standard. However,
in the relative comparison between methods, this should not affect the results.

The heights of these 121 prediction points have been assumed coincident with
those of the SRTM3 DTM and their statistics are listed in Table 2.

Given the geometry of tesseroids and flat tesseroids, SRTM3 orthometric heights
were transformed into ellipsoidal heights via the EGM96 geoid undulation [15].

Based on the ellipsoidal coordinates φellipsoidal, λ, h
� �

of both DTM and prediction

points were converted into spherical coordinates φ, λ, rð Þ and used in the terrain
effect computation with tesseroids and flat tesseroids.

The statistics of the differences among the three methods are given in Table 3.
As a first overall comment, it can be stated that the results are in good agreement

even in such a rough mountain area with sharp height variations (see Tables 1
and 2). By inspecting in more detail the statistics, one can see that values computed
by the TC-GRAVSOFT and the UNIPOL approaches are in better agreement than
those computed by the TC-GRAVSOFT and the Flat Tesseroid (FT) approaches.
The mean of the differences in the first case is nearly 60% of that of the second
comparison and the standard deviation is the 86%. This is quite an unexpected
result as the geometry of the FT tesseroid is closer to that of the TC prism than to
the geometry of the UNIPOL tesseroid. Further investigations will be performed in
order to understand this behavior.

On the other hands, the terrain correction values based on the UNIPOL tesseroid
procedure and the ones obtained with the FT approach agree very well.

The mean and the standard deviation of the differences between these terrain
corrections are of the order of some hundredth of mGal and the maximum differ-
ence is of the order of one third of mGal. Although in principle this is quite
foreseen, it is important to quantify the differences in view of practical applications.

Larger differences can be seen when comparing these two methods with the one
based on prism effect. In these cases, the maximum differences are of the order of 1

Number of points μ [m] σ [m] Min [m] Max [m]

1442401 1502.0 644.1 160.0 3460.0

Table 1.
The statistics of the DTM data in AREA_1.

Number of points μ [m] σ [m] Min [m] Max [m]

121 1471.3 611.7 212.0 2577.0

Table 2.
The statistics of the heights of the computation points in AREA_1.

μ [mGal] σ [mGal] Min [mGal] Max [mGal]

TC (GRAVSOFT) 13.686 5.194 5.185 35.526

TESSEROID (UNIPOL) 13.553 5.111 5.313 35.065

FLAT TESSEROID (FT) 13.472 5.077 5.275 34.883

TC (GRAVSOFT) - UNIPOL 0.133 0.175 �0.246 0.782

TC (GRAVSOFT) - FT 0.214 0.203 �0.156 1.050

UNIPOL - FT 0.081 0.056 0.006 0.306

Table 3.
The statistics of the TC computations in AREA_1.
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mGal. Even though this value is high if compared with the precision of the gravity
observations (which can reach few μGals), one has to consider that other error
sources in the topography reduction process can have a larger impact. As an exam-
ple, the discrepancy between the heights of the point associated with the gravity
observations as compared with those obtained by the DTM in the same points can
amount to ten meters (or even more) in mountain areas. Given that the absolute
value of the free-air gradient is 0:30877 mGal=m, this implies 3 mGal in 10 m due to
this mismatch. Also, biases can occur due to the assumption of constant density. In
view of that, even the maximum difference between the GRAVSOFT terrain cor-
rection and the spherical tesseroid/flat tesseroid values are not so significant.

A second test was then devised. Observed gravity data were selected in the area
(AREA_2):

46°≤φ≤47° 11°≤ λ≤ 12°

Gravity point coordinates were surveyed with GNSS and framed to ITRF94.
Statistics of the ellipsoidal heights of these gravity points are listed in Table 4.

Gravity values have been measured with a Lacoste&Romberg G-367 relative
gravimeter. The standard deviation of the observed values is of the order of 0.02
mGal. Gravity data are referred to IGSN71 and their statistics are summarized in
Table 5.

For the computation of the terrain component, the SRTM3 DTM have been
selected in the 3° � 3° area centered on the one containing the gravity data area
(AREA_2)

45°≤φ≤48° 10°≤ λ≤ 13°

The statistics of the SRTM3 in AREA_2 are described in Table 6.
Figure 7 shows the DTM features of AREA_2 and the position of the gravity

points.
Similarly to what has been done in the first test, SRTM3 and gravity point

coordinates were transformed into spherical coordinates for the computation of the
terrain correction with the UNIPOL and FT approaches. On the other hands, ellip-
soidal heights of gravity points have been converted into orthometric heights via

Number of points μ [m] σ [m] Min [m] Max [m]

116 1161.74 384.22 312.67 2217.08

Table 4.
The statistics of the heights of the computation points in AREA_2.

