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Enhancing Abiotic Stress
Tolerance to Develop
Climate-Smart Rice Using
Holistic Breeding Approach
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Khandakar M. Iftekharuddaula

and M. Shahjahan Kabir

Abstract

Agricultural land and resources reduced annually because of climate change thus
it is necessary to further increase the productivity of the major staple food rice to
sustain food security worldwide. However, rice productivity enhancement is one of
the key challenges in abiotic stress-prone environments. The integration of cutting-
edge breeding approaches and research management methods in the current varie-
tal improvement pipelines can make a step-change towards varietal improvement
for the abiotic stress-prone environments. Proper implementation of breeder’s
equations in the crop improvement pipeline can deliver a higher rate of genetic
gain. Single Seed Descent based Rapid Generation Advance (RGA) technique in
field and greenhouse is the most promising innovations and low-cost, high-
throughput marker-assisted selection approaches are applied for rapid and efficient
selection for abiotic stress-tolerances. Also improving efficiency, intensity, and
accuracy of selection and reducing breeding cycle time through holistic rice breed-
ing that can play an important role in developing climate-smart abiotic stress-
tolerant rice for target environments. This information can use as the future direc-
tion for rice breeders and other researchers.

Keywords: abiotic-stress tolerance, high-night temperature (HNT), holistic rice
breeding, QTL, gene, product profile, rice

1. Introduction

Rice is the major staple food for more than half of the world population that
supplies 30–50% daily calorie intake. Rice security is synonymous with food secu-
rity in Bangladesh. If rice production hampers because of different abiotic stresses
then food security also become vulnerable. Abiotic stresses such as salinity,
drought, flood, high-night temperature (HNT), and heat/high-temperature
increase enormous challenges that limit agricultural production and food security.
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Coastal agriculture faces these challenges because salinity affects directly more
than one million hectares of agricultural land in Bangladesh. Salinity causes due to
chemical weathering of minerals that release salts in the soils as Na, Ca, Mg ions;
coastal agricultural land is inundated by salt-water during flash flood/tidal upsurge;
unplanned saltwater intrusion into the shrimp gher (shallow shrimp cultivation
pond) in the southern coastal zone and lifting groundwater with EC >3.0 for
irrigation.

Several studies revealed that the detrimental effects and suitable genetic [1, 2]
and physiological mechanisms of salt-stress tolerance in various sensitive growth
stages of seedling stages like early seedling stage during seedling establishment in
the field after transplanting, and different susceptible stages of reproductive phase
such as panicle initiation/emergence, booting, flowering/heading, spikelet fertility-
sterility, and seed set, yield and other salt tolerance-related traits [3–10].

For maintaining food security and sustainability in rice production, both drought
and heat/high-temperature tolerance is important in the respective stress-prone rice-
growing areas for increasing rice production sustainably. However, steady growth in
the rice sector is crucial during this pandemic situation to sustain self-sufficiency in
different rice-growing countries in South Asia including Bangladesh.

Drought is also an important abiotic stress that threat for rainfed ecosystem.
This stress adversely impacts on rice production. Drought tolerance is a complex
polygenic trait with a complicated phenotype that affects various growth and
developmental stages sensitive to drought-stress in rice. Different drought-
responsive QTLs and genes regulate the degree of sensitivity or tolerance of rice
through triggering signal transduction pathways to several drought conditions [11].

High-night temperature (HNT), different abiotic stress from heat stress, is
emerging abiotic stress because of climate change. This stress (HNT) is drawing the
attention of plant breeders and physiologists due to its detrimental effects on rice
productivity. HNT varies 25-30°C that adversely affects yield and grain quality such
as chalkiness in rice. This stress was reported in the Rajshahi region of Bangladesh
(M. A. Rahman, unpublished data).

Fragile flood-prone environments belong to 18% of areas of Bangladesh that
suffer from varying degrees of flooding causes due to flash flood submergence,
monsoon flood, and irregular rainfall. The flood adversely influences the rice pro-
duction of more than a million ha of land in Bangladesh. Submergence tolerant
high-yielding rice varieties are grown by the farmers of the flash flood-prone areas.
However, deepwater rice (DWR) is cultivated in areas where flood water-depth
varied from 1.5 to 2.0 m and these areas are more vulnerable to rice production as
there is no high-yielding DWR variety for this harsh ecosystem in Bangladesh.
Thus, rice-growing areas under unfavorable environments need to enhance pro-
ductivity by developing climate-smart rice to cope with the harmful effects of
climate change.

In this review, we discuss the abiotic stresses and the development of climate
resilient rice addressing adverse effect of climate change.

2. Abiotic stresses influencing rice production and food security

2.1 Heat tolerance

2.1.1 Strategies to enhance heat tolerance

Heat/high temperature tolerance is important in the heat-prone rice growing
areas for increasing rice production sustainably. To address climate change,
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screening and breeding for higher level of heat tolerance is needed. Strategies such
as agronomic intervention through sowing time adjustment, chemicals/plant hor-
mones application, genetic and genomic approaches [12], breeding for heat resis-
tant variety development, marker-assisted introgression of qEMF3 QTL [13] for
developing and selecting cultivars with early morning flowering (EMF) before tem-
perature rise are involved for improving heat tolerance.

