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Chapter

Forward Osmosis Membrane 
Technology in Wastewater 
Treatment
Deniz Şahin

Abstract

In recent times, membrane technology has proven to be a more favorable option 
in wastewater treatment processes. Membrane technologies are more advantageous 
than conventional technologies such as efficiency, space requirements, energy, 
quality of permeate, and technical skills requirements. The forward osmosis (FO) 
membrane process has been widely applied as one of the promising technologies 
in water and wastewater treatment. Forward osmosis uses the osmotic pressure 
difference induced by the solute concentration difference between the feed and 
draw solutions. The proces requires a semi-permeable membrane which has com-
parable rejection range in size of pollutants (1 nm and below). This chapter reviews 
the application of FO membrane process in wastewater treatment. It considers the 
advantages and the disadvantages of this process.

Keywords: Desalination, Forward osmosis, FO-Based Hybrid System,  
Integrated FO System, Wastewater, Wastewater treatment

1. Introduction

Membrane separation processes are widely used in the last decade for industrial, 
commercial, and domestic activities such as water and wastewater treatment, 
energy-efficiency. Within the concentration-driven processes, FO has gained 
increasing prominence due to its advantages such as possibility of low fouling, high 
salt rejection, and high water recovery. However, FO does have inherently disadvan-
tages such as; reverse solute diffusion (RSD), lower flux, concentration polarization 
(CP), and membrane fouling. These obstacles oblige the developing new processes, 
synthesis of different membrane materials or modifications, and finding new draw 
solution (DS). There is therefore an exigent need to develop new FO membranes 
by optimization of thickness, porosity, tortuosity of active/support layer of FO 
membrane.

This chapter is divided into two parts. In this first part of chapter, basic prin-
ciples of FO phenomenon, advantages and challenges of FO over conventional 
membrane processes are addressed by the literature review and scholarly articles. 
The second part of which states applications of FO process for wastewater remedia-
tion, and recent developments in FO process.
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2. General aspects of forward osmosis

2.1 Process description

Forward osmosis is one example of water separation processes and a potential 
acceptable alternative/complement to reverse osmosis (RO) process for power gen-
eration, wastewater treatment and desalination. Forward osmosis is a membrane 
process in which requires little or no hydraulic pressure. Unlike the RO process, in 
the FO process, an osmotic pressure gradient through a semi-permeable membrane 
is the driving force of water transport from the feed solution (FS) to the DS [1]. 
Thus, the concentrated DS generates an osmotic pressure and drives water from the 
feed through the membrane while most of the contaminants and salts are rejected 
by the membrane, then separating the water from the diluted DS [2]. Figure 1 
illustrates the principle of operation of RO and FO processes.

The general equation used to describe theoretical water flux across the RO and 
FO membrane (Jw) is calculated using Darcy’s law [1]:

 ( )= × ∆ −∆J w Aw Pσ π  (1)

where, Aw is the membrane pure water permeability coefficient, σ is the reflec-
tion coefficient which indicates the rejection capability of a membrane (for a 
perfect semipermeable membrane σ = 1), Δπ is the osmotic pressure differential 
across the membrane, and ΔP is the applied external pressure. Therefore, in FO, 
ΔP is zero thus making the water flux to be directly proportional to the difference 
in osmotic pressure, while for RO, ΔP > Δπ. The relation between water flux and 
applied pressure is illustrated in Figure 2.

2.2 Draw solution

Both FO and RO processes involve semi-permeable membranes as key com-
ponent, which has comparable rejection range in size of pollutants (1 nm and 
below). One of the major factors in the development of FO membrane is selecting 
an appropriate DS [4]. The ideal DS should have following characteristics: high 
osmotic pressure, low molecular weight (MW), non-toxicity, relatively low-cost, 
high water solubility, and efficiently regeneration [5, 6]. Sodium chloride (NaCl) 

Figure 1. 
Schematic illustration of the (a) RO, and (b) FO processes.
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is among the most commonly used draw solute in FO because it has highly water 
solubility and it is also relatively easy to reconcentrate using classical desalination 
processes [1]. In the past few decades, vast studies have been performed to deter-
mine desirable DSs, the different DSs are presented in Table 1, such as (1) inorganic 
compounds (e.g., NaCl, sodium nitrate (NaNO3), magnesium sulfate (MgSO4)) (2), 
organic compounds (e.g., glucose, fructose, 2-methylimidazole-based compounds) 
(3), functionalized nanoparticles (e.g., magnetic nanoparticles (MNPs)), Na+-
functionalized carbon quantum dots (Na-CQD).