Number of points μ [mGal] σ [mGal] Min [mGal] Max [mGal]

116 980404.459 71.605 980208.060 980545.806

Table 5.
The statistics of the observed gravity values.

Number of points μ [m] σ [m] Min [m] Max [m]

12967201 1054.4 853.2 �35.0 3865.0

Table 6.
The statistics of the DTM data in AREA_2.
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the EGM96 geoid undulations when computing the terrain correction with the TC
software of the GRAVSOFT package.

Given the three different terrain corrections, by applying Eq. (4), three different
sets of Bouguer anomalies have been derived.

In Eq. (4), as previously stated, the orthometric height H is derived via the
EGM96 geoid undulation and the Bouguer plate is accounted for by using Eq. (1).
We further assumed that

∂γ

∂h
¼ �0:30877 mGal=m (14)

and the normal gravity in a point Q of latitude φQ on the ellipsoid is given by the

GRS80 normal gravity formula [16]:

γ Qð Þ ¼ 978032:7 1þ 0:0053024 sin 2φQ � 0:0000058 sin 22φQ

� �

mGal (15)

Although this formula has an accuracy of 0.1 mGal (see [16]), it can be used in
the context of this relative comparison among different terrain correction compu-
tation methods.

Table 7 summarizes the statistics of the Bouguer anomalies obtained with the
three terrain correction methods.

Comments similar to those given on Table 3 hold for the Bouguer values in
Table 7. The Bouguer anomalies obtained by applying the three methods have quite
similar statistics. Those computed via TC-GRAVSOFT software have the smallest
standard deviation and the highest mean while those obtained with the other two
methods have smaller mean and higher standard deviations. If the RMSs are con-
sidered, one can see that the Bouguer anomalies based on the flat tesseroid have the
smallest value. However, as pointed out before, even the largest difference among

Figure 7.
The DTM (AREA_2) and the points for TC computation.

∆gB μ [mGal] σ [mGal] RMS [mGal] Min [mGal] Max [mGal]

TC (GRAVSOFT) �137.846 16.131 138.786 �168.873 �90.511

TESSEROID (UNIPOL) �137.074 16.205 138.028 �166.337 �90.299

FLAT TESSEROID (FT) �136.894 16.221 137.852 �166.262 �90.069

Table 7.
The statistics of the Bouguer anomalies.
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the maximum values (around 2.6 mGal) is not so significant if compared with other
biases occurring in the Bouguer reduction.

Thus, the statistics of Tables 3 and 7 prove the substantial equivalence of the
three approaches used for the TC computation.

4. Conclusions

Three different methods for terrain correction have been compared in two areas
over the Alps. The standard computation given by the TC-GRAVSOFT program has
been compared with the terrain corrections evaluated via spherical tesseroid and
flat tesseroid formulas. In the first test, the SRTM DTM was clipped in a 1° � 1°
window and TC effect was computed in a set of gridded points in the same area. In
the second test, observed gravity values in a 1° � 1° area have been used in the
computation of Bouguer anomalies considering the 3° � 3° SRTM DTM values
centered on the area containing the gravity data. Despite the fact that the topogra-
phy in the two selected DTM windows is quite rough, no significant differences
among the methods have been revealed. The statistics of the values obtained by
modeling in different ways the shape of the discretized topography elements are
practically equivalent. Differences among TC effects and Bouguer anomalies com-
puted with parallelepiped, spherical tesseroid and flat tesseroid amount to maxi-
mum values that are around 1 and 3 mGal respectively. As a matter of fact, there are
other error sources (e.g., density heterogeneities, DTM and gravity point heights
mismatch) that can have impacts on the terrain correction computation larger than
3 mGal. However, if in the second test on Bouguer computation we consider the
values per se, spherical tesseroid and flat tesseroid models perform slightly better
when RMS values are compared, i.e. the spherical tesseroid and flat tesseroid based
Bouguer anomalies are smoother.

Finally, we remark that the concept applied in the flat tesseroid modeling can be
adapted to the terrain effect computation when shaping the topography according
to the Triangulated Irregular Network model [17]. In this way, a more detailed
terrain effect evaluation will be possible, particularly in the neighbor of the com-
putational points, by better modeling the terrain slopes.
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