QTLs associated with heat tolerance related traits using bulked segregant analy-
sis in Rice to evaluate the genetic effect of QTLs controlling heat tolerance at
flowering stage in rice. A population comprising 279 F2 individuals developed from
996 (heat tolerant)/4628 (heat-sensitive cultivar), was investigated for their segre-
gation pattern of the difference in seed set rate under normal/optimum temperature
condition and stress/high temperature condition that exhibited normal distribution,
suggesting the polygenic control on the heat tolerance [14].

Eleven QTLs identified for heat tolerance using RIL population derived from
IAPAR-9 (sensitive)/Liaoyan241 (heat tolerant) at the heading and flowering stage
in rice. Four major QTLs such as qNS1, qNS4, qNS6, and qRRS1 found stable in both
seasons/years in various environments [15].

Jagadish [16] dissected QTLs for relative spikelet fertility during anthesis in rice
qtl_1.1 (38.35 Mb) and qtl_11.1, 24.16 Mb, QTL contributor is Azucena) and one
(qtl_10.1, 20.14 Mb from Bala). Total 24.1% phenotypic variation was explained by
these three QTLs.

2.2 Drought stress tolerance

Improving grain yield is the key and universal objective of any crop breeding
programs including rice. Identification of yield and yield-related traits and their
introgression into adapted varieties is one of the best strategies to increase grain
yield under drought. A number of yield QTLs identified in different chromosomes
of rice under drought stress. QTL qDTY12.1was the first identified major grain yield
QTL on chromosome 12 in rice under drought at the reproductive stage [17].
Another large-effect QTL for grain yield, qDTY1.1, was identified on chromosome 1
[18]. Moreover, other QTLs with major effect such as qDTY2.2, qDTY3.1, qDTY3.2,
qDTY4.1, qDTY6.1, qDTY9.1 controlling drought tolerance in rice were reported by
several investigators [19–22]. The identified QTLs should be consistent in multiple
genetic backgrounds and various target environments [23, 24]. Efficient QTL
stacking of the major effect QTLs in the adapted varietal background is necessary to
achieve higher grain yield under drought [25].

QTLs related to drought tolerance in rice have been shown in Table 1. However,
only a few QTL studies on grain yield under drought stress have been reported.
Most of the QTLs detected for regulating drought stress in rice analyzed for differ-
ent important drought-related traits such as osmotic adjustment [48, 49], drought
avoidance [32], root and shoot responses [50], photosynthesis and whole plant
response [51] to drought tolerance.

2.3 Flood/submergence tolerance

Flood-prone ecosystems are fragile characterized by varying level of flooding,
erratic precipitation that affect the rice production of more than one million ha in
Bangladesh. Deepwater rice is cultivated more than 100000 ha in Bangladesh and
the typical deepwater rice with nodal tillering, kneeing ability to keep the top three
leaves in the air (above the water level) to capture and use solar energy for photo-
synthesis, internode elongation ability to prevent drowning with high yielding
potential comparing with local varieties like Hijoldigha, Laxmidigha, Kartiksail,
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Drought-tolerance

traits/indices

Cross combination

and mapping

population

Molecular

marker

used

%

Phenotypic

variation

No. of

identified

QTLs for

drought

tolerance

References

Root penetration

index, root and tiller

number

CO39/Moroberekan

(RILs)

RFLP 8.0–14.0 39 [26]

Drought traits related

with osmotic

adjustment and

dehydration tolerance

CO39/Moroberekan

(RILs)

RFLP — 1 [27]

Root morphology and

distribution

IR64/Azucena

(Double-haploid)

RFLP 6.0–22.0 — [28]

Root traits related with

drought

IR58821–23-B-1–2-1/

IR52561-UBN-1–1-2

(RIL)

AFLP &

RFLP

6.0–27.0 — [29]

Cellular membrane

stability

CT9993–5-10–1-M/

IR62266-42–6-2

(DH)

RFLP,

AFLP &

SSR

11.8–54.3 9 [30]

Drought resistance

osmotic adjustment

and root traits

CT9993/IR62266

(Doubled haploid

lines)

RFLP,

AFLP &

SSR

8.0–38.0 5 [31]

Drought avoidance,

leaf rolling and drying

Bala/Azucena (F5

population)

RFLP,

AFLP &

SSR

7.4–25.6 17 [32]

Root traits (Seminal

and lateral root length;

adventitious and

lateral root number)

IR1552/Azucena

(RILs)

SSR — 23 [33]

Morphological and

physiological traits

IR64/Azucena

(Doubled haploid

Lines)

RFLP — 15 [34]

Root-penetration

ability

Bala/Azucena (RILs) RFLP &

AFLP

— 18 [35]

Reproductive-stage

drought tolerance

Vandana/Way

Rarem (F3–derived

lines)

SSR 33.0 — [17]

Grain yield under

drought stress

CT9993/IR62266

(Doubled haploid

lines)

AFLP 1 [36]

Seedling stage drought

tolerance

Indica/Japonica

(Azucena) (RIL)

RFLP,

AFLP &

SSR

10.0–27.0 7 [37]

Morphological and

physiological traits

related to drought

avoidance

Azucena/Bala (RIL) RFLP,

AFLP &

SSR

— — [38]

Grain yield under

lowland drought stress

Apo/2*Swarna

(RILs)

SSR 13.0–16.0 1 [39]