The different DSs allow the generate of high osmotic pressure and can be easily 
regenerated or recovered. Nevertheless, their costs have not been successfully 
determined [39].

2.3 Membrane material

The identification of an ideal membrane in FO process is a key component which 
needs to be addressed to further advance this process. A perfect semipermeable 
membrane should have high water flux and solutes rejection, low propensity to 
fouling, and high chemical and thermal stability and so forth [2].

The FO membrane can be either synthetic or natural. In the early studies, the 
variety of natural materials used has included animal bladders and intestines [4]. 
A few decades ago, investigators have been examined different materials for FO 
membrane fabrication that include cellulose, rubber, and porcelain [4, 40, 41]. 
Although synthetic FO membranes have been currently commercially available; but 
this technology is still in its infancy. As a result, many types of FO membranes have 
been investigated that are able to perform well under a very wide range of applica-
tions [42–51]. Table 2 provides information about membranes used in wastewater 
treatment.

As can be seen from Table 2, CTA-FO membranes have been used in the most 
of the experimental working on wastewater treatment due to its relatively higher 
tolerance to chlorine, insensitive to bio-degradation, and low fouling potential 
[66–68]. Despite its advantages, there are still some drawbacks such as narrow 
pH range, relatively low water permeability and high NaCl permeability [69–71]. 
Compared with CTA membranes, TFC membranes have higher fouling propensity, 
higher surface selectivity, a wider pH range, and better chemical stability [72–75]. 
Although CTA membranes have also a chlorine tolerance of up to 1 ppm (part per 

Figure 2. 
Schematic representation of FO, RO process: (a) FO process where no external force is applied on the high 
concentration solution. The natural flow of water is from the low concentration side to the high concentration 
side; and (b) RO process where applied pressure on the high concentration solution exceeds the osmotic pressure 
difference across the membrane, so the water flux is opposite to the flux in FO process; and (c) classification of 
these processes in a water flux vs. applied pressure. Adapted from [3, 4].
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million), TFC membranes have limited tolerance to chlorine attack [76]. On the 
other hand, TFC membranes prone to membrane fouling which negatively impacts 
their operational and maintenance costs.

Categories Draw Solutes Recovery Methods Ref.

NaCl reverse osmosis (RO) [7, 8]

inorganic fertilizer direct use [9, 10]

potassium sulfate (K2SO4) RO [7]

Inorganic 

compounds

sodium nitrate (NaNO3) direct use [10]

aluminum sulfate (Al2(SO4)3) precipitation [11]

magnesium sulfate (MgSO4), copper sulfate 

(CuSO4)

precipitation [12, 13]

glucose, fructose, sucrose RO [12, 14–17]

2-Methylimidazole compounds membrane distillation 

(MD)

[18]

sodium polyacrylate (PAA-Na) ultrafiltration (UF),

MD

[19, 20]

poly (aspartic acid sodium salt) MD [21]

N,N-dimethylcyclohexylamine 

(N(Me)2Cy)

heating [22]

1--Cyclohexylpiperidine (CHP) heating [23]

Organic 

compounds

Micellar solution UF [24]

oxalic acid complexes with Fe/Cr/Na nanofiltration (NF) [25]

trimethylamine–carbon dioxide heating [26]

CO2-responsive polymers (PDMAEMA) UF [27]

poly(sodium

styrene-4-sulfonate-co-N-

isopropylacrylamide)

(PSSS-PNIPAM)

MD [28]

Switchable polarity solvent (SPS) RO [29]

polyelectrolyte incorporated with 

triton-x114

MD [30]

dimethyl ether heating with solar 

energy

[31]

poly(4-styrenesulfonic acid-co-maleic acid) NF [32]

Super hydrophilic nanoparticles UF [33]

hydrophilic superparamagnetic 

nanoparticles

magnetic separation [34]

Functional 

nanoparticles

magnetic core-hydrophilic shell nanosphere magnetic separation [35]

thermoresponsive Magnetic Nanoparticle magnetic separation [36]

dextran-coated MNPs magnetic separation magnetic separation [37]

hyperbranched polyglycerol coated MNPs magnetic separation [38]

Table 1. 
Overview of the different DSs in FO process.
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In addition to fouling of membrane, concentration polarization has an impact 
on the water flux, particularly at the support layer, which leads to the severity in 
internal concentration polarization (ICP). A low ICP requires a low S-value (struc-
tural parameter) [43, 77].