Grain yield

performance under

aerobic condition

Three populations,

Apo/(2)*Swarna,

Apo/(2)*IR72, and

Vandana/(2)*IR72

SSR 39.0–66.0 1 [40]
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Khoiyamtor, Lalmohan, and Shishumati. These local germplasm has the ideal
ideotype for deepwater ecosystem but only limitation is low yielding ability. To
address sustainable development goals (SDGs) and maintain food security, we need
to increase the production in the abiotic stress prone environments such as salinity,
flood/submergence, drought and heat-prone areas through horizontal expansion
(expansion of arable land in abiotic stress prone areas which are not yet under
cultivation) of abiotic stress tolerant rice varieties in these areas. However, Flood-
prone ecosystems in Bangladesh are four types such as long time flooding zone
(>35 days; 1.5–2.0 m water-depth), flash flood submergence zone (15–30 days; up
to 1.5 m water depth), deepwater (> 2.0 m water-depth) zone and submergence
during germination (10–12 cm depth) at relay Transplant Aman, direct seeded rice
(DSR Aus) and broadcast Aman (B. Aman) Rice areas anaerobic germination In
Asia, submergence affects rice yield adverselyin 20 million ha, causing food insecu-
rity. The SUB1gene governing submergence tolerance cloned and introgressed into
a number of rice varieties in South Asia, South East Asia and Africa. Yield advan-
tages of Sub1 varieties ranged from 1.0 to >3.0 t ha�t after submergence comparing
with non-Sub1 varieties. These submergence tolerant varieties reached more than
3.8 million farmers within 3 years of release in Asia [52].

Drought-tolerance

traits/indices

Cross combination

and mapping

population

Molecular

marker

used

%

Phenotypic

variation

No. of

identified

QTLs for

drought

tolerance

References

Yield performance

under drought stress

Two populations

Basmati334/Swarna

and N22/MTU1010

(F3:4 population)

SSR — [41]

Reproductive-stage

drought stress

Aday Sel/IR77298-5-

6-B-11 (backcross

inbred lines (BILs))

SSR 19.0 9 [20]

Yield under lowland

drought in different

environments

R77298/Sabitri, (BC1

derived)

SSR — 1 [21]

Drought stress at

reproductive stage

Two populations

Kali Aus/IR64, Kali

Aus/MTU1010

(RILs)

SSR 6.0–9.0 2 [42]

Grain yield and yield

characters during

reproductive stage

IR64/Cabacu (RILs) SNP — 1 [43]

Grain yield under

stress at reproductive

stage

Swarna/WAB

(Backcross inbred

lines)

SSR — 1 [44]

Reproductive stage

drought tolerance

Teqing/Lemont

(Introgression lines)

SNP [45]

Reproductive stage

drought tolerance

IR55419-04/2*TDK1

(BC1F3:4 population)

SSR 36.0 6 [46]

Ratio of deep rooting

(RDR)

3 populations (RILs,

mini-core collection

and landraces)

SSR, SNP — 6 [47]

Table 1.
Useful QTLs responsible for drought-stress tolerance in rice.
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Biosynthesis of growth regulator (Gibberellin) and signal transduction is impor-
tant pathways for internode elongation of the deepwater rice [53]. Two large-effect
QTLs located on chromosomes 3 (qGTIL3,qGLEI3, qGNEI3 located between 38 and
87 cM) and chromosome 9 (qGTIL9, qGLEI9, qGNEI9 positioned between 16 and
88 cM) are controlling traits such as total length of internode (TIL), lowest elon-
gated internode (LEI) and number of elongated internode number (NEI). Three
factors involved to characterize deepwater rice internode elongation ability: (1)
total length of elongated internode (TLEI); (2) elongated internodes number (EIN);
and (3) minimum elongated internode (MEI) [54–57]. Among these, MEI is the
main parameter for initiating the internode elongation of deepwater rice [54]
because MEI is leaf stage- dependent and first starts of internode elongation at the
sixth leaf stage in deepwater rice.

Catling (1992) [58] described the genetic basis of internode elongation during
submergence of deepwater rice that is regulated by several minor and two major
genes. Suge [59] identified one gene with neither allele is found dominant (incom-
plete dominance) that responsible for elongation ability. Internode elongation
depends on the increasing activity of cell division and cell elongation in specific
areas of the internode.

2.4 Salt tolerance

Salt-stress entails changes in different physiological and metabolic pathways,
based on severity and duration of the stress, and eventually decreases rice
productivity [10, 60–62].

Genetic characterization of salt tolerance related traits is important to estimate
phenotypic co-efficient of variation (PCV), genotypic co-efficient of variation
(GCV), broad-sense heritability and genetic Advance (GA).

If sufficient variation with high heritability and genetic advance exists in the
germplasm for salt tolerance related traits; consequently there is possibility to
improve the traits related with salt tolerance in rice by exploiting salt tolerant
landraces/germplasm in the breeding programs.

Genetic component analysis (GCA) study showed that both additive and domi-
nance gene effects controlled low Na-K ratio [63]. The combining ability analysis
shows that both general combing ability (GCA) and specific combining ability
(SCA) effects are also important for deciphering the genetics of salt tolerance. They
also revealed that selection may be made in later generation under controlled
conditions for minimizing environmental effects for low heritable traits like Na-K
ratio.

The additive effects could enhance fixation of the desirable combination of
genes and also additive gene action is correlated to narrow sense heritability [64].
Thus, selection for salinity tolerance may be made in the early generation.
Understanding the gene action for salt tolerance in rice will be useful in the future
breeding program [65].

2.4.1 Molecular basis of complex salt tolerance

The molecular dissection of salt tolerance has considerably enhanced using the
molecular platforms for identifying quantitative trait loci (QTL) controlling related
genetic variation in crops including rice [1, 2, 8, 60, 66–72].

Moreover, several QTLs related with physiological, agronomic traits conferring
salinity tolerance at seedling and reproductive stage have been reported [1, 8, 71, 73,
74] including major QTLs for salinity tolerance such as SKC1 [75] (a sodium trans-
porter OsHKT1; 5 in the SKC1 locus [76] and Saltol [71, 77] on chromosome 1
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Rice growth

stage

QTL/Gene

name

Mapping population and

parentage

Population

Size

Salinity tolerant trait/

index

Flanking marker Positive allele and Position

(cM or Mb)

PVE

(% R2)

References

Seedling qSaltol RIL (IR29/Pokkali) 80 Na+ uptake; Na+/K+ RM140 - C1733S Pokkali; 51.6–65.9 cM/13.87 Mb 39.2 [71, 77]

OsHKT1;5 Advanced backcross 192 Shoot K+

concentration

K159 - K061 Nona Bokra; 11.46 Mb — [76]

(qSKC-1) (Koshihikari*3/Nona Bokra)

qST1 RIL (Milyang 23/Gihobyeo) 164 Young seedling stage Est12 -RZ569A Gihobyeo; 40 cM 27.8 [78]

qST3 RG179 - RZ596 Milyang 23; 138 cM 9.2

qSES1 F2 (NERICA-L-19/Hasawi) 153 SES RM8094-RM582 NERICA-L-19 19.6 [79]

qSES6 RM586-RM253 NERICA-L-19 39.7

qSES10 RM228-RM333 Hasawi 30.7

qSES11 RM536-RM287 Hasawi 37.2

qSES2.1 RIL (IR29/Hasawi) 142 SES id2004774–id2007526 Hasawi; 64.8 cM 11.1 [80]

qSES1.3 SES id1024972-id1023892 Hasawi; 170.0 cM 39.9 [1]

qSES3.1 F2 (Capsule/BRRI dhan29) 94 SES RM5626- R3M53 Capsule; 111.0 cM 23.0 [2]

qSES12.3 RM252B RM27615-

RM27877

Capsule; 31.0 cM 17.0

qSL7 RIL (93–11/PA64s) 132 Higher shoot length SNP7–191–SNP7–226 PA64s; 86.31 cM 9.9 [81]

Reproductive qNa1.7 F2 (Cheriviruppu/Pusa

Basmati 1)

218 Na (mmol g_1 dwt) RM1349-RM7250 Cheriviruppu;; 31.06 Mb 13.5 [8]

qNaKR1.8 Na/K Ratio RM1349-RM7250 Cheriviruppu; 31.06 Mb 11.0

qNFS2.1 F2 (NSIC Rc222/BRRI

dhan47)

92 Filled spikelet number id2004774 BRRI dhan47; 40.1 cM 15.3 [73]

qPFS2.1 Filled spikelet (%) id2013434 BRRI dhan47; 122.1 cM 18.4

qTS11.1 Total spikelet (no) id11000858 BRRI dhan47; 14.0 cM 15.8
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Rice growth

stage

QTL/Gene

name

Mapping population and

parentage

Population

Size

Salinity tolerant trait/

index

Flanking marker Positive allele and Position

(cM or Mb)

PVE

(% R2)

References

qYLD2.1 Yield id2004774 BRRI dhan47; 40.1 cM 14.6

qDEG-S-2-2 Backcross Spikelet degeneration 6.8 34.44 [82]

qDEG-S-4-3 Backcross Spikelet degeneration 4.19 17.43

SES: Overall phenotypic performance; SL: Shoot length; Na: Na+: concentration; K: K+: concentration; NaK-R: Na-K ratio, Sur: Survival; Chr: Chromosome number; PVE: Phenotypic variation explained.

Table 2.
Recently identified QTL for salt tolerance with controlling/responsible traits and phenotypic variation using different mapping populations at seedling and reproductive stages in rice.
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(Table 2). Recently unraveled molecular basis of various rice landraces such as
Pokkali [71, 77], Nona Bokra [76], Hasawi [1], Capsule [2], Changmaogu [74] and
Horkuch [72] can withstand different levels of salt-stress at various sensitive
growth stages of rice.

2.4.2 Enhancing genetic gain for salt-stress

Widely used tools for quantitative genetics such as genomic estimated breeding
value (GEBV) and best linear unbiased predictions (BLUPs) are applied to evaluate
the performance to construct high throughput new breeding populations for
selecting the superior breeding lines when combined with genetic relatedness or
kinship matrix/information (i.e. coefficient of coancestry) using pedigree informa-
tion to calculate estimated breeding values (EBVs). This is a key parameter for
selecting complex traits like salt tolerance and yield through estimating parents’
genetic potential to produce better descendants on the basis of parent’s own perfor-
mance, pedigree information and progeny data. EBVs play important role to select
parent for higher rate of genetic gain [83].