The membrane structural parameter S is defined as [2]:

  
(2)

where D is the diffusion coefficient of the draw solute, ts is the thickness of the 
support layer, Ԏ is the tortuosity, and ε  is the porosity of the support layer.

Feed Membrane Findings Ref.

Wastewater containing

heavy metals

Lab scale (thin film 

composite) TFC membrane

Synthetic, good flux in PRO 

mode only

[52]

Synthetic dye 

wastewater

Cellulose-acetate (CA) 

hollow fiber Lab Scale

High viscosity, synthetic. [53]

Wastewater with

sludge

Cellulose tri-acetate 

(CTA)-HTI

Phosphorous recovery from 

sludge.

[54]

Polyvinyl chloride 

(PVC) latex

CTA-HTI No regeneration required. [55]

Synthetic wastewater CTA-HTI No regeneration. [56]

Synthetic wastewater Flat sheet biomimetic 

membrane by aquaporin A/S

Microbial cells in DS can lead 

to biofouling. No regeneration 

required.

[56]

Biorefineries Flat sheet biomimetic 

membrane by aquaporin A/S

DS can be toxic. No regeneration. [57]

Textile wastewater Biomimetic aquaporin A/S High RSF for dye mixtures. No 

regeneration is required in case of 

dye mixture DS.

[58]

Printed circuit board 

(PCB) plant wastewater

TFC porifera DS leads to inorganic scaling. No 

regeneration required.

[59]

Medical radioactive 

liquid wastewater

TFC polyamide (PA) 

membrane porifer

NaCl has a higher rejection for 

Iodine.

[60]

Synthetic wastewater 

& municipal treatment 

plans wastewater

CTA-HTI Same flux for FO and FOwEO 

(electrochemical oxidation).

[61]

Seawater CTA-HTI Feed flow rate of 2.9 L/min, No 

space and pretreatment.

[62]

Oily wastewater Lab scale TFC-

polyethersulfone (PES) 

membrane

In PRO mode oxalic acid had 

good flux.

[63]

Oily wastewater TFC Cellulose acetat 

butyrate(CAB) holow fiber 

Lab scale

The experiment was done in the 

PRO mode. This membrane had 

excellent oil rejection.

[64]

Synthetic wastewater TFC-ES HTI Presence of cations in feed 

aggravates fouling in FO.

[65]

Table 2. 
Some previous and recent researches on FO membranes.
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Recently, new materials have been investigated for FO membrane fabrication to 
increase water flux, reduce ICP, and enhance the tolerance to water quality.

3. Application in wastewater treatment

As an emerging membrane technology, FO has been investigated over the last 
decade for seawater or brackish water desalination, wastewater treatment, power 
generation, pharmaceutical applications, and food&dairy processing in both 
academic research and industries [78, 79].

The most attractive usage of FO is its application for wastewater treatment. 
Consequently, there are two clusters of applications (i) desalination and (ii) water 
reuse (Figure 3) [80].

Key attributes of this process are:

• high rejection of a wide range of contaminants,

• lower energy consumption,

• high water recovery,

• lower brine discharge,

• lower membrane fouling propensity.

However, the main challenges in this process are related to:

• Development of high performance, such as higher permeate water flux and 
lower reverse salt flux of FO membranes,

• Reducing concentration polarization in membranes,

• Ensuring low DS reverse solute diffusion through the membrane,

• Adaptive reuse

• Regeneration of the DS.