Theory of genetic gain in breeding and classical biometrical genetics indicates
the improvement of performance compared to a standard or baseline. It is generally
evaluated after advancing one generation to the subsequent generation and artificial
selection is done [84]. However, genetic gain per year is also known as genetic trend
that measured varietal performance over year by comparing benchmark or domi-
nant varieties [85].

To maintain the food security under this Covid-19 situation horizontal expan-
sion (increase of rice growing areas in high saline zone) of rice cultivation is needed
areas in the coastal zone. Thus large areas will be brought under cultivation in high
saline prone areas.

2.5 Modern breeding

Genomic assisted breeding (GAB) is regularly practiced for the genetic improve-
ment of salt-tolerant rice applying various innovative tools for genomic breeding such
as forward breeding, rapid breeding, and haplotype-based breeding [86];5G breeding
methods such as genome sequence availability (genome assembly), characterization of
germplasm at genomic and morpho-agronomic level, gene detection and understand-
ing function, genomic breeding, and genome editing for enhancing superior perfor-
mance of genotypes [87] could be used for enhancing efficiency and accuracy of
breeding for complex traits relatedwith abiotic stress tolerance. A precise SNP-assisted
introgression of the hst1(hitomebore salt-tolerant 1) gene improved salt tolerance in the
high-yielding rice variety was achieved through SNP based speed breeding [88].

Modern breeding emphasizes data-based parent selection. Local and exotic
germplasms are subjected to genetic distance measurement, trait characterization
through diagnostic trait markers, genomic selection, and breeding value estimation.
Sometimes trait of interest (ToI) like salinity and submergence tolerance, aroma,
disease resistance is found in local germplasm with low yield potential. Then that
ToI is first transferred to an elite background possessing high yield potential for
developing pre-breeding materials. After that, the elite line with the desired traits is
used in breeding purposes to fulfill the product profile. Figure 1 shows the sche-
matic illustration for optimizing breeding scheme to achieve genetic gain.

We evaluated 1436 breeding lines for trait assay using 20-trait specific single
nucleotide polymorphism (SNP) markers. These lines characterized for important
traits such as disease (blast, bacterial leaf blight: BLB) and insect (brown plant
hopper: BPH; gall midge) resistance, grain quality (amylose content, chalkiness),
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grain number (Gn1a) and salinity tolerance at seedling stage (sodium exclusion,
SES) traits. Out of 1436 breeding lines, 100 lines harbored the 7–10 QTLs/genes that
regulating trait of interest (Figure 2) that designated as Genetically Important Lines
(GILs). Each line assayed against QTLs and genes of interest to assess the presence
or absence of useful traits. IRRI developed trait specific SNP markers used (https://g
sl.irri.org/) and SNP genotyping assay was carried out by Intertek as an external
service provider. The trait-based SNP markers associated with the traits for

Figure 1.
Varietal development through breeding modernization for rapid varietal turnover and replacement for rice
growers of target regions.

Figure 2.
Genetically important lines (GILs) in the STR Breeding program,T. Aman, 2020-21.
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instance, snpOS00478 (Pb1), snpOS00451 (Pi9), and snpOS0054 (xa5),
snpOS0061 (Xa21) etc. were applied for genotyping (Table 3).

These ten SNP markers produced 40% polymorphism across the indica germ-
plasm derived pairwise combinations where in 95% of crosses made at least 1
polymorphic SNP marker was found within the IRRI rice breeding pool or indica
subspecies (gsl@irri.org[https://sites.google.com/a/irri.org/snp-genotyping-mmal/
genotyping/quality-control-panel/indica-rice-qc-10-snp-panel).

Single seed descent method with the facility of rapid generation advance tech-
nique is expected to have better efficiency in the increment of genetic gain com-
pared to pedigree and other methods of breeding [2]. From each cross, 200–400
fixed lines evaluated in line stage testing (LST) trial and selection performed using
high selection pressure. Then the selected lines are evaluated in yield trials and
include in new variety release system (Figure 1).

Modern biometric tools are used in data analysis and field layout preparation of
several experiment design e.g. P-rep, Augmented RCB, Alpha-Lattice, Latinized

Trait category Trait Trait specific markers

(favorable allele)

Chromosome QTL/Trait contributor

Blast Pb1 snpOS00478 (T) 11 Pokkali 26869

Blast Pi9 snpOS00451(C) 6 Pi9 (DQ285630)

Blast Pita snpOS00006 (C) 12 —

Blast qPi33 snpOS00468 (T) 8 IR64

BLB xa13 snpOS00493 (C) 8 IRBB60, some aus

BLB Xa21 snpOS00061(C) 11 IRBB60

BLB xa5 snpOS00054 5 IRRI 154, FR13A

Insect (BPH) BPH17 snpOS00430 (G) 4 Rathu Heenati

Insect (BPH) BPH32 snpOS00442 (G) 6 Honderawala, Rc222

Insect (Gall

midge)

Gm4

(t)

snpOS00466 (A) 8 Abhaya

Insect (Gall

midge)

Gm4

(t)

snpOS00467 (A) 8 Abhaya

Amylose Waxy snpOS00445 (C) 6 Wx(a) - except Basmati

Amylose Waxy snpOS00446 (T) 6 Wx(a)-Rc222, Exon10

Chalkiness Chalk5 snpOS00024 (G) 5 Minghui63

Grain number Gn1a snpOS00396 (T) 1 Swarna (A8/AP9) allele

Salinity-

seedling

qNa1L snpOS00405 (A) 1 FL478

Salinity-

seedling

qNa1L snpOS00409 (C) 1 FL478, Capsule

Salinity-

seedling

qNa1L snpOS00410 (A) 1 FL478, Capsule

Salinity-

seedling

qNa1L snpOS00411 (T) 1 FL478, Capsule

Salinity-

seedling

Saltol snpOS00397 (T) 1 FL478, IR 107321–1–

141–3-120

Table 3.
Useful traits, trait-based SNP markers and their contributors of favorable allele.
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row-column, RCBD. Observation trials are mainly conducted using P-rep, Aug-
mented RCB, Alpha-Lattice design of experiment based on the entry number and
land availability. Selected genotypes are subjected to grain property analysis (e.g.
grain size, shape, L/B ratio, etc) and physicochemical property analysis (e.g. amy-
lose content). Selected genotypes that hold good agronomic traits, grain quality
characters and desired traits diagnosed through SNP markers are used as Elite
parent in cyclic breeding program.

During this period phenotypic data collection is aided with data collection
machine (Grain counter, Nondestructive moisture meter, destructive moisture
meter, Phenoapp, CT5) and different software’s like B4R (Breeding 4 Rice),
FieldBook etc.

We need to explore a large number of cross combination derived fixed lines to
experience a remarkable genetic gain with the shortest possible time. Line fixation
can be accomplished within three years using the RGA [89, 90] facility which allows
a breeder to contribute more in varietal development.

However, promising breeding lines selected in OYT will be recycled to initiate
next cycle of breeding for population improvement. By applying this transformed/
modernized breeding approach abiotic stress tolerant varieties with enhanced grain
yield and quality traits will be developed.

2.6 Product profile (PP) for target region

Product profile (PP) is a realistic roadmap for varietal development which
addresses requirements of plant breeder, farmers, millers/market and consumers
demand. Example of a product profile for salinity tolerant variety development for
Southern Coastal Zone in T. Aman season is shown in Table 4. Variety develop-
ment based on formal PP will be able to replace market leading variety with the new
one; thus farmer could get early turnover from the new variety. However, the
market leading variety may be or may not be a mega variety in target region. The
way of developing PP is:

• Designating the target region that use common PP or trait requirements

• Identifying the market leading variety and second important variety

• Placing key traits into appropriate trait family

• Estimating the amount of emphasis or breeding efforts need to give in the
breeding program for selecting trait.

3. Varietal development

3.1 Germplasm collection and characterization for salt-stress tolerance, and
utilization

A total of 107 landraces collected from southern coastal zone of Bangladesh.
The genetic base of salt-tolerant donors needs to broaden for developing

climate-smart rice [91] varieties for salt-affected regions with higher level of adap-
tation. All germplasm [92] were used for diversity analysis using a genome-wide set
of 376 single nucleotide polymorphism (SNP) markers to identify and characterize
novel sources of salt tolerance.
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Three major clusters -the indica, aus and aromatic subgroups were identified.
The largest group was indica, with the salt-tolerant Pokkali accessions in one sub-
cluster, while Bangladeshi landraces, including Akundi, Ashfal, Capsule,
Chikirampatnai and Kutipatnai, were in a different sub-cluster. The salt-tolerant
landrace Hasawi and Kalarata clustered into a distinct aus group near to indica.
Allelic diversity study at the major QTL Saltol shows different alleles at the Saltol
locus for Akundi, Ashfal, Capsule, Chikirampatnai and Kutipatnai.

Salinity (T. Aman) Breeding Product Profiles (20% Breeding Program Focus)

Country/Region: Salt

affected coastal region and/

Whole Bangladesh

%Resource

allocation for

trait

improvement

Market Leading Variety #1: BRRI dhan41 (Medium

slender, high head rice yield, medium growth duration)

Market Slot: T. Aman Rice

(Medium slender to long

slender grain)

Market Important Variety #2: BR23 (Medium bold, high

yield potential, photo period sensitive)

Trait

Family

Key

Economic

Traits

Trait

value

Standard

Variety

Assessment

Trait

Benchmarking

Details

Trait

availability in

the Breeding

Program

Yield

(Paddy)

Yield (>10%

higher)

1-Must

Have

Trait

BRRI

dhan41

> BRRI dhan41 Program is

actively working

with trait

Maturity Intermediate

/long range

10 1-Must

Have

Trait

BRRI

dhan23

<= BRRI

dhan23

Program is

actively working

with trait

Abiotic

Stress

Tolerance

Salinity

tolerance

20 1-Must

Have

Trait

BRRI

dhan67

> = BRRI

dhan67

Program is

actively working

with trait

Biotic

Resistance

(Fungal)

Blast 20 1-Must

Have

Trait

BRRI

dhan67

Standard

Evaluation

Scale =< 3

Trait Limited or

NOT available

Biotic

Resistance

(Bacterial)

BLB 10 3-Trait

Values

BRRI

dhan67

Standard

Evaluation

Scale =< 3

Program has trait

available

Biotic

Resistance

(Insect)

BPH 10 3-Trait

Values

BRRI

dhan67

= Rathuheenati

(bph32, bph17)