3.1 Desalination

Saline water (e.g. seawater or brackish water) and an osmotic reagent (e.g. a 
non-volatile or a volatile salt) are used as the FS and DS, respectively, in the direct 
FO desalination [81, 82]. In this process, after the FO process, an additional step 
is needed to recycle the draw solutes as well as to produce purified water [83, 84]. 
One of the first examples of FO application in water desalination was published in 
1975. This study was intended to desalinate Atlantic Ocean seawater to produce an 
emergency water supply on lifeboats by direct osmosis (Figure 4) across a CA-FO 
membrane with a hypertonic glucose solution as the DS [85]. In another study, a 
flat-sheet CTA-FO membrane was used in seawater desalination, yielding a high 
water flux and high salt rejection (over 95%) with 6 M ammonium bicarbonate 
(NH4HCO3) as DS [84]. Also, polymer hydrogels particles have been studied as 
draw agents in FO desalination. Smaller polymer hydrogel particles led to higher 
FO water flux in these tests. Similarly, higher salt concentration led to lower FO 
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water flux. Meanwhile, the use of a commercial FO membrane was more suitable 
than RO membrane [83]. Another study modified magnetic particles covered with 
thermo sensitive polymer investigated as DS and about 93% of salt recovery was 
obtained [34]. The world’s first commercial forward osmosis desalination plant 
for direct sea water treatment was established in Al Najdah, Oman. This facility 
is still in operation and has reduced chemical consumption and provides higher 
throughput and longer membrane life, significant operational and capital costs and 
to be more reliable than traditional methods [86]. Membrane fouling and scaling 
problems at RO stage mitigate due to the use of FO as a pretreatment step for the 
RO process.

Indirect FO desalination uses a high salinity water (e.g. seawater or brackish 
water) as a natural DS and quality-impaired water source (e.g. wastewater effluent 
or urban storm water runoff) as the feed solution [87, 88]. The diluted seawater or 
brackish water can potentially couple with low pressure reverse osmosis (LPRO). 
The FO-LPRO hybrid process has lower costs for producing water compared to 
pure reverse osmosis [89]. These experiments have demonstrated the ability of 
FO membranes to reject nutrients from wastewater, especially chemical oxygen 
demand (COD) and phosphate, and moderately nitrogen compounds [88, 90]. As 
an example, a submerged membrane module which makes it possible to adapt the 
process to a primary clarifier tank has been employed for partial desalination of 
seawater. The findings indicated that FO membranes have high rejection of heavy 
metals present in the wastewater (~99%). This study also showed that the use of 
biopolymers-like substances resulted in the fouling layer on the membrane surface 
[88]. A similar result has been reported in the use of osmotic membrane bioreactor 
(OMBR) for municipal wastewater treatment [91].

Figure 4. 
FO process for desalination of seawater or brackish water.

Figure 3. 
Applications of FO in the water treatment industry.
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Direct and indirect arrangements of desalination systems using FO membrane 
are shown in Figure 5.

On the other hand, the pretreatment of wastewater has not yet been reported in 
the study of FO process. The reason, probably, is that the FO system is considered as 
a pre-treatment step to concentrate wastewater and then concentrated wastewater 
can be used to recover biogas or other valuable compounds [88, 93, 94].

3.2 Wastewater treatment

Forward osmosis has been utilized to treat various types of wastewater such 
as municipal wastewater (sewage) [95–98], oily wastewater [67, 99, 100], tanner 
effluent [101], automobile effluents [102], dairy streams [102, 103], produced water 
[104–106] besides synthetic wastewater [107, 108].

Lately, the current systems on FO application on wastewater treatment may be 
classified into two groups: FO and FO-based hybrid processes, and integrated FO 
processes. Both in FO and FO-based hybrid systems, the FO membrane is used to 
recover fresh water and reject of pollutants from the feed solution. In the integrated 
FO system, the FO membrane gradually replaces conventional membrane in the 
bioreactor, such as the FO membrane in membrane bioreactor (MBR). The function 
of the membrane is to concentrate the wastewater and improve the performance of 
the modified system.

Therefore, FO has been extensively applied in wastewater treatment and reuse, 
resource recovery, seawater desalination, and food/medicine manufacturing as 
shown in Table 3.

The FO process shows promising results for the treatment of wastewater, and has 
many advantages in comparison to the conventional wastewater treatment processes. 
When high process recoveries are obtained, FO processes become viable. Forward 
osmosis also provides a more sustainable flux and reliable removal of contaminants.

3.2.1 FO and FO-based hybrid system

Hybrid desalination systems using emerging FO process and combined with 
traditional process like reverse osmosis, membrane distillation, nanofiltration, 
electrodyalsis (ED) could potentially reduce the energy consumption of the 
desalination process, and decrease obstacles in the implementation of process. 
In these systems, FO is used as a pre-treatment step, while RO, NF, and ED are 

Figure 5. 
Scheme of the two FO processes for desalination (a) direct, (b) indirect (adapted from [92]).
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known as water recovery or draw solution regeneration/reconcentration step 
[116, 117]. An overview of FO and FO-based hybrid system configurations is 
depicted in Table 4.