Trait Limited or

NOT available

Consumer

Traits

Amylose

content

15 1-Must

Have

Trait

BRRI

dhan67

=> 24% Program is

actively working

with trait

Zinc content 5 3=

Value

added

BRRI

dhan72

BRRI dhan72;

=> 24 mg/kg Zn

Program is

actively working

with trait

Yield

(Economic)-

Head Rice

Head rice

recovery

10 1-Must

Have

Trait

BRRI

dhan67

> 50% Program is

actively working

with trait

Total 100

Legend: 1= must have traits, 2= nice to have, 3= value added or game changer

Table 4.
Product profile with market demand-led traits for developing salinity tolerant rice (STR) variety for target
region under STR breeding program at BRRI.
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Sixty-nine landraces were further screened for physiological traits associated
with salt stress at the seedling stage. Seven landraces such as Akundi, Ashfal,
Capsule, Chikirampatnai, Jatai Balam, Kalarata and Kutipatnai uptake less Na and
comparatively more K and maintain lower Na/K ratio in leaves. They efficiently
restrict sodium transport root to the shoot.

Newly identified salt-tolerant landraces are genetically and physiologically dif-
ferent from known donors (Pokkali and Nona Bokra). These landraces can be used
to develop salt-tolerant varieties with higher tolerance [10].

These landraces may be harbored novel sources of QTL/alleles for salt tolerance
that will be useful in molecular breeding.

3.2 Participatory varietal selection (PVS)

Participatory varietal selection (PVS) demonstrates the varietal/line selection on
the basis of farmers’ need/demand-based choice of varieties that differs from plant
breeders’ selection process. Plant Breeders evaluation of varietal performance –
mostly following statistical designed and quantitative data based methods which is
usually different from the farmers [93–95]. However, variety selection criteria may
vary according to gender, environmental condition, market demand and economic/
social status [95–97]. Until now, breeding objectives in different countries have not

Variety name Cross Salient features with growing season Year of

release

Salt-tolerant varieties

BR23 (BR716–7–2-1-1) DA29/BR4 Moderately salt tolerant photosensitive

T. Aman rice variety for Rainfed

Lowland ecosystem

1988

BRRI dhan40 (BR5331–93–

2-8-3)

IR4595-4-1-15/BR10 Moderately salt tolerant T. Aman rice

variety for Rainfed Lowland ecosystem

2003

BRRI dhan41 (BR5828–11–

1-4)

BR23/BR1185-2B-

16-1

Moderately salt tolerant T. Aman rice

variety for Rainfed Lowland ecosystem

2003

BRRI dhan47 (IR

63307-4B-4-3)

IR51511-B-B-34-B/

TCCP266–2-49-B-B-

3

Salt tolerant Boro rice variety for

Irrigated ecosystem

2007

BRRI dhan53 (BR5778–

156–1-3-HR14)

BR10/BR23//BR847–

76–1-1

Salt tolerant T. Aman (RLR) rice variety 2010

BRRI dhan54 (BR5999-82–

3-2-HR1)

BR1185-2B-16-1/

BR548–128–1-3

Salt tolerant T. Aman (RLR) rice variety 2010

BRRI dhan55 (IR 73678–

6-9-B: AS996)

IR64/Oryza

rufipogon

Moderately salt, cold and drought

tolerant rice variety

2011

**BRRI dhan28-Saltol (IR

89573–84)

BRRI dhan28*3/

FL478

Salt tolerant Boro rice line for Irrigated

ecosystem

MABC

product

**BR11-Saltol (IR 89574–7) BR11*3/FL478 Salt tolerant T. Aman(RLR) rice line MABC

product

BRRI dhan61 (BR7105-4R-

2)

IR64419-3B-4-3/

BRRI dhan29

Salt tolerant Boro rice variety/Irrigated

rice

2013

BRRI dhan67 (BR7100-2R-

6-6)

IR61247–3B-8-2-1/

BRRI dhan36

Salt tolerant Boro/Irrigated rice variety 2014

BRRI dhan73 (IR78767-B-

SATB1–28–3-24)

BRRI dhan40/NSIC

Rc106 (IR61920-3B-

22–1-1)

Salt tolerant T. Aman(RLR) rice variety 2015
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been properly focused on the opinions of farmers, their preferences and needs for
the adverse growing conditions of their regions [94, 98, 99]. To unravel this situa-
tion, participatory varietal selection is the important way of decentralized-bottom-

Variety name Cross Salient features with growing season Year of

release

BRRI dhan78 (IR77092-B-

2R-B-10)

IR84645/IR84649 Dual tolerant (Salinity+SUB1T. Aman

rice variety

2016

BRRI dhan97 (IR83484–3-

B-7-1-1-1)

IRRI 113/BRRI

dhan40

Salt tolerant irrigated (Boro) Rice 2020

BRRI dhan99 HHZ5-DT20-

DT2-DT1 (GSR IR1–5-

D20-D2-D1)

Huang-Hua-Zhan/

OM1723

Salt tolerant irrigated (Boro) Rice 2020

Binadhan-8 (IR66946-3R-

149-1-1)

IR29/Pokkali Salt tolerant irrigated (Boro) Rice 2010

Binadhan-10 (IR64197–3B-

14-2)

IR42598-B-B-B-B-

12/Nona Bokra

Salt tolerant irrigated (Boro) Rice 2012

Drought tolerant varieties

BRRI dhan42 (BR6058-6-

3-3)

BR14/IR25588–7–3-1 Moderately drought-tolerant Upland

(DSR) rice variety

2004

BRRI dhan43 (BR5543-5-

1-2-4)

BR24/BR21 Moderately drought-tolerant Upland

(DSR) rice variety

2004

BRRI dhan56 (IR74371–70–

1-1-B)

Way Rarem/

2*IR5519–4

Drought-tolerant T. Aman (RLR) rice

variety

2011

BRRI dhan57

(BR7873-5NIL)-51-HR6

BR11/5*CR146-7027-

224

Drought-tolerant T. Aman (RLR) rice

variety

2011

BRRI dhan66 (IR82635-B-

B-75-2)

IR78875–176-B-2/

IR78875–207-B-3

Drought-tolerant T. Aman (RLR) rice

variety

2014

BRRI dhan71 (IR82589-B-

B-84–3)

IR55423–01 (NSIC

Rc9)/IRRI148

Drought-tolerant T. Aman (RLR) rice

variety

2015

Submergence Tolerant

varieties

BRRI dhan51 (IR81213–

246–237)

Swarna/IR49830–7–

1-2-3

Flood-tolerant T. Aman (RLR) rice

variety

2010

BRRI dhan52 (IR85260–

66–654-Gaz2)

BR11*3/IR40931-33-

1-3-2

Flood-tolerant T. Aman (RLR) rice

variety

2010

BRRI dhan79 (BR9159-8-

5-40-14-57)

BRRI dhan49*6/

BRRI dhan52

Flood-tolerant T. Aman (RLR) rice

variety

2017

Deepwater Rice variety

BRRI dhan91 (BR10230–

15-27-7B)

Tilokkachari/BRRI

dhan41

Suitable for shallow flooded ecosystem 2019

*A large range of salt tolerant improve genotypes was grown in mother and baby trials of participatory varietal
selection (PVS) in coastal areas of Bangladesh. BRRI dhan47 (IR 63307-4B-4-3) was finally selected and released as
salt tolerant variety for Boro season in Bangladesh.
**First introgression of Saltol locus into the mega varieties and developed two salt tolerant rice genotypes, IR89573–84
(BRRI dhan28-Saltol) and IR89574–7 (BR11-Saltol) through marker-assisted breeding at IRRI that are under
advance stage of testing for release in Bangladesh and Myanmar.

Table 5.
List of abiotic stress tolerant varieties released in Bangladesh for Upland rice (Aus),T. Aman (RLR- wet) and
Boro (dry) season.
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up breeding or farmer breeding approach that integrates farmers and their complex
criteria for variety selection into varietal development programs [99–103].

BRRI dhan47 (IR 63307-4B-4-3) was first selected through PVS and released as
salt tolerant variety for Boro season in Bangladesh.

Different high-yielding rice varieties for salt (15 from BRRI and two from
BINA), drought, submergence tolerance, upland rice varieties and other developed
and released for Transplanted Aman (T. Aman-RLR) and Irrigated Ecosystem
(Boro-dry season) (Table 5).

3.3 Marker-assisted selection

FL378 (IR66496-3R-78-1-1), a salinity tolerant recombinant inbred line derived
from cross between IR29 and Pokkali was used as donor for Saltol. FL378 had the
Pokkali introgression on the chromosome 1 from RM1287 (10.9 Mb) to RM493
(12.2 Mb) for about 1.3 Mb and its average tolerance score was around 4.7 [104–
106]. The recurrent varieties were BR11, BRRI dhan28 and BRRI dhan29, three
mega varieties of Bangladesh are widely grown in wet and dry season.

BRRI dhan28-Saltol seeds were developed at IRRI and FL478 as donor parents.
The introgression lines of BR11-Saltol and BRRI dhan28-Saltolwere evaluated in salt
affected coastal district of Satkhira during dry season.

Moreover, Saltol QTL was introgressed into the genetic background of BRRI
dhan49 [107] and Pusa44 and Sarjoo52 [92] through marker-assisted backcrossing.
FL478 was used as a donor for Saltol QTL. A number of Saltol introgression lines
(NILs: BRRI dhan49-Saltol lines) were developed [107]. Krishnamurthy [92]
reported that the NILs PU99, PU176, PU200, PU215, PU229, PU240, PU241,
PU244, PU252, PU263 of Pusa44 and SAR17, SAR23, SAR35, SAR39, SAR77, SAR87,
SAR123, SAR136 NILs of Sarjoo52 exhibited salt tolerance with low salt injury score
(SIS) of 3 or 5.

4. Conclusions

Effect of abiotic stresses increases due to worldwide climate change. The holistic
breeding approach combines different cutting-edge/modern breeding strategies
(data based parents selection for crossing, rapid breeding, genomics-assisted
breeding and haplotype-based breeding) including efficient gene stacking facilitate
the development of climate-resilient rice varieties. Genotypes could cope with the
climatic threats, increase the varietal turnover of farmers, and contribute to meet
challenges of abiotic stress-prone ecosystems through enhancing productivity and
sustaining food security. Also, rice cultivation areas will be expanded under the
high abiotic stress-prone areas where salt-stress is a key problem for rice production
during both dry and wet seasons in different rice-growing countries including
Bangladesh. Moreover, the stress related to HNT needs to be emphasized because
this stress may also become the challenge for food security where the rice is a
staple food.
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