3.2.1.1 Hybrid FO-MD system

The performance of the FO process can be improved by its combination with 
other system to take advantage of the unique strengths of the individual processes. 
For this reason, FO process is often combined with an MD process (Figure 6). As 
an example, the FO-MD hybrid system was employed for raw sewage [93] at water 
recovery up to 80%. This process also achieved high removal efficiency for trace 
organic contaminants (TrOCs) that rates 91–98%. In another study, this hybrid 
system was used for oily wastewater treatment. The findings indicated that 90% 
feed water recovery could be readily attained with trace amounts of oil and NaCl 
[99]. A vapor pressure driving FO-MD system was studied for treatment high 
salinity hazardous waste landfill leachate [129]. Total organic carbon (TOC) and 
total nitrogen (TN) rejection rates were higher than 98% while rejection rate of salt 
was higher than 96%. NH4

+-N, and heavy metal ions were also completely removed. 
Similar performance could also be seen in the application of dairy wastewater and 
grain possessing wastewater treatment [103, 130].

Field FS DS Process Ref.

Wastewater

treatment and 

reuse

Tannery

wastewater

Tannery

wastewater

NaCl solution FO [101]

High-salinity

oil-bearing 

wastewater

Oil-bearing 

wastewater

3 M NaCl FO [109]

Oil sands 

tailings

water

OSPW Basal 

depressurization 

water

FO [110]

Resource

Recovery

P and N 

recovery from 

urine

Fresh urine Mg-based fertilizer 

DS

FO [111]

Precious 

metal

recovery

Pd ion waste

solution

Electroless (E’less)

nickel (Ni) waste

solution

FO [112]

Energy 

recovery

algae culture 

wastewater

Seawater FO [113]

Seawater 

desalination

/ Wastewater Seawater FO + DS [62]

Food and

medicine

manufacturing

/ Sugarcane

juice

Sea bittern FO [114]

/ Protein Superabsorbent

polymer(SAP)

hydrogels

FO [115]

/ Medical 

radioactive 

liquid waste

NaCl FO [60]

Table 3. 
Application of FO in different industries.
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3.2.1.2 Hybrid FO-RO system

Due to the current scenario of global water crisis, seawater desalination has 
become one of the practical solutions to produce water of potable quality. Membrane 
based desalination processes have been used to desalinate seawater have been widely 
reported. Among the various desalination processes, RO is the most consistent and 
reliable process which offers a number of advantages due to its high salt rejection 

Figure 6. 
Schematic diagram of hybrid system consisting of FO and MD processes.

Hybrid 

System

DS FS Ref.

FO Fertilizer chemicals Municipal wastewater [9]

FO 3 M NaCl Oil-bearing wastewater [109]

FO Basal depressurization water OSPW [110]

FO 10% NaCl Coal gasification wastewater [118]

FO-MD MgCl2 Digested sludge [94]

NaCl Oily wastewater [99]

NaCl Salinity landfill leachate [129]

MgSO4 Dairy and grain wastewater [130]

FO-RO NaCl, Na2SO4, MgSO4 Synthetic feed (NaCl); groundwater 

(Mawson Lakes, South Australia)

[116]

NaCl, MgCl2 Seawater (TDS = 32000–45000 mg/L) [119]

Red Sea seawater 

(TDS = 40.5 g/L)

Wastewater effluent (Al Ruwais wastewater 

treatment plant, Jeddah, Saudi Arabia)

[120]

Seawater after UF Coal-fired power plant wastewater [121]

FO-NF Na2SO4 Brackish water from Mawson Lakes, South 

Australia (TDS = 3970 mg/L)

[122]

NaCl, KCl, CaCl2, MgCl2, 

MgSO4, Na2SO4 and C6H12O6

Simulated seawater (0.6 M NaCl) [123]

NaCl, CaCl2, MgSO4, Na2SO4 A site located in northwest Italy [124]

MgCl2 Municipal wastewater [108]

FDFO + ED 1 M DAP Treated wastewater (secondary effluent) [125]

FO + ED-RO NaCl Seawater [126]

FO + ED / brackish and wastewater [127]

FO + ED-RO / Seawater [128]

Table 4. 
An overview of FO and FO-based hybrid systems.
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rate, high quality drinking water, high water recovery, and green technology [131]. 
Despite the aforementioned advantages, several shortcomings, such as high energy 
consumption and severe fouling propensity remain the obstacles [132]. In recent 
years, the hybrid system of the FO and RO processes has gained increasing promi-
nence among researchers [8, 116, 117, 119]. As can be seen in Figure 7, the hybrid 
system consists of two stages. The first stage begins with the migration of fresh water 
from the seawater feed solution to join the draw solution. In the second stage, the 
product fresh water is separated from the draw solution in the RO unit [89].

In the first study focusing on this FO-RO hybrid system, the authors demon-
strated that the approach may provide four major benefits over stand-alone RO 
desalination: lower energy use, multi-barrier protection of drinking water, beneficial 
reuse of impaired water, reduction in RO membrane fouling [89]. Similar interest 
has also been conducted that compaires the hybrid FO-RO system and the stand-
alone RO process for seawater desalination [119]. The study showed that the hybrid 
FO-RO system can be highly competitive depending on the salinity of seawater and 
type and concentration of the draw solute. Interestingly, total power consumption in 
a hybrid FO-RO system was higher than that in RO process, yet the FO process alone 
was only contributed 2–4% of the total power consumption in the FO-RO hybrid 
system. Therefore, most of the power consumption in the FO-RO system was real-
ized in the high hydraulic pressure RO regeneration unit [119]. In another study, FO 
process used as a pre-treatment for a hybrid FO-RO desalination system. The optimal 
parameters such as water flux, water recovery and final draw solution of this FO pre-
treatment process were determined by modeling and were experimentally validated 
by using real brackish water [116]. In a further study, FO-RO hybrid system for 
coal-fired power plant wastewater treatment, seawater after UF was investigated as 
DS. Results showed that the total energy consumption of the FO-RO system was 15% 
less than that of a typical seawater desalination RO [121].

3.2.1.3 Hybrid FO-NF system

The literature includes theoretical studies on the strengthening economic and 
environmental potential of the large-scale FO-based systems but very few experi-
mental reports exist on these issues [133–135]. Examples include discussion on 
pilot-scale FO coupled with NF and other distillation processes for treating waste-
water effluents. For example; a pilot-scale FO-NF hybrid closed loop system was 
developed for the treatment of tannery wastewater at a rate of 52–55 L/m2h and 
rejections of 98.5% COD, 97.2% chlorides and 98.2% sulfate were achieved [136].  

Figure 7. 
Schematic diagram of the hybrid FO-RO system (adapted from [89]).
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In addition, a hybrid FO–NF system designed for brackish water desalination 
was investigated and also presented promising results such as lower hydraulic 
pressure, less flux decline [122]. In another study, a hybrid FO-NF system with 
two NF passes for the post treatment was used for desalinating seawater [123]. 
A proposed configuration of a hybrid FO-NF process for seawater desalination is 
shown in Figure 8 [137].

3.2.1.4 Hybrid FO-ED System

Electrodyalsis is a membrane-based separation process in which ions across 
ion-selective membranes under an electric field. A FO-ED hybrid system was 
investigated by using diammonium phosphate (DAP), as DS to achieve wastewater 
reuse and mitigation of salinity buildup on the feed side. Electrodyalsis was able 
to significantly recover the 96.6 ± 3.0% reverse-fluxed DAP under 3.0 V 1-h daily 
operation [125]. Forward osmosis process was tested upstream to ED-RO system 
for an access to DS with higher electrical conductivity in the FO-ED-RO hybrid 
system [126]. In another study, FO-ED-RO hybrid system proposed to produce 
high-quality water from secondary-effluent or brackish water is shown in Figure 9. 
Results showed that the water from this system contains a low concentration of total 
organic carbon (TOC), carbonate and cations derived from the feed water [127].

3.2.2 Integrated FO system

The integrated FO system includes an osmotic microbial fuel cell (OsMFC) 
and osmotic membrane bioreactor (OMBR). Recent research has elucidated how 

Figure 9. 
Schematic diagram of a novel photovoltaic powered FO-ED system (adapted from [127]).

Figure 8. 
Schematic diagram of the hybrid FO-NF system for seawater desalination (adapted from [137]).
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the integration of osmosis in MFC and MBR was used through the application of 
FO membrane for simultaneous recovery of osmotic water, the concentration of 
wastewater, and the improvement of effluent quality [138, 139].

3.2.2.1 OsMFC

The system uses FO integrated into a microbial fuel cell (MFC) to improve 
the quality of the treated wastewater and the performance of the fuel cell. A FO 
membrane is placed between the anode chamber with wastewater and the cathode 
chamber full of DS and water flux through this membrane transports protons from 
the anode to the cathode [140–145]. An OsMFC (Figure 8) achieved water flux of 
3.94 ± 0.22 L/m2h with a catholyte containing 2 M NaCl, while there was no obvi-
ous water flux in a conventional MFC [140]. In a further study, FO membrane is 
integrated into an air-cathode MFC (AAFO-MFC) for enhancing bio-electricity and 
water recovery from low-strength wastewater. The AAFO-MFC system produced 
a high quality effluent, with the removal rates of organic contaminants and total 
phosphorus (P) of more than 97% [145].

There are also some drawbacks for OsMFC application in wastewater treatment 
such as the lower water flux of the FO membrane, membrane fouling and salt 
accumulation (Figure 10) [146].

3.2.2.2 OMBR

Hollow fiber or flat-sheet MF and UF membranes are commonly used mem-
branes in MBR. A major problem associated with the operation of MF-UF-MBRs is 
membrane fouling. A novel MBR-named OMBR- has been developed and widely 
used to reduce fouling and promote the reuse of treated wastewater. In OMBR, FO 
membrane module is displaced in the wastewater. A combination biological treat-
ment and an OMBR uses to remove water from the mixed liquor to the draw side 
under the osmotic pressure gradient. The pollutants, activated sludge and solids are 
all rejected by the membrane. The OMBR-based hybrid system, for the first time, 
was utilized to direct recovery nutrient from municipal wastewater with over 90% 
of nutrient. In this study, nutrient and mineral salts were rejected via FO membrane 
and enriched within the bioreactor and then recovered by chemical precipitation 
[147]. The OMBR has several advantages, including higher rejection rate, lower 
energy consumption, and higher quality of treated wastewater compared to the 
traditional MBR. However, OMBR still has some disadvantages, such as salinity 
accumulation and membrane fouling. Based on the OMBR hybrid system, an inte-
grated UF or MF membrane system in the OMBR system was investigated to remove 
the soluble inorganic salts in the reactor [148]. This process has a longer sludge 

Figure 10. 
Schematic diagram of an OsMFC (adapted from [140]).
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residence time (SRT) than the traditional OMBR system, so a higher sludge con-
centration can be obtained. Similarly, MF membrane was added to the system for 
phosphate recovery from the raw sewage, in which MF and FO membranes function 
in parallel. The results show that the phosphate can be recycled up to 98%. The MF 
membrane retained phosphate and mineral salts in the bioreactor, so phosphate was 
precipitated as calcium phosphate precipitates without the input of Ca2+ ions. [149]. 
In another study, the OMBR system was operated in treating of Chromium (Cr) 
and Lead (Pb) metals of the high strength wastewater. The findings revealed that 
industrial wastewater containing more than 5 mg/L of Cr and more than 2 mg/L of 
Pb is not recommended for the OMBR due to poor sludge characteristics, and high 
membrane fouling (Figure 11) [150].

4. Conclusions

The FO membrane process is a promising process for drinking water purification 
and wastewater treatment technology due to its excellent high rejection rate perfor-
mance and relatively low membrane fouling characteristics. Hence it is likely to gain 
an very important place in the membrane technology.

The engineering of the FO process application is relatively scarce, due to the 
FO investigations and applications are still in the laboratory scale and progress in 
practical applications still requires further proof of the pilot. The research on mem-
brane fouling mechanism is also needed, which still has a large gap in the current 
research results. Over the past decade, a large number of research papers has been 
published on membrane development (to increase water flux) and process design 
(i.e., to increase osmotic pressure, to change sludge retention time) and the number 
of papers in these issues has also increased year by year. The researchers’ focus is to 
develop next-generation membranes by advanced membrane fabrication methods 
as well as hybrid systems where the FO process can really add value.

This chapter focuses mainly on forward osmosis either individually or in combi-
nation with other processes for wastewater treatment. For example; the FO removes 
the large molecular weight trace organic compounds while the combination of the 
MBR and NF/RO process for removing TrOCs from synthetic wastewater is fea-
sible. The key concepts mentioned in the chapter provide better understanding for 
further promoting the utilization of FO process and its new applications for water 
resource recovery and wastewater treatment development.

Figure 11. 
Schematic diagram of an OMBR (adapted from [150]).
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